JP4484022B2 - Storage stabilization method of amino composition - Google Patents

Storage stabilization method of amino composition Download PDF

Info

Publication number
JP4484022B2
JP4484022B2 JP2003349545A JP2003349545A JP4484022B2 JP 4484022 B2 JP4484022 B2 JP 4484022B2 JP 2003349545 A JP2003349545 A JP 2003349545A JP 2003349545 A JP2003349545 A JP 2003349545A JP 4484022 B2 JP4484022 B2 JP 4484022B2
Authority
JP
Japan
Prior art keywords
amino composition
mol
water
lithium
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003349545A
Other languages
Japanese (ja)
Other versions
JP2005112790A (en
Inventor
雅敏 越後
久征 桑原
剛司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003349545A priority Critical patent/JP4484022B2/en
Publication of JP2005112790A publication Critical patent/JP2005112790A/en
Application granted granted Critical
Publication of JP4484022B2 publication Critical patent/JP4484022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Description

本発明はポリアミンとアルケニル化合物との付加反応により得られるアミノ組成物の貯蔵安定化方法に関する。   The present invention relates to a method for storage stabilization of an amino composition obtained by an addition reaction between a polyamine and an alkenyl compound.

強塩基性を呈する触媒を用い、ポリアミンとアルケニル化合物との付加反応により得られるアミノ組成物は、未反応ポリアミン含有量が比較的低く、低粘度であり、該アミノ組成物を含むエポキシ樹脂硬化剤を用いたエポキシ樹脂組成物は良好なエポキシ樹脂硬化物性能を与え、有用である。   An amino composition obtained by addition reaction of a polyamine and an alkenyl compound using a catalyst exhibiting strong basicity has a relatively low unreacted polyamine content and a low viscosity, and an epoxy resin curing agent containing the amino composition The epoxy resin composition using the resin gives good epoxy resin cured product performance and is useful.

該アミノ組成物は、製造直後は低粘度の透明液体であるが、経時的に変化(粘度上昇、および/または白色固体の生成)し、著しく商品価値を低下させてしまうのみならず、誘導されるエポキシ樹脂硬化物性能をも低下させる。   The amino composition is a transparent liquid having a low viscosity immediately after production, but it is not only induced to change over time (increased viscosity and / or production of a white solid) and significantly reduce the commercial value. This also reduces the performance of cured epoxy resin.

本発明の目的は、ポリアミンとアルケニル化合物との付加反応により得られるアミノ組成物の貯蔵安定化方法を提供することである。   An object of the present invention is to provide a storage stabilization method of an amino composition obtained by an addition reaction between a polyamine and an alkenyl compound.

本発明者らは、前記したような問題点を解決すべく、鋭意検討した結果、本発明に至ったものである。   As a result of intensive studies aimed at solving the above-described problems, the present inventors have arrived at the present invention.

即ち本発明は、ポリアミンとアルケニル化合物の付加反応により得られるアミノ組成物の貯蔵安定化方法であって、該アミノ組成物中のアルカリ金属含有量を10ppm以下にすることを特徴とするアミノ組成物の貯蔵安定化方法を提供するものである。   That is, the present invention relates to a storage stabilization method for an amino composition obtained by an addition reaction of a polyamine and an alkenyl compound, wherein the alkali composition content in the amino composition is 10 ppm or less. The method of stabilizing the storage of

以上の実施例から明らかなように、本発明のポリアミンとアルケニル化合物との付加反応により得られるアミノ組成物について、該組成物中のアルカリ金属含有量を10ppm以下にすることによって、アミノ組成物の貯蔵安定化が可能である。   As is clear from the above examples, with respect to the amino composition obtained by the addition reaction of the polyamine of the present invention and the alkenyl compound, by setting the alkali metal content in the composition to 10 ppm or less, Storage stability is possible.

本発明で使用されるポリアミンは、例えば、式(1)で示されるポリアミン、式(2)で示されるポリアミン、ポリアミンが分子内の炭素数が9以上で、分子内のアミノ基数が2以上であり、かつ該アミノ基に由来する活性水素数が3以上である環状脂肪族ポリアミン、ポリオキシアルキレンポリアミンなどが挙げられる。   The polyamine used in the present invention is, for example, a polyamine represented by the formula (1), a polyamine represented by the formula (2), or a polyamine having 9 or more carbon atoms in the molecule and 2 or more amino groups in the molecule. And cycloaliphatic polyamines and polyoxyalkylene polyamines having 3 or more active hydrogen atoms derived from the amino group.

Figure 0004484022
(Aはフェニレン基またはシクロヘキシレン基を示す。)
Figure 0004484022
(A represents a phenylene group or a cyclohexylene group.)

Figure 0004484022
Figure 0004484022

本発明で使用される式(1)で示されるポリアミンとは、例えば、オルソキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサンなどが挙げられる。   Examples of the polyamine represented by the formula (1) used in the present invention include orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis. (Aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane and the like can be mentioned.

本発明で使用される式(2)で示されるポリアミンとは、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどが挙げられる。   Examples of the polyamine represented by the formula (2) used in the present invention include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.

本発明で使用される分子内の炭素数が9以上で、分子内のアミノ基数が2以上であり、かつ該アミノ基に由来する活性水素数が3以上である環状脂肪族ポリアミンとは、例えば、メンセンジアミン、イソホロンジアミン、ジアミノジシクロヘキシルメタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、N−アミノメチルピペラジン、ノルボルナンジアミン、ポリシクロヘキシルポリアミン、3(4),8(9)−ビス−(アミノメチル)−トリシクロ[5.2.1.0(2,6)]デカンなどが挙げられる。   The cycloaliphatic polyamine having 9 or more carbon atoms in the molecule, 2 or more amino groups in the molecule, and 3 or more active hydrogen atoms derived from the amino group used in the present invention is, for example, , Mensendiamine, isophoronediamine, diaminodicyclohexylmethane, bis (4-amino-3-methylcyclohexyl) methane, N-aminomethylpiperazine, norbornanediamine, polycyclohexylpolyamine, 3 (4), 8 (9) -bis- (Aminomethyl) -tricyclo [5.2.1.0 (2,6)] decane and the like.

本発明で使用されるポリオキシアルキレンポリアミンとは、例えば、ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシテトラメチレンジアミン、ポリ(オキシエチレン−オキシプロピレン)ジアミン等のポリオキシアルキレンジアミン、あるいはポリオキシエチレントリアミン、ポリオキシプロピレントリアミンなどが挙げられる。   The polyoxyalkylene polyamine used in the present invention is, for example, polyoxyalkylene diamine such as polyoxyethylene diamine, polyoxypropylene diamine, polyoxytetramethylene diamine, poly (oxyethylene-oxypropylene) diamine, or polyoxyethylene. Examples include triamine and polyoxypropylene triamine.

本発明で使用されるアルケニル化合物としては、あらゆるアルケニル化合物が挙げられるが、炭素数が2〜10であるものが好ましい。例えば、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、イソブチレン、2−ペンテン、3−メチル−1−ブテン、2−メチル−2−ブテン、2,3−ジメチル−2−ブテン、シクロヘキセン、シクロヘキサジエン、スチレン、ジビニルベンゼンなどが挙げられる。   Examples of the alkenyl compound used in the present invention include all alkenyl compounds, but those having 2 to 10 carbon atoms are preferable. For example, ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, isobutylene, 2-pentene, 3-methyl-1-butene, 2-methyl-2-butene, 2,3-dimethyl-2- Examples include butene, cyclohexene, cyclohexadiene, styrene, and divinylbenzene.

本発明において、経時的に変化(粘度上昇、および/または白色固体の生成)しうる粗アミノ組成物は、ポリアミンとアルケニル化合物との付加反応により得られる。   In the present invention, a crude amino composition that can change over time (increased viscosity and / or formation of a white solid) is obtained by an addition reaction of a polyamine and an alkenyl compound.

本発明において、粗アミノ組成物を合成する際には、強塩基性を呈する触媒を使用することが好ましい。強塩基性を呈する触媒としては、例えば、アルカリ金属、アルカリ金属アミド、アルキル化アルカリ金属などが挙げられる。   In the present invention, when synthesizing a crude amino composition, it is preferable to use a catalyst exhibiting strong basicity. Examples of the catalyst exhibiting strong basicity include alkali metals, alkali metal amides, alkylated alkali metals, and the like.

アルカリ金属としては、例えば、金属リチウム、金属ナトリウム、金属カリウム、などが挙げられ、アルカリ金属アミドとしては、例えば、リチウムアミド、リチウムジイソプロピルアミド、ナトリウムアミド、などが挙げられ、アルキル化アルカリ金属としては、メチルリチウム、ブチルリチウムなどが挙げられ、その他の強塩基性を呈する触媒としては、リチウムメチラート、リチウムエチラート、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、カリウムブチラートなどが挙げられる。   Examples of the alkali metal include metal lithium, metal sodium, and metal potassium. Examples of the alkali metal amide include lithium amide, lithium diisopropylamide, and sodium amide. Examples of the alkylated alkali metal include , Methyl lithium, butyl lithium and the like, and other strong basic catalysts include lithium methylate, lithium ethylate, sodium methylate, sodium ethylate, potassium methylate, potassium butyrate and the like.

触媒の使用量は、原料の種類や反応比率、反応温度等の条件により異なるが、通常は原料中0.05〜5重量%であり、好ましくは0.1〜3重量%である。   The amount of the catalyst used varies depending on the type of raw material, reaction ratio, reaction temperature and the like, but is usually 0.05 to 5% by weight, preferably 0.1 to 3% by weight in the raw material.

粗アミノ組成物を合成する際の反応温度は、通常、50〜150℃であり、好ましくは80〜100℃である。これより反応温度が低い場合は、ポリアミンとアルケニル化合物の付加反応速度が遅く、逆に反応温度が高い場合は、副生成物としてアルケニル化合物の重合物が生成するので好ましくない。   The reaction temperature for synthesizing the crude amino composition is usually 50 to 150 ° C, preferably 80 to 100 ° C. When the reaction temperature is lower than this, the addition reaction rate of the polyamine and the alkenyl compound is slow, and conversely, when the reaction temperature is high, a polymer of the alkenyl compound is formed as a by-product, which is not preferable.

反応終了後に得られる反応液中には、反応により生成したアミノ組成物と強塩基性を呈する触媒が含まれる。強塩基性を呈する触媒は、ろ過によりある程度の量は除去可能である。ろ過の場合は、塩酸、塩化水素ガス、酢酸などの酸、メタノール、エタノール等のアルコール、あるいは水等を加えて強塩基性を呈する触媒を除去容易な化合物に変えてからろ過することが可能である。例えば水を加えた場合には、強塩基性を呈する触媒が水酸化物となり、ろ過が容易となる。   The reaction solution obtained after completion of the reaction contains an amino composition produced by the reaction and a catalyst exhibiting strong basicity. A certain amount of the catalyst exhibiting strong basicity can be removed by filtration. In the case of filtration, it is possible to add a catalyst with strong basicity by adding hydrochloric acid, hydrogen chloride gas, an acid such as acetic acid, an alcohol such as methanol or ethanol, or water to make a compound that can be easily removed and then filtered. is there. For example, when water is added, the catalyst exhibiting strong basicity becomes a hydroxide, which facilitates filtration.

ところが、これらの強塩基性を呈する触媒の塩が一定量以上残存している粗アミノ組成物は、製造直後は低粘度の透明液体であるが、残存する強塩基性を呈する触媒を分解して生成したアルカリ金属化合物のために、経時的に変化(粘度上昇、および/または白色固体の生成)し、著しく商品価値を低下させてしまうのみならず、誘導されるエポキシ樹脂硬化物性能をも低下させるので、該組成物中のアルカリ金属含有量を10ppm以下、好ましくは5ppm以下、特に好ましくは3ppm以下とし、アミノ組成物の貯蔵安定化をはかる必要がある。   However, the crude amino composition in which a certain amount or more of the salt of the catalyst exhibiting strong basicity remains is a low-viscosity transparent liquid immediately after production, but the remaining catalyst exhibiting strong basicity is decomposed. Due to the alkali metal compound produced, it changes over time (increased viscosity and / or white solid), not only significantly reducing the commercial value, but also reducing the performance of the cured epoxy resin product. Therefore, the alkali metal content in the composition must be 10 ppm or less, preferably 5 ppm or less, particularly preferably 3 ppm or less, and storage stability of the amino composition must be achieved.

強塩基性を呈する触媒を除去する方法としては、(1)〜(7)が挙げられる。   Examples of a method for removing a catalyst exhibiting strong basicity include (1) to (7).

(1)アルカリ吸着剤を使用して除去する方法、(2)水洗することにより除去する方法、(3)酸で触媒を中和し、生じた塩をろ過することにより除去する方法、(4)イオン交換樹脂を用いて除去する方法、(5)アルカリ金属を炭酸ガスで中和して炭酸塩をろ過する方法、(6)酸水溶液を加え中和しろ過後、過剰の酸を酸吸着剤を使用して除去する方法、(7)酸性ピロリン酸塩、ピロリン酸2水素2ナトリウムを使用して除去する方法、などが挙げられるが、操作が簡便で経済的な(1)および(2)の方法が好ましい。これらの方法は、単独で行なっても良いし、併用しても良い。   (1) A method of removing using an alkali adsorbent, (2) A method of removing by washing with water, (3) A method of neutralizing the catalyst with an acid and removing the resulting salt by filtration, (4 ) Method of removing using ion exchange resin, (5) Method of neutralizing alkali metal with carbon dioxide and filtering carbonate, (6) Neutralizing by adding aqueous acid solution and filtering, then removing excess acid as acid adsorbent (7) Acid pyrophosphate, method using 2-sodium dihydrogen pyrophosphate, and the like (1) and (2) This method is preferred. These methods may be performed alone or in combination.

(1)アルカリ吸着剤を使用して除去する方法で用いるアルカリ吸着剤としては、あらゆるアルカリ吸着剤が挙げられるが、例えば、MgO、Al(OH)・xHO、1.25Mg(OH)・Al(OH)・xCO・yHO、Al(OH)・NaHCO、MgAl(OH)16・CO・4HO、Mg4.5・Al(OH)13・CO・3.5HO、Mg0.7・Al0.3・O1.15などが挙げられる。これらは単独で使用しても良いし、併用しても良い。 (1) Alkali adsorbents used in the removal method using an alkali adsorbent include all alkali adsorbents. For example, MgO, Al (OH) 3 xH 2 O, 1.25 Mg (OH) 2 · Al (OH) 3 · xCO 3 · yH 2 O, Al (OH) 3 · NaHCO 3 , Mg 6 Al 2 (OH) 16 · CO 3 · 4H 2 O, Mg 4.5 · Al 2 (OH) 13 · CO 3 · 3.5H 2 O , and the like Mg 0.7 · Al 0.3 · O 1.15 . These may be used alone or in combination.

アルカリ吸着剤の使用量は、強塩基性を呈する触媒1重量部に対して、1〜1000重量部の割合で用いる。アルカリ吸着剤の使用量が、1重量部より少ないと、アミノ組成物中のアルカリ金属含有量を10ppm以下にすることができず、性状が安定しない。またアルカリ吸着剤の使用量が、1000重量部より多いとアルカリ吸着剤を除去するための、ろ過操作の負荷が大きくなるばかりか、ろ過ケーク量が増加し経済的に好ましくない。   The amount of the alkali adsorbent used is 1 to 1000 parts by weight with respect to 1 part by weight of the catalyst exhibiting strong basicity. If the amount of the alkali adsorbent used is less than 1 part by weight, the alkali metal content in the amino composition cannot be reduced to 10 ppm or less, and the properties are not stable. On the other hand, when the amount of the alkali adsorbent used is more than 1000 parts by weight, not only does the load of the filtration operation for removing the alkali adsorbent increase, but the amount of the filter cake increases, which is not economically preferable.

アルカリ吸着剤による強塩基性を呈する触媒の除去は、ポリアミンとアルケニル化合物との付加反応終了後、塩酸、塩化水素ガス、酢酸などの酸、メタノール、エタノール等のアルコール、あるいは水等を加えて強塩基性を呈する触媒を除去容易な化合物に変えた後であればいつでも良く、例えば、付加反応終了後、水を加え強塩基性を呈する触媒を水酸化物とし、その後アルカリ吸着剤を加え、50〜150℃で30〜300分撹拌した後、ろ過によってアルカリ吸着剤を除去する方法、付加反応終了後、水を加えて強塩基性を呈する触媒を水酸化物とし、水を除去、水酸化物をろ過したのち、アルカリ吸着剤を加え、50〜150℃で30〜300分撹拌した後、ろ過によってアルカリ吸着剤を除去する方法などが挙げられる。撹拌温度が50℃より低いとアルカリ吸着反応が進行しにくく好ましくない。また150℃より高いとアミノ組成物が着色するおそれがあるので好ましくない。撹拌時間は30分より短いとアルカリ吸着反応が十分行えないので好ましくない。また300分より長いと製造所要時間が長くなり好ましくない。   The removal of the strongly basic catalyst by the alkali adsorbent is performed by adding hydrochloric acid, hydrogen chloride gas, an acid such as acetic acid, an alcohol such as methanol or ethanol, or water after the addition reaction between the polyamine and the alkenyl compound. After the basic catalyst is changed to a compound that can be easily removed, for example, after completion of the addition reaction, water is added to form a strong basic catalyst as a hydroxide, and then an alkali adsorbent is added. After stirring at ˜150 ° C. for 30 to 300 minutes, the method of removing the alkali adsorbent by filtration, after completion of the addition reaction, water is added to make the catalyst exhibiting strong basicity into hydroxide and water is removed, hydroxide A method of removing the alkali adsorbent by filtration after adding an alkali adsorbent and stirring at 50 to 150 ° C. for 30 to 300 minutes can be mentioned. When the stirring temperature is lower than 50 ° C., the alkali adsorption reaction hardly proceeds, which is not preferable. Moreover, since there exists a possibility that an amino composition may color when it exceeds 150 degreeC, it is unpreferable. If the stirring time is shorter than 30 minutes, the alkali adsorption reaction cannot be sufficiently performed, which is not preferable. On the other hand, if it is longer than 300 minutes, the required production time becomes longer, which is not preferable.

(2)水洗することにより除去する方法で用いる水としては、例えば、工業用水、イオン交換水、蒸留水などが挙げられる。   (2) As water used by the method of removing by washing, industrial water, ion-exchange water, distilled water etc. are mentioned, for example.

水洗することによる強塩基性を呈する触媒の除去は、ポリアミンとアルケニル化合物との付加反応終了後であればいつ行なっても良く、例えば、付加反応終了後、水を加え、10〜100℃で5〜60分撹拌した後、静置して、アミノ組成物層と水層に分液させ、この分液操作を該アミノ組成物中のアルカリ金属含有量が10ppm以下になるまで繰り返し行なう方法、付加反応終了後、水を加えて強塩基性を呈する触媒を水酸化物とし、水を除去、水酸化物をろ過したのち、水を加え、10〜100℃で5〜60分撹拌した後、アミノ組成物層と水層に分液させ、この分液操作を該アミノ組成物中のアルカリ金属含有量が10ppm以下になるまで繰り返し行なう方法などが挙げられる。撹拌温度が10℃より低いとアミノ組成物の粘度が比較的高く分液しづらく好ましくない。また100℃より高いと水が気化するおそれがあるので好ましくない。さらに撹拌時間が5分より短いと水洗が十分行なえず好ましくない。また60分より長くしても効果は変わらず製造所要時間が長くなり好ましくない。   The removal of the catalyst exhibiting strong basicity by washing with water may be performed at any time after the completion of the addition reaction between the polyamine and the alkenyl compound. After stirring for -60 minutes, let stand and separate into an amino composition layer and an aqueous layer, and repeat this separation operation until the alkali metal content in the amino composition is 10 ppm or less, addition After completion of the reaction, water is added to form a strongly basic catalyst as hydroxide, water is removed, the hydroxide is filtered, water is added, and the mixture is stirred at 10 to 100 ° C. for 5 to 60 minutes. Examples include a method in which the composition layer and the aqueous layer are separated, and this separation operation is repeated until the alkali metal content in the amino composition is 10 ppm or less. If the stirring temperature is lower than 10 ° C., the viscosity of the amino composition is relatively high and it is difficult to separate the liquid. Moreover, since there exists a possibility that water may vaporize when it exceeds 100 degreeC, it is unpreferable. Further, if the stirring time is shorter than 5 minutes, washing with water cannot be performed sufficiently, which is not preferable. Further, even if the time is longer than 60 minutes, the effect is not changed, and the time required for production is increased, which is not preferable.

水の使用量は、アミノ組成物100重量部に対して、20〜1000重量部の割合で用いる。水の使用量が、20重量部より少ないか、もしくは1000重量部より多いと水とアミノ組成物が相溶し、分液できないので好ましくない。   The amount of water used is 20 to 1000 parts by weight with respect to 100 parts by weight of the amino composition. If the amount of water used is less than 20 parts by weight or more than 1000 parts by weight, it is not preferable because water and the amino composition are compatible and cannot be separated.

以上のとおり、本発明では、ポリアミンとアルケニル化合物との付加反応により得られるアミノ組成物の貯蔵安定化方法において、該組成物中のアルカリ金属含有量を10ppm以下にすることによりアミノ組成物を貯蔵安定化することができる。   As described above, in the present invention, in an amino composition storage stabilization method obtained by addition reaction of a polyamine and an alkenyl compound, the amino composition is stored by setting the alkali metal content in the composition to 10 ppm or less. Can be stabilized.

以下に、本発明を実施例によって具体的に説明するが、本発明はこれによって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

<実施例1>
撹拌装置、温度計、窒素導入管、滴下漏斗、冷却管を備えた2リットルフラスコに、メタキシリレンジアミン(三菱ガス化学(株)製、MXDA(分子量136.2))817.2g(6.0モル)とリチウムアミド(メルク社製、試薬)2.9g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン(和光純薬工業(株)製、試薬特級)625.2g(6.0モル)を2時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤として2MgOSiO/xHO(協和化学工業(株)製、キョーワード600s)29gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物A 1382.5gを得た。アミノ組成物Aのリチウム含有量は0.7ppm、粘度は37mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。保存安定性試験方法は、各アミノ組成物225gを蓋付きガラス容器に入れ、窒素封入する。25℃の環境試験室にて、1年間放置したのち、各アミノ組成物の外観を観察し、粘度を測定し、性状の変化を見るものとする。その結果を表1に示す。
<Example 1>
In a 2 liter flask equipped with a stirrer, a thermometer, a nitrogen introduction tube, a dropping funnel and a cooling tube, metaxylylenediamine (Mitsubishi Gas Chemical Co., Ltd., MXDA (molecular weight 136.2)) 817.2 g (6. 0 mol) and 2.9 g (0.13 mol) of lithium amide (manufactured by Merck & Co., Inc.) were charged, and the temperature was raised to 80 ° C. with stirring under a nitrogen stream. While maintaining the temperature at 80 ° C., 625.2 g (6.0 mol) of styrene (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was added dropwise over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 23.4 g (1.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide, and 2MgO 6 SiO 2 / xH 2 O (Kyowa Chemical Industry Co., Ltd.) as an alkali adsorbent having 10 times by weight of the charged lithium amide. 29 g (Kyoward 600s, manufactured by Co., Ltd.) was added and stirred for 1 hour. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 1382.5 g of amino composition A. Amino composition A had a lithium content of 0.7 ppm and a viscosity of 37 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. In the storage stability test method, 225 g of each amino composition is placed in a glass container with a lid and sealed with nitrogen. After leaving for 1 year in an environmental test room at 25 ° C., the appearance of each amino composition is observed, the viscosity is measured, and the change in properties is observed. The results are shown in Table 1.

<実施例2>
実施例1と同様のフラスコにMXDA 681.0g(5.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 33.0gをを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物B 1273.3gを得た。アミノ組成物Bのリチウム含有量は0.8ppm、粘度は55mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表1に示す。
<Example 2>
MXDA 681.0g (5.0mol) and lithium amide 3.3g (0.14mol) were prepared to the same flask as Example 1, and it heated up at 80 degreeC, stirring under nitrogen stream. While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour. Thereafter, 25.2 g (1.4 mol) of distilled water having a 10-fold molar amount of the charged lithium amide, and 33.0 g of Kyoward 600s as an alkali adsorbent having 10-fold weight part of the charged lithium amide were added. Stir for hours. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 1273.3 g of amino composition B. Amino composition B had a lithium content of 0.8 ppm and a viscosity of 55 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 1.

<実施例3>
実施例1と同様のフラスコに1,3−ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、1,3−BAC(分子量142.2))853.2g(6.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン625.2g(6.0モル)を2時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 30.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物C 1409.6gを得た。アミノ組成物Cのリチウム含有量は1.2ppm、粘度は38mPa・s/25℃であった。
得られたアミノ組成物について、保存安定性試験を行なった。その結果を表1に示す。
<Example 3>
In the same flask as in Example 1, 853.2 g (6.0 mol) of 1,3-bis (aminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd., 1,3-BAC (molecular weight 142.2)) and lithium The amide 3.0g (0.13mol) was prepared, and it heated up at 80 degreeC, stirring under nitrogen stream. While maintaining the temperature at 80 ° C., 625.2 g (6.0 mol) of styrene was added dropwise over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 23.4 g (1.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide and 30.0 g of Kyoward 600s as an alkali adsorbent having 10 times by weight of the charged lithium amide were added for 1 hour. Stir. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 1409.6 g of amino composition C. Amino composition C had a lithium content of 1.2 ppm and a viscosity of 38 mPa · s / 25 ° C.
The obtained amino composition was subjected to a storage stability test. The results are shown in Table 1.

<実施例4>
実施例1と同様のフラスコに1,3−BAC 711.0g(5.0モル)とリチウムアミド3.4g(0.15モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水27.0g(1.5モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 34.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物D 1308.8gを得た。アミノ組成物Dのリチウム含有量は0.9ppm、粘度は56mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表1に示す。
<Example 4>
In the same flask as in Example 1, 711.0 g (5.0 mol) of 1,3-BAC and 3.4 g (0.15 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. with stirring in a nitrogen stream. . While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 27.0 g (1.5 mol) of distilled water having a 10-fold molar amount of the charged lithium amide, and 34.0 g of Kyoward 600s as an alkali adsorbent having 10 times by weight of the charged lithium amide were added for 1 hour. Stir. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1308.8 g of amino composition D. Amino composition D had a lithium content of 0.9 ppm and a viscosity of 56 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 1.

<実施例5>
実施例1と同様のフラスコに、ジエチレントリアミン(関東化学(株)製、試薬特級、DETA)412.7g(4.0モル)とリチウムアミド2.5g(0.11モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で0.5時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水19.8g(1.1モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 25.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物E 778.1gを得た。アミノ組成物Eのリチウム含有量は1.5ppm、粘度は22mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表1に示す。
<Example 5>
In a flask similar to that in Example 1, 412.7 g (4.0 mol) of diethylenetriamine (manufactured by Kanto Chemical Co., Ltd., reagent grade, DETA) and 2.5 g (0.11 mol) of lithium amide were charged under a nitrogen stream. The temperature was raised to 80 ° C. with stirring. While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the temperature was kept at 80 ° C. for 0.5 hour. Thereafter, 19.8 g (1.1 mol) of distilled water having a 10-fold molar amount of the charged lithium amide and 25.0 g of Kyoward 600s as an alkali adsorbent having 10 times by weight of the charged lithium amide were added for 1 hour. Stir. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 778.1 g of amino composition E. Amino composition E had a lithium content of 1.5 ppm and a viscosity of 22 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 1.

<実施例6>
実施例1と同様のフラスコに、トリエチレンテトラミン(関東化学(株)製、試薬特級、TETA)584.8g(4.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で0.5時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 30.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物F 991gを得た。アミノ組成物Fのリチウム含有量は2.0ppm、粘度は77mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表1に示す。
<Example 6>
A flask similar to Example 1 was charged with 584.8 g (4.0 mol) of triethylenetetramine (manufactured by Kanto Chemical Co., Ltd., reagent special grade, TETA) and 3.0 g (0.13 mol) of lithium amide, and nitrogen. The temperature was raised to 80 ° C. with stirring under an air stream. While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the temperature was kept at 80 ° C. for 0.5 hour. Thereafter, 23.4 g (1.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide and 30.0 g of Kyoward 600s as an alkali adsorbent having 10 times by weight of the charged lithium amide were added for 1 hour. Stir. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 991 g of amino composition F. Amino composition F had a lithium content of 2.0 ppm and a viscosity of 77 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 1.

<実施例7>
実施例1と同様のフラスコに、イソホロンジアミン(デグッサ社製、IPDA)681.2g(4.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン416.8g(4.0モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 33.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物G 1032.7gを得た。アミノ組成物Gのリチウム含有量は1.8ppm、粘度は90mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表1に示す。
<Example 7>
In a flask similar to that of Example 1, 681.2 g (4.0 mol) of isophoronediamine (manufactured by Degussa, IPDA) and 3.3 g (0.14 mol) of lithium amide were charged with stirring under a nitrogen stream. The temperature was raised to ° C. While maintaining the temperature at 80 ° C., 416.8 g (4.0 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour. Thereafter, 25.2 g (1.4 mol) of distilled water having a 10-fold molar amount of the charged lithium amide and 33.0 g of Kyoward 600s as an alkali adsorbent having 10 times by weight of the charged lithium amide were added for 1 hour. Stir. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1032.7 g of amino composition G. Amino composition G had a lithium content of 1.8 ppm and a viscosity of 90 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 1.

<実施例8>
実施例1と同様のフラスコに、ノルボルナンジアミン(三井化学(株)製、NBDA)617.2g(4.0モル)とリチウムアミド3.1g(0.14モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン416.8g(4.0モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 31.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物H 972.2gを得た。アミノ組成物Hのリチウム含有量は2.2ppm、粘度は64mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表2に示す。
<Example 8>
In a flask similar to that in Example 1, 617.2 g (4.0 mol) of norbornanediamine (manufactured by Mitsui Chemicals, Inc., NBDA) and 3.1 g (0.14 mol) of lithium amide were stirred under a nitrogen stream. The temperature was raised to 80 ° C. While maintaining the temperature at 80 ° C., 416.8 g (4.0 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour. Thereafter, 25.2 g (1.4 moles) of distilled water having a 10-fold molar amount of the charged lithium amide and 101.0 parts by weight of an alkaline adsorbent of 10 parts by weight of the charged lithium amide were added, and 31.0 g of Kyoward 600s was added for 1 hour Stir. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 972.2 g of amino composition H. Amino composition H had a lithium content of 2.2 ppm and a viscosity of 64 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 2.

<実施例9>
実施例1と同様のフラスコに、ポリオキシプロピレンジアミン(ハンツマン・コーポレーション社製、ジェファーミンD−230(分子量230))460.0g(2.0モル)とリチウムアミド21.3g(0.93モル)を仕込み、窒素気流下、撹拌しながら100℃に昇温した。100℃に保ちながら、スチレン208.4g(2.0モル)を4時間かけて滴下した。滴下終了後、100℃で4時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水167.7g(9.3モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s213.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物I 635.1gを得た。アミノ組成物Iのリチウム含有量は2.2ppm、粘度は30mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表2に示す。
<Example 9>
In a flask similar to that in Example 1, 460.0 g (2.0 mol) of polyoxypropylenediamine (manufactured by Huntsman Corporation, Jeffamine D-230 (molecular weight 230)) and 21.3 g (0.93 mol) of lithium amide were used. And heated to 100 ° C. with stirring under a nitrogen stream. While maintaining the temperature at 100 ° C., 208.4 g (2.0 mol) of styrene was added dropwise over 4 hours. After completion of dropping, the temperature was kept at 100 ° C. for 4 hours. Then, 167.7 g (9.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide, and 103.0 parts by weight of Kyoward 600s 213.0 g as an alkaline adsorbent were added and stirred for 1 hour. did. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 635.1 g of amino composition I. Amino composition I had a lithium content of 2.2 ppm and a viscosity of 30 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 2.

<実施例10>
実施例1と同様のフラスコに、ポリオキシエチレンジアミン(ハンツマン・コーポレーション社製、ジェファーミンEDR−148(分子量148))296.0g(2.0モル)とリチウムアミド1.5g(0.065モル)を仕込み、窒素気流下、撹拌しながら100℃に昇温した。100℃に保ちながら、スチレン208.4g(2.0モル)を4時間かけて滴下した。滴下終了後、100℃で4時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水11.7g(0.65モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 15.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物J 479.0gを得た。アミノ組成物Jのリチウム含有量は0.9ppm、粘度は30mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表2に示す。
<Example 10>
In a flask similar to that of Example 1, 296.0 g (2.0 mol) of polyoxyethylenediamine (manufactured by Huntsman Corporation, Jeffamine EDR-148 (molecular weight 148)) and 1.5 g (0.065 mol) of lithium amide Was heated to 100 ° C. with stirring under a nitrogen stream. While maintaining the temperature at 100 ° C., 208.4 g (2.0 mol) of styrene was added dropwise over 4 hours. After completion of dropping, the temperature was kept at 100 ° C. for 4 hours.
Thereafter, 11.7 g (0.65 mol) of distilled water having a 10-fold molar amount of the charged lithium amide and 15.0 g of Kyoward 600s as an alkali adsorbent having 10 times by weight of the charged lithium amide were added for 1 hour. Stir. The precipitate in the liquid in the flask was separated by filtration, and then water was removed by distillation under reduced pressure to obtain 479.0 g of amino composition J. Amino composition J had a lithium content of 0.9 ppm and a viscosity of 30 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 2.

<実施例11>
実施例1と同様のフラスコに、ポリオキシプロピレントリアミン(ハンツマン・コーポレーション社製、ジェファーミンT−403(分子量403))806.0g(2.0モル)とリチウムアミド35.0g(1.5モル)を仕込み、窒素気流下、撹拌しながら100℃に昇温した。100℃に保ちながら、スチレン312.6g(3.0モル)を6時間かけて滴下した。滴下終了後、100℃で4時間保った。その後、仕込んだリチウムアミドの10倍モル量の水270.0g(15.0モル)、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 350.0gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物K 1052.9gを得た。
アミノ組成物Kのリチウム含有量は1.5ppm、粘度は580mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表2に示す。
<Example 11>
In a flask similar to that in Example 1, 806.0 g (2.0 mol) of polyoxypropylene triamine (manufactured by Huntsman Corporation, Jeffamine T-403 (molecular weight 403)) and 35.0 g (1.5 mol) of lithium amide And heated to 100 ° C. with stirring under a nitrogen stream. While maintaining the temperature at 100 ° C., 312.6 g (3.0 mol) of styrene was added dropwise over 6 hours. After completion of dropping, the temperature was kept at 100 ° C. for 4 hours. Then, 270.0 g (15.0 mol) of water in a 10-fold molar amount of the charged lithium amide, and 350.0 g of Kyoward 600s as an alkali adsorbent in 10 times by weight of the charged lithium amide were added and stirred for 1 hour. did. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 1052.9 g of amino composition K.
Amino composition K had a lithium content of 1.5 ppm and a viscosity of 580 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 2.

<実施例12>
実施例1と同様のフラスコに、MXDA 817.2g(6.0モル)とリチウムアミド2.9g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン625.2g(6.0モル)を2時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、粗アミノ組成物を得た。その後、仕込んだリチウムアミドの10倍重量部のアルカリ吸着剤としてキョーワード600s 29gを添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離し、アミノ組成物L 1330.0gを得た。アミノ組成物Lのリチウム含有量は0.3ppm、粘度は37mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表2に示す。
<Example 12>
In a flask similar to that in Example 1, 817.2 g (6.0 mol) of MXDA and 2.9 g (0.13 mol) of lithium amide were charged and heated to 80 ° C. with stirring under a nitrogen stream. While maintaining the temperature at 80 ° C., 625.2 g (6.0 mol) of styrene was added dropwise over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 23.4 g (1.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred for 1 hour. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off under reduced pressure to obtain a crude amino composition. Thereafter, 29 g of Kyoward 600s was added as an alkali adsorbent of 10 times by weight of the charged lithium amide and stirred for 1 hour. The precipitate in the liquid in the flask was separated by filtration to obtain 1330.0 g of an amino composition L. Amino composition L had a lithium content of 0.3 ppm and a viscosity of 37 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 2.

<実施例13>
実施例1と同様のフラスコに、MXDA 817.2g(6.0モル)とリチウムアミド2.9g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン625.2g(6.0モル)を2時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、80℃の蒸留水618.2gを添加し、10分間撹拌後、5分間静置した。2層に分離したフラスコ内液の下層を別のフラスコに移し、同様の操作を7回繰り返したのち、下層に溶解した蒸留水を減圧蒸留で留去し、アミノ組成物M 1382.5gを得た。アミノ組成物Mのリチウム含有量は0.8ppm、粘度は66mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表2に示す。
<Example 13>
In a flask similar to that in Example 1, 817.2 g (6.0 mol) of MXDA and 2.9 g (0.13 mol) of lithium amide were charged and heated to 80 ° C. with stirring under a nitrogen stream. While maintaining the temperature at 80 ° C., 625.2 g (6.0 mol) of styrene was added dropwise over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 618.2 g of distilled water at 80 ° C. was added, stirred for 10 minutes, and allowed to stand for 5 minutes. The lower layer of the liquid in the flask separated into two layers was transferred to another flask and the same operation was repeated seven times, and then distilled water dissolved in the lower layer was distilled off under reduced pressure to obtain 1382.5 g of amino composition M. It was. Amino composition M had a lithium content of 0.8 ppm and a viscosity of 66 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 2.

Figure 0004484022
Figure 0004484022

Figure 0004484022
Figure 0004484022

<比較例1>
撹拌装置、温度計、窒素導入管、滴下漏斗、冷却管を備えた2リットルフラスコに、活性水素当量が34のMXDA 817.2g(6.0モル)とリチウムアミド2.9g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン625.2g(6.0モル)を2時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物N 1380.7gを得た。アミノ組成物Nのリチウム含有量は26.3ppm、粘度は37mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表3に示す。
<Comparative Example 1>
In a 2 liter flask equipped with a stirrer, thermometer, nitrogen inlet tube, dropping funnel, and condenser tube, 817.2 g (6.0 mol) of MXDA having an active hydrogen equivalent weight of 34 and 2.9 g (0.13 mol) of lithium amide were added. And heated to 80 ° C. with stirring under a nitrogen stream. While maintaining the temperature at 80 ° C., 625.2 g (6.0 mol) of styrene was added dropwise over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 1380.7 g of amino composition N. The lithium content of amino composition N was 26.3 ppm, and the viscosity was 37 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 3.

<比較例2>
実施例1と同様のフラスコにMXDA 681.0g(5.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物P 1270.9gを得た。アミノ組成物Pのリチウム含有量は24.4ppm、粘度は55mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表3に示す。
<Comparative example 2>
MXDA 681.0g (5.0mol) and lithium amide 3.3g (0.14mol) were prepared to the same flask as Example 1, and it heated up at 80 degreeC, stirring under nitrogen stream. While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1270.9 g of amino composition P. Amino composition P had a lithium content of 24.4 ppm and a viscosity of 55 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 3.

<比較例3>
実施例1と同様のフラスコに1,3−BAC 853.2g(6.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン625.2g(6.0モル)を2時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物Q 1409.3gを得た。アミノ組成物Qのリチウム含有量は33.2ppm、粘度は38mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表3に示す。
<Comparative Example 3>
A flask similar to Example 1 was charged with 853.2 g (6.0 mol) of 1,3-BAC and 3.0 g (0.13 mol) of lithium amide, and the temperature was raised to 80 ° C. with stirring in a nitrogen stream. . While maintaining the temperature at 80 ° C., 625.2 g (6.0 mol) of styrene was added dropwise over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After separating the precipitate in the liquid in the flask by filtration, water was removed by distillation under reduced pressure to obtain 1409.3 g of amino composition Q. Amino composition Q had a lithium content of 33.2 ppm and a viscosity of 38 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 3.

<比較例4>
実施例1と同様のフラスコに1,3−BAC 711.0g(5.0モル)とリチウムアミド3.4g(0.15モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水27.0g(1.5モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物R 1305.8gを得た。アミノ組成物Rのリチウム含有量は29.8ppm、粘度は56mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表3に示す。
<Comparative example 4>
In the same flask as in Example 1, 711.0 g (5.0 mol) of 1,3-BAC and 3.4 g (0.15 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. with stirring in a nitrogen stream. . While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour.
Thereafter, 27.0 g (1.5 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 1305.8 g of amino composition R. Amino composition R had a lithium content of 29.8 ppm and a viscosity of 56 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 3.

<比較例5>
実施例1と同様のフラスコに、DETA 412.7g(4.0モル)とリチウムアミド(メルク社製、試薬)2.5g(0.11モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で0.5時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水19.8g(1.1モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物S 777.0gを得た。アミノ組成物Sのリチウム含有量は33.1ppm、粘度は22mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表3に示す。
<Comparative Example 5>
In a flask similar to that in Example 1, 412.7 g (4.0 mol) of DETA and 2.5 g (0.11 mol) of lithium amide (manufactured by Merck & Co., Inc.) were charged, and the mixture was stirred at 80 ° C. in a nitrogen stream. The temperature was raised to. While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the temperature was kept at 80 ° C. for 0.5 hour. Thereafter, 19.8 g (1.1 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 777.0 g of amino composition S. Amino composition S had a lithium content of 33.1 ppm and a viscosity of 22 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 3.

<比較例6>
実施例1と同様のフラスコに、TETA 584.8g(4.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて滴下した。滴下終了後、80℃で0.5時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物T 990gを得た。アミノ組成物Tのリチウム含有量は30.0ppm、粘度は77mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表3に示す。
<Comparative Example 6>
In the same flask as in Example 1, 584.8 g (4.0 mol) of TETA and 3.0 g (0.13 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. with stirring in a nitrogen stream. While maintaining the temperature at 80 ° C., 651.3 g (6.25 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the temperature was kept at 80 ° C. for 0.5 hour.
Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 990 g of amino composition T. Amino composition T had a lithium content of 30.0 ppm and a viscosity of 77 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 3.

<比較例7>
実施例1と同様のフラスコに、IPDA 681.2g(4.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン416.8g(4.0モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物U 1032.7gを得た。アミノ組成物Uのリチウム含有量は41.0ppm、粘度は90mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表4に示す。
<Comparative Example 7>
In the same flask as in Example 1, 681.2 g (4.0 mol) of IPDA and 3.3 g (0.14 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. with stirring in a nitrogen stream. While maintaining the temperature at 80 ° C., 416.8 g (4.0 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1032.7 g of amino composition U. The lithium content of amino composition U was 41.0 ppm, and the viscosity was 90 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 4.

<比較例8>
実施例1と同様のフラスコに、NBDA 617.2g(4.0モル)とリチウムアミド3.1g(0.14モル)を仕込み、窒素気流下、撹拌しながら80℃に昇温した。80℃に保ちながら、スチレン416.8g(4.0モル)を2.5時間かけて滴下した。滴下終了後、80℃で1時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物V 969.3gを得た。アミノ組成物Vのリチウム含有量は40.5ppm、粘度は64mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表4に示す。
<Comparative Example 8>
In the same flask as in Example 1, 617.2 g (4.0 mol) of NBDA and 3.1 g (0.14 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. with stirring in a nitrogen stream. While maintaining the temperature at 80 ° C., 416.8 g (4.0 mol) of styrene was added dropwise over 2.5 hours. After completion of dropping, the mixture was kept at 80 ° C. for 1 hour. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. The precipitate in the liquid in the flask was separated by filtration, and then water was removed by distillation under reduced pressure to obtain 969.3 g of amino composition V. Amino composition V had a lithium content of 40.5 ppm and a viscosity of 64 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 4.

<比較例9>
実施例1と同様のフラスコに、ジェファーミンD−230 460.0g(2.0モル)とリチウムアミド21.3g(0.93モル)を仕込み、窒素気流下、撹拌しながら100℃に昇温した。100℃に保ちながら、スチレン208.4g(2.0モル)を4時間かけて滴下した。滴下終了後、100℃で4時間保った。
その後、仕込んだリチウムアミドの10倍モル量の蒸留水167.7g(9.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物W 635.0gを得た。アミノ組成物Wのリチウム含有量は30ppm、粘度は86.6mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表4に示す。
<Comparative Example 9>
Into the same flask as in Example 1, 460.0 g (2.0 mol) of Jeffamine D-230 and 21.3 g (0.93 mol) of lithium amide were charged, and the temperature was raised to 100 ° C. with stirring in a nitrogen stream. did. While maintaining the temperature at 100 ° C., 208.4 g (2.0 mol) of styrene was added dropwise over 4 hours. After completion of dropping, the temperature was kept at 100 ° C. for 4 hours.
Thereafter, 167.7 g (9.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 635.0 g of amino composition W. Amino composition W had a lithium content of 30 ppm and a viscosity of 86.6 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 4.

<比較例10>
実施例1と同様のフラスコに、ジェファーミンEDR−148 296.0g(2.0モル)とリチウムアミド1.5g(0.065モル)を仕込み、窒素気流下、撹拌しながら100℃に昇温した。100℃に保ちながら、スチレン208.4g(2.0モル)を4時間かけて滴下した。滴下終了後、100℃で4時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水水11.7g(0.65モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物X 478.8gを得た。アミノ組成物Xのリチウム含有量は30ppm、粘度は51.0mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表4に示す。
<Comparative Example 10>
Into the same flask as in Example 1, 296.0 g (2.0 mol) of Jeffermine EDR-148 and 1.5 g (0.065 mol) of lithium amide were charged, and the temperature was raised to 100 ° C. with stirring in a nitrogen stream. did. While maintaining the temperature at 100 ° C., 208.4 g (2.0 mol) of styrene was added dropwise over 4 hours. After completion of dropping, the temperature was kept at 100 ° C. for 4 hours. Thereafter, 11.7 g (0.65 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. The precipitate in the liquid in the flask was separated by filtration, and then water was removed by distillation under reduced pressure to obtain 478.8 g of amino composition X. Amino composition X had a lithium content of 30 ppm and a viscosity of 51.0 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 4.

<比較例11>
実施例1と同様のフラスコに、ジェファーミンT−403 806.0g(2.0モル)とリチウムアミド35.0g(1.5モル)を仕込み、窒素気流下、撹拌しながら100℃に昇温した。100℃に保ちながら、スチレン312.6g(3.0モル)を6時間かけて滴下した。滴下終了後、100℃で4時間保った。
その後、仕込んだリチウムアミドの10倍モル量の水270.0g(15.0モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物Y 1051.5gを得た。アミノ組成物Yのリチウム含有量は91.1ppm、粘度は580mPa・s/25℃であった。得られたアミノ組成物について、保存安定性試験を行なった。その結果を表4に示す。
<Comparative Example 11>
Into the same flask as in Example 1, 806.0 g (2.0 mol) of Jeffermine T-403 and 35.0 g (1.5 mol) of lithium amide were added, and the temperature was raised to 100 ° C. with stirring in a nitrogen stream. did. While maintaining the temperature at 100 ° C., 312.6 g (3.0 mol) of styrene was added dropwise over 6 hours. After completion of dropping, the temperature was kept at 100 ° C. for 4 hours.
Thereafter, 270.0 g (15.0 mol) of water having a 10-fold molar amount of the charged lithium amide was added and stirred. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 1051.5 g of amino composition Y. The lithium content of amino composition Y was 91.1 ppm, and the viscosity was 580 mPa · s / 25 ° C. The obtained amino composition was subjected to a storage stability test. The results are shown in Table 4.

Figure 0004484022
Figure 0004484022

Figure 0004484022
Figure 0004484022

Claims (5)

下記(A)〜(D)に示すいずれかのポリアミンと下記(E)に示すアルケニル化合物を、下記(F)に示す強塩基性を呈する触媒の存在下50〜150℃で付加反応させることにより得られるアミノ組成物の貯蔵安定化方法であって、下記(1)〜(7)に示すいずれかの操作により該アミノ組成物中のアルカリ金属含有量を10ppm以下にすることを特徴とするアミノ組成物の貯蔵安定化方法。
(A) 式(1)で示されるポリアミン、
Figure 0004484022
(B) 式(2)で示されるポリアミン、
Figure 0004484022
(C)メンセンジアミン、イソホロンジアミン、ジアミノジシクロヘキシルメタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、N−アミノメチルピペラジン、ノルボルナンジアミン、ポリシクロヘキシルポリアミンおよび3(4)、8(9)−ビス−(アミノメチル)−トリシクロ[5.2.1.0(2,6)]デカンからなる群より選ばれる環状脂肪族ポリアミン、
(D)ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシテトラメチレンジアミン、ポリ(オキシエチレン−オキシプロピレン)ジアミン、ポリオキシエチレントリアミンおよびポリオキシプロピレントリアミンからなる群より選ばれるポリオキシアルキレンポリアミン、
(E)エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、イソブチレン、2−ペンテン、3−メチル−1−ブテン、2−メチル−2−ブテン、2,3−ジメチル−2−ブテン、シクロヘキセン、シクロヘキサジエン、スチレンおよびジビニルベンゼンからなる群より選ばれるアルケニル化合物、
(F)金属リチウム、金属ナトリウム、金属カリウム、リチウムアミド、リチウムジイソプロピルアミド、ナトリウムアミド、メチルリチウム、ブチルリチウム、リチウムメチラート、リチウムエチラート、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラートおよびカリウムブチラートからなる群より選ばれる触媒、
(1)アルカリ吸着剤を使用してアルカリ金属を除去する、
(2)水洗することによりアルカリ金属を除去する、
(3)酸で該触媒を中和し、生じた塩をろ過することによりアルカリ金属を除去する、
(4)イオン交換樹脂を用いてアルカリ金属を除去する、
(5)アルカリ金属を炭酸ガスで中和して炭酸塩をろ過することによりアルカリ金属を除去する、
(6)酸水溶液を加え中和しろ過後、過剰の酸を酸吸着剤を使用してアルカリ金属を除去する、
(7)酸性ピロリン酸塩、ピロリン酸2水素2ナトリウムを使用してアルカリ金属を除去する。
By subjecting any of the polyamines shown in the following (A) to (D) and the alkenyl compound shown in the following (E) to an addition reaction at 50 to 150 ° C. in the presence of a catalyst having a strong basicity shown in the following (F). A method for stabilizing the storage of an amino composition obtained, wherein the alkali metal content in the amino composition is reduced to 10 ppm or less by any of the operations (1) to (7) below: A method for storage stabilization of a composition.
(A) a polyamine represented by the formula (1),
Figure 0004484022
(B) a polyamine represented by the formula (2),
Figure 0004484022
(C) Mensendiamine, isophoronediamine, diaminodicyclohexylmethane, bis (4-amino-3-methylcyclohexyl) methane, N-aminomethylpiperazine, norbornanediamine, polycyclohexylpolyamine and 3 (4), 8 (9)- A cycloaliphatic polyamine selected from the group consisting of bis- (aminomethyl) -tricyclo [5.2.1.0 (2,6)] decane;
(D) polyoxyalkylene polyamine selected from the group consisting of polyoxyethylene diamine, polyoxypropylene diamine, polyoxytetramethylene diamine, poly (oxyethylene-oxypropylene) diamine, polyoxyethylene triamine and polyoxypropylene triamine,
(E) Ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, isobutylene, 2-pentene, 3-methyl-1-butene, 2-methyl-2-butene, 2,3-dimethyl-2 An alkenyl compound selected from the group consisting of butene, cyclohexene, cyclohexadiene, styrene and divinylbenzene,
(F) metallic lithium, metallic sodium, metallic potassium, lithium amide, lithium diisopropylamide, sodium amide, methyl lithium, butyl lithium, lithium methylate, lithium ethylate, sodium methylate, sodium ethylate, potassium methylate and potassium butyrate A catalyst selected from the group consisting of Rato,
(1) Use an alkali adsorbent to remove alkali metals.
(2) The alkali metal is removed by washing with water.
(3) neutralize the catalyst with an acid and remove the alkali metal by filtering the resulting salt;
(4) removing an alkali metal using an ion exchange resin;
(5) The alkali metal is removed by neutralizing the alkali metal with carbon dioxide and filtering the carbonate.
(6) After adding an acid aqueous solution to neutralize and filtering, excess acid is removed from the alkali metal using an acid adsorbent.
(7) The alkali metal is removed using acidic pyrophosphate and disodium dihydrogen pyrophosphate.
前記(1)の操作が、付加反応終了後、水を加え前記触媒を水酸化物とし、その後アルカリ吸着剤を加え、50〜150℃で30〜300分撹拌した後、ろ過によってアルカリ吸着剤を除去するものである請求項1記載のアミノ組成物の貯蔵安定化方法。 The operation of (1), after the addition the reaction was completed, water was added to the catalyst as a hydroxide, after which the alkaline sorbent was added and after stirring for 30 to 300 minutes at 50 to 150 ° C., an alkaline adsorbent by filtration The method for stabilizing the storage of an amino composition according to claim 1, which is to be removed. 前記(1)の操作が、付加反応終了後、水を加え前記触媒を水酸化物とし、水を除去、水酸化物をろ過したのち、アルカリ吸着剤を加え、50〜150℃で30〜300分撹拌した後、ろ過によってアルカリ吸着剤を除去するものである請求項1記載のアミノ組成物の貯蔵安定化方法。 The operation is, after the addition completion of the reaction (1), water was added to the catalyst as a hydroxide, water removal, after filtration hydroxides, alkaline sorbent was added, at 50 to 150 ° C. 30 to 300 The method according to claim 1, wherein the alkali adsorbent is removed by filtration after stirring for a minute. 前記(2)の操作が、付加反応終了後、水を加え、10〜100℃で5〜60分撹拌した後、静置して、アミノ組成物層と水層に分液させ、この分液操作を繰り返し行うものである請求項1記載のアミノ組成物の貯蔵安定化方法。 In the operation (2), after the addition reaction is completed, water is added, the mixture is stirred at 10 to 100 ° C. for 5 to 60 minutes, and then allowed to stand to separate into an amino composition layer and an aqueous layer. The method for stabilizing the storage of an amino composition according to claim 1, wherein the operation is repeated. 前記(2)の操作が、付加反応終了後、水を加えて前記触媒を水酸化物とし、水を除去、水酸化物をろ過したのち、水を加え、10〜100℃で5〜60分撹拌した後、アミノ組成物層と水層に分液させ、この分液操作を繰り返し行うものである請求項1記載のアミノ組成物の貯蔵安定化方法。 The operation of (2) is, after the addition the reaction was completed, by adding water to the catalyst as a hydroxide, water removal, after filtration hydroxide, water was added, 5 to 60 minutes at 10 to 100 ° C. 2. The method for stabilizing and stabilizing an amino composition according to claim 1, wherein after stirring, the amino composition layer and the aqueous layer are separated, and this liquid separation operation is repeated.
JP2003349545A 2003-10-08 2003-10-08 Storage stabilization method of amino composition Expired - Lifetime JP4484022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349545A JP4484022B2 (en) 2003-10-08 2003-10-08 Storage stabilization method of amino composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349545A JP4484022B2 (en) 2003-10-08 2003-10-08 Storage stabilization method of amino composition

Publications (2)

Publication Number Publication Date
JP2005112790A JP2005112790A (en) 2005-04-28
JP4484022B2 true JP4484022B2 (en) 2010-06-16

Family

ID=34541386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349545A Expired - Lifetime JP4484022B2 (en) 2003-10-08 2003-10-08 Storage stabilization method of amino composition

Country Status (1)

Country Link
JP (1) JP4484022B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2670944T3 (en) * 2011-07-21 2018-06-04 Croda International Plc Branched polyether polyamide block copolymers and methods of preparing and using them

Also Published As

Publication number Publication date
JP2005112790A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
EP0050181A1 (en) Method for purifying polyether-polyols
TWI511944B (en) Method for producing amino compound
CN108383756A (en) A kind of preparation method of cyanoethyl aminated compounds
JP4484022B2 (en) Storage stabilization method of amino composition
JP2011088863A (en) Process for producing amino composition
JP4797345B2 (en) Method for producing amino composition
JP4453816B2 (en) Method for producing amino composition
JP2004250424A (en) Modified chain aliphatic polyamine
JP5255810B2 (en) Method for producing dicyclopentadiene-modified phenolic resin
JP4434716B2 (en) Method for producing amino composition
US6949684B2 (en) Process for preparing 1,2,4-butanetriol
JPH1045682A (en) Production of high-grade polyethylene polyamines
JP6083283B2 (en) Process for producing polyalkylene glycol
JPS63159362A (en) Production of methyleneimine compound
CN109651165B (en) Method for producing cyclohexylamine by aniline hydrogenation
EP1506953B1 (en) Process for producing an amino composition
JP4532083B2 (en) Method for producing N-monoalkyl-substituted alkyleneamine
JP2002121177A (en) Method for producing polyamino compound
JPH0570411A (en) Production of aliphatic triamine
JPS6038430A (en) Production of polyamino compound
WO2015161466A1 (en) Neutralization of acidic catalysts in production of phenol
JP5874285B2 (en) Process for producing polyalkylene glycol
JP2005279522A (en) Solid lewis acid catalyst, its manufacturing method and its application
JPH0315621B2 (en)
JP2013032317A (en) Method for producing glycidyl ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4484022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

EXPY Cancellation because of completion of term