JP2017007266A - Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method - Google Patents

Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method Download PDF

Info

Publication number
JP2017007266A
JP2017007266A JP2015127414A JP2015127414A JP2017007266A JP 2017007266 A JP2017007266 A JP 2017007266A JP 2015127414 A JP2015127414 A JP 2015127414A JP 2015127414 A JP2015127414 A JP 2015127414A JP 2017007266 A JP2017007266 A JP 2017007266A
Authority
JP
Japan
Prior art keywords
storage tank
fiber
lactam
composite material
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015127414A
Other languages
Japanese (ja)
Inventor
邉 吾一
Goichi Hen
吾一 邉
明子 平林
Akiko Hirabayashi
明子 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2015127414A priority Critical patent/JP2017007266A/en
Publication of JP2017007266A publication Critical patent/JP2017007266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide pultrusion manufacturing equipment and a pultrusion manufacturing method of fiber-reinforced thermoplastic polyamide composite material, which enable stable and continuous manufacturing.SOLUTION: Pultrusion manufacturing equipment 1 of fiber-reinforced polyamide composite material, comprising: a mixer 10 for mixing a lactam monomer, a surfactant, and a polymerization catalyst; a storage tank 20 for impregnating the polymerizable lactam mixture 15 obtained in the mixer 10 into a fiber material 30 and polymerizing the same; and a pultrusion device 40 for continuously pultruding the fiber-reinforced composite material 31 guided from the storage tank 20, where a discharge part 21 and a discharge control part 22 are installed at the bottom of the storage tank 20.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化ポリアミド複合材料の引抜製造装置及び引抜製造方法に関する。   The present invention relates to a drawing manufacturing apparatus and a drawing manufacturing method for a fiber-reinforced polyamide composite material.

熱硬化性樹脂の繊維強化プラスチック(FRP)材の連続製造方法として、例えば、特許文献1に開示されているような引抜成形法が知られている。常温で液体状態であって粘度が高くない未硬化の熱硬化性樹脂を用いているので、繊維に含浸し易く、容易に連続成形することが可能である。
一方、熱可塑性樹脂の繊維強化プラスチック(FRP)材の連続製造方法として、特許文献2では、重合性ラクタム混合液に炭素繊維等からなる強化材料を含浸させ、除さい装置により過剰なマトリックス材料を掬い取った後、加熱装置を通過させることにより加熱して重合させる、繊維強化複合材料の引抜成形法が開示されている。
As a continuous manufacturing method of a fiber reinforced plastic (FRP) material of a thermosetting resin, for example, a pultrusion method disclosed in Patent Document 1 is known. Since an uncured thermosetting resin that is in a liquid state at normal temperature and does not have a high viscosity is used, the fiber is easily impregnated and can be continuously continuously formed.
On the other hand, as a continuous production method of a fiber reinforced plastic (FRP) material of a thermoplastic resin, in Patent Document 2, a polymerizable lactam mixed liquid is impregnated with a reinforcing material made of carbon fiber or the like, and an excess matrix material is removed by a removing device. A pultrusion method of a fiber reinforced composite material is disclosed in which after scooping and heating and polymerizing by passing through a heating device.

特開2004−74427号公報JP 2004-74427 A 特表2005−513206号公報JP 2005-513206 A

ところが、特許文献2に開示された繊維強化複合材料の引抜成形法では、繊維との含浸も不十分となり易く、加熱装置で重合した樹脂が高粘性となって詰まり易く、安定した連続成形が難しかった。   However, in the fiber reinforced composite material pultrusion method disclosed in Patent Document 2, the impregnation with the fibers tends to be insufficient, the resin polymerized by the heating device becomes highly viscous and easily clogged, and stable continuous molding is difficult. It was.

本発明は、上記事情に鑑みて為されたものであり、安定的な連続製造が可能な繊維強化熱可塑性ポリアミド複合材料の引抜製造装置及び引抜製造方法を提供する。   This invention is made | formed in view of the said situation, and provides the drawing manufacturing apparatus and drawing manufacturing method of the fiber reinforced thermoplastic polyamide composite material in which stable continuous manufacture is possible.

発明者らは、重合性ラクタム混合液を繊維強化材料に含浸させ、重合させて繊維強化複合材料を製造するに際して、該重合性ラクタム混合液の収容タンクの底部に排出部及び排出制御部を設けるまたは、強化繊維はそのままの状態で保持し、収容タンクだけを90度以上に傾けて排出することにより、安定的な連続製造が可能となることを見出し、本発明を完成した。   The inventors provide a discharge unit and a discharge control unit at the bottom of the storage tank of the polymerizable lactam mixed liquid when the fiber reinforced material is impregnated into the fiber reinforced material and polymerized to produce a fiber reinforced composite material. Alternatively, the present inventors have found that stable continuous production becomes possible by holding the reinforcing fibers as they are and tilting and discharging only the storage tank at 90 degrees or more, thereby completing the present invention.

すなわち、本発明は、ラクタムモノマー、活性剤及び重合触媒を混合する混合器と、該混合器で得られた重合性ラクタム混合液を繊維材料に含浸させ、重合させる収容タンクと、該収容タンクから導かれる繊維強化複合材料を連続的に引き抜く引抜装置と、を備え、前記収容タンクの底部に、排出部及び排出制御部が設けられているまたは、収容タンクを傾けて排出する機構が設けられていることを特徴とする繊維強化ポリアミド複合材料の引抜製造装置を提供する。   That is, the present invention comprises a mixer for mixing a lactam monomer, an activator and a polymerization catalyst, a storage tank for impregnating a polymerizable lactam mixture obtained in the mixer into a fiber material and polymerizing the mixture, and the storage tank. A drawing device that continuously pulls out the fiber-reinforced composite material to be guided, and a discharge unit and a discharge control unit are provided at the bottom of the storage tank, or a mechanism for tilting and discharging the storage tank is provided. An apparatus for drawing and manufacturing a fiber-reinforced polyamide composite material is provided.

本発明の引抜製造装置においては、前記混合器が、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合することが好ましい。   In the drawing production apparatus of the present invention, it is preferable that the mixer mixes a mixture A of lactam monomer and activator and a mixture B of lactam monomer and polymerization catalyst.

本発明の引抜製造装置においては、前記混合器及び前記収容タンクが、不活性ガス雰囲気下又は真空中にて運転できるように筐体で覆われていることが好ましい。   In the drawing manufacturing apparatus of the present invention, it is preferable that the mixer and the storage tank are covered with a casing so as to be operated in an inert gas atmosphere or in a vacuum.

本発明の引抜製造装置においては、前記繊維材料を前記収容タンク中の前記重合性ラクタム混合液に潜らせる部材を備えることが好ましい。   In the drawing manufacturing apparatus of this invention, it is preferable to provide the member which makes the said fiber material immerse in the said polymeric lactam liquid mixture in the said storage tank.

また、本発明は、ラクタムモノマー、活性剤及び重合触媒を混合して得られた重合性ラクタム混合液を収容タンクに注ぎ、該収容タンク中で該重合性ラクタム混合液を繊維材料に含浸させ、該収容タンクから導かれる繊維強化複合材料を連続的に引き抜く際において、前記収容タンクの底部に設けられている排出部から、前記ラクタムモノマーの余剰重合体を排出する、または、前記収容タンクを傾けることにより余剰重合体を排出することを特徴とする繊維強化ポリアミド複合材料の引抜製造方法を提供する。   Further, the present invention is a method of pouring a polymerizable lactam mixture obtained by mixing a lactam monomer, an activator and a polymerization catalyst into a storage tank, impregnating the polymerizable lactam mixture into a fiber material in the storage tank, When the fiber-reinforced composite material guided from the storage tank is continuously pulled out, the excess polymer of the lactam monomer is discharged from the discharge portion provided at the bottom of the storage tank, or the storage tank is tilted. A method for drawing out a fiber-reinforced polyamide composite material, characterized in that the excess polymer is discharged by the above.

本発明の引抜製造方法においては、前記重合性ラクタム混合液が、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合して得られたものであることが好ましい。   In the drawing production method of the present invention, the polymerizable lactam mixture is obtained by mixing the lactam monomer and activator mixture A and the lactam monomer and polymerization catalyst mixture B. Is preferred.

本発明の引抜製造装置及び引抜製造方法により、繊維強化ポリアミド複合材料の安定的な連続製造が可能となる。   The drawing production apparatus and the drawing production method of the present invention enable stable continuous production of a fiber-reinforced polyamide composite material.

本発明の繊維強化ポリアミド複合材料の引抜製造装置の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the drawing manufacturing apparatus of the fiber reinforced polyamide composite material of this invention.

以下、本発明に係る繊維強化ポリアミド複合材料の引抜製造装置及び引抜製造方法について、図面を参照して詳細に説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上実際の引抜製造装置とは異ならせて示している場合がある。また、以下の説明において例示される材料、条件等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
Hereinafter, a drawing manufacturing apparatus and a drawing manufacturing method of a fiber reinforced polyamide composite material according to the present invention will be described in detail with reference to the drawings.
The drawings used in the following description may be shown differently from an actual drawing manufacturing apparatus for the sake of convenience in order to make the characteristics easy to understand. In addition, the materials, conditions, and the like exemplified in the following description are merely examples, and the present invention is not necessarily limited thereto, and can be appropriately modified and implemented without departing from the scope of the invention. .

本発明の一実施形態として、図1に示す繊維強化ポリアミド複合材料の引抜製造装置1は、ラクタムモノマー、活性剤及び重合触媒を混合する混合器10と、混合器10で得られた重合性ラクタム混合液15を繊維材料30に含浸させ、重合させる収容タンク20と、収容タンク20から導かれる繊維強化複合材料31を連続的に引き抜く引抜装置40と、を備え、収容タンク20の底部に、排出部21及び排出制御部22が設けられている。   As one embodiment of the present invention, a fiber reinforced polyamide composite drawing and producing apparatus 1 shown in FIG. 1 includes a mixer 10 for mixing a lactam monomer, an activator and a polymerization catalyst, and a polymerizable lactam obtained by the mixer 10. A storage tank 20 for impregnating and polymerizing the mixed liquid 15 into the fiber material 30, and a drawing device 40 for continuously pulling out the fiber reinforced composite material 31 guided from the storage tank 20, are discharged to the bottom of the storage tank 20. A unit 21 and a discharge control unit 22 are provided.

また、本発明に係る繊維強化ポリアミド複合材料の引抜製造方法は、図1に示す引抜製造装置1により実現することができ、ラクタムモノマー、活性剤及び重合触媒を混合して得られた重合性ラクタム混合液15を、収容タンク20に注ぎ、収容タンク20中で重合性ラクタム混合液15を繊維材料30に含浸させ、収容タンク20から導かれる繊維強化ポリアミド複合材料31を連続的に引き抜く際において、収容タンク20の底部に設けられている排出部21から、前記ラクタムモノマーの余剰重合体を排出する、あるいは強化材料30はそのままの状態で保持し、収容タンク20を90度以上傾ける機構により余剰重合体を排出する。   Moreover, the drawing manufacturing method of the fiber reinforced polyamide composite material according to the present invention can be realized by the drawing manufacturing apparatus 1 shown in FIG. 1, and the polymerizable lactam obtained by mixing the lactam monomer, the activator and the polymerization catalyst. When the mixed liquid 15 is poured into the storage tank 20, the polymerizable lactam mixed liquid 15 is impregnated in the fiber material 30 in the storage tank 20, and the fiber reinforced polyamide composite material 31 guided from the storage tank 20 is continuously drawn. The excess polymer of the lactam monomer is discharged from the discharge portion 21 provided at the bottom of the storage tank 20, or the reinforcing material 30 is held as it is, and the excess weight is maintained by a mechanism that tilts the storage tank 20 by 90 degrees or more. Drain the coalesced.

ラクタムモノマーとしては、γ−ブチロラクタム(融点:25℃)、δ−バレロラクタム(融点:−13℃)、ε−カプロラクタム(融点:68℃)などが挙げられる。
活性剤としては、ヘキサメチレンジイソシアネート、イソシアネートとブロックトイソシアネート;イソフタロイルビスカプロラクタム、テトラフタロイルビス−カプロラクタム;ジメチルフタレート−ポリエチレングリコールのようなエステル;ビス酸塩化物と組合せたポリオール又はポリジエンのプレポリマー;ホスゲンをカプロラクタムと反応させて得たカルボニルビスカプロラクタムなどが挙げられる。
重合触媒としては、カプロラクタムのアルカリ金属アダクト、例えばナトリウムカプロラクタメート、カリウムカプロラクタメート及びリチウムカプロラクタメート;臭化マグネシウムを付加したアルミニウム又はマグネシウムカプロラクタム;アルコキシドなどが挙げられる。
Examples of the lactam monomer include γ-butyrolactam (melting point: 25 ° C.), δ-valerolactam (melting point: −13 ° C.), ε-caprolactam (melting point: 68 ° C.), and the like.
Activators include hexamethylene diisocyanate, isocyanate and blocked isocyanate; isophthaloyl biscaprolactam, tetraphthaloyl bis-caprolactam; esters such as dimethylphthalate-polyethylene glycol; polyol or polydiene pre-combination in combination with bisacid chloride. Polymer: Carbonyl biscaprolactam obtained by reacting phosgene with caprolactam, etc. are mentioned.
Examples of the polymerization catalyst include caprolactam alkali metal adducts such as sodium caprolactamate, potassium caprolactamate and lithium caprolactamate; aluminum added with magnesium bromide or magnesium caprolactam; alkoxide and the like.

ここで、混合器10は、ラクタムモノマー、活性剤及び重合触媒を混合するが、撹拌羽による撹拌混合であってもよく、スタティックミキサーに配置したミキシングヘッドで撹拌混合させるものであってもよい。   Here, although the mixer 10 mixes a lactam monomer, an activator, and a polymerization catalyst, it may be agitated and mixed with a stirring blade, or may be agitated and mixed with a mixing head arranged in a static mixer.

また、繊維材料としては、ガラス、炭素、金属、燐酸塩、セラミック又は重合体の繊維であってよく、そして重合性ラクタム混合液成分の繊維材料への結合を促進する糊又は塗料を含有してもよい。また、繊維材料の形態として、フィラメント、ファイバー、ストランド、編織マット、不織マット、その他の形態で使用することができる。   In addition, the fiber material may be glass, carbon, metal, phosphate, ceramic or polymer fiber, and contains a paste or paint that promotes bonding of the polymerizable lactam mixture component to the fiber material. Also good. Further, the fiber material can be used in the form of filament, fiber, strand, woven mat, non-woven mat, and other forms.

混合器10は、ラクタムモノマー、活性剤及び重合触媒を直接混合するものであってもよいが、図1に示すように、混合タンク11にて調製されたラクタムモノマー及び活性剤の混合液Aと、混合タンク12にて調製されたラクタムモノマー及び重合触媒の混合液Bと、を混合するものであってもよい。   The mixer 10 may directly mix the lactam monomer, the activator, and the polymerization catalyst, but as shown in FIG. 1, the mixture A of the lactam monomer and the activator prepared in the mixing tank 11 Alternatively, the lactam monomer prepared in the mixing tank 12 and the mixed solution B of the polymerization catalyst may be mixed.

ラクタムモノマーが、常温で固体である場合、融点以上の温度に加熱溶融して混合する。ラクタムモノマー、活性剤及び重合触媒が溶融混合すると重合が始まってしまい、混合器10で過度に重合して粘度が高くなってしまうと、収容タンク20に送液された後、繊維材料30へ均質に満遍なく含浸させることが難しくなってしまう。ラクタムモノマー及び活性剤の混合液Aの活性剤濃度、ラクタムモノマー及び重合触媒の混合液Bの重合触媒濃度、混合器10の温度等の条件を適切に制御することにより、重合性ラクタム混合液15を繊維材料30へ均質に満遍なく含浸させることが可能となる。   When the lactam monomer is solid at room temperature, it is heated and melted to a temperature equal to or higher than the melting point and mixed. When the lactam monomer, the activator and the polymerization catalyst are melt-mixed, the polymerization starts, and when the viscosity is increased due to excessive polymerization in the mixer 10, the liquid is fed to the storage tank 20 and then homogeneous to the fiber material 30. It becomes difficult to impregnate all over. By appropriately controlling conditions such as the concentration of the activator in the mixture A of the lactam monomer and the activator, the concentration of the polymerization catalyst B in the mixture B of the lactam monomer and the polymerization catalyst, the temperature of the mixer 10, the polymerizable lactam mixture 15 Can be uniformly and uniformly impregnated into the fiber material 30.

好適なラクタムモノマー及び活性剤の混合液Aの活性剤濃度は、0.1〜50質量%であり、より好ましくは、0.5〜30質量%である。
好適なラクタムモノマー及び重合触媒の混合液Bの重合触媒濃度は、0.1〜50質量%であり、より好ましくは、0.5〜30質量%である。
好適な混合器10の温度は、70〜120℃である。
The active agent concentration of a suitable mixture A of lactam monomer and active agent is 0.1 to 50% by mass, more preferably 0.5 to 30% by mass.
The polymerization catalyst concentration of a suitable mixture B of lactam monomer and polymerization catalyst is 0.1 to 50% by mass, more preferably 0.5 to 30% by mass.
A suitable mixer 10 temperature is 70-120 ° C.

収容タンク20中に混合器10で得られた重合性ラクタム混合液15を、送液ポンプにより送液する。そして、収容タンク20において、混合器10で得られた重合性ラクタム混合液15を繊維材料30に含浸させ、重合を開始させる。   The polymerizable lactam liquid mixture 15 obtained by the mixer 10 is fed into the storage tank 20 by a liquid feed pump. Then, in the storage tank 20, the polymerizable lactam mixture 15 obtained in the mixer 10 is impregnated into the fiber material 30, and polymerization is started.

ここで、繊維材料30を収容タンク20中の重合性ラクタム混合液15に潜らせる際には、繊維材料30を重合性ラクタム混合液15に垂れ下げるようにして引いてもよいし、図1に示すように、収容タンク20が、繊維材料30を収容タンク20中の重合性ラクタム混合液15に強制的に潜らせる部材32を備えてもよい。部材32としては、重合性ラクタム混合液15に浸されるローラや、棒材であってもよく、収容タンクの蓋の部分を重合性ラクタム混合液15に浸されるように突起状に加工したものでもよい。   Here, when the fiber material 30 is submerged in the polymerizable lactam mixed solution 15 in the storage tank 20, the fiber material 30 may be drawn so as to hang down on the polymerizable lactam mixed solution 15, as shown in FIG. As shown, the storage tank 20 may include a member 32 that forcibly immerses the fiber material 30 in the polymerizable lactam mixture 15 in the storage tank 20. The member 32 may be a roller or a rod immersed in the polymerizable lactam mixed solution 15, and the lid portion of the storage tank is processed into a protruding shape so as to be immersed in the polymerizable lactam mixed solution 15. It may be a thing.

収容タンク20の底部には、含浸されなかった余分なナイロン重合体を排出槽23に排出する排出部21及び排出制御部22が設けられている。あるいは、強化材料30はそのままで収容タンク20を90度以上傾けて、余剰重合体を排出する機構を有していてもよい。排出部21及び排出制御部22として、排出ポンプ21及び排出制御装置22を備えてもよく、単なる排出口22及び排出弁22であってもよい。収容タンク20の底部に排出部21及び排出制御部22が設けられていることにより、過剰に重合したナイロン重合体が引抜装置40に導かれるまでに詰まってしまうことを防止することができる。また、常に、収容タンク20中の重合性ラクタム混合液15を新鮮なものに保持して、繊維材料30へ均質に満遍なく含浸させることが可能となる。また、収容タンク20を傾けた場合に繊維材料30が動かないようにする機構を有していてもよい。   At the bottom of the storage tank 20, a discharge unit 21 and a discharge control unit 22 are provided for discharging excess nylon polymer that has not been impregnated into the discharge tank 23. Alternatively, the reinforcing material 30 may be left as it is, and the storage tank 20 may be tilted 90 degrees or more to have a mechanism for discharging excess polymer. As the discharge unit 21 and the discharge control unit 22, a discharge pump 21 and a discharge control device 22 may be provided, or a simple discharge port 22 and a discharge valve 22 may be used. By providing the discharge unit 21 and the discharge control unit 22 at the bottom of the storage tank 20, it is possible to prevent clogging of the excessively polymerized nylon polymer before it is guided to the drawing device 40. Moreover, it is always possible to keep the polymerizable lactam mixture 15 in the storage tank 20 fresh and to impregnate the fiber material 30 uniformly and evenly. Moreover, you may have a mechanism which prevents the fiber material 30 from moving when the accommodation tank 20 is inclined.

特許文献2に開示された装置では、除さい装置により過剰なマトリックス材料を掬い取っているが、掬い取られるマトリックス材料は比較的未反応で粘性の小さなものである。そのため、過剰に重合してしまったマトリックス材料が加熱装置・引抜装置に送り込まれ、詰まりを生じやすい。本発明に係る繊維強化ポリアミド複合材料の引抜製造装置1では、収容タンク20の底部に排出部21及び排出制御部22が設けられている、または、収容タンクを傾けることで余剰重合体を排出することにより、繊維強化ポリアミド複合材料の安定的な連続製造が可能となる。   In the device disclosed in Patent Document 2, excess matrix material is scooped up by a scrubber, but the scavenged matrix material is relatively unreacted and has a low viscosity. Therefore, the matrix material that has been excessively polymerized is sent to the heating device / pulling-out device and is likely to be clogged. In the fiber reinforced polyamide composite material drawing and manufacturing apparatus 1 according to the present invention, a discharge unit 21 and a discharge control unit 22 are provided at the bottom of the storage tank 20, or excess polymer is discharged by tilting the storage tank. Thus, stable continuous production of the fiber-reinforced polyamide composite material becomes possible.

図1に示す繊維強化ポリアミド複合材料の引抜製造装置1において、混合器10及び収容タンク20は、不活性ガス雰囲気下又は真空中にて運転できるように図示しない筐体で覆われており、乾燥窒素ガスを送り込むことのできるガス吸入口及びガス排出口が設けられている。更に、筐体内はシリカゲル、塩化カルシウム等の乾燥剤・除湿剤を設けることができるようになっている。混合器10及び収容タンク20が、筐体で覆われていることにより、不活性ガス雰囲気下又は真空中にて運転でき、重合時に空気中の水分の影響を取り除くことができる。   In the fiber reinforced polyamide composite material drawing production apparatus 1 shown in FIG. 1, the mixer 10 and the storage tank 20 are covered with a casing (not shown) so that they can be operated in an inert gas atmosphere or in a vacuum. A gas inlet and a gas outlet through which nitrogen gas can be fed are provided. Furthermore, desiccants and dehumidifiers such as silica gel and calcium chloride can be provided in the housing. Since the mixer 10 and the storage tank 20 are covered with the casing, the mixer 10 and the storage tank 20 can be operated in an inert gas atmosphere or in a vacuum, and the influence of moisture in the air can be removed during polymerization.

図1に示す引抜製造装置1により、繊維強化ポリアミド複合材料の安定的な連続製造が可能となり、板材やチャンネル材、丸棒材、ストランド材等への連続成形も可能となり、ストランド材に成形した後切断することによりペレット材への成形や薄板状に成形し積層後に加熱圧縮成形することも可能となる。このように引抜製造装置1により、連続成形された繊維強化ポリアミド複合材料は中間材料として各種の軽量構造の部材に応用が可能となる。   The drawing production apparatus 1 shown in FIG. 1 enables stable continuous production of a fiber-reinforced polyamide composite material, and can be continuously formed into a plate material, a channel material, a round bar material, a strand material, etc., and is formed into a strand material. By post-cutting, it can be formed into a pellet material, formed into a thin plate shape, and heat compression molded after lamination. As described above, the fiber reinforced polyamide composite material continuously formed by the drawing manufacturing apparatus 1 can be applied to various lightweight structure members as an intermediate material.

以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.

[実施例1]
図1に示す引抜製造装置1を用いて、繊維強化ポリアミド複合材料の連続引抜製造を行った。引抜製造装置1のうち、混合器10及び収容タンク20は、図示しない透明筐体で覆われており、乾燥窒素ガス雰囲気下で除湿されている。
混合タンク11にて、加熱溶融させたε−カプロラクタム及び活性剤ヘキサメチレンジイソシアネートを混合して活性剤濃度2質量%の混合液Aを調製し、混合タンク12にて、加熱溶融させたε−カプロラクタムモノマー及び重合触媒ε‐カプロラクタム・ナトリウム塩を混合して重合触媒濃度16質量%の混合液Bを調製した。混合タンク11及び混合タンク12並びに供給ラインの温度は69℃以上に維持して、ε‐カプロラクタムモノマーを溶融状態に保った。
[Example 1]
Using the drawing production apparatus 1 shown in FIG. 1, continuous drawing production of a fiber-reinforced polyamide composite material was performed. In the drawing production apparatus 1, the mixer 10 and the storage tank 20 are covered with a transparent casing (not shown) and are dehumidified in a dry nitrogen gas atmosphere.
In the mixing tank 11, ε-caprolactam heated and melted and the activator hexamethylene diisocyanate were mixed to prepare a mixed solution A having an activator concentration of 2% by mass. Monomer and polymerization catalyst ε-caprolactam sodium salt were mixed to prepare a mixed solution B having a polymerization catalyst concentration of 16% by mass. The temperatures of the mixing tank 11 and the mixing tank 12 and the supply line were maintained at 69 ° C. or higher to keep the ε-caprolactam monomer in a molten state.

次いで、溶融した2種類の混合液A及び混合液Bを、送液ポンプにて、それぞれ、10〜30g/minにて混合器10に送液し、これらを撹拌混合して重合性ラクタム混合液15を調製し、収容タンク20に注いだ。ここで、混合器10の温度は融点以上、収容タンク20の温度も融点以上であり、混合器10及び収容タンク20にて重合が開始しているが、重合が進みすぎないように、温度管理、及び送液流速度管理が重要である。
繊維材料30として、例えばガラスロービング(日東紡(株)製 RS230 QR−483)を使用し、5〜50cm/minにて収容タンク20中の重合性ラクタム混合液15中に潜らせて、浸漬させた。
Next, the two types of molten mixture A and mixture B are fed to the mixer 10 at 10-30 g / min with a feed pump, and these are stirred and mixed to obtain a polymerizable lactam mixture. 15 was prepared and poured into the storage tank 20. Here, the temperature of the mixer 10 is equal to or higher than the melting point, and the temperature of the storage tank 20 is also equal to or higher than the melting point, and polymerization is started in the mixer 10 and the storage tank 20, but temperature control is performed so that the polymerization does not proceed excessively. In addition, it is important to manage the liquid flow rate.
For example, glass roving (RS230 QR-483 manufactured by Nittobo Co., Ltd.) is used as the fiber material 30, and it is immersed in the polymerizable lactam mixed solution 15 in the storage tank 20 at 5 to 50 cm / min. It was.

混合器10及び収容タンク20にて予備重合され、繊維材料30に含浸された重合性ラクタム混合液15が、更に、重合用金型を備えた加熱装置50にて重合され、繊維強化ポリアミド複合材料31となる。加熱装置50での加熱温度は140〜200℃である。ガラス繊維の熱伝導率が低いため重合用金型内に熱電対を挿入し、実際の温度を測定した。
繊維強化ポリアミド複合材料31は、加熱装置50を経て引抜装置40により引き抜かれる。加熱装置50は温度制御可能な重合用金型を備えており、繊維強化ポリアミド複合材料31を連続的に成形可能となっている。
The polymerizable lactam mixture 15 preliminarily polymerized in the mixer 10 and the storage tank 20 and impregnated in the fiber material 30 is further polymerized in a heating device 50 equipped with a polymerization mold, and fiber reinforced polyamide composite material 31. The heating temperature in the heating device 50 is 140 to 200 ° C. Since the thermal conductivity of the glass fiber was low, a thermocouple was inserted into the polymerization mold and the actual temperature was measured.
The fiber reinforced polyamide composite material 31 is drawn by the drawing device 40 through the heating device 50. The heating device 50 includes a temperature-controllable polymerization mold, and the fiber-reinforced polyamide composite material 31 can be continuously formed.

ここで、収容タンク20内では、重合性ラクタム混合液が適度に重合し、かつ、繊維材料30を潜らせることにより均質に満遍なく含浸させることができる。また、収容タンク20には、含浸されなかった余分な重合体を排出するために収容タンク20を傾ける機構、または排出口21が設けられており、排出弁22によりこの排出量を制御することができる。
これにより、安定して連続的な繊維強化ポリアミド複合材料31の製造が可能となった。
Here, in the storage tank 20, the polymerizable lactam mixed solution is appropriately polymerized, and the fiber material 30 can be submerged uniformly and uniformly. In addition, the storage tank 20 is provided with a mechanism for tilting the storage tank 20 in order to discharge excess polymer that has not been impregnated, or a discharge port 21, and this discharge amount can be controlled by the discharge valve 22. it can.
As a result, a stable and continuous fiber-reinforced polyamide composite material 31 can be produced.

得られた繊維強化ポリアミド複合材料31の繊維体積含有率は約40%であり、未反応モノマー残存率は、1.8%であった。
なお、未反応モノマーは水に可溶であることから、未反応モノマー残存率は、次の手順により算出した。
(1)60℃で24時間乾燥し初期重量Mを計測。
(2)80℃の温水に72時間浸漬。
(3)60℃で72時間乾燥し、抽出後質量Mを計測。
(4)次式により、未反応モノマー残存率を算出。
未反応モノマー残存率=(M−M)/M
The obtained fiber reinforced polyamide composite material 31 had a fiber volume content of about 40% and an unreacted monomer residual ratio of 1.8%.
Since the unreacted monomer is soluble in water, the unreacted monomer remaining rate was calculated by the following procedure.
(1) Dry at 60 ° C. for 24 hours and measure initial weight M 0 .
(2) Immerse in warm water at 80 ° C. for 72 hours.
(3) at 60 ° C. and dried for 72 hours, measured after extraction mass M 1.
(4) The unreacted monomer residual ratio is calculated by the following formula.
Unreacted monomer residual ratio = (M 0 −M 1 ) / M 0

また、得られた繊維強化ポリアミド複合材料31について、JIS K7165に準拠した引張試験およびJIS K7017に準拠した曲げ試験の評価を行ったところ、引張強度955MPa、引張弾性率32GPa、曲げ強度979MPa、曲げ弾性率28GPaであった。   Further, the obtained fiber reinforced polyamide composite material 31 was evaluated by a tensile test according to JIS K7165 and a bending test according to JIS K7017. The rate was 28 GPa.

1 引抜製造装置
10 混合器
11 混合タンク
12 混合タンク
15 重合性ラクタム混合液
20 収容タンク
21 排出部
22 排出制御部
30 繊維材料
31 繊維強化ポリアミド複合材料
40 引抜装置
DESCRIPTION OF SYMBOLS 1 Drawing production apparatus 10 Mixer 11 Mixing tank 12 Mixing tank 15 Polymerizable lactam liquid mixture 20 Storage tank 21 Discharge part 22 Discharge control part 30 Fiber material 31 Fiber reinforced polyamide composite material 40 Pulling apparatus

Claims (6)

ラクタムモノマー、活性剤及び重合触媒を混合する混合器と、
該混合器で得られた重合性ラクタム混合液を繊維材料に含浸させ、重合させる収容タンクと、
該収容タンクから導かれる繊維強化複合材料を連続的に引き抜く引抜装置と、を備え、
前記収容タンクの底部に、排出部及び排出制御部が設けられていること、または、収容タンクを傾けて排出する機構が設けられていることを特徴とする繊維強化ポリアミド複合材料の引抜製造装置。
A mixer for mixing lactam monomer, activator and polymerization catalyst;
A storage tank for impregnating and polymerizing the polymerizable lactam mixture obtained in the mixer;
A drawing device for continuously drawing the fiber-reinforced composite material guided from the storage tank,
An apparatus for drawing and manufacturing a fiber-reinforced polyamide composite material, wherein a discharge portion and a discharge control portion are provided at the bottom of the storage tank, or a mechanism for discharging the storage tank by tilting is provided.
前記混合器が、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合する請求項1に記載の引抜製造装置。   The drawing production apparatus according to claim 1, wherein the mixer mixes a mixture A of a lactam monomer and an activator and a mixture B of a lactam monomer and a polymerization catalyst. 前記混合器及び前記収容タンクが、不活性ガス雰囲気下又は真空中にて運転できるように筐体で覆われている請求項1又は2に記載の引抜製造装置。   The drawing manufacturing apparatus according to claim 1 or 2, wherein the mixer and the storage tank are covered with a casing so as to be operated in an inert gas atmosphere or in a vacuum. 前記繊維材料を前記収容タンク中の前記重合性ラクタム混合液に潜らせる部材を備える請求項1〜3のいずれかに記載の引抜製造装置。   The drawing manufacturing apparatus according to any one of claims 1 to 3, further comprising a member for allowing the fibrous material to be submerged in the polymerizable lactam mixed solution in the storage tank. ラクタムモノマー、活性剤及び重合触媒を混合して得られた重合性ラクタム混合液を収容タンクに注ぎ、
該収容タンク中で該重合性ラクタム混合液を繊維材料に含浸させ、該収容タンクから導かれる繊維強化複合材料を連続的に引き抜く際において、
前記収容タンクの底部に設けられている排出部から、前記ラクタムモノマーの余剰重合体を排出する、または、前記収容タンクを傾けることにより余剰重合体を排出することを特徴とする繊維強化ポリアミド複合材料の引抜製造方法。
Pour polymerizable lactam mixture obtained by mixing lactam monomer, activator and polymerization catalyst into the storage tank,
When the fiber material is impregnated with the polymerizable lactam mixed solution in the storage tank, and the fiber-reinforced composite material guided from the storage tank is continuously pulled out,
A fiber-reinforced polyamide composite material, wherein the excess polymer of the lactam monomer is discharged from a discharge part provided at the bottom of the storage tank, or the excess polymer is discharged by tilting the storage tank. Drawing manufacturing method.
前記重合性ラクタム混合液が、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合して得られたものである、請求項5に記載の繊維強化ポリアミド複合材料の引抜製造方法。   The fiber-reinforced polyamide according to claim 5, wherein the polymerizable lactam mixture is obtained by mixing a mixture A of a lactam monomer and an activator and a mixture B of a lactam monomer and a polymerization catalyst. A method for drawing composite materials.
JP2015127414A 2015-06-25 2015-06-25 Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method Pending JP2017007266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127414A JP2017007266A (en) 2015-06-25 2015-06-25 Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127414A JP2017007266A (en) 2015-06-25 2015-06-25 Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method

Publications (1)

Publication Number Publication Date
JP2017007266A true JP2017007266A (en) 2017-01-12

Family

ID=57762318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127414A Pending JP2017007266A (en) 2015-06-25 2015-06-25 Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method

Country Status (1)

Country Link
JP (1) JP2017007266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147945A (en) * 2018-02-27 2019-09-05 国立大学法人名古屋大学 Production method and production device for fiber-reinforced thermoplastic resin
WO2019168011A1 (en) * 2018-02-27 2019-09-06 国立大学法人名古屋大学 Production method and production device for fiber-reinforced thermoplastic resin
WO2022107694A1 (en) 2020-11-18 2022-05-27 第一工業製薬株式会社 Manufacturing method and manufacturing device for thermoplastic resin complex

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641507A (en) * 1981-11-18 1989-01-05 Spie Batignolles Process and apparatus for manufacture of profiled strip in fiber-loaded thermoplastic resin
JPH04249538A (en) * 1990-12-28 1992-09-04 Ube Nitto Kasei Co Ltd Glass-reinforced polyamide resin composition and production thereof
JPH05104642A (en) * 1991-10-21 1993-04-27 Sumitomo Rubber Ind Ltd Method and mold for producing fiber reinforced resin product
JPH05309751A (en) * 1991-11-28 1993-11-22 Monsanto Europe Sa Nylon pultrusion process
JPH07125084A (en) * 1993-11-05 1995-05-16 Showa Shell Sekiyu Kk Roving impregnation device and roving disposition method
US5424388A (en) * 1993-06-24 1995-06-13 Industrial Technology Research Institute Pultrusion process for long fiber-reinforced nylon composites
JPH07178828A (en) * 1993-12-21 1995-07-18 Sekisui Chem Co Ltd Production of pultrusion molding
JP2002103344A (en) * 2000-09-29 2002-04-09 Mitsuboshi Belting Ltd Apparatus for manufacturing casting polyamide resin and washing method therefor
JP2005513206A (en) * 2001-12-20 2005-05-12 エムス−ヒェミー アクチェンゲゼルシャフト Method for producing a composite material using a thermoplastic matrix
JP2005231112A (en) * 2004-02-18 2005-09-02 Toray Ind Inc Frp structure manufacturing method
JP2006159420A (en) * 2004-12-02 2006-06-22 Toray Ind Inc Manufacturing method of frp molded product
JP2007131959A (en) * 2005-11-09 2007-05-31 Teijin Techno Products Ltd Method for production of carbon fiber strand for reinforcing thermoplastic resin
JP2007231441A (en) * 2006-02-28 2007-09-13 Teijin Techno Products Ltd Carbon fiber strand for reinforcing thermoplastic resin
WO2015046290A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641507A (en) * 1981-11-18 1989-01-05 Spie Batignolles Process and apparatus for manufacture of profiled strip in fiber-loaded thermoplastic resin
JPH04249538A (en) * 1990-12-28 1992-09-04 Ube Nitto Kasei Co Ltd Glass-reinforced polyamide resin composition and production thereof
JPH05104642A (en) * 1991-10-21 1993-04-27 Sumitomo Rubber Ind Ltd Method and mold for producing fiber reinforced resin product
JPH05309751A (en) * 1991-11-28 1993-11-22 Monsanto Europe Sa Nylon pultrusion process
US5424388A (en) * 1993-06-24 1995-06-13 Industrial Technology Research Institute Pultrusion process for long fiber-reinforced nylon composites
JPH07125084A (en) * 1993-11-05 1995-05-16 Showa Shell Sekiyu Kk Roving impregnation device and roving disposition method
JPH07178828A (en) * 1993-12-21 1995-07-18 Sekisui Chem Co Ltd Production of pultrusion molding
JP2002103344A (en) * 2000-09-29 2002-04-09 Mitsuboshi Belting Ltd Apparatus for manufacturing casting polyamide resin and washing method therefor
JP2005513206A (en) * 2001-12-20 2005-05-12 エムス−ヒェミー アクチェンゲゼルシャフト Method for producing a composite material using a thermoplastic matrix
JP2005231112A (en) * 2004-02-18 2005-09-02 Toray Ind Inc Frp structure manufacturing method
JP2006159420A (en) * 2004-12-02 2006-06-22 Toray Ind Inc Manufacturing method of frp molded product
JP2007131959A (en) * 2005-11-09 2007-05-31 Teijin Techno Products Ltd Method for production of carbon fiber strand for reinforcing thermoplastic resin
JP2007231441A (en) * 2006-02-28 2007-09-13 Teijin Techno Products Ltd Carbon fiber strand for reinforcing thermoplastic resin
WO2015046290A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤木 孝郎, 邉 吾一, 平林 明子: "引抜成形を用いた先進熱可塑性複合材料の開発", 日本大学生産工学部第47回学術講演会講演概要, JPN6019015842, 6 December 2014 (2014-12-06), pages 685 - 688, ISSN: 0004146004 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147945A (en) * 2018-02-27 2019-09-05 国立大学法人名古屋大学 Production method and production device for fiber-reinforced thermoplastic resin
WO2019168011A1 (en) * 2018-02-27 2019-09-06 国立大学法人名古屋大学 Production method and production device for fiber-reinforced thermoplastic resin
WO2022107694A1 (en) 2020-11-18 2022-05-27 第一工業製薬株式会社 Manufacturing method and manufacturing device for thermoplastic resin complex
KR20230107796A (en) 2020-11-18 2023-07-18 다이이치 고교 세이야쿠 가부시키가이샤 Method and apparatus for manufacturing thermoplastic resin composites

Similar Documents

Publication Publication Date Title
CN103534082B (en) The preparation fibre-reinforced flat pattern process of semi-finished containing polyamide substrate
CN102695598B (en) For the preparation of the method for composite
JP2017007266A (en) Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method
US8101107B2 (en) Method for producing pultruded components
KR20030060184A (en) Method and apparatus for the continuous production of foamed metals
CN103802324B (en) Composite storage apparatus and manufacturing process thereof
JPH08319180A (en) Porous mineral light weight insulating plate and its production
JP2016505664A (en) Manufacturing method of fiber reinforced composite material
US20150165651A1 (en) Method for Processing Single Nylon 6 Composites
CN110757845B (en) Equipment and method for preparing continuous fiber reinforced composite material
KR20210069046A (en) Injection apparatus and method for producing fiber-reinforced composite parts
CN103827171A (en) Novel compositions for producing cast polyamides
US10611889B2 (en) Method for producing impregnated fiber structures
US11820044B2 (en) System for producing a lightweight thermoplastic composite sheet
CN107000335A (en) Method and apparatus for preparing reinforced plastics part
CN1093033A (en) Forming method and its used equipment of being used for shaping fiber reinforced plastics goods
CN110408065A (en) It is a kind of braiding or automatic fiber placement thermoplastic resin base continuous fibers prepreg preparation method
CA2358577A1 (en) Method of producing centrifugally cast, glass fiber reinforced plastic tubes
PL205277B1 (en) Apparatus for spraying surfaces
WO2022018199A1 (en) Device and process for producing composite components comprising at least one wound fiber reinforced polymer layer
CN109689744A (en) It is used to prepare the sizing agent of the doped catalyst of high area weight fiber storage stability prepreg or the compound intermediate of molding
CN111098528A (en) System for producing fully impregnated thermoplastic prepregs
JPH08258041A (en) Method and apparatus for mixing and supplying resin
JP6990393B2 (en) Manufacturing method of fiber reinforced composite material
CN209158986U (en) A kind of equipment producing polymerization styrofoam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105