JP4485003B2 - High strength electrolytic copper foil for particle getter, thin film forming apparatus having the copper foil disposed therein, and method for producing the electrolytic copper foil - Google Patents

High strength electrolytic copper foil for particle getter, thin film forming apparatus having the copper foil disposed therein, and method for producing the electrolytic copper foil Download PDF

Info

Publication number
JP4485003B2
JP4485003B2 JP2000050932A JP2000050932A JP4485003B2 JP 4485003 B2 JP4485003 B2 JP 4485003B2 JP 2000050932 A JP2000050932 A JP 2000050932A JP 2000050932 A JP2000050932 A JP 2000050932A JP 4485003 B2 JP4485003 B2 JP 4485003B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
thin film
film forming
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000050932A
Other languages
Japanese (ja)
Other versions
JP2001234325A (en
Inventor
康廣 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2000050932A priority Critical patent/JP4485003B2/en
Publication of JP2001234325A publication Critical patent/JP2001234325A/en
Application granted granted Critical
Publication of JP4485003B2 publication Critical patent/JP4485003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パーティクルゲッターとして使用される電解銅箔を加工硬化させて強度を上げることにより、電解銅箔の破断を防止し、長時間パーティクルの発生を抑制しかつその数を安定させることのできるパーティクルゲッター用高強度電解銅箔、該銅箔を内部に配設した薄膜形成装置及び該電解銅箔の製造方法に関する。
明細書の中では、主として電解銅箔を中心に説明するが、同様にパーティクルゲッターとして使用することのできる電解ニッケル箔等の他の電解箔を含む。
【0002】
【従来の技術】
従来、集積回路の電極や拡散バリヤー等の薄膜、磁気記録媒体用磁性薄膜、液晶表示装置用ITO透明導電膜などの多くの薄膜形成に、気相成長技術が使用されている。この気相成長法による薄膜形成技術には、熱分解法、水素還元法、不均等化反応法、プラズマCVD法などの化学的気相成長法、真空蒸着法、スパッタリング法、イオンビーム法などの物理的気相成長法、さらには放電重合法等がある。
【0003】
現在、このような気相成長法による薄膜形成プロセスは、大量生産技術として確立されているが、基板に形成された膜の上に一般にパーティクルと言われている粗大粒子が堆積するといる問題が発生している。
このパーティクルは薄膜形成時にクラスター化した微粒子が基板上に堆積したものを云い、直径が数μm程度にまで大きくなるものが多いので、これが基板上に堆積すると、例えばLSIの場合には配線の短絡又は逆に断線を引起すなどの問題を生じ、不良率増大の原因となっている。
そしてこれらのパーティクルは薄膜形成法自体に起因するもの、あるいは被覆装置に起因するもの等の種々の要因がある。
【0004】
薄膜形成装置に起因するパーティクルとしては、基板周辺や装置(チャンバー)の内壁、シャッター、シールド板等に一旦付着した堆積膜が再び剥離し、それが飛散して基板に再付着し、汚染源になることが大きな1つの要因と考えられている。
このような装置の機器に付着した付着物の剥離に起因するパーティクルを防止するためには、薄膜形成装置の内壁や機器の表面を常に清浄にしておくことが必要である。
しかし、基板上に薄膜を形成する工程で、飛来する物質が徐々に堆積していくので、これを常にクリーンに保つのは実際には非常に難しく、装置を停止させた後にその作業を行うにしても、大変な労力と時間を要していた。
【0005】
従来は、薄膜形成装置の内壁やパーツへのブラスト処理や溶射皮膜を形成したり、さらにはAl箔や電解鉄箔などを装置内壁等に張り巡らして使用する使い捨て箔も提案されたが、いずれも有効ではなかった。
このようなことから、本出願人は先に、トリート電解銅箔(特開平1−316456号)、電解ニッケル箔(特開平3−168361号)、これらの箔の改良(特開平3−166362号、特開平5−140745号)からなるパーティクルゲッターを提供した。
【0006】
これらは、電解金属(銅等)箔のマット面(無光沢面)に、さらに電解処理を施してマット面に存在する微小な塊状の突出部(ノブ)に銅又は銅酸化物の微細粒をランダムに析出させたもの及びこの技術を中心にさらに改良したものである。
上記微細粒突起を有する電解銅箔は飛来する粒子を捕獲し、そこに堆積した層をアンカー効果あるいはピンニング効果により固着保持する点で優れており、薄膜を形成する工程においてパーティクルの発生を効果的に防止できる画期的方法であった。
しかし、このように飛来する粒子の捕獲作用に優れた上記電解銅箔からなるパーティクルゲッターにも限界があり、特にタングステン−チタンなどの高い膜応力を有する材料の成膜においては、堆積膜の剥がれや電解銅箔パーティクルゲッターが破断するという事故が発生し、短時間の成膜処理にもかかわらずパーティクルが上昇するという問題が発生した。
このため、電解銅箔パーティクルゲッターの改良がさらに必要となった。
【0007】
【発明が解決しようとする課題】
本発明は、パーティクルゲッターとして使用される電解銅箔を加工硬化させて強度を上げることにより、膜応力の高い材料の成膜工程においても電解銅箔の破断を防止し、長時間パーティクルの発生を抑制することのできるパーティクルゲッター用高強度電解銅箔、該銅箔を内部に配置した薄膜形成装置及び該電解銅箔の製造方法を提供するものである。
【0008】
【課題を解決するための手段】
1.ビッカース硬度100〜130Hvの加工硬化面を備えていることを特徴とするパーティクルゲッター用高強度電解銅箔
2.加工硬化面がエンボス加工面であることを特徴とする上記1記載のパーティクルゲッター用高強度電解銅箔
3.エンボス加工後に圧延した加工硬化面であることを特徴とする上記2記載のパーティクルゲッター用高強度電解銅箔
4.ビッカース硬度100〜130Hvの加工硬化面を備えているパーティクルゲッター用高強度電解銅箔を内部に配設したことを特徴とする薄膜形成装置
5.加工硬化面がエンボス加工面であることを特徴とする上記4記載の薄膜形成装置
6.エンボス加工後に圧延した加工硬化面であることを特徴とする上記5記載の薄膜形成装置
7.パーティクルゲッターとして使用される電解銅箔をエンボス加工した後に圧延し、加工硬化させることを特徴とするパーティクルゲッター用高強度電解銅箔の製造方法
8.ビッカース硬度100〜130Hvの加工硬化面を備えていることを特徴とする上記7記載のパーティクルゲッター用高強度電解銅箔の製造方法
、に関する。
【0009】
【発明の実施の形態】
上記のように、タングステン−チタンなどの高い膜応力を有する成膜工程において、通常の材料では発生しないようなパーティクルの異常増加が短時間の処理で発生した。
この原因を究明したところ、電解銅箔パーティクルゲッターがこの高膜応力のために変形し、場合によっては電解銅箔パーティクルゲッターが破断することにより、パーティクルが異常発生することが分かった。
このような異常なパーティクルの発生は、タングステン−チタンなどの高い膜応力を有する材料に見られる特有な現象であることに鑑み、このようなパーティクルの発生の原因と考えられるパーティクルゲッターの変形や破断を防止するために、パーティクルゲッター自体をより強度の高いものにすることに着目した。
【0010】
一般に、600°C前後で熱処理した後の電解銅箔は約60Hvのビッカース硬度を有する。通常、この電解銅箔にエンボス加工を施し、表面積の増加を図るとともに強度を上げている。この場合、ビッカース硬度で70〜80Hvに達する。
しかし、このような硬度をもつパーティクルゲッターでも、上記のようなタングステン−チタンなどの高い膜応力を有する材料では十分でないということが分かった。
【0011】
本発明は、パーティクルゲッターとして使用される電解銅箔をエンボス加工した後に、さらに圧延し加工硬化させることによって、強度の高いパーティクルゲッター用高強度電解銅箔を得、成膜中に発生する膜応力に起因するパーティクルの剥離や電解銅箔の破断を抑制し、パーティクルの異常増大を効果的に抑制したものである。
本発明のパーティクルゲッター用高強度電解銅箔は、ビッカース硬度100〜130Hvの加工硬化面を備えている。ビッカース硬度100Hv未満では、膜応力によって破断することがあるので、100Hv以上とするのが望ましい。また、ビッカース硬度130Hvを超えると、パーティクルゲッター用高強度電解銅箔自身にクラックが入り易くなるので、130Hv以下とするのが良い。
一般に、エンボス加工した表面は約0.5〜0.6mmの凹凸を備えているが、圧延加工により、この凹凸の高低が減少し、約0.3〜0.4mm程度となる。しかし、この凹凸は適宜選択でき、特に制限されるものではない。
また、圧延は1又は複数回行う。異方性を無くすためにクロス圧延するのが望ましいが、この圧延回数や方向に特に制限されるものではない。
【0012】
電解銅箔は従来公知のものを使用することができる。例えば出願人が先に提案したトリート電解銅箔(特開平1−316456号)及びこれらの箔の改良(特開平3−166362号、特開平5−140745号)からなる電解銅箔を使用することができる。
これらの基本構造は、電解金属(銅等)箔のマット面(無光沢面)に、さらに電解処理を施してマット面に存在する微小な塊状の突出部(ノブ)に銅又は銅酸化物の微細粒をランダムに析出させたものである
銅箔の厚さは10μm以上のものが好適である。銅箔が厚くなる程、強度が増すので好ましいが、薄膜形成装置内への取付け等の操作が難しくなるとともに、コスト増となるので、適宜選択して使用する。本発明においては、これらの膜厚を特に制限するものではない。
また、銅箔は耐熱性を持たせるために特公昭54−6701号公報に示すような黄銅又は亜鉛のバリアー層を形成させたり、さらに防錆処理を施した材料を使用することもできる。
【0013】
パーティクルを捕獲し強固に付着保持する機能をもつ微細粒子層は、電解銅箔(生箔)のマット面に形成されるが、そのめっき条件の例を示すと下記の通りである。
(水溶銅硫酸塩めっき浴)
CuSO・5HO 23g/l(Cuとして)
NaCl 32p.p.m.(Clとして)
SO 70g/l
にかわ 0.75g/l
純水 残部
(めっき条件)
電流密度 60〜100A/ft
時間 10〜100秒
浴温 70〜80°F
【0014】
上記について、主として電解銅箔について説明したが、電解ニッケル箔(特開平3−168361号)等についても、同様に適用できるものであり、エンボス加工した後に圧延加工することにより、強度を向上させ、パーティクルゲッターとしての機能を向上させることができる。
本発明のビッカース硬度100〜130Hvの加工硬化面を備えたパーティクルゲッター用高強度電解銅箔を薄膜形成装置の内部に配設(カバー)して効果的にパーティクルを防止できる。
ここで云う薄膜形成装置は、熱分解による薄膜形成装置、水素還元による薄膜形成装置、不均等化反応法による薄膜形成装置、プラズマCVD法などの化学的気相成長による薄膜形成装置、真空蒸着、スパッタリング、イオンビームなどの物理的気相成長による薄膜形成装置、さらには放電重合法による薄膜形成装置等の全ての薄膜形成装置を意味する。
そして、薄膜形成装置のチャンバー内壁や炉の内部構造体ばかりでなく、該装置内に設置されているシャッター、シールド板、ボルト、ナット等の機器を覆い、飛来する薄膜形成物質を効果的に捕獲できる位置に配置して使用できる。本発明はこれらを全て含むものである。
【0015】
【実施例および比較例】
以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明の技術思想に含まれる他の態様または変形を包含するものである。
【0016】
本発明の実施例として、210μm厚の電解銅箔のマット面に、前記トリート条件で(段落番号[0011]に記載)、パーティクルを捕獲する微細粒子層を形成した後、凹凸の高さが0.5〜0.6mm及び凹凸の個数9個/cmとなるエンボス加工を施した。トリート処理した電解銅箔のエンボス加工後のビッカース硬度は70Hvであった。
そして、さらにエンボス加工を形成した電解銅箔の面を、凹凸の高さが0.3〜0.4mmとなる圧延加工(クロス圧延)を施した。これによる電解銅箔の加工硬化面はビッカース硬度110Hvを有していた。
比較例として、アルミニウム溶射をしたもの、チタン溶射をしたもの、及び通常の電解銅箔パーティクルゲッター(圧延加工を施していないもので、ビッカース硬度は70Hvを有しているもの)を用いた。
【0017】
以上の実施例及び比較例について、それぞれウエハ径8インチのスパッタ装置で、タングステン−チタン合金(高い膜応力をもつ)をターゲットとしてスパッタリングし、パーティクル発生数等の比較(パーティクルの発生量とターゲットライフ)を行った。その結果を図1に示す。
図1から明らかなように、アルミニウム溶射をしたものでは20kWhでパーティクルの急激な上昇が見られ、最も悪い結果を示した。また、チタン溶射をしたものは、30kWhでパーティクルの急激な上昇が見られ、アルミニウム溶射と同様に悪い結果を示した。
通常の電解銅箔パーティクルゲッターでは、パーティクルの急激な上昇が40kWhまで抑制でき、かなりの改善が見られるが、必ずしも満足できる結果とはならなかった。
これに対し、本発明の実施例では60kWhでもパーティクルの発生が低率であり、優れたパーティクル発生防止効果がある結果が得られた。
【0018】
【発明の効果】
パーティクルゲッターとして使用される電解銅箔を加工硬化させて強度を上げることにより、電解銅箔の破断や歪みを抑制し、長時間パーティクルの発生を抑制することのできる優れた効果を有する。
これによって、タングステン−チタン合金等の膜応力の高い材料の成膜工程においても、パーティクルの発生を低く抑えることができ、薄膜形成装置におけるパーティクルゲッターとして極めて有用である。
【図面の簡単な説明】
【図1】本発明の実施例と比較例のパーティクルの発生量とターゲットライフの結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
In the present invention, the electrolytic copper foil used as a particle getter is processed and cured to increase the strength, thereby preventing the electrolytic copper foil from being broken, suppressing the generation of particles for a long time and stabilizing the number thereof. The present invention relates to a high-strength electrolytic copper foil for particle getter, a thin film forming apparatus in which the copper foil is disposed, and a method for producing the electrolytic copper foil.
In the specification, the description will mainly focus on the electrolytic copper foil, but similarly includes other electrolytic foils such as an electrolytic nickel foil that can be used as a particle getter.
[0002]
[Prior art]
Conventionally, vapor phase growth techniques have been used to form many thin films such as thin films such as electrodes of integrated circuits and diffusion barriers, magnetic thin films for magnetic recording media, and ITO transparent conductive films for liquid crystal display devices. Thin film formation technology by this vapor deposition method includes thermal decomposition method, hydrogen reduction method, non-uniformization reaction method, chemical vapor deposition method such as plasma CVD method, vacuum deposition method, sputtering method, ion beam method, etc. There are a physical vapor deposition method and a discharge polymerization method.
[0003]
Currently, such a thin film formation process by vapor deposition is established as a mass production technique, but there is a problem that coarse particles, generally called particles, are deposited on the film formed on the substrate. is doing.
These particles are particles in which the clustered fine particles are deposited on the substrate when forming a thin film. Many of these particles have a diameter of up to several μm. Or conversely, a problem such as causing a disconnection occurs, which causes an increase in the defect rate.
These particles have various factors such as those caused by the thin film forming method itself and those caused by the coating apparatus.
[0004]
As particles caused by the thin film forming apparatus, the deposited film once adhering to the periphery of the substrate, the inner wall of the apparatus (chamber), the shutter, the shield plate, etc. is peeled off again, and scattered and reattached to the substrate to become a contamination source. This is considered to be one major factor.
In order to prevent particles resulting from the separation of deposits attached to the equipment of such an apparatus, it is necessary to always clean the inner wall of the thin film forming apparatus and the surface of the equipment.
However, since the flying material is gradually deposited in the process of forming a thin film on the substrate, it is actually very difficult to keep it clean at all times. But it took a lot of effort and time.
[0005]
Conventionally, disposable foils have been proposed that use blasting and spray coating on the inner walls and parts of thin film forming equipment, and also use Al foil and electrolytic iron foil on the inner walls of the equipment. Was also not effective.
In view of the above, the present applicant has previously treated treat electrolytic copper foil (JP-A-1-316456), electrolytic nickel foil (JP-A-3-168361), and improvements of these foils (JP-A-3-166362). , JP-A-5-140745).
[0006]
These are made by subjecting the matte surface (matte surface) of electrolytic metal (copper, etc.) foil to electrolytic treatment, and adding fine particles of copper or copper oxide to the minute lump (knob) present on the matte surface. These are randomly deposited and further improved with this technology as the center.
The electrolytic copper foil with the fine grain projections is excellent in that it captures the flying particles and holds the deposited layer firmly by the anchor effect or pinning effect, and effectively generates particles in the process of forming a thin film. It was an epoch-making method that can be prevented.
However, there is a limit to the particle getter made of the above-mentioned electrolytic copper foil that is excellent in the trapping action of the flying particles as described above, and the deposited film is peeled off particularly in the film formation of a material having a high film stress such as tungsten-titanium. In addition, there was an accident that the electrolytic copper foil particle getter was broken, and there was a problem that the particles rose despite the short film formation process.
For this reason, the improvement of the electrolytic copper foil particle getter was needed further.
[0007]
[Problems to be solved by the invention]
In the present invention, the electrolytic copper foil used as a particle getter is processed and cured to increase the strength, thereby preventing the electrolytic copper foil from being broken even in the film forming process of a material having a high film stress, and generating particles for a long time. A high-strength electrolytic copper foil for particle getter that can be suppressed, a thin film forming apparatus in which the copper foil is disposed, and a method for producing the electrolytic copper foil are provided.
[0008]
[Means for Solving the Problems]
1. 1. High-strength electrolytic copper foil for particle getter characterized by having a work-hardened surface with a Vickers hardness of 100 to 130 Hv. 2. The high-strength electrolytic copper foil for particle getter according to 1 above, wherein the work-cured surface is an embossed surface. 3. The high-strength electrolytic copper foil for particle getter according to 2 above, which is a work-cured surface rolled after embossing. 4. A thin film forming apparatus comprising a high-strength electrolytic copper foil for particle getter having a work-hardened surface having a Vickers hardness of 100 to 130 Hv. 5. The thin film forming apparatus as described in 4 above, wherein the work hardened surface is an embossed surface. 6. The thin film forming apparatus according to 5 above, which is a work-cured surface rolled after embossing. 7. A method for producing a high strength electrolytic copper foil for particle getter, characterized in that an electrolytic copper foil used as a particle getter is embossed, rolled, and work hardened. 8. The method for producing a high-strength electrolytic copper foil for particle getter as described in 7 above, comprising a work-cured surface having a Vickers hardness of 100 to 130 Hv.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As described above, in a film forming process having a high film stress such as tungsten-titanium, an abnormal increase in particles that does not occur in a normal material occurred in a short time treatment.
As a result of investigating the cause, it was found that the electrolytic copper foil particle getter was deformed due to the high film stress, and in some cases, the electrolytic copper foil particle getter was broken to cause abnormal generation of particles.
Such abnormal particle generation is a unique phenomenon found in materials with high film stress, such as tungsten-titanium, and deformation and breakage of particle getters that are considered to be the cause of such particle generation. In order to prevent this, we focused on making the particle getter itself stronger.
[0010]
Generally, the electrolytic copper foil after heat treatment at around 600 ° C. has a Vickers hardness of about 60 Hv. Usually, this electrolytic copper foil is embossed to increase the surface area and increase the strength. In this case, the Vickers hardness reaches 70 to 80 Hv.
However, it has been found that even a particle getter having such hardness is not sufficient with a material having high film stress such as tungsten-titanium as described above.
[0011]
The present invention provides a high-strength electrolytic copper foil for particle getter having high strength by embossing an electrolytic copper foil used as a particle getter, then rolling and hardening it, and film stress generated during film formation It prevents particle peeling and electrolytic copper foil breakage caused by the above, and effectively suppresses abnormal increase of particles.
The high-strength electrolytic copper foil for particle getter of the present invention has a work hardened surface with a Vickers hardness of 100 to 130 Hv. If the Vickers hardness is less than 100 Hv, the film may break due to film stress. Further, if the Vickers hardness exceeds 130 Hv, the high-strength electrolytic copper foil for particle getter itself tends to crack, so it is preferable to set it to 130 Hv or less.
In general, the embossed surface has unevenness of about 0.5 to 0.6 mm, but the height of the unevenness is reduced by rolling to about 0.3 to 0.4 mm. However, the unevenness can be appropriately selected and is not particularly limited.
Moreover, rolling is performed one or more times. Although cross rolling is desirable to eliminate anisotropy, the number and direction of rolling are not particularly limited.
[0012]
A conventionally well-known thing can be used for an electrolytic copper foil. For example, an electrolytic copper foil comprising a treat electrolytic copper foil previously proposed by the applicant (JP-A-1-316456) and improvements of these foils (JP-A-3-166362, JP-A-5-140745) should be used. Can do.
In these basic structures, the matte surface (matte surface) of electrolytic metal (copper, etc.) foil is further subjected to electrolytic treatment, and a minute block-shaped protrusion (knob) existing on the mat surface is made of copper or copper oxide. The thickness of the copper foil obtained by randomly depositing fine particles is preferably 10 μm or more. The thicker the copper foil is, the stronger the strength is, but it is preferable. However, the operation such as mounting in the thin film forming apparatus becomes difficult and the cost increases. In the present invention, these film thicknesses are not particularly limited.
Further, in order to impart heat resistance to the copper foil, a brass or zinc barrier layer as shown in JP-B-54-6701 can be formed, or a material subjected to rust prevention treatment can be used.
[0013]
A fine particle layer having a function of capturing and firmly adhering particles is formed on the mat surface of the electrolytic copper foil (raw foil). An example of the plating conditions is as follows.
(Water-soluble copper sulfate plating bath)
CuSO 4 · 5H 2 O 23g / l ( as Cu)
NaCl 32p. p. m. (As Cl)
H 2 SO 4 70 g / l
Chinese 0.75g / l
The remaining pure water (plating conditions)
Current density 60-100A / ft 2
Time 10-100 seconds Bath temperature 70-80 ° F
[0014]
About the above, although mainly explained about the electrolytic copper foil, the electrolytic nickel foil (Japanese Patent Laid-Open No. 3-168361) and the like can be similarly applied, and the strength is improved by rolling after embossing, The function as a particle getter can be improved.
Particles can be effectively prevented by disposing (covering) the high-strength electrolytic copper foil for particle getter having a work-hardened surface having a Vickers hardness of 100 to 130 Hv of the present invention inside the thin film forming apparatus.
The thin film forming apparatus referred to here is a thin film forming apparatus by thermal decomposition, a thin film forming apparatus by hydrogen reduction, a thin film forming apparatus by a non-equalization reaction method, a thin film forming apparatus by chemical vapor deposition such as a plasma CVD method, vacuum deposition, It means all thin film forming apparatuses such as a thin film forming apparatus by physical vapor deposition such as sputtering and ion beam, and a thin film forming apparatus by a discharge polymerization method.
It covers not only the inner walls of the chamber of the thin film forming apparatus and the internal structure of the furnace, but also covers equipment such as shutters, shield plates, bolts, and nuts installed in the apparatus, and effectively captures the thin film forming substances that fly. It can be used by placing it at a possible position. The present invention includes all of these.
[0015]
Examples and Comparative Examples
Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited only to this example. That is, other aspects or modifications included in the technical idea of the present invention are included.
[0016]
As an example of the present invention, after forming a fine particle layer for capturing particles on the mat surface of an electrolytic copper foil having a thickness of 210 μm (described in paragraph [0011]), the height of the unevenness is 0 Embossing was performed so that the number of irregularities was 9 / cm 2 . The Vickers hardness after embossing of the treated electrolytic copper foil was 70 Hv.
Further, the surface of the electrolytic copper foil on which the embossing was formed was subjected to a rolling process (cross rolling) in which the height of the unevenness was 0.3 to 0.4 mm. The work hardened surface of the electrolytic copper foil thereby had a Vickers hardness of 110 Hv.
As a comparative example, an aluminum sprayed one, a titanium sprayed one, and a normal electrolytic copper foil particle getter (one that has not been rolled and has a Vickers hardness of 70 Hv) were used.
[0017]
The above Examples and Comparative Examples were each sputtered using a tungsten-titanium alloy (having high film stress) as a target with a sputtering apparatus having a wafer diameter of 8 inches, and the number of particles generated was compared (the amount of particles generated and the target life). ) The result is shown in FIG.
As is apparent from FIG. 1, the particles sprayed with aluminum showed a sharp rise in particles at 20 kWh, indicating the worst results. In the case of titanium spraying, a sharp rise in particles was observed at 30 kWh, and the result was as bad as aluminum spraying.
With an ordinary electrolytic copper foil particle getter, the rapid rise of particles can be suppressed to 40 kWh, and a considerable improvement is seen, but the results are not always satisfactory.
On the other hand, in the example of the present invention, the generation rate of particles was low even at 60 kWh, and an excellent particle generation preventing effect was obtained.
[0018]
【The invention's effect】
By working and hardening an electrolytic copper foil used as a particle getter to increase the strength, the electrolytic copper foil has an excellent effect of suppressing breakage and distortion of the electrolytic copper foil and suppressing generation of particles for a long time.
Thereby, even in the film forming process of a material having a high film stress such as a tungsten-titanium alloy, the generation of particles can be suppressed to be low, which is extremely useful as a particle getter in a thin film forming apparatus.
[Brief description of the drawings]
FIG. 1 is a diagram showing the amount of generated particles and the result of target life in an example of the present invention and a comparative example.

Claims (3)

薄膜形成の際に発生するパーティクルを捕獲する銅箔であって、エンボス加工後に圧延したビッカース硬度100〜130Hvの加工硬化面を備えていることを特徴とするパーティクルゲッター用高強度電解銅箔。 A high-strength electrolytic copper foil for particle getters, which is a copper foil that captures particles generated during thin film formation and has a work-cured surface with a Vickers hardness of 100 to 130 Hv rolled after embossing . 薄膜形成の際に発生するパーティクルを捕獲する銅箔であって、エンボス加工後に圧延したビッカース硬度100〜130Hvの加工硬化面を備えているパーティクルゲッター用高強度電解銅箔を内部に配設したことを特徴とする薄膜形成装置。 A copper foil for capturing particles generated during the formation of a thin film and having a high strength electrolytic copper foil for a particle getter provided with a work hardened surface with a Vickers hardness of 100 to 130 Hv rolled after embossing. A thin film forming apparatus. 薄膜形成の際のパーティクルゲッターとして使用される電解銅箔の製造方法であって、電解銅箔をエンボス加工した後圧延し、ビッカース硬度100〜130Hvの加工硬化面に形成することを特徴とするパーティクルゲッター用高強度電解銅箔の製造方法。 A method for producing an electrolytic copper foil used as a particle getter for forming a thin film , wherein the electrolytic copper foil is embossed and then rolled to form a work hardened surface having a Vickers hardness of 100 to 130 Hv A method for producing high strength electrolytic copper foil for getters.
JP2000050932A 2000-02-28 2000-02-28 High strength electrolytic copper foil for particle getter, thin film forming apparatus having the copper foil disposed therein, and method for producing the electrolytic copper foil Expired - Fee Related JP4485003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050932A JP4485003B2 (en) 2000-02-28 2000-02-28 High strength electrolytic copper foil for particle getter, thin film forming apparatus having the copper foil disposed therein, and method for producing the electrolytic copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050932A JP4485003B2 (en) 2000-02-28 2000-02-28 High strength electrolytic copper foil for particle getter, thin film forming apparatus having the copper foil disposed therein, and method for producing the electrolytic copper foil

Publications (2)

Publication Number Publication Date
JP2001234325A JP2001234325A (en) 2001-08-31
JP4485003B2 true JP4485003B2 (en) 2010-06-16

Family

ID=18572657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050932A Expired - Fee Related JP4485003B2 (en) 2000-02-28 2000-02-28 High strength electrolytic copper foil for particle getter, thin film forming apparatus having the copper foil disposed therein, and method for producing the electrolytic copper foil

Country Status (1)

Country Link
JP (1) JP4485003B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185384A (en) * 2008-02-01 2009-08-20 Ls Mtron Ltd High flexible copper foil with low roughness and, manufacturing method therefor
JP6743233B1 (en) * 2019-03-28 2020-08-19 株式会社フジクラ Oxide superconducting wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387357A (en) * 1989-06-13 1991-04-12 Nippon Mining Co Ltd Thin film forming device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136484A (en) * 1983-01-26 1984-08-06 Fukuda Kinzoku Hakufun Kogyo Kk Roughening treatment for metal foil
JPH09104972A (en) * 1995-10-05 1997-04-22 Hitachi Metals Ltd Titanium target for sputtering and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387357A (en) * 1989-06-13 1991-04-12 Nippon Mining Co Ltd Thin film forming device

Also Published As

Publication number Publication date
JP2001234325A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3449459B2 (en) Method for manufacturing member for thin film forming apparatus and member for the apparatus
US6783863B2 (en) Plasma processing container internal member and production method thereof
KR0153213B1 (en) Thin film forming apparatus
US6855236B2 (en) Components for vacuum deposition apparatus and vacuum deposition apparatus therewith, and target apparatus
JP3744964B2 (en) Component for film forming apparatus and method for manufacturing the same
EP1125000A1 (en) Sputter target/backing plate assembly and method of making same
JP2008291299A (en) Structure for preventing peeling of metal film in apparatus for forming metal film, and method for manufacturing semiconductor device using the structure
JP2014111841A (en) Method of producing coil, coil set, coil-related device used in vapor deposition system, coil, coil set, at least one coil-related device or their combination and method of producing coil, coil set or coil-related device used in vapor deposition system
TW201219590A (en) Sputtering target and/or coil and process for producing same
KR20210033055A (en) Sputter trap with thin high-purity coating layer and its manufacturing method
Kipkirui et al. HiPIMS and RF magnetron sputtered Al0. 5CoCrFeNi2Ti0. 5 HEA thin-film coatings: Synthesis and characterization
JP4485003B2 (en) High strength electrolytic copper foil for particle getter, thin film forming apparatus having the copper foil disposed therein, and method for producing the electrolytic copper foil
JPH0387357A (en) Thin film forming device
WO2005077677A1 (en) Physical vapor deposition components, and methods of treating components
KR20130074647A (en) Coated steel sheet and method for manufacturing the same
WO1992001823A1 (en) Anti-wear coating on a substrate based on titanium
JP4519416B2 (en) Anti-contamination device for thin film forming equipment
JPH02285067A (en) Device for forming thin film in vacuum
JP2663025B2 (en) Thin film forming equipment
JP3534989B2 (en) Component parts for film forming equipment
JP2934263B2 (en) Aluminum material and method of manufacturing the same
JP4763101B1 (en) Tantalum coil for sputtering and processing method of the coil
JP2511545Y2 (en) Particle getter jig cap
JP4647249B2 (en) Thin film forming apparatus component and method of manufacturing the same
JP2006057172A (en) Thin film production apparatus and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees