JP6990393B2 - Manufacturing method of fiber reinforced composite material - Google Patents

Manufacturing method of fiber reinforced composite material Download PDF

Info

Publication number
JP6990393B2
JP6990393B2 JP2017155807A JP2017155807A JP6990393B2 JP 6990393 B2 JP6990393 B2 JP 6990393B2 JP 2017155807 A JP2017155807 A JP 2017155807A JP 2017155807 A JP2017155807 A JP 2017155807A JP 6990393 B2 JP6990393 B2 JP 6990393B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
composite material
sheet
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017155807A
Other languages
Japanese (ja)
Other versions
JP2019035002A (en
Inventor
紀夫 平山
明子 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2017155807A priority Critical patent/JP6990393B2/en
Publication of JP2019035002A publication Critical patent/JP2019035002A/en
Application granted granted Critical
Publication of JP6990393B2 publication Critical patent/JP6990393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 ・平成28年度卒業研究概要集 日本大学生産工学部 機械工学科(公開日 平成29年2月14日、発行日 平成29年2月24日)・平成28年度機械工学科 卒業研究発表会(開催日 平成29年2月24日)Application of Article 30, Paragraph 2 of the Patent Act ・ 2016 Graduation Research Summary Collection Department of Mechanical Engineering, Faculty of Industrial Science and Technology, Nihon University (Publication date: February 14, 2017, Publication date: February 24, 2017) ・ Department of Mechanical Engineering, 2016 Graduation research presentation (Date: February 24, 2017)

本発明は、維強化複合材料の製造方法に関する。 The present invention relates to a method for producing a fiber -reinforced composite material.

自動車業界をはじめ、軽量化を目的とした金属代替材に、比強度・比剛性に優れた繊維強化プラスチック(FRP)が幅広い分野で使用されている。
熱硬化性樹脂の繊維強化プラスチック(FRP)材の連続製造方法として、例えば、特許文献1に開示されているような引抜成形法が知られている。常温で液体状態であって粘度が高くない未硬化の熱硬化性樹脂を用いているので、繊維に含浸し易く、容易に連続成形することが可能である。
一方、熱可塑性樹脂の繊維強化プラスチック(FRP)材の連続製造方法として、特許文献2では、重合性ラクタム混合液を炭素繊維等からなる強化材料に含浸させ、除さい装置により過剰なマトリックス材料を掬い取った後、加熱装置を通過させることにより加熱して重合させる、繊維強化複合材料の引抜成形法が開示されている。また、特許文献3には、重合性ラクタム混合液を繊維材料に含浸させ、重合させて繊維強化複合材料を製造するに際して、重合性ラクタム混合液の収容タンクの底部に排出部及び排出制御部を設ける工夫がされた、熱可塑性樹脂の繊維強化複合材料の連続製造方法が提案されている。
Fiber reinforced plastics (FRP), which have excellent specific strength and rigidity, are used in a wide range of fields as metal substitutes for the purpose of weight reduction, including the automobile industry.
As a method for continuously producing a fiber reinforced plastic (FRP) material of a thermosetting resin, for example, a pultrusion method as disclosed in Patent Document 1 is known. Since an uncured thermosetting resin that is in a liquid state at room temperature and does not have a high viscosity is used, it can be easily impregnated into fibers and can be easily continuously molded.
On the other hand, as a method for continuously producing a fiber reinforced plastic (FRP) material of a thermoplastic resin, in Patent Document 2, a reinforced material made of carbon fiber or the like is impregnated with a polymerizable lactam mixed solution, and an excess matrix material is removed by a removing device. A method for drawing out a fiber-reinforced composite material, which is scooped up and then heated and polymerized by passing it through a heating device, is disclosed. Further, in Patent Document 3, when a fiber material is impregnated with a polymerizable lactam mixed liquid and polymerized to produce a fiber-reinforced composite material, a discharge unit and a discharge control unit are provided at the bottom of a tank containing the polymerizable lactam mixed liquid. A method for continuously producing a fiber-reinforced composite material of a thermoplastic resin, which has been devised to be provided, has been proposed.

特開2004-74427号公報Japanese Unexamined Patent Publication No. 2004-74427 特表2005-513206号公報Japanese Patent Publication No. 2005-513206 特表2017-007266号公報Special Table 2017-007266 Gazette

特許文献1に開示されているような熱硬化性樹脂のFRP材の連続引抜成形は実用化しているが、熱可塑性樹脂のFRP材の引抜成形は重合速度の制御が困難であり、連続成形が難しい。
特許文献2に開示された繊維強化複合材料の引抜成形法では、繊維との含浸も不十分となり易く、加熱装置で重合した樹脂が高粘性となって詰まり易く、安定した連続成形が難しかった。特許文献3では、余剰のマトリックス材料を排出する機構なので、マトリックス材料が無駄になってしまう。また、特許文献3では、重合加熱部と成形部が独立しており、繊維強化複合材料の表面が重合加熱部と直接接触するため摩擦が大きく、大きな引抜力が必要になるとともに、繊維強化複合材料の表面が粗く、凹凸が生じる結果となっていた。
Although continuous pultrusion of thermosetting resin FRP material as disclosed in Patent Document 1 has been put into practical use, pultrusion of thermoplastic resin FRP material is difficult to control the polymerization rate, and continuous molding is possible. difficult.
In the pultrusion method of the fiber-reinforced composite material disclosed in Patent Document 2, impregnation with the fiber tends to be insufficient, the resin polymerized by the heating device becomes highly viscous and easily clogged, and stable continuous molding is difficult. In Patent Document 3, since the mechanism discharges excess matrix material, the matrix material is wasted. Further, in Patent Document 3, the polymerization heating part and the molding part are independent, and since the surface of the fiber-reinforced composite material comes into direct contact with the polymerization heating part, friction is large, a large pulling force is required, and the fiber-reinforced composite is required. The surface of the material was rough, resulting in unevenness.

本発明は、上記事情に鑑みて為されたものであり、安定的な連続製造が可能な繊維強化複合材料の製造装置及び繊維強化複合材料の製造方法を提供する。 The present invention has been made in view of the above circumstances, and provides an apparatus for producing a fiber-reinforced composite material capable of stable continuous production and a method for producing a fiber-reinforced composite material.

発明者らは、繊維シート材料に含浸された重合性ラクタム混合液を、一対の保護シートで挟まれた状態で加熱重合させることにより、重合時に反応液の空気との接触を防止することができ、重合性ラクタム混合液が熱金型に直接接触することがないので、引抜力を小さくすることができ、繊維強化複合材料の表面を美麗にすることができ、熱可塑性樹脂であるナイロンを母材とする繊維強化複合材料を連続的に製造できることを見出した。
すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
The inventors can prevent the reaction solution from coming into contact with air during polymerization by heating and polymerizing the polymerizable lactam mixed solution impregnated in the fiber sheet material while being sandwiched between a pair of protective sheets. Since the polymerizable lactam mixture does not come into direct contact with the hot mold, the pulling force can be reduced, the surface of the fiber-reinforced composite material can be cleaned, and nylon, which is a thermoplastic resin, is used as a mother. It has been found that the fiber-reinforced composite material used as a material can be continuously produced.
That is, the present invention provides the following means for solving the above problems.

(1)第1の態様にかかる繊維強化複合材料の製造装置は、熱可塑性樹脂モノマー及び重合触媒を混合して熱可塑性樹脂モノマー混合液とする混合器と、前記熱可塑性樹脂モノマー混合液を繊維シート材料に連続的に含浸させ、第一保護シート及び第二保護シートで挟む積層装置と、第一保護シート及び第二保護シートで挟まれ、繊維シート材料に含浸された熱可塑性樹脂モノマー混合液を加熱重合して、熱可塑性樹脂を母材とするシート状の繊維強化複合材料を形成する加熱重合機と、前記加熱重合機から前記繊維強化複合材料を連続的に引き抜く引抜装置と、を備える。 (1) The fiber-reinforced composite material manufacturing apparatus according to the first aspect is a mixer in which a thermoplastic resin monomer and a polymerization catalyst are mixed to form a thermoplastic resin monomer mixed solution, and the thermoplastic resin monomer mixed solution is mixed with fibers. A laminating device that continuously impregnates the sheet material and sandwiches it between the first protective sheet and the second protective sheet, and a thermoplastic resin monomer mixed solution that is sandwiched between the first protective sheet and the second protective sheet and impregnated into the fiber sheet material. A heat polymerization machine for forming a sheet-shaped fiber-reinforced composite material using a thermoplastic resin as a base material by heat-polymerizing the above, and a drawing device for continuously pulling out the fiber-reinforced composite material from the heat-polymerizing machine. ..

(2)上記態様にかかる繊維強化複合材料の製造装置において、前記混合器及び前記積層装置が、不活性ガス雰囲気下又は真空中で運転できるように筐体で覆われていてもよい。
(3)上記態様にかかる繊維強化複合材料の製造装置において、前記繊維シート材料を前記積層装置に供給する繊維シート材料供給装置を備え、前記繊維シート材料供給装置は、前記繊維シート材料をあらかじめ加熱する加熱装置を備えていてもよい。
(2) In the fiber-reinforced composite material manufacturing apparatus according to the above embodiment, the mixer and the laminating apparatus may be covered with a housing so that they can be operated under an inert gas atmosphere or in a vacuum.
(3) In the fiber-reinforced composite material manufacturing apparatus according to the above aspect, the fiber sheet material supply device for supplying the fiber sheet material to the laminating device is provided, and the fiber sheet material supply device preheats the fiber sheet material. It may be provided with a heating device.

(4)上記態様にかかる繊維強化複合材料の製造装置において、前記熱可塑性樹脂モノマーが、ラクタムモノマーであり、前記繊維強化複合材料がポリアミドを母材とするシート状の繊維強化複合材料であってもよい。
(5)上記態様にかかる繊維強化複合材料の製造装置において、前記混合器が、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合するものであってもよい。
(4) In the apparatus for producing a fiber-reinforced composite material according to the above aspect, the thermoplastic resin monomer is a lactam monomer, and the fiber-reinforced composite material is a sheet-shaped fiber-reinforced composite material using polyamide as a base material. May be good.
(5) In the apparatus for producing a fiber-reinforced composite material according to the above aspect, the mixer mixes a mixed solution A of a lactam monomer and an activator and a mixed solution B of a lactam monomer and a polymerization catalyst. May be good.

(6)第2の態様にかかる繊維強化複合材料の製造方法は、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合し、前記混合液A及び前記混合液Bを混合して得られたラクタムモノマー混合液を繊維シート材料に連続的に含浸させ、第一保護シート及び第二保護シートで挟み、第一保護シート及び第二保護シートで挟まれ、繊維シート材料に含浸されたラクタムモノマー混合液を加熱重合して、ポリアミドを母材とするシート状の繊維強化複合材料を形成し、前記繊維強化複合材料を連続的に引き抜く。 (6) In the method for producing a fiber-reinforced composite material according to the second aspect, a mixed solution A of a lactam monomer and an activator and a mixed solution B of a lactam monomer and a polymerization catalyst are mixed, and the mixed solution A and the above -mentioned mixed solution A are mixed. The fiber sheet material was continuously impregnated with the lactam monomer mixed solution obtained by mixing the mixed solution B , sandwiched between the first protective sheet and the second protective sheet, and sandwiched between the first protective sheet and the second protective sheet. The lactam monomer mixed solution impregnated in the fiber sheet material is heat-polymerized to form a sheet-shaped fiber-reinforced composite material using polyamide as a base material, and the fiber-reinforced composite material is continuously drawn out.

(7)上記態様にかかる繊維強化複合材料の製造方法において、不活性ガス雰囲気下又は真空中で、前記ラクタムモノマー混合液を繊維シート材料に連続的に含浸させ、第一保護シート及び第二保護シートで挟んでもよい。
(8)上記態様にかかる繊維強化複合材料の製造方法において、繊維シート材料をあらかじめ加熱してから、前記ラクタムモノマー混合液を繊維シート材料に連続的に含浸させてもよい。
(7) In the method for producing a fiber-reinforced composite material according to the above embodiment, the fiber sheet material is continuously impregnated with the lactam monomer mixture in an inert gas atmosphere or in a vacuum, and the fiber sheet material is continuously impregnated with the first protective sheet and the second protection. It may be sandwiched between sheets.
(8) In the method for producing a fiber-reinforced composite material according to the above embodiment, the fiber sheet material may be preheated and then the fiber sheet material may be continuously impregnated with the lactam monomer mixed solution.

本発明により、熱可塑性樹脂の繊維強化複合材料の安定的な連続製造が可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, stable continuous production of a fiber-reinforced composite material of a thermoplastic resin becomes possible.

本発明の繊維強化複合材料の製造装置の概要を示す模式図である。It is a schematic diagram which shows the outline of the manufacturing apparatus of the fiber reinforced composite material of this invention.

以下、本発明に係る繊維強化複合材料の製造装置及び繊維強化複合材料の製造方法について、図面を参照して詳細に説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上実際の繊維強化複合材料の製造装置とは異ならせて示している場合がある。また、以下の説明において例示される材料、条件等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
Hereinafter, the apparatus for producing the fiber-reinforced composite material and the method for producing the fiber-reinforced composite material according to the present invention will be described in detail with reference to the drawings.
It should be noted that the drawings used in the following description may be shown differently from the actual fiber-reinforced composite material manufacturing apparatus for convenience in order to make the features easy to understand. Further, the materials, conditions, etc. exemplified in the following description are examples, and the present invention is not necessarily limited to them, and the present invention can be appropriately modified without changing the gist thereof. ..

本発明の一実施形態として、図1に示す繊維強化複合材料の製造装置1は、熱可塑性樹脂モノマー及び重合触媒を混合して熱可塑性樹脂モノマー混合液とする混合器10と、混合器10で得られた熱可塑性樹脂モノマー混合液を繊維シート材料30に連続的に含浸させ、第一保護シート21及び第二保護シート22で挟む積層装置20と、第一保護シート21及び第二保護シート22で挟まれ、繊維シート材料30に含浸された熱可塑性樹脂モノマー混合液を加熱重合して、熱可塑性樹脂を母材とするシート状の繊維強化複合材料32を形成する加熱重合機40と、加熱重合機40から繊維強化複合材料32を連続的に引き抜く引抜装置50と、を備える。 As one embodiment of the present invention, the fiber-reinforced composite material manufacturing apparatus 1 shown in FIG. 1 includes a mixer 10 and a mixer 10 in which a thermoplastic resin monomer and a polymerization catalyst are mixed to form a thermoplastic resin monomer mixed solution. The laminating device 20 in which the obtained thermoplastic resin monomer mixed solution is continuously impregnated into the fiber sheet material 30 and sandwiched between the first protective sheet 21 and the second protective sheet 22, and the first protective sheet 21 and the second protective sheet 22. The thermoplastic resin monomer mixed solution sandwiched between the fibers and the fiber sheet material 30 is heat-polymerized to form a sheet-shaped fiber-reinforced composite material 32 using the thermoplastic resin as a base material, and a heating polymer 40. A drawing device 50 for continuously pulling out the fiber-reinforced composite material 32 from the polymerization machine 40 is provided.

また、本発明に係る繊維強化複合材料の製造方法は、図1に示す繊維強化複合材料の製造装置1により実現することができ、熱可塑性樹脂モノマー及び重合触媒を混合して得られた熱可塑性樹脂モノマー混合液を、繊維シート材料30に連続的に含浸させ、第一保護シート21及び第二保護シート22で挟み、第一保護シート21及び第二保護シート22で挟まれ、繊維シート材料30に含浸された熱可塑性樹脂モノマー混合液を加熱重合して、熱可塑性樹脂を母材とするシート状の繊維強化複合材料32を形成し、繊維強化複合材料32を連続的に引き抜く。 Further, the method for producing a fiber-reinforced composite material according to the present invention can be realized by the fiber-reinforced composite material manufacturing apparatus 1 shown in FIG. 1, and is thermoplastic obtained by mixing a thermoplastic resin monomer and a polymerization catalyst. The fiber sheet material 30 is continuously impregnated with the resin monomer mixed solution, sandwiched between the first protective sheet 21 and the second protective sheet 22, and sandwiched between the first protective sheet 21 and the second protective sheet 22. The thermoplastic resin monomer mixed solution impregnated with the above is heat-polymerized to form a sheet-shaped fiber-reinforced composite material 32 using the thermoplastic resin as a base material, and the fiber-reinforced composite material 32 is continuously drawn out.

加熱重合機40は、第一保護シート21及び第二保護シート22で挟まれ、繊維シート材料30に含浸された熱可塑性樹脂モノマー混合液を加熱重合して、熱可塑性樹脂を母材とするシート状の繊維強化複合材料32を形成するものであればよく、加熱重合機40が、板状の上部金型及び板状の下部金型を有し、繊維シート材料30に含浸された熱可塑性樹脂モノマー混合液を挟む第一保護シート21及び第二保護シート22が、上部金型及び下部金型の間を滑るように、引抜装置50によって引き抜かれる構成となっていてもよい。 The heat polymerization machine 40 is a sheet sandwiched between a first protective sheet 21 and a second protective sheet 22 and heat-polymerized with a thermoplastic resin monomer mixed solution impregnated in the fiber sheet material 30 to use a thermoplastic resin as a base material. It suffices as long as it forms a fiber-reinforced composite material 32 in the shape of a fiber, and the heat polymerization machine 40 has a plate-shaped upper mold and a plate-shaped lower mold, and is a thermoplastic resin impregnated in the fiber sheet material 30. The first protective sheet 21 and the second protective sheet 22 sandwiching the monomer mixed solution may be configured to be pulled out by the drawing device 50 so as to slide between the upper mold and the lower mold.

図1に示す繊維強化複合材料の製造装置1のように、引抜装置50が加熱重合機40から、第一保護シート21及び第二保護シート22に挟まれた繊維強化複合材料32を連続的に引き抜くものであってもよく、引抜装置50が加熱重合機40から、第一保護シート21及び繊維強化複合材料32を連続的に引き抜くものであって、第二保護シート22は別途回収されるものであってもよく、引抜装置50が加熱重合機40から、繊維強化複合材料32のみを連続的に引き抜くものであって、第一保護シート21及び第二保護シート22は回収されるものであってもよい。 Like the fiber-reinforced composite material manufacturing device 1 shown in FIG. 1, the drawing device 50 continuously connects the fiber-reinforced composite material 32 sandwiched between the first protective sheet 21 and the second protective sheet 22 from the heat polymerizer 40. The extraction device 50 may continuously withdraw the first protective sheet 21 and the fiber-reinforced composite material 32 from the heat polymerizer 40, and the second protective sheet 22 is separately recovered. The extraction device 50 continuously extracts only the fiber-reinforced composite material 32 from the heat polymerizer 40, and the first protective sheet 21 and the second protective sheet 22 are recovered. You may.

積層装置20は、混合器10で得られた熱可塑性樹脂モノマー混合液を繊維シート材料30に連続的に含浸させ、第一保護シート21及び第二保護シート22で挟む。熱可塑性樹脂を母材とするシート状の繊維強化複合材料の板厚は、積層装置20のローラーにより調整可能である。積層装置20のローラーにより圧延するので、余剰な空気を排除しながら成形が可能になり、シート状の繊維強化複合材料の表面は滑らかな清浄になり、内部の空気が速やかに排除されるので微小な空洞を減らすことができる。 The laminating device 20 continuously impregnates the fiber sheet material 30 with the thermoplastic resin monomer mixture obtained in the mixer 10 and sandwiches it between the first protective sheet 21 and the second protective sheet 22. The plate thickness of the sheet-shaped fiber-reinforced composite material using the thermoplastic resin as the base material can be adjusted by the rollers of the laminating device 20. Since it is rolled by the rollers of the laminating device 20, it is possible to mold while removing excess air, the surface of the sheet-like fiber-reinforced composite material becomes smooth and clean, and the air inside is quickly removed, so that it is minute. Can reduce the number of cavities.

繊維強化複合材料の製造装置1及び繊維強化複合材料の製造方法では、第一保護シート21及び第二保護シート22で挟まれた状態で、繊維シート材料30に含浸された熱可塑性樹脂モノマー混合液を加熱重合しているので、熱可塑性樹脂モノマー混合液が加熱重合機40に直接接触するおそれがなく、引抜力を小さくすることができ、熱可塑性樹脂を母材とするシート状の繊維強化複合材料の表面を美麗にすることができ、熱可塑性樹脂を母材とする繊維強化複合材料を連続的に製造できる。 In the fiber-reinforced composite material manufacturing apparatus 1 and the fiber-reinforced composite material manufacturing method, the thermoplastic resin monomer mixed solution impregnated in the fiber sheet material 30 while being sandwiched between the first protective sheet 21 and the second protective sheet 22. Since the thermoplastic resin monomer mixed solution does not come into direct contact with the heat polymerization machine 40, the pulling force can be reduced, and the sheet-shaped fiber-reinforced composite using the thermoplastic resin as the base material can be reduced. The surface of the material can be made beautiful, and a fiber-reinforced composite material using a thermoplastic resin as a base material can be continuously produced.

繊維強化複合材料の製造装置1及び繊維強化複合材料の製造方法では、混合器10及び積層装置20が、不活性ガス雰囲気下又は真空中で運転できるように筐体24で覆われていてもよく、これにより、不活性ガス雰囲気下又は真空中で、熱可塑性樹脂モノマー混合液を繊維シート材料30に連続的に含浸させ、第一保護シート21及び第二保護シート22で挟むことができる。また、そのまま加熱重合機に繋がることで、熱可塑性樹脂モノマー混合液が空気と接触することを防止でき、重合時に、空気中の水分の影響を取り除くことができる。 In the fiber-reinforced composite material manufacturing apparatus 1 and the fiber-reinforced composite material manufacturing method, the mixer 10 and the laminating device 20 may be covered with a housing 24 so that they can be operated under an inert gas atmosphere or in a vacuum. As a result, the fiber sheet material 30 can be continuously impregnated with the thermoplastic resin monomer mixed solution under an inert gas atmosphere or in a vacuum, and sandwiched between the first protective sheet 21 and the second protective sheet 22. Further, by connecting to the heat polymerization machine as it is, it is possible to prevent the thermoplastic resin monomer mixture from coming into contact with air, and it is possible to remove the influence of moisture in the air during polymerization.

混合器10及び積層装置20が、不活性ガス雰囲気下で運転できるように筐体24で覆われていることがより好ましく、このとき、筐体24は、乾燥空気又は乾燥窒素ガスを送り込むことのできるガス吸入口及びガス排出口が設けられていてもよく、更に、筐体内はシリカゲル、塩化カルシウム等の乾燥剤・除湿剤を設けられていてもよい。筐体24内に乾燥空気又は乾燥窒素ガスを供給し、相対湿度20%以下に保つことが望ましい。 It is more preferable that the mixer 10 and the laminating device 20 are covered with a housing 24 so that the mixer 10 and the laminating device 20 can be operated in an inert gas atmosphere. At this time, the housing 24 sends dry air or dry nitrogen gas. A gas suction port and a gas discharge port may be provided, and a desiccant / dehumidifying agent such as silica gel or calcium chloride may be provided in the housing. It is desirable to supply dry air or dry nitrogen gas into the housing 24 to keep the relative humidity at 20% or less.

繊維強化複合材料の製造装置1は、繊維シート材料30を積層装置20に供給する繊維シート材料供給装置34を備える。空気中の水分が重合阻害の原因となるため、重合させる前に、繊維シート材料30を成形前に十分に乾燥させることが好ましく、そのために、繊維シート材料供給装置34は、繊維シート材料30をあらかじめ加熱する加熱装置36を備えていてもよい。加熱装置36としては、一般的なプレートヒータや、遠赤外線ヒータを使用することができる。遠赤外線ヒータを使用することで、繊維シート材料30の内部まで十分に加熱・乾燥が可能となる。加熱装置36で繊維シート材料30を加熱してから、直後に、熱可塑性樹脂モノマー混合液を繊維シート材料30に連続的に含浸させることで、繊維シート材料30が吸湿した水分を、成形直前に蒸発させ、重合時の、空気中の水分の影響をより好適に取り除くことができるとともに、熱可塑性樹脂モノマー混合液の重合反応温度を確保することができる。 The fiber-reinforced composite material manufacturing device 1 includes a fiber sheet material supply device 34 that supplies the fiber sheet material 30 to the laminating device 20. Since moisture in the air causes polymerization inhibition, it is preferable to sufficiently dry the fiber sheet material 30 before polymerization, and therefore, the fiber sheet material supply device 34 uses the fiber sheet material 30 to dry the fiber sheet material 30 sufficiently. A heating device 36 for preheating may be provided. As the heating device 36, a general plate heater or a far-infrared heater can be used. By using the far-infrared heater, the inside of the fiber sheet material 30 can be sufficiently heated and dried. Immediately after heating the fiber sheet material 30 with the heating device 36, the fiber sheet material 30 is continuously impregnated with the thermoplastic resin monomer mixed solution to absorb the moisture absorbed by the fiber sheet material 30 immediately before molding. By evaporating, the influence of moisture in the air at the time of polymerization can be more preferably removed, and the polymerization reaction temperature of the thermoplastic resin monomer mixed solution can be secured.

繊維シート材料供給装置34には、いわゆる一般的なロービングラックあるいは織物材を保持および位置決め可能な支持棒を兼ね備えている。繊維シート材料30の直線性を確保するためにテンションバーなどを設置することも可能である。また炭素繊維を使用する場合は、サイジング剤に含まれるカルボン酸を除去するための洗浄あるいは中和処理を成形前に施すことが好ましい。 The fiber sheet material supply device 34 also includes a so-called general roving rack or a support rod capable of holding and positioning the woven material. It is also possible to install a tension bar or the like in order to ensure the linearity of the fiber sheet material 30. When carbon fiber is used, it is preferable to perform cleaning or neutralization treatment for removing the carboxylic acid contained in the sizing agent before molding.

前記熱可塑性樹脂モノマーが、例えば、ラクタムモノマーであってもよく、エポキシモノマーであってもよい。前記熱可塑性樹脂モノマーが、ラクタムモノマーであり、前記繊維強化複合材料がポリアミドを母材とするシート状の繊維強化複合材料であってもよい。 The thermoplastic resin monomer may be, for example, a lactam monomer or an epoxy monomer. The thermoplastic resin monomer may be a lactam monomer, and the fiber-reinforced composite material may be a sheet-shaped fiber-reinforced composite material using polyamide as a base material.

ラクタムモノマーとしては、γ-ブチロラクタム(融点:25℃)、δ-バレロラクタム(融点:-13℃)、ε-カプロラクタム(融点:69℃)などが挙げられる。 Examples of the lactam monomer include γ-butyrolactam (melting point: 25 ° C.), δ-valerolactam (melting point: -13 ° C.), ε-caprolactam (melting point: 69 ° C.) and the like.

活性剤としては、ヘキサメチレンジイソシアネート、イソシアネートとブロックトイソシアネート;イソフタロイルビスカプロラクタム、テトラフタロイルビス-カプロラクタム;ジメチルフタレート-ポリエチレングリコールのようなエステル;ビス酸塩化物と組合せたポリオール又はポリジエンのプレポリマー;ホスゲンをカプロラクタムと反応させて得たカルボニルビスカプロラクタムなどが挙げられる。
重合触媒としては、カプロラクタムのアルカリ金属アダクト、例えばナトリウムカプロラクタメート、カリウムカプロラクタメート及びリチウムカプロラクタメート;臭化マグネシウムを付加したアルミニウム又はマグネシウムカプロラクタム;アルコキシドなどが挙げられる。
Activators include hexamethylene diisocyanate, isocyanates and blocked triisocyanates; isophthaloylbiscaprolactam, tetraphthaloylbis-caprolactam; esters such as dimethylphthalate-polyethylene glycol; polyols or polydiene pres combined with bisylated products. Polymers; examples include carbonylbiscaprolactam obtained by reacting phosgene with caprolactam.
Examples of the polymerization catalyst include alkali metal adducts of caprolactam, for example, sodium caprolactate, potassium caprolactamate and lithium caproractumate; aluminum or magnesium caprolactam with magnesium bromide; alkoxide and the like.

ここで、混合器10は、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合するものであってもよい。混合器10は、撹拌羽による撹拌混合であってもよく、スタティックミキサーに配置したミキシングヘッドで撹拌混合させるものであってもよい。 Here, the mixer 10 may be a mixer that mixes the mixed solution A of the lactam monomer and the activator and the mixed solution B of the lactam monomer and the polymerization catalyst. The mixer 10 may be agitated and mixed by a stirring blade, or may be agitated and mixed by a mixing head arranged in a static mixer.

また、繊維シート材料30としては、ガラス、炭素、金属、燐酸塩、セラミック又は重合体の繊維シート材料であってよく、そして熱可塑性樹脂モノマー混合液成分の繊維シート材料への結合を促進する糊又は塗料を含有してもよい。また、繊維シート材料の形態として、フィラメント、ファイバー、ストランドのロービングあるいは織物といった連続繊維や、編織マット、不織マット、その他の形態で使用することができる。 The fiber sheet material 30 may be a fiber sheet material of glass, carbon, metal, phosphate, ceramic or polymer, and a glue that promotes the binding of the thermoplastic resin monomer mixed solution component to the fiber sheet material. Alternatively, it may contain a paint. Further, as the form of the fiber sheet material, continuous fibers such as filaments, fibers, rovings of strands or woven fabrics, knitted woven mats, non-woven mats, and other forms can be used.

混合器10は、ラクタムモノマー、活性剤及び重合触媒を直接混合するものであってもよいが、ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合するものであってもよい。 The mixer 10 may directly mix the lactam monomer, the activator and the polymerization catalyst, but mixes the mixed solution A of the lactam monomer and the activator and the mixed solution B of the lactam monomer and the polymerization catalyst. It may be a thing.

ラクタムモノマーが、常温で固体である場合、融点以上の温度に加熱溶融して混合する。ラクタムモノマー、活性剤及び重合触媒が溶融混合すると重合が始まってしまい、混合器10で過度に重合して粘度が高くなってしまうと、積層装置20に送液された後、繊維シート材料30に均質に満遍なく含浸させることが難しくなってしまう。ラクタムモノマー及び活性剤の混合液Aの活性剤濃度、ラクタムモノマー及び重合触媒の混合液Bの重合触媒濃度、混合器10の温度等の条件を適切に制御することにより、熱可塑性樹脂モノマー混合液を繊維シート材料30に均質に満遍なく含浸させることが可能となる。 When the lactam monomer is solid at room temperature, it is heated and melted to a temperature equal to or higher than the melting point and mixed. When the lactam monomer, the activator and the polymerization catalyst are melt-mixed, the polymerization starts, and when the mixture is excessively polymerized in the mixer 10 and the viscosity becomes high, the liquid is sent to the laminating apparatus 20 and then transferred to the fiber sheet material 30. It becomes difficult to impregnate evenly and evenly. Thermoplastic resin monomer mixed solution by appropriately controlling conditions such as the active agent concentration of the mixed solution A of the lactam monomer and the activator, the polymerization catalyst concentration of the mixed solution B of the lactam monomer and the polymerization catalyst, and the temperature of the mixer 10. Can be uniformly and evenly impregnated in the fiber sheet material 30.

好適なラクタムモノマー及び活性剤の混合液Aの活性剤濃度は、0.1~50質量%であり、より好ましくは、0.5~30質量%である。
好適なラクタムモノマー及び重合触媒の混合液Bの重合触媒濃度は、0.1~50質量%であり、より好ましくは、0.5~30質量%である。
好適な混合器10の温度は、70~120℃である。
The active agent concentration of the suitable mixed solution A of the lactam monomer and the active agent is 0.1 to 50% by mass, more preferably 0.5 to 30% by mass.
The polymerization catalyst concentration of the suitable mixture B of the lactam monomer and the polymerization catalyst is 0.1 to 50% by mass, more preferably 0.5 to 30% by mass.
The temperature of a suitable mixer 10 is 70 to 120 ° C.

積層装置20中に混合器10で得られた熱可塑性樹脂モノマー混合液を、図示しない送液ポンプにより送液する。そして、積層装置20において、まず、第一保護シート21の上に繊維シート材料30が載せられ、第一保護シート21の上に載せられた繊維シート材料30に熱可塑性樹脂モノマー混合液が均等に含浸され、次いで、その上に第二保護シート22が積層された後、下側の第一保護シート21及び上側の第二保護シート22で挟まれ状態で、加熱重合機40に移送され、繊維シート材料30に含浸された熱可塑性樹脂モノマー混合液が、重合を開始する。 The thermoplastic resin monomer mixture obtained by the mixer 10 is sent into the laminating device 20 by a liquid feeding pump (not shown). Then, in the laminating device 20, first, the fiber sheet material 30 is placed on the first protective sheet 21, and the thermoplastic resin monomer mixed solution is evenly distributed on the fiber sheet material 30 placed on the first protective sheet 21. After being impregnated and then the second protective sheet 22 is laminated on the second protective sheet 22, the fiber is transferred to the heat polymerization machine 40 in a state of being sandwiched between the lower first protective sheet 21 and the upper second protective sheet 22. The thermoplastic resin monomer mixed solution impregnated in the sheet material 30 starts polymerization.

第一保護シート21及び第二保護シート22としては、それぞれ独立して、離型紙やプラスティックフィルムなどが利用可能であり、プラスティックフィルムとしては、離型フィルム(PETフィルム)、耐熱フィルム(PTFEフィルム、ポリイミドフィルム)などが挙げられる。 As the first protective sheet 21 and the second protective sheet 22, a release paper, a plastic film, or the like can be used independently, and as the plastic film, a release film (PET film), a heat-resistant film (PTFE film, etc.) can be used. Polyimide film) and the like.

繊維強化複合材料の製造装置1及び繊維強化複合材料の製造方法により、熱可塑性樹脂を母材とするシート状の繊維強化複合材料を安定的に連続製造可能となる。繊維強化複合材料の製造装置1及び繊維強化複合材料の製造方法により、連続成形された、熱可塑性樹脂を母材とするシート状の繊維強化複合材料は、熱硬化性樹脂を母材とする繊維強化複合材料に比べて、二次成形の時間を短縮し、高い生産性が期待でき、リサイクル性が要求される自動車構造部材をはじめ、軽量化を目的とした金属代替材の中間材料として各種の部材に応用が可能となる。 The fiber-reinforced composite material manufacturing apparatus 1 and the fiber-reinforced composite material manufacturing method enable stable and continuous production of a sheet-shaped fiber-reinforced composite material using a thermoplastic resin as a base material. The sheet-shaped fiber-reinforced composite material whose base material is a thermoplastic resin, which is continuously molded by the fiber-reinforced composite material manufacturing apparatus 1 and the fiber-reinforced composite material manufacturing method, is a fiber whose base material is a thermosetting resin. Compared to reinforced composite materials, it shortens the time for secondary molding, can be expected to have high productivity, and is used as an intermediate material for various metal substitutes for the purpose of weight reduction, including automobile structural members that require recyclability. It can be applied to members.

以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples shown below.

[実施例1]
図1に示す繊維強化複合材料の製造装置1を用いて、繊維強化ポリアミド複合材料の連続引抜製造を行った。
[Example 1]
Using the fiber-reinforced composite material manufacturing apparatus 1 shown in FIG. 1, the fiber-reinforced polyamide composite material was continuously drawn and manufactured.

繊維強化複合材料の製造装置1のうち、混合器10及び積層装置20は、透明なアクリルボックスからなる筐体24で覆われており、乾燥窒素ガス雰囲気下で除湿されている。 Of the fiber-reinforced composite material manufacturing apparatus 1, the mixer 10 and the laminating apparatus 20 are covered with a housing 24 made of a transparent acrylic box, and are dehumidified in a dry nitrogen gas atmosphere.

図示しない混合タンク11にて、加熱溶融させたε-カプロラクタム及び活性剤ヘキサメチレンジイソシアネートを混合して活性剤濃度2質量%の混合液Aを調製し、110℃で溶融・保管し、図示しない混合タンク12にて、加熱溶融させたε-カプロラクタムモノマー及び重合触媒ε‐カプロラクタム・ナトリウム塩を混合して重合触媒濃度16質量%の混合液Bを調製し、110℃で溶融・保管した。混合タンク11及び混合タンク12並びに供給ラインの温度は110℃に維持して、ε‐カプロラクタムモノマーを溶融状態に保った。 In a mixing tank 11 (not shown), heated and melted ε-caprolactam and the activator hexamethylene diisocyanate are mixed to prepare a mixed solution A having an active agent concentration of 2% by mass, melted and stored at 110 ° C., and mixed (not shown). In the tank 12, the heated and melted ε-caprolactam monomer and the polymerization catalyst ε-caprolactam / sodium salt were mixed to prepare a mixed solution B having a polymerization catalyst concentration of 16% by mass, which was melted and stored at 110 ° C. The temperatures of the mixing tank 11, the mixing tank 12, and the supply line were maintained at 110 ° C. to keep the ε-caprolactam monomer in a molten state.

次いで、溶融した2種類の混合液A及び混合液Bを、送液ポンプにて、それぞれ、1~5g/minにて混合器10であるスタティックミキサーに送液し、これらを撹拌混合して熱可塑性樹脂モノマー混合液を調製し、積層装置20に注がれる。ここで、混合器10の温度は融点以上、積層装置20の温度も融点以上であり、混合器10及び積層装置20にて重合が開始しているが、重合が進みすぎないように、温度管理、及び送液流速度管理が重要である。 Next, the two types of melted mixed liquid A and mixed liquid B are sent to a static mixer, which is a mixer 10, at 1 to 5 g / min, respectively, by a liquid feeding pump, and these are stirred and mixed to heat. A plastic resin monomer mixture is prepared and poured into the laminating apparatus 20. Here, the temperature of the mixer 10 is equal to or higher than the melting point, and the temperature of the laminating apparatus 20 is also equal to or higher than the melting point. , And the control of the flow rate of the liquid feed is important.

繊維シート材料30として、日東紡績株式会社製の平織ガラスクロスWF300 10N(目付け質量:272g/m、巾:100mm、縦糸密度:106本/100mm、横糸密度:22.5本/25mm、厚さ:0.25mm)を2ロール準備し、2層のガラスクロスを用いた。 As the fiber sheet material 30, plain weave glass cloth WF300 10N manufactured by Nitto Spinning Co., Ltd. (grain mass: 272 g / m 2 , width: 100 mm, warp density: 106 threads / 100 mm, weft density: 22.5 threads / 25 mm, thickness : 0.25 mm) was prepared in 2 rolls, and 2 layers of glass cloth were used.

水分の重合阻害を防ぐため、重合させる前に、加熱装置36として、遠赤外線ヒータ(坂口電熱株式会社,PH50)を80℃に設定して用いて、繊維シート材料30を乾燥した。 In order to prevent the polymerization of water from being inhibited, the fiber sheet material 30 was dried by using a far-infrared heater (Sakaguchi Electric Heat Co., Ltd., PH50) as a heating device 36 at 80 ° C. before the polymerization.

第一保護シート21及び第一保護シート22として、それぞれ、PETフィルム(幅150mm、厚さ0.05mm)を用いて、初めに、積層装置20の下部保護シート用ロール保持部において、加熱装置36で乾燥され、予備加熱された繊維シート材料30を第一保護シート21の上に積層し、この繊維シート材料30に、混合器10で混合撹拌された熱可塑性樹脂モノマー混合液を注ぎ、含浸させた。 As the first protective sheet 21 and the first protective sheet 22, PET films (width 150 mm, thickness 0.05 mm) are used, respectively, and first, in the roll holding portion for the lower protective sheet of the laminating device 20, the heating device 36 The fiber sheet material 30 dried and preheated in the above layer was laminated on the first protective sheet 21, and the fiber sheet material 30 was impregnated with the thermoplastic resin monomer mixed solution mixed and stirred by the mixer 10. rice field.

更に、積層装置20の上部保護シート用ロール保持部において、第二保護シート22を重ね、積層装置20のローラーにより圧延し、第一保護シート21及び第二保護シート22で挟まれ、熱可塑性樹脂モノマー混合液が含浸された繊維シート材料30が、加熱重合機40に導かれる。積層装置20において、上部保護シート用ロール保持部は、下部保護シート用ロール保持部から200mm後方にずらして設置されている。 Further, in the roll holding portion for the upper protective sheet of the laminating device 20, the second protective sheet 22 is stacked, rolled by the rollers of the laminating device 20, sandwiched between the first protective sheet 21 and the second protective sheet 22, and the thermoplastic resin. The fiber sheet material 30 impregnated with the monomer mixed solution is guided to the heat polymerization machine 40. In the laminating device 20, the upper protective sheet roll holding portion is installed so as to be offset 200 mm rearward from the lower protective sheet roll holding portion.

ε‐カプロラクタムモノマー、重合触媒ε‐カプロラクタム・ナトリウム塩及び活性剤ヘキサメチレンジイソシアネートからなる熱可塑性樹脂モノマー混合液は、加熱重合機40で、130℃以上の環境温度に加熱することにより、重合が起こり、ナイロン6となる。加熱重合機40では、熱可塑性樹脂モノマー混合液の重合に必要な加熱をするとともに、シート状の繊維強化複合材料として均―な板厚となるよう形状を整える。加熱重合機40は、板状の上部金型及び板状の下部金型を有し、第一保護シート21及び第一保護シート22の配置に合わせて、下部金型が長さ1300mm、幅150mm、厚さ0.6mm、上部金型が長さ1000mm、幅150mm、厚さ0.6mmである。下部金型及び上部金型の金型温度については、金型内部温度が150℃±5℃ となるよう加熱した。 The thermoplastic resin monomer mixed solution consisting of ε-caprolactam monomer, polymerization catalyst ε-caprolactam sodium salt and activator hexamethylene diisocyanate is heated to an environmental temperature of 130 ° C. or higher in a heating polymerizer 40 to cause polymerization. , Nylon 6. In the heat polymerization machine 40, the heat required for the polymerization of the thermoplastic resin monomer mixture is heated, and the shape is adjusted so as to have a uniform plate thickness as a sheet-shaped fiber-reinforced composite material. The heat polymerization machine 40 has a plate-shaped upper mold and a plate-shaped lower mold, and the lower mold has a length of 1300 mm and a width of 150 mm according to the arrangement of the first protective sheet 21 and the first protective sheet 22. The upper mold has a length of 1000 mm, a width of 150 mm, and a thickness of 0.6 mm. Regarding the mold temperature of the lower mold and the upper mold, the temperature was heated so that the internal temperature of the mold was 150 ° C ± 5 ° C.

引抜装置50としては、キャタピラ式引取機(有限会社五十嵐機械製造,SD-150)を用いた。 As the drawing device 50, a caterpillar type picking machine (Igarashi Machinery Manufacturing Co., Ltd., SD-150) was used.

第一保護シート21、繊維シート材料30、および第二保護シート22はあらかじめ引抜装置50の上下クローラーに固定されており、成形時には一定の速度で成形された熱可塑性樹脂としてナイロン6を母材とするシート状の繊維強化複合材料32を引取っていく。5分間の重合時間を確保するよう、1000mmの金型を通過する時間を算出し、引取り速度は150mm/minとした。繊維体積含有率は、36.4%であった。 The first protective sheet 21, the fiber sheet material 30, and the second protective sheet 22 are fixed in advance to the upper and lower crawlers of the extraction device 50, and nylon 6 is used as a base material as a thermoplastic resin molded at a constant speed during molding. The sheet-shaped fiber-reinforced composite material 32 is taken over. The time for passing through the 1000 mm mold was calculated so as to secure the polymerization time of 5 minutes, and the take-up speed was set to 150 mm / min. The fiber volume content was 36.4%.

本実施例により、0.67mmの板厚の、均一な板厚の、ナイロン6を母材とし平織ガラスクロスを繊維強化材とするシート状の繊維強化複合材料32が得られた。第二保護シート22を剥離し、繊維強化複合材料32の表面粗さ(Ra)を、レーザー顕微鏡(キーエンス社製VK-250X)により測定したところ、4.9μmであった。 From this example, a sheet-shaped fiber-reinforced composite material 32 having a plate thickness of 0.67 mm and a uniform plate thickness, using nylon 6 as a base material and plain weave glass cloth as a fiber reinforcing material was obtained. The second protective sheet 22 was peeled off, and the surface roughness (Ra) of the fiber-reinforced composite material 32 was measured with a laser microscope (VK-250X manufactured by KEYENCE CORPORATION) and found to be 4.9 μm.

[比較例1]
特許文献3(特表2017-007266号公報)の実施例1に沿って、ガラスロービングからなる繊維材料により繊維強化されたポリアミド複合材料の表面粗さ(Ra)を、レーザー顕微鏡(キーエンス社製VK-250X)により測定したところ、24.4μmであった。
[Comparative Example 1]
According to Example 1 of Patent Document 3 (Japanese Patent Laid-Open No. 2017-007266), the surface roughness (Ra) of the polyamide composite material fiber-reinforced with the fiber material made of glass roving is measured with a laser microscope (VK manufactured by KEYENCE CORPORATION). When measured by −250X), it was 24.4 μm.

本発明の繊維強化複合材料の製造方法により、繊維強化複合材料の表面を美麗にすることができた。また、連続成形であるため生産性が高く、母材樹脂の改質も可能であり、製品としての汎用性も高い。連続成形によるモールディング材の成形が可能であることが示された。 By the method for producing a fiber-reinforced composite material of the present invention, the surface of the fiber-reinforced composite material could be made beautiful. In addition, since it is continuously molded, it has high productivity, it is possible to modify the base resin, and it is highly versatile as a product. It was shown that the molding material can be formed by continuous forming.

1 繊維強化複合材料の製造装置
10 混合器
20 積層装置
21 第一保護シート
22 第二保護シート
24 筐体
30 繊維シート材料
32 熱可塑性樹脂を母材とするシート状の繊維強化複合材料
34 繊維シート材料供給装置
36 加熱装置
40 加熱重合機
50 引抜装置
1 Fiber-reinforced composite material manufacturing equipment 10 Mixer 20 Laminating equipment 21 First protective sheet 22 Second protective sheet 24 Housing 30 Fiber sheet material 32 Sheet-shaped fiber-reinforced composite material 34 fiber sheet using thermoplastic resin as a base material Material supply device 36 Heating device 40 Heating polymerizer 50 Extraction device

Claims (3)

ラクタムモノマー及び活性剤の混合液Aと、ラクタムモノマー及び重合触媒の混合液Bと、を混合し、
前記混合液A及び前記混合液Bを混合して得られたラクタムモノマー混合液を繊維シート材料に連続的に含浸させ、第一保護シート及び第二保護シートで挟み、
第一保護シート及び第二保護シートで挟まれ、繊維シート材料に含浸されたラクタムモノマー混合液を加熱重合して、ポリアミドを母材とするシート状の繊維強化複合材料を形成し、
前記繊維強化複合材料を連続的に引き抜く、繊維強化複合材料の製造方法。
The mixed solution A of the lactam monomer and the activator and the mixed solution B of the lactam monomer and the polymerization catalyst are mixed.
The fiber sheet material was continuously impregnated with the lactam monomer mixed solution obtained by mixing the mixed solution A and the mixed solution B , and sandwiched between the first protective sheet and the second protective sheet.
A sheet-shaped fiber-reinforced composite material using polyamide as a base material is formed by heat-polymerizing a lactam monomer mixed solution sandwiched between a first protective sheet and a second protective sheet and impregnated with a fiber sheet material.
A method for producing a fiber-reinforced composite material by continuously drawing out the fiber-reinforced composite material.
不活性ガス雰囲気下又は真空中で、前記ラクタムモノマー混合液を繊維シート材料に連続的に含浸させ、第一保護シート及び第二保護シートで挟む、請求項に記載の繊維強化複合材料の製造方法。 The production of the fiber-reinforced composite material according to claim 1 , wherein the fiber sheet material is continuously impregnated with the lactam monomer mixture in an inert gas atmosphere or in a vacuum and sandwiched between the first protective sheet and the second protective sheet. Method. 繊維シート材料をあらかじめ加熱してから、前記ラクタムモノマー混合液を繊維シート材料に連続的に含浸させる、請求項又はに記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 1 or 2 , wherein the fiber sheet material is preheated and then the fiber sheet material is continuously impregnated with the lactam monomer mixed solution.
JP2017155807A 2017-08-10 2017-08-10 Manufacturing method of fiber reinforced composite material Active JP6990393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155807A JP6990393B2 (en) 2017-08-10 2017-08-10 Manufacturing method of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155807A JP6990393B2 (en) 2017-08-10 2017-08-10 Manufacturing method of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2019035002A JP2019035002A (en) 2019-03-07
JP6990393B2 true JP6990393B2 (en) 2022-02-03

Family

ID=65636999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155807A Active JP6990393B2 (en) 2017-08-10 2017-08-10 Manufacturing method of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP6990393B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162024A (en) 2002-09-17 2004-06-10 Sumitomo Chem Co Ltd Method for producing long fiber-reinforced thermoplastic resin composition pellet
JP2010173291A (en) 2009-02-02 2010-08-12 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced polyamide resin composite
WO2012118208A1 (en) 2011-03-03 2012-09-07 三菱レイヨン株式会社 Matrix resin composition, prepreg, method for producing prepreg, and fiber-reinforced composite material
JP2014069564A (en) 2012-10-02 2014-04-21 Dainippon Printing Co Ltd Resin sheet, and production method of fiber reinforced composite molded body using the same
JP2015085658A (en) 2013-11-01 2015-05-07 大日本印刷株式会社 Resin sheet and manufacturing method of fiber-reinforced composite molded body using the same
WO2016104467A1 (en) 2014-12-26 2016-06-30 乗明 伊集院 Carbon fibers, manufacturing method therefor, and carbon-fiber-reinforced resin composition
WO2017110602A1 (en) 2015-12-25 2017-06-29 東レ株式会社 Composite molded article and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229535A (en) * 1985-04-04 1986-10-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and device for manufacturing fiber reinforced resin sheet
JPH05220852A (en) * 1992-02-12 1993-08-31 Ube Nitto Kasei Co Ltd Preparation of long filament reinforced polyamide resin composition
JP3669090B2 (en) * 1995-11-27 2005-07-06 東レ株式会社 Manufacturing method of prepreg

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162024A (en) 2002-09-17 2004-06-10 Sumitomo Chem Co Ltd Method for producing long fiber-reinforced thermoplastic resin composition pellet
JP2010173291A (en) 2009-02-02 2010-08-12 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced polyamide resin composite
WO2012118208A1 (en) 2011-03-03 2012-09-07 三菱レイヨン株式会社 Matrix resin composition, prepreg, method for producing prepreg, and fiber-reinforced composite material
JP2014069564A (en) 2012-10-02 2014-04-21 Dainippon Printing Co Ltd Resin sheet, and production method of fiber reinforced composite molded body using the same
JP2015085658A (en) 2013-11-01 2015-05-07 大日本印刷株式会社 Resin sheet and manufacturing method of fiber-reinforced composite molded body using the same
WO2016104467A1 (en) 2014-12-26 2016-06-30 乗明 伊集院 Carbon fibers, manufacturing method therefor, and carbon-fiber-reinforced resin composition
WO2017110602A1 (en) 2015-12-25 2017-06-29 東レ株式会社 Composite molded article and method for manufacturing same

Also Published As

Publication number Publication date
JP2019035002A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
US11091598B2 (en) System for producing a fully impregnated thermoplastic prepreg
US11772336B2 (en) System for producing a fully impregnated thermoplastic prepreg
JP6055423B2 (en) Method for producing a fiber-reinforced flat semi-finished product using a polyamide matrix
CN107548339B (en) Method for producing a fibre-reinforced component or semi-finished product
JP2005513206A (en) Method for producing a composite material using a thermoplastic matrix
JP2002536212A (en) Flat belt manufacturing method
US11534991B2 (en) System for producing a fully impregnated thermoplastic prepreg
CN107107393B (en) Method for producing an impregnated fibrous structure
US11458696B2 (en) System for producing a fully impregnated thermoplastic prepreg
JP3336911B2 (en) Prepreg manufacturing method and apparatus
KR101684821B1 (en) Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method
US20220134688A1 (en) Prepreg continuous production device and method therefor
JP6990393B2 (en) Manufacturing method of fiber reinforced composite material
TWI697396B (en) A thermoplastic unidirectional fiber prepreg and molding application thereof
KR20100120888A (en) Method for preparing composite sheet having excellent ecomomical efficiency and physical property, apparatus thereof and composite sheet prepared therefrom
CN111098528A (en) System for producing fully impregnated thermoplastic prepregs
KR0171565B1 (en) Fiber-reinforced polymer composite material and process of preparing thereof
KR20120078465A (en) Method for manufacturing uni-directional prepreg having uniform fiber content and apparatus thereof
US20230075431A1 (en) System for producing a fully impregnated thermoplastic prepreg
US20180371195A1 (en) Production of fiber composite materials
JPH08134235A (en) Process and apparatus for continuously producing composite material

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6990393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150