JP4797345B2 - Method for producing amino composition - Google Patents

Method for producing amino composition Download PDF

Info

Publication number
JP4797345B2
JP4797345B2 JP2004234039A JP2004234039A JP4797345B2 JP 4797345 B2 JP4797345 B2 JP 4797345B2 JP 2004234039 A JP2004234039 A JP 2004234039A JP 2004234039 A JP2004234039 A JP 2004234039A JP 4797345 B2 JP4797345 B2 JP 4797345B2
Authority
JP
Japan
Prior art keywords
reaction
polyamine
mol
alkenyl group
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004234039A
Other languages
Japanese (ja)
Other versions
JP2005089455A (en
Inventor
雅敏 越後
久征 桑原
剛司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004234039A priority Critical patent/JP4797345B2/en
Publication of JP2005089455A publication Critical patent/JP2005089455A/en
Application granted granted Critical
Publication of JP4797345B2 publication Critical patent/JP4797345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリアミンとアルケニル基含有化合物との付加反応によるアミノ組成物の製造方法に関するものである。本発明の方法により得られるアミノ組成物は、エポキシ樹脂やイソシアネート等との反応性を有し、エポキシ樹脂硬化剤およびウレタン樹脂の鎖延長剤の分野で好適に用いられる。   The present invention relates to a method for producing an amino composition by an addition reaction between a polyamine and an alkenyl group-containing compound. The amino composition obtained by the method of the present invention has reactivity with epoxy resins and isocyanates, and is suitably used in the fields of epoxy resin curing agents and urethane resin chain extenders.

ポリアミンとアルケニル基含有化合物との付加反応により得られるアミノ組成物は、未反応ポリアミン含有量が比較的低く、低粘度である。例えば該アミノ組成物を含むエポキシ樹脂硬化剤を用いたエポキシ樹脂組成物は、良好なエポキシ樹脂硬化物性能を与えることができる。よって、該アミノ組成物は産業上有用な組成物である。   The amino composition obtained by the addition reaction between the polyamine and the alkenyl group-containing compound has a relatively low unreacted polyamine content and a low viscosity. For example, an epoxy resin composition using an epoxy resin curing agent containing the amino composition can give good epoxy resin cured product performance. Therefore, the amino composition is an industrially useful composition.

このようなアミノ組成物を、強塩基性を呈する触媒を用いたポリアミンとアルケニル基含有化合物との付加反応を利用して製造する方法そのものは、公知である(特許文献1参照。)。
この製造方法においては、触媒とポリアミンとを接触させて温度を上昇させた時点で速やかにアルケニル基含有化合物が添加され、付加反応が行われている。また、その反応終点の判断は、通常、未反応のアルケニル基含有化合物を定量し、該アルケニル基含有化合物が一定量以下になったことを確認することにより行われる。そして、反応時間は、未反応のアルケニル基含有化合物が1重量%以下になるまでの時間に設定される。
特開2002-161076号公報
A method for producing such an amino composition by utilizing an addition reaction between a polyamine and an alkenyl group-containing compound using a catalyst exhibiting strong basicity is known (see Patent Document 1).
In this production method, the alkenyl group-containing compound is rapidly added at the time when the temperature is raised by bringing the catalyst and polyamine into contact with each other, and an addition reaction is performed. The determination of the reaction end point is usually performed by quantifying the unreacted alkenyl group-containing compound and confirming that the alkenyl group-containing compound has reached a certain amount or less. The reaction time is set to a time until the unreacted alkenyl group-containing compound becomes 1% by weight or less.
JP 2002-161076 A

しかしながら、上記の製造方法では、例えばアルケニル基含有化合物滴下終了後、未反応のアルケニル基含有化合物が1重量%以下になるまで30分を超えるなど、反応完結まで長時間を要し、かつ反応時間が大きくばらつく場合や、未反応のアルケニル基含有化合物が1重量%以下にならず反応が完結しない場合がある。そして、反応完結に長時間を要するために副生成物として好ましくないアルケニル基含有化合物の重合物が生成するなどの不具合が生じる。このような未反応アルケニル基含有化合物の残留やアルケニル基含有化合物の重合物の生成などの結果、得られるアミノ組成物の性状が安定しないという問題点があった。   However, in the above production method, for example, after the completion of dropping of the alkenyl group-containing compound, it takes a long time to complete the reaction, such as exceeding 30 minutes until the unreacted alkenyl group-containing compound becomes 1 wt% or less, and the reaction time May vary greatly, or the unreacted alkenyl group-containing compound may not be 1 wt% or less and the reaction may not be completed. In addition, since it takes a long time to complete the reaction, problems such as formation of a polymer of an alkenyl group-containing compound which is not preferable as a by-product occur. As a result of such residual unreacted alkenyl group-containing compound and formation of a polymer of the alkenyl group-containing compound, there is a problem that the properties of the resulting amino composition are not stable.

本発明の目的は、ポリアミンとアルケニル基含有化合物との付加反応によるアミノ組成物の製造方法であって、性状の安定したアミノ組成物が得られる製造方法を提供することである。   An object of the present invention is to provide a method for producing an amino composition by an addition reaction between a polyamine and an alkenyl group-containing compound, which can provide an amino composition having stable properties.

本発明者らは、鋭意検討した結果、ポリアミンとアルケニル基含有化合物との付加反応において、あらかじめポリアミンと強塩基性を呈する触媒との反応をある程度まで進行させた後、アルケニル基含有化合物を添加して付加反応をさせることにより、前記したような問題点を解決しうることを見いだし、本発明に至ったものである。   As a result of diligent investigations, the inventors of the present invention have added a alkenyl group-containing compound after advancement of the reaction between the polyamine and the catalyst having strong basicity to some extent in the addition reaction between the polyamine and the alkenyl group-containing compound. Thus, the inventors have found that the above-described problems can be solved by performing an addition reaction, and the present invention has been achieved.

すなわち、本発明は、下記(1)〜(12)で表されるアミノ組成物の製造方法を提供する。
(1) 強塩基性を呈する触媒の存在下にポリアミンとアルケニル基含有化合物との付加反応を行ってアミノ組成物を製造する方法において、まず前記触媒とポリアミンとの予備反応を行って反応混合物を得た後、該反応混合物にアルケニル基含有化合物を添加して付加反応をさせることを特徴とする、アミノ組成物の製造方法。
(2) 前記触媒とポリアミンとの予備反応を行って、前記触媒とポリアミンの反応中間体を含む反応混合物を得た後、該反応混合物にアルケニル基含有化合物を添加して付加反応させることを特徴とする、(1)記載のアミノ組成物の製造方法。
(3) 前記反応混合物中における反応中間体の濃度が、ポリアミン1モルに対し0.001モル以上となった後、該反応中間体を含む反応混合物にアルケニル基含有化合物を添加して付加反応させることを特徴とする、(2)記載のアミノ組成物の製造方法。
(4) 前記反応混合物のIRスペクトル分析を行って、予備反応前に1650〜1580cm−1の範囲に観察される吸収が、予備反応後に20〜25cm−1低い方向へ移動した位置で観察される場合の該吸収の吸収度から、反応中間体の濃度を算出することを特徴とする、(3)記載のアミノ組成物の製造方法。
(5) 前記触媒とポリアミンとの反応温度が10〜140℃であり、また反応時間が20〜360分であることを特徴とする、(1)〜(4)のいずれかに記載のアミノ組成物の製造方法。
(6) 前記反応混合物にアルケニル基含有化合物を添加する際、該化合物を分割または連続添加することを特徴とする、(1)〜(5)のいずれかに記載のアミノ組成物の製造方法。
(7) 前記反応混合物にアルケニル基含有化合物を添加する際、該化合物を3〜500分割して添加することを特徴とする(6)記載のアミノ組成物の製造方法。
(8) 前記反応混合物にアルケニル基含有化合物を添加する際、該化合物を10分〜20時間かけて連続添加することを特徴とする(6)記載のアミノ組成物の製造方法。
(9) ポリアミンが、式(1)で示されるポリアミンである(1)〜(8)のいずれかに記載のアミノ組成物の製造方法。
That is, this invention provides the manufacturing method of the amino composition represented by following (1)-(12).
(1) In a method for producing an amino composition by performing an addition reaction between a polyamine and an alkenyl group-containing compound in the presence of a catalyst having strong basicity, first, a preliminary reaction between the catalyst and the polyamine is performed to obtain a reaction mixture. A method for producing an amino composition, characterized in that an addition reaction is carried out by adding an alkenyl group-containing compound to the reaction mixture after being obtained.
(2) A preliminary reaction between the catalyst and the polyamine is performed to obtain a reaction mixture containing a reaction intermediate between the catalyst and the polyamine, and then an alkenyl group-containing compound is added to the reaction mixture to cause an addition reaction. The method for producing an amino composition according to (1).
(3) After the concentration of the reaction intermediate in the reaction mixture reaches 0.001 mol or more with respect to 1 mol of polyamine, an alkenyl group-containing compound is added to the reaction mixture containing the reaction intermediate to cause an addition reaction. The method for producing an amino composition according to (2), wherein
(4) IR spectrum analysis of the reaction mixture is performed, and absorption observed in the range of 1650 to 1580 cm −1 before the pre-reaction is observed at a position moved to a lower direction by 20 to 25 cm −1 after the pre-reaction. The method for producing an amino composition according to (3), wherein the concentration of the reaction intermediate is calculated from the absorbance of the absorption in the case.
(5) The amino composition according to any one of (1) to (4), wherein the reaction temperature between the catalyst and polyamine is 10 to 140 ° C., and the reaction time is 20 to 360 minutes. Manufacturing method.
(6) The method for producing an amino composition according to any one of (1) to (5), wherein when the alkenyl group-containing compound is added to the reaction mixture, the compound is dividedly or continuously added.
(7) The method for producing an amino composition as described in (6), wherein when the alkenyl group-containing compound is added to the reaction mixture, the compound is added in 3 to 500 portions.
(8) The method for producing an amino composition according to (6), wherein when the alkenyl group-containing compound is added to the reaction mixture, the compound is continuously added over 10 minutes to 20 hours.
(9) The method for producing an amino composition according to any one of (1) to (8), wherein the polyamine is a polyamine represented by the formula (1).

Figure 0004797345
(Aはフェニレン基またはシクロヘキシレン基を示す。)
(10) ポリアミンが、式(2)で示されるポリアミンである(1)〜(8)のいずれかに記載のアミノ組成物の製造方法。
Figure 0004797345
(A represents a phenylene group or a cyclohexylene group.)
(10) The method for producing an amino composition according to any one of (1) to (8), wherein the polyamine is a polyamine represented by the formula (2).

Figure 0004797345
(n=1〜5)
(11) ポリアミンが、分子内の炭素数が9以上で、分子内のアミノ基数が2以上であり、かつ該アミノ基に由来する活性水素数が3以上の環状脂肪族ポリアミンである(1)〜(8)のいずれかに記載のアミノ組成物の製造方法。
(12) ポリアミンが、ポリオキシアルキレンポリアミンである(1)〜(8)のいずれかに記載のアミノ組成物の製造方法。
(13) アルケニル基含有化合物が、炭素数が2〜10のものである(1)〜(12)のいずれかに記載のアミノ組成物の製造方法。
Figure 0004797345
(N = 1-5)
(11) The polyamine is a cyclic aliphatic polyamine having 9 or more carbon atoms in the molecule, 2 or more amino groups in the molecule, and 3 or more active hydrogen atoms derived from the amino group (1) The manufacturing method of the amino composition in any one of-(8).
(12) The method for producing an amino composition according to any one of (1) to (8), wherein the polyamine is a polyoxyalkylene polyamine.
(13) The method for producing an amino composition according to any one of (1) to (12), wherein the alkenyl group-containing compound has 2 to 10 carbon atoms.

本発明のポリアミンとアルケニル基含有化合物との付加反応によるアミノ組成物の製造において、あらかじめ強塩基性を呈する触媒とポリアミンを反応させ、反応中間体を生成してから、アルケニル基含有化合物を付加反応させることにより、性状の安定したアミノ組成物が得られる。   In the production of an amino composition by addition reaction between the polyamine of the present invention and an alkenyl group-containing compound, a catalyst having a strong basicity is reacted with the polyamine in advance to form a reaction intermediate, and then the addition reaction of the alkenyl group-containing compound is performed. Thus, an amino composition having a stable property can be obtained.

本発明におけるアミノ組成物の製造方法は、強塩基性を呈する触媒の存在下にポリアミンとアルケニル基含有化合物との付加反応を行ってアミノ組成物を製造する方法であって、まず前記触媒とポリアミンとの予備反応を行って反応混合物を得た後、該反応混合物にアルケニル基含有化合物を添加して付加反応をさせることを特徴とするものである。
本発明で使用されるポリアミンは、例えば、式(1)で示されるポリアミン、式(2)で示されるポリアミン、分子内の炭素数が9以上で分子内のアミノ基数が2以上であり且つ該アミノ基に由来する活性水素数が3以上である環状脂肪族ポリアミン、ポリオキシアルキレンポリアミンなどが挙げられる。
The method for producing an amino composition in the present invention is a method for producing an amino composition by performing an addition reaction between a polyamine and an alkenyl group-containing compound in the presence of a catalyst exhibiting strong basicity. The reaction mixture is obtained by carrying out a preliminary reaction with, and then an addition reaction is performed by adding an alkenyl group-containing compound to the reaction mixture.
The polyamine used in the present invention is, for example, a polyamine represented by the formula (1), a polyamine represented by the formula (2), a molecule having 9 or more carbon atoms and 2 or more amino groups in the molecule, and Examples thereof include cycloaliphatic polyamines and polyoxyalkylene polyamines having 3 or more active hydrogen atoms derived from amino groups.

Figure 0004797345
(Aはフェニレン基またはシクロヘキシレン基を示す。)
Figure 0004797345
(A represents a phenylene group or a cyclohexylene group.)

Figure 0004797345
(n=1〜5)
Figure 0004797345
(N = 1-5)

本発明で使用される式(1)で示されるポリアミンとしては、例えば、オルソキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、などが挙げられる。   Examples of the polyamine represented by the formula (1) used in the present invention include orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis. (Aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.

本発明で使用される式(2)で示されるポリアミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、などが挙げられる。   Examples of the polyamine represented by the formula (2) used in the present invention include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and the like.

本発明で使用される、分子内の炭素数が9以上で分子内のアミノ基数が2以上であり、かつ該アミノ基に由来する活性水素数が3以上である環状脂肪族ポリアミンとしては、例えば、メンセンジアミン、イソホロンジアミン、ジアミノジシクロヘキシルメタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、N−アミノメチルピペラジン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロデカンなどが挙げられる。   Examples of the cyclic aliphatic polyamine having 9 or more carbon atoms in the molecule, 2 or more amino groups in the molecule, and 3 or more active hydrogen atoms derived from the amino group used in the present invention include: , Mensendiamine, isophoronediamine, diaminodicyclohexylmethane, bis (4-amino-3-methylcyclohexyl) methane, N-aminomethylpiperazine, norbornanediamine, bis (aminomethyl) tricyclodecane and the like.

本発明で使用されるポリオキシアルキレンポリアミンとしては、例えば、ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシテトラメチレンジアミン、ポリ(オキシエチレン−オキシプロピレン)ジアミン等のポリオキシアルキレンジアミン、あるいはポリオキシエチレントリアミン、ポリオキシプロピレントリアミンなどが挙げられる。   Examples of the polyoxyalkylene polyamine used in the present invention include polyoxyalkylene diamines such as polyoxyethylene diamine, polyoxypropylene diamine, polyoxytetramethylene diamine, and poly (oxyethylene-oxypropylene) diamine, or polyoxyethylene. Examples include triamine and polyoxypropylene triamine.

本発明で使用されるアルケニル基含有化合物としては、アルケニル基を有するあらゆる化合物(不飽和炭化水素化合物)が挙げられるが、炭素数が2〜10であるものが好ましい。例えば、エチレン、プロピレン、ブテン、ブタジエン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、イソブチレン、2−ペンテン、3−メチル−1−ブテン、2−メチル−2−ブテン、2,3−ジメチル−2−ブテン、シクロヘキセン、シクロヘキサジエン、スチレン、ジビニルベンゼン、などが挙げられる。   Examples of the alkenyl group-containing compound used in the present invention include all compounds having an alkenyl group (unsaturated hydrocarbon compound), but those having 2 to 10 carbon atoms are preferable. For example, ethylene, propylene, butene, butadiene, pentene, hexene, heptene, octene, nonene, decene, isobutylene, 2-pentene, 3-methyl-1-butene, 2-methyl-2-butene, 2,3-dimethyl- Examples include 2-butene, cyclohexene, cyclohexadiene, styrene, divinylbenzene, and the like.

本発明において、アミノ組成物を合成する際には、強塩基性を呈する触媒を使用する。強塩基性を呈する触媒としては、好ましくはアルカリ金属系触媒であり、具体的には例えば、アルカリ金属、アルカリ金属アミド、アルキル化アルカリ金属などが挙げられる。   In the present invention, when synthesizing an amino composition, a catalyst exhibiting strong basicity is used. The catalyst exhibiting strong basicity is preferably an alkali metal catalyst, and specific examples thereof include alkali metals, alkali metal amides, and alkylated alkali metals.

アルカリ金属としては、例えば、金属リチウム、金属ナトリウム、金属カリウム、などが挙げられ、アルカリ金属アミドとしては、例えば、リチウムアミド、リチウムジイソピルアミド、ナトリウムアミド、などが挙げられ、アルキル化アルカリ金属としては、メチルリチウム、ブチルリチウムなどが挙げられ、その他の強塩基性を呈する触媒としては、リチウムメチラート、リチウムエチラート、ナトリウムエチラート、ナトリウムメチラート、カリウムメチラートなどが挙げられる。このうち、より好ましいものはアルカリ金属アミドであり、特に好ましくはリチウムアミドである。   Examples of the alkali metal include metal lithium, metal sodium, and metal potassium. Examples of the alkali metal amide include lithium amide, lithium diisopyramide, and sodium amide, and alkylated alkali metals. Examples of the catalyst include methyl lithium, butyl lithium and the like. Examples of other strong basic catalysts include lithium methylate, lithium ethylate, sodium ethylate, sodium methylate, and potassium methylate. Of these, more preferred are alkali metal amides, and particularly preferred is lithium amide.

本発明における性状の安定したアミノ組成物の製造方法は、まず強塩基性を呈する触媒とポリアミンとの予備反応を行って反応混合物を得た後、該反応混合物にアルケニル基含有化合物を添加して付加反応をさせる方法である。   In the process for producing an amino composition having a stable property in the present invention, first, a preliminary reaction between a strongly basic catalyst and a polyamine is performed to obtain a reaction mixture, and then an alkenyl group-containing compound is added to the reaction mixture. This is an addition reaction method.

より好ましくは、まず強塩基性を呈する触媒とポリアミンを予備反応させて該触媒とポリアミンとからなる反応中間体を一定量以上生成させてから、アルケニル基含有化合物を添加して付加反応させる。
このように、あらかじめ強塩基性を呈する触媒とポリアミンを反応させて反応中間体を生成させてからアルケニル基含有化合物を添加する方法を採用することによって、ポリアミンの活性水素の反応性を十分に高めてからアルケニル基含有化合物と接触させることができるので、ポリアミンとアルケニル基含有化合物との付加反応がスムーズに進行するようになる。
本発明において、強塩基性を呈する触媒とポリアミンがある程度反応し、ポリアミンの活性水素の反応性が十分に高められたかどうかの判断基準は特に限定されるものではないが、好ましくは、予備反応後の反応混合物中において、予備反応前のポリアミン1モルに対して反応中間体が0.001モル以上生成したかどうかで判断することができる。すなわち、反応中間体の0.001モル以上の生成があった時、強塩基性を呈する触媒とポリアミンが十分反応したと判断することができる。
すなわち、本発明のさらに好ましい方法は、強塩基性を呈する触媒とポリアミンとの予備反応により得られる反応混合物中における反応中間体の濃度が、ポリアミン1モルに対し0.001モル以上となった後、該反応中間体を含む反応混合物にアルケニル基含有化合物を添加して付加反応させるというものである。
More preferably, first, a catalyst having strong basicity and a polyamine are pre-reacted to produce a predetermined amount or more of a reaction intermediate composed of the catalyst and the polyamine, and then an alkenyl group-containing compound is added to carry out an addition reaction.
In this way, the reactivity of the active hydrogen of the polyamine is sufficiently increased by adopting the method of adding the alkenyl group-containing compound after reacting the catalyst having strong basicity with the polyamine in advance to form a reaction intermediate. Since it can be contacted with the alkenyl group-containing compound after that, the addition reaction between the polyamine and the alkenyl group-containing compound proceeds smoothly.
In the present invention, the criteria for determining whether or not the catalyst having strong basicity and the polyamine have reacted to some extent and the reactivity of the active hydrogen of the polyamine has been sufficiently increased is not particularly limited, but preferably after the preliminary reaction In this reaction mixture, it can be judged by whether or not 0.001 mol or more of the reaction intermediate is produced with respect to 1 mol of the polyamine before the preliminary reaction. That is, when 0.001 mol or more of the reaction intermediate is generated, it can be determined that the catalyst having strong basicity and the polyamine are sufficiently reacted.
That is, the more preferable method of the present invention is a method in which the concentration of the reaction intermediate in the reaction mixture obtained by the preliminary reaction of the strongly basic catalyst and the polyamine is 0.001 mol or more with respect to 1 mol of the polyamine. The alkenyl group-containing compound is added to the reaction mixture containing the reaction intermediate and subjected to an addition reaction.

反応中間体の生成は、IRスペクトルにより確認することができる。すなわち、まず強塩基性を呈する触媒とポリアミンとの予備反応を行って反応混合物を得た後、前記反応混合物のIRスペクトル分析を行って、予備反応前のポリアミンについて1650〜1580cm−1の範囲に観察される吸収が、予備反応後に20〜25cm−1低い方向へ移動した位置で観察される場合の該吸収の吸収度から、反応中間体の濃度を算出することができる。
ここで、予備反応前のポリアミンについて1650〜1580cm−1の範囲に観察される吸収とは、該ポリアミンのN−H変角振動(はさみ)に由来する吸収と考えられ、用いるポリアミンの種類により上記範囲内で若干異なる位置に観測される。そして、ポリアミンが強塩基性を呈する触媒と反応して錯化合物である反応中間体を生成するにつれて、この範囲に現れる吸収は20〜25cm−1低い方向へ移動(シフト)し、反応中間体生成後は1630〜1555cm−1の範囲で観察されるようになる。この新たな吸収の吸収度は、予備反応が進行し、反応混合物中における反応中間体の濃度が増加するにつれて、強くなる。したがって、この新たに観測されるようになる吸収の吸収度を測定し、通常の方法であらかじめ検量線を作成しておくことにより、反応混合物中における反応中間体の濃度を求めることができる。
例えば、強塩基性を呈する触媒としてリチウムアミドを用い、ポリアミンとしてメタキシリレンジアミンを用いた場合、メタキシリレンジアミンで確認された3363、3264cm−1(N−H逆対称伸縮振動、対称伸縮振動)、および1606cm−1(N−H変角振動(はさみ))が、予備反応の進行につれて、それぞれ3342、3258cm−1(N−H逆対称伸縮振動、対称伸縮振動)、1581cm−1(N−H変角振動(はさみ))へと変化(シフト)する。このことによってより反応中間体が生成されたことが確認できる。
The formation of the reaction intermediate can be confirmed by IR spectrum. That is, first, a pre-reaction between a strongly basic catalyst and a polyamine is performed to obtain a reaction mixture, and then IR spectrum analysis of the reaction mixture is performed, so that the polyamine before the pre-reaction is in the range of 1650 to 1580 cm −1 . The concentration of the reaction intermediate can be calculated from the absorbance of the absorption when the observed absorption is observed at a position moved in the lower direction by 20 to 25 cm −1 after the preliminary reaction.
Here, the absorption observed in the range of 1650 to 1580 cm −1 with respect to the polyamine before the preliminary reaction is considered to be absorption derived from the N—H bending vibration (scissors) of the polyamine. Observed at a slightly different position within the range. Then, as the polyamine reacts with a strongly basic catalyst to form a reaction intermediate that is a complex compound, the absorption that appears in this range moves (shifts) downward by 20 to 25 cm −1 to produce a reaction intermediate. After that, it will be observed in the range of 1630 to 1555 cm −1 . The absorbance of this new absorption increases as the pre-reaction proceeds and the concentration of the reaction intermediate in the reaction mixture increases. Therefore, the concentration of the reaction intermediate in the reaction mixture can be determined by measuring the absorbance of this newly observed absorption and preparing a calibration curve in advance by an ordinary method.
For example, when lithium amide is used as the catalyst exhibiting strong basicity and metaxylylenediamine is used as the polyamine, 3363, 3264 cm −1 (N—H reverse symmetric stretching vibration, symmetric stretching vibration confirmed with metaxylylenediamine ) And 1606 cm −1 (N—H bending vibration (scissors)), respectively, as the preliminary reaction proceeds, 3342, 3258 cm −1 (N—H reverse symmetric stretching vibration, symmetric stretching vibration), 1581 cm −1 (N -H change (shift) to bend vibration (scissors). This confirms that a reaction intermediate has been produced.

そしてこの場合、反応中間体の生成量については、反応中間体のIRスペクトルで1581cm−1(N−H変角振動(はさみ))の吸収に着目することにより確認することができる。すなわち、1581cm−1の吸収は反応中間体の生成量に比例して強くなるので、1581cm−1(N−H変角振動(はさみ))の吸収についてあらかじめ検量線を作成しておくことにより、反応中間体の生成量を定量することができる。ポリアミン1モルに対して、反応中間体の生成量が0.001モル以上であると反応はスムーズに進行する。
なお、ポリアミンとして1,3−ビス(アミノメチル)シクロヘキサンを用いた場合は、予備反応前に1600cm−1(N−H変角振動(はさみ))で観察される吸収が、予備反応が進行し反応中間体が生成されるにつれて、1575cm−1(N−H変角振動(はさみ))へと変化する。
ポリアミンとしてノルボルナンジアミンを用いた場合は、予備反応前に1600cm−1(N−H変角振動(はさみ))で観察される吸収が、反応中間体の生成につれて、1575cm−1(N−H変角振動(はさみ))へと変化する。
ポリアミンとしてイソホロンジアミンを用いた場合は、予備反応前に1598cm−1(N−H変角振動(はさみ))で観察される吸収が、反応中間体の生成につれて、1573cm−1(N−H変角振動(はさみ))へと変化する。
同様に、ジエチレントリアミンの場合は1597cm−1の吸収が1572cm−1へと変化し、トリエチレンテトラミンの場合は1596cm−1の吸収が1572cm−1へと変化し、ポリオキシプロピレンジアミンの場合は1591cm−1の吸収が1568cm−1へと変化し、ポリオキシプロピレントリアミンの場合は1591cm−1の吸収が1568cm−1へと変化し、ポリオキシエチレンジアミンの場合は1600cm−1の吸収が1575cm−1へと変化する。
なお、ここでいう反応中間体の構造は必ずしも特定されるものではないが、ポリアミン1モルに対し強塩基性を呈する触媒1モル又は2モルが結合した錯化合物と考えられる。すなわち、本発明における強塩基性を呈する触媒の存在下におけるポリアミンとアルケニル基含有化合物の付加反応は、以下の反応式で表される反応機構により進行するものと考えられる。
A + M → A・M
A・M + S → A・M−S
A・M−S + A → A・M + A−S
ここで、Aはポリアミン、Mは強塩基性を呈する触媒、Sはアルケニル基含有化合物、A・Mは強塩基性を呈する触媒とポリアミンとの予備反応により得られる反応中間体である錯化合物、A−Sはポリアミンとアルケニル基含有化合物との付加反応物である。
強塩基性を呈する触媒の存在下におけるポリアミンとアルケニル基含有化合物の付加反応の反応機構そのものについては、Bulletin of the Chemical Society of Japan, Vol. 46, 1242-1246(1973), 又は、Bulletin of the Chemical Society of Japan, Vol. 46, 3825-3828(1973), 等により知られている。
In this case, the production amount of the reaction intermediate can be confirmed by paying attention to the absorption of 1581 cm −1 (N—H bending vibration (scissors)) in the IR spectrum of the reaction intermediate. That is, since the absorption at 1581 cm −1 becomes stronger in proportion to the amount of the reaction intermediate produced, by preparing a calibration curve in advance for the absorption of 1581 cm −1 (N—H bending vibration (scissors)), The production amount of the reaction intermediate can be quantified. The reaction proceeds smoothly when the production amount of the reaction intermediate is 0.001 mol or more with respect to 1 mol of the polyamine.
When 1,3-bis (aminomethyl) cyclohexane is used as the polyamine, absorption observed at 1600 cm −1 (N—H bending vibration (scissors)) before the pre-reaction proceeds with the pre-reaction. As the reaction intermediate is produced, it changes to 1575 cm −1 (N—H bending vibration (scissors)).
When norbornanediamine is used as the polyamine, the absorption observed at 1600 cm −1 (N—H bending vibration (scissors)) before the pre-reaction is increased to 1575 cm −1 (N—H change as the reaction intermediate is formed). Angular vibration (scissors).
When using isophorone diamine as a polyamine, the absorption observed at 1598cm -1 (N-H deformation vibration (scissors)) before the preliminary reaction, as the generation of reactive intermediates, 1573cm -1 (N-H strange Angular vibration (scissors).
Similarly, in the case of diethylenetriamine absorption of 1597cm -1 changed to 1572cm -1, in the case of triethylenetetramine absorption of 1596cm -1 changed to 1572cm -1, in the case of polyoxypropylene diamine 1591Cm - 1 of absorption changes to 1568cm -1, in the case of polyoxypropylene triamine absorption of 1591cm -1 changed to 1568cm -1, in the case of polyoxyethylenediamine absorption 1600 cm -1 to 1575 cm -1 Change.
In addition, although the structure of the reaction intermediate here is not necessarily specified, it is considered to be a complex compound in which 1 mol or 2 mol of a catalyst exhibiting strong basicity is bonded to 1 mol of polyamine. That is, it is considered that the addition reaction of a polyamine and an alkenyl group-containing compound in the presence of a catalyst having strong basicity in the present invention proceeds by a reaction mechanism represented by the following reaction formula.
A + M → A ・ M
A ・ M + S → A ・ MS
A ・ M−S + A → A ・ M + A−S
Here, A is a polyamine, M is a catalyst having strong basicity, S is an alkenyl group-containing compound, A · M is a complex compound which is a reaction intermediate obtained by a preliminary reaction between a catalyst having strong basicity and a polyamine, AS is an addition reaction product of a polyamine and an alkenyl group-containing compound.
For the reaction mechanism itself of the addition reaction between a polyamine and an alkenyl group-containing compound in the presence of a strongly basic catalyst, see Bulletin of the Chemical Society of Japan, Vol. 46, 1242-1246 (1973), or Bulletin of the Chemical Society of Japan, Vol. 46, 3825-3828 (1973), etc.

強塩基性を呈する触媒とポリアミンとの反応において、触媒の使用量は、原料中0.05〜5重量%であり、好ましくは0.1〜3重量%である。触媒の使用量が、0.05重量%より少ないと、ポリアミンとアルケニル基含有化合物の付加反応速度が極端に遅く、5重量%より大きくしても反応速度はほとんど変わらないため経済的に好ましくない。   In the reaction between the strongly basic catalyst and the polyamine, the amount of the catalyst used is 0.05 to 5% by weight, preferably 0.1 to 3% by weight, in the raw material. If the amount of the catalyst used is less than 0.05% by weight, the addition reaction rate of the polyamine and the alkenyl group-containing compound is extremely slow, and even if it is greater than 5% by weight, the reaction rate hardly changes. .

強塩基性を呈する触媒とポリアミンとの反応において、反応温度は10〜140℃であり、好ましくは50〜120℃である。反応温度が10℃未満だと、強塩基性を呈する触媒とポリアミンとの反応が進行せず好ましくない。また反応温度が140℃を超えても、反応速度はほとんど変わらないため、経済的に好ましくない。   In the reaction between the catalyst having strong basicity and the polyamine, the reaction temperature is 10 to 140 ° C, preferably 50 to 120 ° C. When the reaction temperature is less than 10 ° C., the reaction between the strongly basic catalyst and the polyamine does not proceed, which is not preferable. Even if the reaction temperature exceeds 140 ° C., the reaction rate hardly changes, which is not economical.

強塩基性を呈する触媒とポリアミンとの反応において、反応時間は20〜360分、好ましくは30〜120分で行なう。反応時間が20分より短いと、強塩基性を呈する触媒とポリアミンとの反応が十分でなく、好ましくない。また360分より長くしても、反応速度はほとんど変わらないため、経済的に好ましくない。   In the reaction between the strongly basic catalyst and the polyamine, the reaction time is 20 to 360 minutes, preferably 30 to 120 minutes. When the reaction time is shorter than 20 minutes, the reaction between the strongly basic catalyst and the polyamine is not sufficient, which is not preferable. Further, even if it is longer than 360 minutes, the reaction rate hardly changes, which is not economically preferable.

強塩基性を呈する触媒とポリアミンを反応させた後、アルケニル基含有化合物の付加反応は、通常、50〜150℃の温度で行い、好ましくは80〜100℃で行う。50℃より低い場合は、ポリアミンとアルケニル基含有化合物の付加反応速度が遅く、好ましくない。また逆に150℃より高い場合は、副生成物としてアルケニル基含有化合物の重合物が生成しやすくなるので好ましくない。   After reacting a strongly basic catalyst with the polyamine, the addition reaction of the alkenyl group-containing compound is usually carried out at a temperature of 50 to 150 ° C, preferably 80 to 100 ° C. When it is lower than 50 ° C., the addition reaction rate of the polyamine and the alkenyl group-containing compound is slow, which is not preferable. Conversely, when the temperature is higher than 150 ° C., a polymer of an alkenyl group-containing compound is easily generated as a by-product, which is not preferable.

強塩基性を呈する触媒とポリアミンを反応させた後、アルケニル基含有化合物は分割または連続添加し、付加反応させることが好ましい。強塩基性を呈する触媒、ポリアミン、およびアルケニル基含有化合物を一括添加して付加反応させると、急激な発熱が発生したり、アルケニル基含有化合物の重合物が生成したりするので好ましくない。アルケニル基含有化合物の分割添加は、アルケニル基含有化合物の重合物が生成しない範囲で、いくつに分割してもよいが、3〜500分割、さらに好ましくは10〜200分割にすることが望ましい。3分割未満であると、アルケニル基含有化合物の重合が生成する。また、500分割より多く分割しても、反応はほとんど変わらないため、経済的に好ましくない。分割添加する方法は、一般的な方法で良く、特に限定されない。またアルケニル基含有化合物を連続添加する場合は、滴下漏斗を使用してアルケニル基含有化合物を添加して付加反応させる方法、送液ポンプを使用してアルケニル基含有化合物を添加して付加反応させる方法など、一般に良く知られた方法で可能であり、特に限定されない。分割添加、連続添加、いずれの添加方法においても、添加時間はアルケニル基含有化合物の付加反応による発熱を制御できる範囲内であれば特に限定されないが、10分〜20時間、好ましくは30分〜10時間である。添加時間が10分未満であると、急激な発熱があり、反応の制御が困難となる。また、20時間より長くしても、反応にはほとんど影響せず、経済的に好ましくない。特に分割添加を行なう場合の添加時間は、分割数が少ない場合は長くすることが望ましく、分割数が多い場合には短くてもよい。   After reacting the strongly basic catalyst with the polyamine, the alkenyl group-containing compound is preferably divided or continuously added and subjected to an addition reaction. If the catalyst, polyamine, and alkenyl group-containing compound exhibiting strong basicity are added together and subjected to an addition reaction, sudden heat generation occurs or a polymer of the alkenyl group-containing compound is generated, which is not preferable. The divided addition of the alkenyl group-containing compound may be divided into any number as long as a polymer of the alkenyl group-containing compound is not formed, but it is preferably 3 to 500 divisions, more preferably 10 to 200 divisions. Polymerization of an alkenyl group-containing compound is generated when the ratio is less than three. In addition, even if the number is more than 500, the reaction hardly changes, which is not economically preferable. The method of adding in a divided manner may be a general method and is not particularly limited. Moreover, when adding an alkenyl group-containing compound continuously, a method of adding an alkenyl group-containing compound using a dropping funnel to cause an addition reaction, a method of adding an alkenyl group-containing compound using a liquid feed pump, and causing an addition reaction It is possible by a generally well-known method, and is not particularly limited. In any addition method of divided addition and continuous addition, the addition time is not particularly limited as long as it is within a range in which heat generation due to the addition reaction of the alkenyl group-containing compound can be controlled, but is 10 minutes to 20 hours, preferably 30 minutes to 10 It's time. When the addition time is less than 10 minutes, there is a rapid exotherm, making it difficult to control the reaction. Further, even if it is longer than 20 hours, the reaction is hardly affected and it is not economically preferable. In particular, the addition time when performing divided addition is desirably increased when the number of divisions is small, and may be shortened when the number of divisions is large.

得られるアミノ組成物は、アルケニル基含有化合物添加終了後、30〜120分間、反応温度を保つことで、未反応アルケニル基含有化合物が1重量%以下であり、性状の安定したアミノ組成物が得られる。本発明の方法によれば、アルケニル基含有化合物添加終了後の未反応アルケニル化合物の残存量が少なくなり、そのために添加終了後の反応を長時間行なっても(例えば添加終了後30分超の長時間反応させても)、好ましくない副生成物としてのアルケニル基含有化合物の重合物は生成しにくい。   The resulting amino composition is maintained at the reaction temperature for 30 to 120 minutes after the addition of the alkenyl group-containing compound, whereby the unreacted alkenyl group-containing compound is 1% by weight or less, and an amino composition having stable properties is obtained. It is done. According to the method of the present invention, the remaining amount of the unreacted alkenyl compound after the addition of the alkenyl group-containing compound is reduced, and therefore, even if the reaction after the completion of addition is performed for a long time (for example, a length of more than 30 minutes after the addition is completed). Even if the reaction is performed for a long time, it is difficult to produce a polymer of an alkenyl group-containing compound as an undesirable by-product.

反応終了後に得られる反応液中には、反応により生成したアミノ組成物と強塩基性を呈する触媒が含まれる。強塩基性を呈する触媒は、塩酸、塩化水素ガス、酢酸などの酸、メタノール、エタノール等のアルコール、あるいは水等を加えて除去容易な塩に変えてからろ過することが可能である。例えば触媒にアルカリ金属アミドを用いた場合には、水を加えることによって、アルカリ金属アミドが水酸化物となり、ろ過が容易となる。   The reaction solution obtained after completion of the reaction contains an amino composition produced by the reaction and a catalyst exhibiting strong basicity. A catalyst exhibiting strong basicity can be filtered after being converted into a salt that can be easily removed by adding an acid such as hydrochloric acid, hydrogen chloride gas or acetic acid, an alcohol such as methanol or ethanol, or water. For example, when an alkali metal amide is used as the catalyst, by adding water, the alkali metal amide becomes a hydroxide, which facilitates filtration.

本発明で得られるアミノ組成物は、ポリアミンとアルケニル基含有化合物との付加反応により得られるものであって、下記のアミノ化合物群から選ばれる1種以上のアミノ化合物(の混合物)である。すなわち、アミノ化合物群とは、ポリアミン1分子にアルケニル基含有化合物1モルが付加した1付加物、ポリアミン1分子にアルケニル基含有化合物2モルが付加した2付加物、ポリアミン1分子にアルケニル基含有化合物3モルが付加した3付加物、ポリアミン1分子にアルケニル基含有化合物4モルが付加した4付加物等、ポリアミン1分子中のアミノ基の活性水素1つからポリアミン1分子中のアミノ基の全活性水素がアルケニル基と反応した付加物までを含む化合物である。本発明のアミノ組成物に含まれるアミノ化合物は、かかるアミノ化合物群から選ばれるものである。   The amino composition obtained in the present invention is obtained by an addition reaction between a polyamine and an alkenyl group-containing compound, and is one or more amino compounds (mixtures) selected from the following amino compound group. That is, the amino compound group is a 1-adduct obtained by adding 1 mol of an alkenyl group-containing compound to 1 molecule of polyamine, a 2-adduct obtained by adding 2 mol of an alkenyl group-containing compound to 1 molecule of polyamine, and an alkenyl group-containing compound per molecule of polyamine. Total activity of amino group in one molecule of polyamine from one active hydrogen of amino group in one molecule of polyamine, such as 3 adduct with 3 mol added, 4 adduct with 4 mol of alkenyl group-containing compound added to 1 molecule of polyamine It is a compound containing up to an adduct in which hydrogen is reacted with an alkenyl group. The amino compound contained in the amino composition of the present invention is selected from such an amino compound group.

また、本発明で得られるアミノ組成物は、上述したポリアミンとアルケニル基含有化合物との付加反応により得られるものであるから、通常は上記のアミノ化合物群から選択されるアミノ化合物の他に、未反応のポリアミン等を含む混合物となる。   In addition, since the amino composition obtained in the present invention is obtained by the addition reaction of the above-described polyamine and the alkenyl group-containing compound, in addition to the amino compound selected from the above amino compound group, It becomes a mixture containing the polyamine of the reaction.

以上のとおり、本発明では、ポリアミンとアルケニル基含有化合物との付加反応によるアミノ組成物の製造方法において、あらかじめ強塩基性を呈する触媒とポリアミンを反応させてから、アルケニル基含有化合物を付加反応させることにより、性状の安定したアミノ組成物の製造方法を提供できる。   As described above, in the present invention, in the method for producing an amino composition by addition reaction of a polyamine and an alkenyl group-containing compound, a catalyst exhibiting strong basicity is reacted with the polyamine in advance, and then the alkenyl group-containing compound is subjected to addition reaction. Thus, a method for producing an amino composition having stable properties can be provided.

以下に、本発明を実施例によって具体的に説明するが、本発明はこれによって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

<実施例1>
撹拌装置、温度計、窒素導入管、滴下漏斗、冷却管を備えた2リットルフラスコに、活性水素当量が34のメタキシリレンジアミン(三菱ガス化学(株)製、MXDA(分子量136.2))817.2g(6.0モル)とリチウムアミド(メルク社製、試薬)2.9g(0.13モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後80℃で30分撹拌したのち、80℃に保ちながら、スチレン(和光純薬工業(株)製、試薬特級)625.2g(6.0モル)を2時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1581cm−1の吸収から計算される反応中間体はMXDA1モルに対して0.001モル以上であった。滴下終了後、80℃で30分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物A 1381.7gを得た。未反応スチレン量は、0.2重量%であり、未反応MXDAは、15.8重量%であった。また、1付加物が46.4重量%、2付加物が33.9重量%、3付加物が3.9重量%であった。
<Example 1>
Metaxylylenediamine having an active hydrogen equivalent of 34 (Mitsubishi Gas Chemical Co., Ltd., MXDA (molecular weight 136.2)) was added to a 2 liter flask equipped with a stirrer, thermometer, nitrogen inlet tube, dropping funnel, and condenser tube. 817.2 g (6.0 mol) and 2.9 g (0.13 mol) of lithium amide (manufactured by Merck & Co., Inc.) were charged and heated to 80 ° C. over 15 minutes with stirring under a nitrogen stream. After stirring at 80 ° C. for 30 minutes, 625.2 g (6.0 mol) of styrene (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was continuously added dropwise over 2 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1581 cm −1 was 0.001 mol or more with respect to 1 mol of MXDA. . After completion of dropping, the temperature was kept at 80 ° C. for 30 minutes. Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 1381.7 g of amino composition A. The amount of unreacted styrene was 0.2% by weight, and the amount of unreacted MXDA was 15.8% by weight. Further, the amount of 1 adduct was 46.4% by weight, 2 adduct was 33.9% by weight, and 3 adduct was 3.9% by weight.

<実施例2>
実施例1と同様のフラスコにMXDA 681.0g(5.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後、80℃で30分撹拌したのち、80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1581cm−1の吸収から計算される反応中間体はMXDA1モルに対して0.001モル以上であった。滴下終了後、80℃で30分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物B 1271.2gを得た。未反応スチレン量は、0.2重量%であり、未反応MXDAは、8.1重量%であった。また、1付加物が39.5重量%、2付加物が44.2重量%、3付加物が7.9重量%、4付加物が0.3重量%であった。
<Example 2>
MXDA 681.0g (5.0mol) and lithium amide 3.3g (0.14mol) were prepared to the same flask as Example 1, and it heated up at 80 degreeC in 15 minutes, stirring under nitrogen stream. Then, after stirring for 30 minutes at 80 ° C., 651.3 g (6.25 mol) of styrene was continuously added dropwise over 2.5 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1581 cm −1 was 0.001 mol or more with respect to 1 mol of MXDA. . After completion of dropping, the temperature was kept at 80 ° C. for 30 minutes. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1271.2 g of amino composition B. The amount of unreacted styrene was 0.2% by weight, and the amount of unreacted MXDA was 8.1% by weight. Further, 19.5 adduct was 39.5 wt%, 2 adduct was 44.2 wt%, 3 adduct was 7.9 wt%, and 4 adduct was 0.3 wt%.

<実施例3>
実施例1と同様のフラスコに1,3−ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、1,3−BAC(分子量142.2))853.2g(6.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後、80℃で120分撹拌したのち、80℃に保ちながら、スチレン625.2g(6.0モル)を2時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体は1,3−BAC1モルに対して0.001モル以上であった。滴下終了後、80℃で60分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物C 1409.7gを得た。未反応スチレン量は、0.2重量%であり、未反応1,3−BACは、15.1重量%であった。また、1付加物が54.2重量%、2付加物が28.7重量%、3付加物が2.1重量%であった。
<Example 3>
In the same flask as in Example 1, 853.2 g (6.0 mol) of 1,3-bis (aminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd., 1,3-BAC (molecular weight 142.2)) and lithium The amide 3.0g (0.13mol) was prepared, and it heated up at 80 degreeC in 15 minutes, stirring under nitrogen stream. Then, after stirring at 80 ° C. for 120 minutes, 625.2 g (6.0 mol) of styrene was continuously added dropwise over 2 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from absorption at 1575 cm −1 was 0.001 mol per 1 mol of 1,3-BAC. That was all. After completion of dropping, the temperature was kept at 80 ° C. for 60 minutes. Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. The precipitate in the liquid in the flask was separated by filtration, and then water was removed by distillation under reduced pressure to obtain 1409.7 g of amino composition C. The amount of unreacted styrene was 0.2% by weight, and the amount of unreacted 1,3-BAC was 15.1% by weight. In addition, 1 adduct was 54.2% by weight, 2 adduct was 28.7% by weight, and 3 adduct was 2.1% by weight.

<実施例4>
実施例1と同様のフラスコに1,3−BAC 711.0g(5.0モル)とリチウムアミド3.4g(0.15モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後、80℃で120分撹拌したのち、80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体は1,3−BAC1モルに対して0.001モル以上であった。滴下終了後、80℃で60分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水27.0g(1.5モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物D 1307.1gを得た。未反応スチレン量は、0.2重量%であり、未反応1,3−BACは、8.3重量%であった。
<Example 4>
In the same flask as in Example 1, 711.0 g (5.0 mol) of 1,3-BAC and 3.4 g (0.15 mol) of lithium amide were charged, and the mixture was stirred at 80 ° C. for 15 minutes under a nitrogen stream. The temperature rose. Then, after stirring at 80 ° C. for 120 minutes, 651.3 g (6.25 mol) of styrene was continuously added dropwise over 2.5 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from absorption at 1575 cm −1 was 0.001 mol per 1 mol of 1,3-BAC. That was all. After completion of dropping, the temperature was kept at 80 ° C. for 60 minutes. Thereafter, 27.0 g (1.5 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1307.1 g of amino composition D. The amount of unreacted styrene was 0.2% by weight, and the amount of unreacted 1,3-BAC was 8.3% by weight.

<実施例5>
実施例1と同様のフラスコに、ジエチレントリアミン(関東化学(株)社製、試薬特級、DETA)412.7g(4.0モル)とリチウムアミド2.5g(0.11モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後、80℃で30分撹拌したのち、80℃に保ちながら、スチレン651.3g(6.25モル)を2時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1572cm−1の吸収から計算される反応中間体はDETA1モルに対して0.001モル以上であった。滴下終了後、80℃で30分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水19.8g(1.1モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物E 777.1gを得た。未反応スチレン量は、0.2重量%であり、未反応DETAは、16.3重量%であった。また、1付加物が37.3重量%、2付加物が37.2重量%、3付加物が9.2重量%であった。
<Example 5>
In a flask similar to that in Example 1, 412.7 g (4.0 mol) of diethylenetriamine (manufactured by Kanto Chemical Co., Ltd., reagent grade, DETA) and 2.5 g (0.11 mol) of lithium amide were charged with a nitrogen stream. Under stirring, the temperature was raised to 80 ° C. over 15 minutes. Then, after stirring for 30 minutes at 80 ° C., 651.3 g (6.25 mol) of styrene was continuously dropped over 2 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1572 cm −1 was 0.001 mol or more with respect to 1 mol of DETA. . After completion of dropping, the temperature was kept at 80 ° C. for 30 minutes. Thereafter, 19.8 g (1.1 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 777.1 g of amino composition E. The amount of unreacted styrene was 0.2% by weight, and the amount of unreacted DETA was 16.3% by weight. In addition, 1 adduct was 37.3% by weight, 2 adduct was 37.2% by weight, and 3 adduct was 9.2% by weight.

<実施例6>
実施例1と同様のフラスコに、トリエチレンテトラミン(関東化学(株)社製、試薬特級、TETA)584.8g(4.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後、80℃で30分撹拌したのち、80℃に保ちながら、スチレン651.3g(6.25モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1572cm−1の吸収から計算される反応中間体はTETA1モルに対して0.001モル以上であった。滴下終了後、80℃で30分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して1時間撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物F 991.2gを得た。未反応スチレン量は、0.4重量%であった。
<Example 6>
In a flask similar to Example 1, 584.8 g (4.0 mol) of triethylenetetramine (manufactured by Kanto Chemical Co., Ltd., reagent grade, TETA) and 3.0 g (0.13 mol) of lithium amide were charged, The temperature was raised to 80 ° C. over 15 minutes with stirring under a nitrogen stream. Then, after stirring for 30 minutes at 80 ° C., 651.3 g (6.25 mol) of styrene was continuously added dropwise over 2.5 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1572 cm −1 was 0.001 mol or more with respect to 1 mol of TETA. . After completion of dropping, the temperature was kept at 80 ° C. for 30 minutes. Thereafter, 23.4 g (1.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred for 1 hour. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 991.2 g of amino composition F. The amount of unreacted styrene was 0.4% by weight.

<実施例7>
実施例1と同様のフラスコに、イソホロンジアミン(デグッサ社製、IPDA)681.2g(4.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後、80℃で120分撹拌したのち、80℃に保ちながら、スチレン416.8g(4.0モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1573cm−1の吸収から計算される反応中間体はIPDA1モルに対して0.001モル以上であった。滴下終了後、80℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物G 1033.6gを得た。未反応スチレン量は、0.7重量%であり、未反応IPDAは、14.6重量%であった。また、1付加物が51.7重量%、2付加物が33.7重量%であった。
<Example 7>
In a flask similar to that of Example 1, 681.2 g (4.0 mol) of isophoronediamine (manufactured by Degussa, IPDA) and 3.3 g (0.14 mol) of lithium amide were charged with stirring under a nitrogen stream. The temperature was raised to 80 ° C. over a period of minutes. Then, after stirring for 120 minutes at 80 ° C., 416.8 g (4.0 mol) of styrene was continuously added dropwise over 2.5 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1573 cm −1 was 0.001 mol or more with respect to 1 mol of IPDA. . After completion of dropping, the temperature was kept at 80 ° C. for 120 minutes. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1033.6 g of amino composition G. The amount of unreacted styrene was 0.7% by weight, and the amount of unreacted IPDA was 14.6% by weight. Further, 1 adduct was 51.7% by weight, and 2 adduct was 33.7% by weight.

<実施例8>
実施例1と同様のフラスコに、ノルボルナンジアミン(三井化学(株)製、NBDA)617.2g(4.0モル)とリチウムアミド3.1g(0.14モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。その後、80℃で120分撹拌したのち、80℃に保ちながら、スチレン416.8g(4.0モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体はNBDA1モルに対して0.001モル以上であった。滴下終了後、80℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物H 971.2gを得た。未反応スチレン量は、0.7重量%であり、未反応NBDAは、15.5重量%であった。
<Example 8>
In a flask similar to that in Example 1, 617.2 g (4.0 mol) of norbornanediamine (manufactured by Mitsui Chemicals, Inc., NBDA) and 3.1 g (0.14 mol) of lithium amide were stirred under a nitrogen stream. The temperature was raised to 80 ° C. over 15 minutes. Then, after stirring for 120 minutes at 80 ° C., 416.8 g (4.0 mol) of styrene was continuously added dropwise over 2.5 hours while maintaining the temperature at 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1575 cm −1 was 0.001 mol or more with respect to 1 mol of NBDA. . After completion of dropping, the temperature was kept at 80 ° C. for 120 minutes. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 971.2 g of amino composition H. The amount of unreacted styrene was 0.7% by weight, and the amount of unreacted NBDA was 15.5% by weight.

<実施例9>
実施例1と同様のフラスコに、ポリオキシプロピレンジアミン(ハンツマン・コーポレーション社製、ジェファーミンD−230(分子量230))460.0g(2.0モル)とリチウムアミド21.3g(0.93モル)を仕込み、窒素気流下、撹拌しながら15分間で100℃に昇温した。その後、100℃で120分撹拌したのち、100℃に保ちながら、スチレン208.4g(2.0モル)を4時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1568cm−1の吸収から計算される反応中間体はジェファーミンD−230 1モルに対して0.001モル以上であった。滴下終了後、100℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水167.7g(9.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物I 635.1gを得た。未反応スチレン量は、0.9重量%であり、未反応ジェファーミンD−230は、14.4重量%であった。
<Example 9>
In a flask similar to that in Example 1, 460.0 g (2.0 mol) of polyoxypropylenediamine (manufactured by Huntsman Corporation, Jeffamine D-230 (molecular weight 230)) and 21.3 g (0.93 mol) of lithium amide were used. And heated to 100 ° C. in 15 minutes with stirring under a nitrogen stream. Then, after stirring at 100 ° C. for 120 minutes, 208.4 g (2.0 mol) of styrene was continuously dropped over 4 hours while maintaining the temperature at 100 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1568 cm −1 was 0.001 with respect to 1 mol of Jeffamine D-230. More than moles. After completion of dropping, the temperature was kept at 100 ° C. for 120 minutes. Thereafter, 167.7 g (9.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 635.1 g of amino composition I. The amount of unreacted styrene was 0.9% by weight, and unreacted Jeffamine D-230 was 14.4% by weight.

<実施例10>
実施例1と同様のフラスコに、ポリオキシエチレンジアミン(ハンツマン・コーポレーション社製、ジェファーミンEDR−148(分子量148))296.0g(2.0モル)とリチウムアミド1.5g(0.065モル)を仕込み、窒素気流下、撹拌しながら15分間で100℃に昇温した。100℃で30分撹拌したのち、100℃に保ちながら、スチレン208.4g(2.0モル)を2時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体はジェファーミンD−148 1モルに対して0.001モル以上であった。滴下終了後、100℃で30分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水11.7g(0.65モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物J 479.1gを得た。未反応スチレン量は、0.2重量%であった。
<Example 10>
In a flask similar to that of Example 1, 296.0 g (2.0 mol) of polyoxyethylenediamine (manufactured by Huntsman Corporation, Jeffamine EDR-148 (molecular weight 148)) and 1.5 g (0.065 mol) of lithium amide Was heated to 100 ° C. over 15 minutes with stirring under a nitrogen stream. After stirring at 100 ° C. for 30 minutes, 208.4 g (2.0 mol) of styrene was continuously added dropwise over 2 hours while maintaining the temperature at 100 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from absorption at 1575 cm −1 was 0.001 with respect to 1 mol of Jeffamine D-148. More than moles. After completion of dropping, the temperature was kept at 100 ° C. for 30 minutes. Thereafter, 11.7 g (0.65 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. The precipitate in the liquid in the flask was separated by filtration, and then water was distilled off by distillation under reduced pressure to obtain 479.1 g of amino composition J. The amount of unreacted styrene was 0.2% by weight.

<実施例11>
実施例1と同様のフラスコに、ポリオキシプロピレントリアミン(ハンツマン・コーポレーション社製、ジェファーミンT−403(分子量403))806.0g(2.0モル)とリチウムアミド35.0g(1.5モル)を仕込み、窒素気流下、撹拌しながら15分間で100℃に昇温した。その後、100℃で120分撹拌したのち、100℃に保ちながら、スチレン312.6g(3.0モル)を6時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1568cm−1の吸収から計算される反応中間体はジェファーミンT−403 1モルに対して0.001モル以上であった。滴下終了後、100℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の水270.0g(15.0モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物K 1052.2gを得た。未反応スチレン量は、0.9重量%であった。
<Example 11>
In a flask similar to that in Example 1, 806.0 g (2.0 mol) of polyoxypropylene triamine (manufactured by Huntsman Corporation, Jeffamine T-403 (molecular weight 403)) and 35.0 g (1.5 mol) of lithium amide And heated to 100 ° C. in 15 minutes with stirring under a nitrogen stream. Then, after stirring at 100 ° C. for 120 minutes, while maintaining the temperature at 100 ° C., 312.6 g (3.0 mol) of styrene was continuously dropped over 6 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1568 cm −1 was 0.001 with respect to 1 mol of Jeffamine T-403. More than moles. After completion of dropping, the temperature was kept at 100 ° C. for 120 minutes. Thereafter, 270.0 g (15.0 mol) of water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1052.2 g of amino composition K. The amount of unreacted styrene was 0.9% by weight.

<比較例1>
実施例1と同様のフラスコに、MXDA 817.2g(6.0モル)とリチウムアミド2.9g(0.13モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。80℃到達直後からスチレン625.2g(6.0モル)を2時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1581cm−1の吸収から計算される反応中間体はMXDA 1モルに対して0.001モル未満であった。滴下終了後、80℃で60分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物L 1379.6gを得た。未反応スチレン量は、5.0重量%であった。
<Comparative Example 1>
MXDA 817.2 g (6.0 mol) and lithium amide 2.9 g (0.13 mol) were charged into the same flask as in Example 1, and the temperature was raised to 80 ° C. over 15 minutes with stirring under a nitrogen stream. . Immediately after reaching 80 ° C., 625.2 g (6.0 mol) of styrene was continuously added dropwise over 2 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1581 cm −1 was less than 0.001 mol with respect to 1 mol of MXDA. It was. After completion of dropping, the temperature was kept at 80 ° C. for 60 minutes. Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1379.6 g of amino composition L. The amount of unreacted styrene was 5.0% by weight.

<比較例2>
実施例1と同様のフラスコにMXDA 681.0g(5.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。80℃到達直後からスチレン651.3g(6.25モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1581cm−1の吸収から計算される反応中間体はMXDA 1モルに対して0.001モル未満であった。滴下終了後、80℃で60分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物M 1270.9gを得た。未反応スチレン量は、5.1重量%であった。
<Comparative example 2>
MXDA 681.0g (5.0mol) and lithium amide 3.3g (0.14mol) were prepared to the same flask as Example 1, and it heated up at 80 degreeC in 15 minutes, stirring under nitrogen stream. Immediately after reaching 80 ° C., 651.3 g (6.25 mol) of styrene was continuously added dropwise over 2.5 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1581 cm −1 was less than 0.001 mol with respect to 1 mol of MXDA. It was. After completion of dropping, the temperature was kept at 80 ° C. for 60 minutes. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 1270.9 g of amino composition M. The amount of unreacted styrene was 5.1% by weight.

<比較例3>
実施例1と同様のフラスコに1,3−BAC 853.2g(6.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。80℃到達直後からスチレン625.2g(6.0モル)を2時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体は1,3−BAC 1モルに対して0.001モル未満であった。滴下終了後、80℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物N 1409.3gを得た。未反応スチレン量は、5.2重量%であった。またアミノ組成物Nをメタノール100重量部に対して10重量部で混合すると、白色沈殿を生成することから、好ましくない副生成物であるスチレン重合物の生成が確認された。
<Comparative Example 3>
A flask similar to Example 1 was charged with 853.2 g (6.0 mol) of 1,3-BAC and 3.0 g (0.13 mol) of lithium amide, and the mixture was heated to 80 ° C. with stirring in a nitrogen stream for 15 minutes. The temperature rose. Immediately after reaching 80 ° C., 625.2 g (6.0 mol) of styrene was continuously added dropwise over 2 hours. Moreover, when a part of reaction solution was extract | collected just before styrene dropping and it measured by IR, the reaction intermediate computed from absorption of 1575cm < -1 > was 0.001 with respect to 1 mol of 1, 3-BAC. It was less than a mole. After completion of dropping, the temperature was kept at 80 ° C. for 120 minutes. Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 1409.3 g of amino composition N. The amount of unreacted styrene was 5.2% by weight. In addition, when the amino composition N was mixed at 10 parts by weight with respect to 100 parts by weight of methanol, a white precipitate was formed, so that formation of a styrene polymer which was an undesirable by-product was confirmed.

<比較例4>
実施例1と同様のフラスコに1,3−BAC 711.0g(5.0モル)とリチウムアミド3.4g(0.15モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。80℃到達直後からスチレン651.3g(6.25モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体は1,3−BAC 1モルに対して0.001モル未満であった。滴下終了後、80℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水27.0g(1.5モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物O 1305.8gを得た。未反応スチレン量は、5.2重量%であった。またアミノ組成物O をメタノール100重量部に対して10重量部で混合すると、白色沈殿を生成することから、好ましくない副生成物であるスチレン重合物の生成が確認された。
<Comparative example 4>
In the same flask as in Example 1, 711.0 g (5.0 mol) of 1,3-BAC and 3.4 g (0.15 mol) of lithium amide were charged, and the mixture was heated to 80 ° C. with stirring in a nitrogen stream for 15 minutes. The temperature rose. Immediately after reaching 80 ° C., 651.3 g (6.25 mol) of styrene was continuously added dropwise over 2.5 hours. Moreover, when a part of reaction solution was extract | collected just before styrene dropping and it measured by IR, the reaction intermediate computed from absorption of 1575cm < -1 > was 0.001 with respect to 1 mol of 1, 3-BAC. It was less than a mole. After completion of dropping, the temperature was kept at 80 ° C. for 120 minutes. Thereafter, 27.0 g (1.5 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off under reduced pressure to obtain 1305.8 g of amino composition O. The amount of unreacted styrene was 5.2% by weight. In addition, when the amino composition O 2 was mixed at 10 parts by weight with respect to 100 parts by weight of methanol, a white precipitate was formed. Thus, formation of an undesired byproduct styrene polymer was confirmed.

<比較例5>
実施例1と同様のフラスコに、DETA 412.7g(4.0モル)とリチウムアミド2.5g(0.11モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。反応液の一部を採取し、80℃到達直後からスチレン651.3g(6.25モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1572cm−1の吸収から計算される反応中間体はDETA 1モルに対して0.001モル未満であった。滴下終了後、80℃で30分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水19.8g(1.1モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物P 777.0gを得た。未反応スチレン量は、5.1重量%であった。
<Comparative Example 5>
In a flask similar to that in Example 1, 412.7 g (4.0 mol) of DETA and 2.5 g (0.11 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. over 15 minutes with stirring in a nitrogen stream. . A part of the reaction solution was collected, and 651.3 g (6.25 mol) of styrene was continuously added dropwise over 2.5 hours immediately after reaching 80 ° C. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1572 cm −1 was less than 0.001 mol with respect to 1 mol of DETA. It was. After completion of dropping, the temperature was kept at 80 ° C. for 30 minutes. Thereafter, 19.8 g (1.1 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 777.0 g of amino composition P. The amount of unreacted styrene was 5.1% by weight.

<比較例6>
実施例1と同様のフラスコに、TETA 584.8g(4.0モル)とリチウムアミド3.0g(0.13モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。80℃到達直後からスチレン651.3g(6.25モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1572cm−1の吸収から計算される反応中間体はTETA 1モルに対して0.001モル未満であった。滴下終了後、80℃で0.5時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水23.4g(1.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物Q 990gを得た。未反応スチレン量は、5.4重量%であった。
<Comparative Example 6>
In a flask similar to Example 1, 584.8 g (4.0 mol) of TETA and 3.0 g (0.13 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. over 15 minutes with stirring in a nitrogen stream. . Immediately after reaching 80 ° C., 651.3 g (6.25 mol) of styrene was continuously added dropwise over 2.5 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1572 cm −1 was less than 0.001 mol with respect to 1 mol of TETA. It was. After completion of dropping, the temperature was kept at 80 ° C. for 0.5 hour. Thereafter, 23.4 g (1.3 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was removed by distillation under reduced pressure to obtain 990 g of amino composition Q. The amount of unreacted styrene was 5.4% by weight.

<比較例7>
実施例1と同様のフラスコに、IPDA 681.2g(4.0モル)とリチウムアミド3.3g(0.14モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。80℃到達直後からスチレン416.8g(4.0モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1573cm−1の吸収から計算される反応中間体はIPDA 1モルに対して0.001モル未満であった。滴下終了後、80℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物R 1032.7gを得た。未反応スチレン量は、10.8重量%であった。またアミノ組成物Rをメタノール100重量部に対して10重量部で混合すると、白色沈殿を生成することから、好ましくない副生成物であるスチレン重合物の生成が確認された。
<Comparative Example 7>
In a flask similar to that in Example 1, 681.2 g (4.0 mol) of IPDA and 3.3 g (0.14 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. over 15 minutes with stirring in a nitrogen stream. . Immediately after reaching 80 ° C., 416.8 g (4.0 mol) of styrene was continuously added dropwise over 2.5 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1573 cm −1 was less than 0.001 mol with respect to 1 mol of IPDA. It was. After completion of dropping, the temperature was kept at 80 ° C. for 120 minutes. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. The precipitate in the liquid in the flask was separated by filtration, and then water was distilled off by distillation under reduced pressure to obtain 1032.7 g of amino composition R. The amount of unreacted styrene was 10.8% by weight. In addition, when the amino composition R was mixed at 10 parts by weight with respect to 100 parts by weight of methanol, a white precipitate was formed, so that formation of a styrene polymer which was an undesirable by-product was confirmed.

<比較例8>
実施例1と同様のフラスコに、NBDA 617.2g(4.0モル)とリチウムアミド3.1g(0.14モル)を仕込み、窒素気流下、撹拌しながら15分間で80℃に昇温した。80℃到達直後からスチレン416.8g(4.0モル)を2.5時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体はNBDA 1モルに対して0.001モル未満であった。滴下終了後、80℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水25.2g(1.4モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物S 969.3gを得た。未反応スチレン量は、10.9重量%であった。またアミノ組成物Sをメタノール100重量部に対して10重量部で混合すると、白色沈殿を生成することから、好ましくない副生成物であるスチレン重合物の生成が確認された。
<Comparative Example 8>
In the same flask as in Example 1, 617.2 g (4.0 mol) of NBDA and 3.1 g (0.14 mol) of lithium amide were charged, and the temperature was raised to 80 ° C. over 15 minutes with stirring under a nitrogen stream. . Immediately after reaching 80 ° C., 416.8 g (4.0 mol) of styrene was continuously added dropwise over 2.5 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1575 cm −1 was less than 0.001 mol with respect to 1 mol of NBDA. It was. After completion of dropping, the temperature was kept at 80 ° C. for 120 minutes. Thereafter, 25.2 g (1.4 mol) of distilled water having a molar amount 10 times that of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 969.3 g of amino composition S. The amount of unreacted styrene was 10.9% by weight. In addition, when the amino composition S was mixed at 10 parts by weight with respect to 100 parts by weight of methanol, a white precipitate was formed. Thus, formation of an undesired by-product styrene polymer was confirmed.

<比較例9>
実施例1と同様のフラスコに、ジェファーミンD−230 460.0g(2.0モル)とリチウムアミド21.3g(0.93モル)を仕込み、窒素気流下、撹拌しながら15分間で100℃に昇温した。100℃到達直後からスチレン208.4g(2.0モル)を4時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1568cm−1の吸収から計算される反応中間体はジェファーミンD−230 1モルに対して0.001モル未満であった。滴下終了後、100℃で2時間保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水167.7g(9.3モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物T 635.0gを得た。未反応スチレン量は、37.7重量%であった。またアミノ組成物Tをメタノール100重量部に対して10重量部で混合すると、白色沈殿を生成することから、好ましくない副生成物であるスチレン重合物の生成が確認された。
<Comparative Example 9>
Into a flask similar to that in Example 1, 460.0 g (2.0 mol) of Jeffamine D-230 and 21.3 g (0.93 mol) of lithium amide were charged at 100 ° C. for 15 minutes with stirring under a nitrogen stream. The temperature was raised to. Immediately after reaching 100 ° C., 208.4 g (2.0 mol) of styrene was continuously dropped over 4 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1568 cm −1 was 0.001 with respect to 1 mol of Jeffamine D-230. It was less than a mole. After completion of dropping, the mixture was kept at 100 ° C. for 2 hours. Thereafter, 167.7 g (9.3 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After separating the precipitate in the liquid in the flask by filtration, water was removed by distillation under reduced pressure to obtain 635.0 g of amino composition T. The amount of unreacted styrene was 37.7% by weight. In addition, when the amino composition T was mixed at 10 parts by weight with respect to 100 parts by weight of methanol, a white precipitate was formed. Thus, formation of an undesired byproduct styrene polymer was confirmed.

<比較例10>
実施例1と同様のフラスコに、ジェファーミンEDR−148 296.0g(2.0モル)とリチウムアミド1.5g(0.065モル)を仕込み、窒素気流下、撹拌しながら15分間で100℃に昇温した。100℃到達直後からスチレン208.4g(2.0モル)を4時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1575cm−1の吸収から計算される反応中間体はジェファーミンEDR−148 1モルに対して0.001モル未満であった。滴下終了後、100℃で30分保った。その後、仕込んだリチウムアミドの10倍モル量の蒸留水11.7g(0.65モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物U 478.8gを得た。未反応スチレン量は、5.9重量%であった。
<Comparative Example 10>
In the same flask as in Example 1, 296.0 g (2.0 mol) of Jeffermine EDR-148 and 1.5 g (0.065 mol) of lithium amide were charged, and the mixture was stirred at 100 ° C. for 15 minutes under a nitrogen stream. The temperature was raised to. Immediately after reaching 100 ° C., 208.4 g (2.0 mol) of styrene was continuously dropped over 4 hours. Further, when a part of the reaction solution was collected just before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1575 cm −1 was 0.001 with respect to 1 mol of Jeffamine EDR-148. It was less than a mole. After completion of dropping, the temperature was kept at 100 ° C. for 30 minutes. Thereafter, 11.7 g (0.65 mol) of distilled water having a 10-fold molar amount of the charged lithium amide was added and stirred. After the precipitate in the liquid in the flask was separated by filtration, water was distilled off by distillation under reduced pressure to obtain 478.8 g of amino composition U. The amount of unreacted styrene was 5.9% by weight.

<比較例11>
実施例1と同様のフラスコに、ジェファーミンT−403 806.0g(2.0モル)とリチウムアミド35.0g(1.5モル)を仕込み、窒素気流下、撹拌しながら15分間で100℃に昇温した。100℃到達直後からスチレン312.6g(3.0モル)を6時間かけて連続滴下した。また、スチレン滴下直前に反応溶液の一部を採取し、IRにて測定を行ったところ、1568cm−1の吸収から計算される反応中間体はジェファーミンT−403 1モルに対して0.001モル未満であった。滴下終了後、100℃で120分保った。その後、仕込んだリチウムアミドの10倍モル量の水270.0g(15.0モル)を添加して撹拌した。フラスコ内液中の沈殿物をろ過で分離後、減圧蒸留で水を留去し、アミノ組成物V 1051.5gを得た。未反応スチレン量は、39.8重量%であった。またアミノ組成物Vをメタノール100重量部に対して10重量部で混合すると、白色沈殿を生成することから、好ましくない副生成物であるスチレン重合物も含んでいた。
<Comparative Example 11>
Into the same flask as in Example 1, 806.0 g (2.0 mol) of Jeffermine T-403 and 35.0 g (1.5 mol) of lithium amide were charged at 100 ° C. for 15 minutes with stirring under a nitrogen stream. The temperature was raised to. Immediately after reaching 100 ° C., 312.6 g (3.0 mol) of styrene was continuously dropped over 6 hours. Further, when a part of the reaction solution was collected immediately before styrene dropping and measured by IR, the reaction intermediate calculated from the absorption at 1568 cm −1 was 0.001 with respect to 1 mol of Jeffamine T-403. It was less than a mole. After completion of dropping, the temperature was kept at 100 ° C. for 120 minutes. Thereafter, 270.0 g (15.0 mol) of water having a 10-fold molar amount of the charged lithium amide was added and stirred. After separating the precipitate in the liquid in the flask by filtration, water was distilled off by distillation under reduced pressure to obtain 1051.5 g of amino composition V. The amount of unreacted styrene was 39.8% by weight. Further, when the amino composition V was mixed at 10 parts by weight with respect to 100 parts by weight of methanol, a white precipitate was formed, so that a styrene polymer which was an undesirable by-product was also included.

Claims (12)

強塩基性を呈する触媒の存在下にポリアミンとアルケニル基含有化合物との付加反応を行ってアミノ組成物を製造する方法において、強塩基性を呈する触媒としてリチウムアミドを用い、該触媒とポリアミンとの予備反応を反応温度50〜120℃で反応時間20〜120分行って反応混合物を得た後、該反応混合物にアルケニル基含有化合物を添加して付加反応をさせることを特徴とする、アミノ組成物の製造方法。 In a method for producing an amino composition by performing an addition reaction between a polyamine and an alkenyl group-containing compound in the presence of a catalyst exhibiting strong basicity, lithium amide is used as the catalyst exhibiting strong basicity, and the catalyst and polyamine An amino composition characterized in that a preliminary reaction is performed at a reaction temperature of 50 to 120 ° C. for a reaction time of 20 to 120 minutes to obtain a reaction mixture, and then an alkenyl group-containing compound is added to the reaction mixture to cause an addition reaction. Manufacturing method. 前記触媒とポリアミンとの予備反応を行って、前記触媒とポリアミンの反応中間体を含む反応混合物を得た後、該反応混合物にアルケニル基含有化合物を添加して付加反応させることを特徴とする、請求項1記載のアミノ組成物の製造方法。 A preliminary reaction between the catalyst and polyamine is performed to obtain a reaction mixture containing a reaction intermediate between the catalyst and polyamine, and then an alkenyl group-containing compound is added to the reaction mixture to perform an addition reaction. The manufacturing method of the amino composition of Claim 1. 前記反応混合物中における反応中間体の濃度が、ポリアミン1モルに対し0.001モル以上となった後、該反応中間体を含む反応混合物にアルケニル基含有化合物を添加して付加反応させることを特徴とする、請求項2記載のアミノ組成物の製造方法。 After the concentration of the reaction intermediate in the reaction mixture becomes 0.001 mol or more with respect to 1 mol of polyamine, an alkenyl group-containing compound is added to the reaction mixture containing the reaction intermediate to cause addition reaction. The method for producing an amino composition according to claim 2. 前記反応混合物のIRスペクトル分析を行って、予備反応前に1650〜1580cm−1の範囲に観察される吸収が、予備反応後に20〜25cm−1低い方向へ移動した位置で観察される場合の該吸収の吸収度から、反応中間体の濃度を算出することを特徴とする、請求項3記載のアミノ組成物の製造方法。 When the IR spectrum analysis of the reaction mixture is performed, the absorption observed in the range of 1650 to 1580 cm −1 before the pre-reaction is observed at a position moved downward by 20 to 25 cm −1 after the pre-reaction. The method for producing an amino composition according to claim 3, wherein the concentration of the reaction intermediate is calculated from the absorbance of absorption. 前記反応混合物にアルケニル基含有化合物を添加する際、該化合物を分割または連続添加することを特徴とする、請求項1〜のいずれかに記載のアミノ組成物の製造方法。 The method for producing an amino composition according to any one of claims 1 to 4 , wherein when the alkenyl group-containing compound is added to the reaction mixture, the compound is dividedly or continuously added. 前記反応混合物にアルケニル基含有化合物を添加する際、該化合物を3〜500分割して添加することを特徴とする請求項記載のアミノ組成物の製造方法。 6. The method for producing an amino composition according to claim 5 , wherein when the alkenyl group-containing compound is added to the reaction mixture, the compound is added in 3 to 500 portions. 前記反応混合物にアルケニル基含有化合物を添加する際、該化合物を10分〜20時間かけて連続添加することを特徴とする請求項記載のアミノ組成物の製造方法。 6. The method for producing an amino composition according to claim 5 , wherein when the alkenyl group-containing compound is added to the reaction mixture, the compound is continuously added over 10 minutes to 20 hours. ポリアミンが、式(1)で示されるポリアミンである請求項1〜のいずれかに記載のアミノ組成物の製造方法。
Figure 0004797345
(Aはフェニレン基またはシクロヘキシレン基を示す。)
The method for producing an amino composition according to any one of claims 1 to 7 , wherein the polyamine is a polyamine represented by the formula (1).
Figure 0004797345
(A represents a phenylene group or a cyclohexylene group.)
ポリアミンが、式(2)で示されるポリアミンである請求項1〜のいずれかに記載のアミノ組成物の製造方法。
Figure 0004797345
(n=1〜5)
The method for producing an amino composition according to any one of claims 1 to 7 , wherein the polyamine is a polyamine represented by the formula (2).
Figure 0004797345
(N = 1-5)
ポリアミンが、分子内の炭素数が9以上で、分子内のアミノ基数が2以上であり、かつ該アミノ基に由来する活性水素数が3以上の環状脂肪族ポリアミンである請求項1〜のいずれかに記載のアミノ組成物の製造方法。 Polyamines, with the number of carbon atoms in the molecule 9 or more, amino groups in the molecule is 2 or more, and the number of active hydrogen derived from the amino group of the claims 1 to 7 is three or more cycloaliphatic polyamine The manufacturing method of the amino composition in any one. ポリアミンが、ポリオキシアルキレンポリアミンである請求項1〜のいずれかに記載のアミノ組成物の製造方法。 Polyamines, method for producing the amino composition according to any one of claims 1 to 7, which is a polyoxyalkylene polyamine. アルケニル基含有化合物が、炭素数が2〜10のものである請求項1〜11のいずれかに記載のアミノ組成物の製造方法。 The method for producing an amino composition according to any one of claims 1 to 11 , wherein the alkenyl group-containing compound has 2 to 10 carbon atoms.
JP2004234039A 2003-08-13 2004-08-11 Method for producing amino composition Active JP4797345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234039A JP4797345B2 (en) 2003-08-13 2004-08-11 Method for producing amino composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003293133 2003-08-13
JP2003293133 2003-08-13
JP2004234039A JP4797345B2 (en) 2003-08-13 2004-08-11 Method for producing amino composition

Publications (2)

Publication Number Publication Date
JP2005089455A JP2005089455A (en) 2005-04-07
JP4797345B2 true JP4797345B2 (en) 2011-10-19

Family

ID=34466879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234039A Active JP4797345B2 (en) 2003-08-13 2004-08-11 Method for producing amino composition

Country Status (1)

Country Link
JP (1) JP4797345B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088863A (en) * 2009-10-23 2011-05-06 Mitsubishi Gas Chemical Co Inc Process for producing amino composition
WO2012105303A1 (en) * 2011-02-01 2012-08-09 三菱瓦斯化学株式会社 Production method for amino compound
US10941242B2 (en) 2016-04-06 2021-03-09 Mitsubishi Gas Chemical Company, Inc. Amine compound, amine composition, and epoxy resin curing agent
JP6939365B2 (en) * 2017-10-03 2021-09-22 三菱瓦斯化学株式会社 Method for producing amine composition
TW202003445A (en) 2018-05-31 2020-01-16 日商三菱瓦斯化學股份有限公司 Method for producing compound, compound, epoxy curing agent, and method for producing amine composition
WO2019230692A1 (en) * 2018-05-31 2019-12-05 三菱瓦斯化学株式会社 Method for producing compound, compound, epoxy curing agent, and method for producing amine composition
CN113956165A (en) * 2021-10-28 2022-01-21 长沙友兴盟进出口贸易有限公司 Modification process of m-xylylenediamine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376344A (en) * 1964-04-03 1968-04-02 Dow Chemical Co N, n'-bis-(2-aminoethyl)-1, 3-bis (2-aminoalkyl) benzenes
JPS5511523A (en) * 1978-07-11 1980-01-26 Teiji Tsuruta Nitrogen-containing monomer and its preparation
JPS5620552A (en) * 1979-07-31 1981-02-26 Asahi Chem Ind Co Ltd Novel basic compound and its preparation
JPS5835148A (en) * 1981-08-28 1983-03-01 Asahi Chem Ind Co Ltd Improved method for preparation of basic monomer
US5149457A (en) * 1989-06-30 1992-09-22 Cyprus Foote Mineral Company Stable mixed lithium amide reagent compositions
JP2571475B2 (en) * 1991-02-12 1997-01-16 日本ペイント株式会社 Modified polyoxyalkylene polyamine composition for plastic production
TW539661B (en) * 2000-09-12 2003-07-01 Mitsubishi Gas Chemical Co Amino compound and process for producing the same
JP4355895B2 (en) * 2003-01-31 2009-11-04 三菱瓦斯化学株式会社 Modified polyoxyalkylene polyamine

Also Published As

Publication number Publication date
JP2005089455A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP5140900B2 (en) Amino compound and method for producing the same
KR101908382B1 (en) Production method for amino compound
JP5291630B2 (en) Method for reductive amination of aldehydes and ketones
JP4797345B2 (en) Method for producing amino composition
CN108383756A (en) A kind of preparation method of cyanoethyl aminated compounds
JP2011088863A (en) Process for producing amino composition
JP4321101B2 (en) Modified chain aliphatic polyamine
CA1037496A (en) Synthesis of bis (2-(n-dimethylamino)ethyl) ether
EP1506953B1 (en) Process for producing an amino composition
JP4355895B2 (en) Modified polyoxyalkylene polyamine
JP4434716B2 (en) Method for producing amino composition
JP4453816B2 (en) Method for producing amino composition
JP4484022B2 (en) Storage stabilization method of amino composition
JP7120218B2 (en) A phenylimidazoline compound having an aminomethyl group or a salt thereof, or a phenyltetrahydropyrimidine compound having an aminomethyl group or a salt thereof, and methods for producing these compounds or salts thereof
JP4182334B2 (en) Modified cycloaliphatic polyamine
JP2002121177A (en) Method for producing polyamino compound
JPH04279558A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPH04112862A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPH107628A (en) Production of 1-(meta-chlorophenyl)-2-aminoethanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4797345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3