JP4482914B2 - A method for constructing a heat insulating ventilation structure composed of a zone-specific ventilation structure for constantly opening ventilation and ventilation and ventilation control of a wooden building, and a hybrid ventilation and ventilation control method for the structure. - Google Patents

A method for constructing a heat insulating ventilation structure composed of a zone-specific ventilation structure for constantly opening ventilation and ventilation and ventilation control of a wooden building, and a hybrid ventilation and ventilation control method for the structure. Download PDF

Info

Publication number
JP4482914B2
JP4482914B2 JP2006121754A JP2006121754A JP4482914B2 JP 4482914 B2 JP4482914 B2 JP 4482914B2 JP 2006121754 A JP2006121754 A JP 2006121754A JP 2006121754 A JP2006121754 A JP 2006121754A JP 4482914 B2 JP4482914 B2 JP 4482914B2
Authority
JP
Japan
Prior art keywords
ventilation
zone
attic
dedicated
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006121754A
Other languages
Japanese (ja)
Other versions
JP2007291751A (en
Inventor
勇 吉田
Original Assignee
勇 吉田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勇 吉田 filed Critical 勇 吉田
Priority to JP2006121754A priority Critical patent/JP4482914B2/en
Publication of JP2007291751A publication Critical patent/JP2007291751A/en
Application granted granted Critical
Publication of JP4482914B2 publication Critical patent/JP4482914B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本発明は木造住宅建築物における、温暖地域又は寒冷地域を問わず、特に内と外の温度差の著しい夏、冬期間を主に、構造体の主要構造用途部分である屋根、小屋裏及び壁体内さらに床下の断熱施工に関し、温度差より生ずる構造体内結露の発生の防止、又は結露の解消をもとに、構造体内環境を満足すべく構造体として、又、快適な室内環境とさらに省エネルギーをもとに最も効果的な通気及び通気制御を容易とする構造形態、通気形態から構造される断熱通気構造体とする場合の、常時開放通気を要する通気構造の主要構造用途部分と、通気及び通気制御を要する通気構造の主要構造用途部分の連携から構成される断熱通気構造体とし、又、同主要構造用途部分の通気及び通気制御に用いる自然気流を主に対象とした自然開放通気機器及び自動開閉式の自然通気制御機器と、さらに、補助としてソーラーエネルギーを主とした自然制御の換気ファンを混用し、容易に効率よく確実な通気及び通気制御が行える様、さらに省エネルギーで、室内環境と構造体の長期耐久性を大幅に向上させることのできる断熱通気構造体、又、同構造体を主に応用する多様化の断熱通気構造体と同構造体の専用ゾーン別ハイブリッド通気及び通気制御の方法に関するものである。  The present invention relates to a roof, a hut and a wall, which are main structural use parts of a structure, mainly in summer and winter periods where the temperature difference between inside and outside is remarkable, regardless of whether it is a warm or cold region, in a wooden house building. Concerning the thermal insulation construction in the body and under the floor, the prevention of the condensation in the structure caused by the temperature difference or the elimination of the condensation makes the structure as a structure to satisfy the environment in the structure, and the comfortable indoor environment and further energy saving. The main structural application part of the ventilation structure that requires constantly open ventilation, and the ventilation and ventilation, in the case of the heat insulation ventilation structure that is structured from the ventilation form and the structure form that facilitates the most effective ventilation and ventilation control. Naturally ventilated equipment mainly intended for natural airflow used for ventilation and ventilation control of the main structural application part as a heat insulating ventilation structure composed of cooperation of main structural application parts of the ventilation structure requiring control In addition to the natural ventilation control device that automatically opens and closes, and the natural ventilation fan that mainly uses solar energy as an auxiliary, it is possible to easily and efficiently control the ventilation and ventilation. Insulation ventilation structure that can greatly improve the long-term durability of the structure, diversified insulation ventilation structure mainly applying the structure, and hybrid ventilation and ventilation control by dedicated zone of the structure It is about the method.

木造住宅の構造体の断熱施工において、より快適な室内環境とさらに省エネルギーを追求する傾向から、内と外との温度差の解消として、構造体の屋根面、壁体内を密閉する断熱施工の高気密高断熱施工とする保温性の高い住空間を求める反面、同構造体の木材の調湿作用、調湿能力を生かせず、又、窒息気密によって引き起こされる多湿蒸れより生ずる木材の腐れ等、構造体の劣化を招く構造体内環境に及ぼす弊害と、又、夏の屋根の表面温度は外気温度より高く、屋根面及び壁体内の断熱材が高温の蓄熱材となり易く、逆に不快感を与え、よりエネルギーを消費してしまう等、夏の温度差の解消は断熱材だけでは解決できず、室内環境に及ぼす弊害を招く原因にもなっていて、又、さらに通気性のない構造体の密閉構造からの原因とするシックハウス現象も引き起こさざるを得ないのである。   In the heat insulation construction of wooden house structures, the trend of pursuing a more comfortable indoor environment and further energy saving is to eliminate the temperature difference between the inside and outside, and the high heat insulation construction to seal the roof surface and wall of the structure. While it requires a highly heat-insulating living space with airtight and highly insulated construction, it does not take advantage of the humidity control and humidity control capabilities of the timber of the structure, and the structure of wood rot caused by humid humidity caused by suffocation and airtightness The adverse effects on the internal environment that lead to deterioration of the body, and the surface temperature of the roof in summer is higher than the outside air temperature, and the heat insulating material on the roof surface and the wall tends to be a high-temperature heat storage material. Eliminating the temperature difference in summer, such as consuming more energy, cannot be solved with just heat insulating materials, it can also cause adverse effects on the indoor environment, and it is also a sealed structure with a structure that is not breathable Cause from Kkuhausu phenomenon is also the inevitably caused.

こうした問題を解決するために、従来、構造体内環境、室内環境に最も影響する壁体内と、又、天井断熱より有効で効果のある、夏の直射日光を受ける屋根部分を通気層のある断熱通気の構造とした上で、建物内部の通気の経路として、夏の進入する外気が、床下、壁体内及び小屋裏を通じ、屋根の棟へ抜け、又、同時に建物外部の軒天換気口よりの外気の進入又は外装材の通気構法による外壁下方からの外気の進入と軒天換気口よりの外気の進入が合流し、屋根の通気層を経過し、屋根の棟換気口より抜ける通気形態とする断熱通気の工法で、壁体内木材の調湿能力を生かし、床下より進入する外気が、夏の床下の冷気を伴う気流として上昇し、壁体内の通気層を経過し同時に壁体内と小屋裏に溜まった熱気、湿気を屋根の棟換気口より自然の力で排出するもので、従来、この断熱通気工法の構造体として、又、同時に冬期間を意識して構造体の通気制御を主とし、自然気流対象とした通気制御の自然通気制御機器で、上下一定の温度を定め、温度差利用の熱感知式形状記憶合金使用の自動開閉式換気口の床下換気口、軒天換気口及び棟換気口を全て通気制御装置として用い、建物の内部、外部の通気路の通気制御とする方式と、同通気制御装置を一部分のみ使用し、通気制御する方式があり、前者の方式は夏、冬を通し小屋裏と屋根通気層を常時連絡通気の一定の開口で開放状態のままとし、夏の通気効果を優先したもので、その開口部より夏の壁体内及び小屋裏に溜まった熱気、臭気を伴う気流を通し又、外気温が一定以上となり開放された軒天換気口からのみ取りいれる、外気進入、又は同軒天換気口及び外壁通気層より進入する合流気流が屋根通気層を経過し、開放状態で兼用の棟換気口より同時に排出されるものとし、又、冬は外気温が一定の温度以下となった状態で全ての換気口が閉鎖し、構造体を無通気とし、建物を保温状態とする断熱通気の構造とした工法の方式としている。   In order to solve these problems, heat insulation ventilation with a ventilation layer has been conventionally applied to the walls that have the most influence on the structural environment and indoor environment, and the roof part that receives direct sunlight in summer, which is more effective and effective than ceiling insulation. As a ventilation path inside the building, outside air entering in the summer passes to the roof ridge through the floor, inside the walls, and behind the shed, and at the same time outside air from the eaves vents outside the building. Insulation with a ventilation form where the entrance of outside air from the outside of the outer wall and the entrance of outside air from the eaves of the eaves through the entrance of the exterior or the exterior material through the ventilation structure merge, pass through the roof ventilation layer, and escape from the roof ventilation opening of the roof The ventilation method makes use of the humidity control capability of the wood in the wall, and the outside air that enters from under the floor rises as an air stream with cold air under the floor in the summer, passes through the ventilation layer in the wall, and accumulates in the wall and the back of the hut at the same time. Hot air and moisture from the roof ventilation opening This is a natural ventilation control device for ventilation control that has been designed as a natural airflow target mainly as a structure of this heat insulation ventilation method, and at the same time focusing on the ventilation of the structure with the winter period in mind at the same time. , Set a certain temperature above and below, use the temperature difference heat-sensitive shape memory alloy automatic open / close vent, underfloor vent, eaves vent and ridge vent, all inside the building, There is a method of controlling the ventilation of the external ventilation channel and a method of controlling the ventilation by using only a part of the ventilation control device. The former method is always connected to the hut and the roof ventilation layer throughout the summer and winter. The opening of the room is left open and priority is given to the summer ventilation effect. The hot air and odorous air that accumulates in the summer walls and the back of the hut passes through the opening, and the outside air temperature becomes above a certain level and opens. Can only be taken from the eaves vent Air entrance, or combined airflow entering from the same building's top ventilation port and outer wall ventilation layer passes through the roof ventilation layer and is discharged simultaneously from the dual-purpose building ventilation port in the open state, and the outside temperature is constant in winter All the ventilation openings are closed in a state where the temperature is lower than the above temperature, the structure is made non-ventilated, and the method of construction is a heat insulating ventilation structure that keeps the building warm.

又一方、後者の床下換気口のみを上記の自動開閉式の自然通気制御機器の床下換気口を用い、軒天換気口及び棟換気口を常時通気の自然開放通気機器を用いて、建物の外部、内部の通気経路の通気及び通気制御として、建物の内部を小屋裏と屋根通気層の連絡通気にダンパー式通気制御装置あるいは手動、電動の開閉装置を用い通気制御するもので、夏の通気効果と冬の小屋裏の通気制御を目的とし、夏の壁体内や小屋裏に溜まった熱気、湿気を伴う気流が、開放された同装置を経過し、夏、冬期間共常時開口の軒天換気口及び棟換気口の通気形態の屋根通気層を経過する気流と合流して棟換気口より排出し、冬は軒天及び棟の換気口による屋根通気部分は常時開放通気の状態とし、内部の通気経路は、外気が一定の温度以下となった状態で、床下換気口及び小屋裏と屋根通気層を連絡するダンパー式通気制御装置又は、手動、電動の開閉装置が閉鎖され建物内部保温状態とする断熱通気の構造とした工法の方式とがあった。 On the other hand, only the latter underfloor vent is used for the outside of the building using the above-mentioned automatic open / close type natural vent controller underfloor vent, and the eave sky vent and the ridge vent are always open for natural ventilation. As a ventilation and ventilation control of the interior ventilation path, the ventilation of the building is controlled by using a damper type ventilation control device or manual, electric switchgear for the communication ventilation between the attic and the roof ventilation layer, summer ventilation effect In order to control the ventilation of the huts in the winter and the winter, the heat and moisture accumulated in the summer walls and the back of the shed passes through the opened device, and the eaves are ventilated continuously in the summer and winter. Combined with the airflow passing through the roof ventilation layer in the form of ventilation at the entrance and the building ventilation vent, it is discharged from the building ventilation vent, and in the winter the roof ventilation part by the eaves and the ventilation vent of the building is always in the open ventilation state, The ventilation path should be in a state where the outside air is below a certain temperature. Underfloor vents and dampers type venting control device communicating attic and roof ventilation layer or manual, electric switchgear there is a method of construction and the method of adiabatic vent to by building internal heat retaining state closed.

前者、後者共、夏の直射日光を浴びた屋根の屋根通気層内の熱気の排出と、建物内部の壁体内及び小屋裏に溜まった熱気、湿気を小屋裏の棟部に導き、容易に効率よく排出することを目的に、又、夏、冬期間の小屋裏の通気及び通気制御を有利に行うことを目的に、棟換気口あるいは棟換気機器類のみの集中した排出とする、夏、冬期間を通し、通気及び通気制御を行い、快適で省エネルギーの画期的な断熱通気の構造と通気制御の工法であるとされていた。 In both the former and the latter, heat is exhausted from the roof ventilation layer of the roof exposed to direct sunlight in summer, and the heat and moisture accumulated in the walls of the building and the back of the shed are guided to the ridge of the back of the shed for easy efficiency. For the purpose of exhausting well, and for the purpose of advantageously performing ventilation and ventilation control in the back of the hut in the summer and winter season, it is assumed that the exhaust is concentrated only in the building ventilation port or building ventilation equipment, summer and winter Throughout the period, ventilation and ventilation control was performed, and it was said that it was a revolutionary structure of heat insulation ventilation and a method of ventilation control that was comfortable and energy-saving.

ところが通気を要する構造体の全壁体内の通気層の占用容積及び屋根通気層の占用容積と小屋裏内部の占用面積に対して、通気及び通気制御を行う上での容易で施工効率が良いとされる棟換気口のみとする場合の、通気及び排出能力が、使用する棟換気口の性能上、同時に雨仕舞が考慮される為、排出部分が非常に細く、小さく、一箇所当たりの適応能力に限界があり、見合う通気又は、排出量が満足されているか、間に合わず停滞域として残る状態への懸念と、又さらに、建物の形状により設置可能とする数量も制限される場合もあり、1階部分から2階部分のすみずみまでの壁体内又は他の構造体内を確認できず、各構造体内環境として熱気対策又は湿気対策上、果たして解決されているか疑問もあり、指摘されていた。 However, it is easy and efficient to perform ventilation and ventilation control for the occupied volume of the ventilation layer in the entire wall of the structure requiring ventilation and the occupied volume of the roof ventilation layer and the occupied area inside the shed. When only building vents are used, the ventilation and discharge capacity is considered to be due to rain performance at the same time in the performance of the building vents used, so the discharge part is very thin and small, and the adaptive capacity per place There is a limit to the amount of air that can be installed or the amount that can be installed depending on the shape of the building. It was not possible to confirm the walls or other structures in every corner from the second floor to the second floor, and there was a question as to whether the environment in each structure was actually solved in terms of measures against heat and moisture.

又、夏時期において外気温が高く、無風の状態、あるいは外気温が比較的高く、外部湿度が多湿で、無風状態の梅雨時、又は密集地における立地条件下の場合等、前者、後者共、用いる通気制御の自然通気制御機器はいずれも外気温に対する熱感知式によるもので、構造体内湿度状況に対する効果を得るものではなく、又、外気の気流の進入及び排出と上昇気流の促進が、いずれも自然気流による自然の力の影響が大きく、又、自然気流の状態によるところが多く、屋根及び壁体内を含む構造体内の通気層の熱気、湿気を伴う蒸れた状態の空気が、常時上昇気流となるとも限らず、停滞状態の場合もあり、
又、夏、冬期間共、常時棟換気口を開口し、屋根の通気が行われているとする後者の場合で、冬期間に降雪が少ない温暖地、降雪量の少ない地方、又は、広い敷地を有し、屋根雪の排雪が常時容易に行われる場合を除き、降雪により常時屋根に積雪があり、棟換気口が閉ざされた状態となり易い多雪地域においては、屋根通気層内に溜まる空気が蒸れの状態を引き起こしやすく、さらに冬期間であっても天気が良く外気温が上昇し、外壁が温められ、軒天換気口よりの外気の進入による棟部停滞気流で密封状態の屋根通気層あるいは、外壁通気層よりの屋根通気層内への気流の一部進入等、屋根通気層内で温度差を生じて結露の発生の原因ともなりかねない。
Also, in the summer, the outside temperature is high, no wind, or the outside temperature is relatively high, the external humidity is high, the wind is rainy, or the location is in a congested area. All of the natural ventilation control devices used for ventilation control are based on heat sensing with respect to the outside air temperature, and do not have an effect on the humidity conditions in the structure. However, there is a lot of influence of natural force due to natural airflow, and there are many places due to the state of natural airflow. Not always, it may be stagnant,
In the latter case, where the building ventilation opening is always open during summer and winter, and the roof is ventilated, it is a warm area where there is little snowfall in winter, a region where snowfall is low, or a large site. In areas where there is heavy snow on the roof due to snowfall and the building vents are likely to be closed, the air that accumulates in the roof ventilation layer It is easy to cause stuffiness, and even in the winter, the weather is good and the outside temperature rises, the outside wall is warmed, and the roof ventilation layer is sealed by the stagnation of the ridge due to the ingress of outside air from the eaves vent Alternatively, a temperature difference may occur in the roof ventilation layer, such as partial entry of airflow into the roof ventilation layer from the outer wall ventilation layer, which may cause condensation.

更に又、前者の冬期間の一定温度以下の状況下において、自動開閉式の自然通気制御機器にて全換気口が閉鎖し建物無通気とし、夏、冬期間を通じて屋根通気層と小屋裏が常時連通する一定の開口部を設けた構造の場合の、屋根に積雪がある場合で、室内の熱機器の使用等、暖房の度合いが千差万別であり、室内の温度の程度により、温められる小屋裏と屋根の通気層内の温度差による屋根裏面及び棟部に溜まる空気の蒸れ等による結露の発生の原因を招きやすく、前者、後者共、共通して冬期間屋根に積雪がある場合は逆に、屋根部分を通気層を伴う通気構造とすることが大きな弊害を招く結果になる等、冬期間の小屋裏の保温状態を追求する結果の弊害であって、夏、冬期間を通じて未だに解決策がとれていない事も現状である。 Furthermore, under the condition of the former winter period below a certain temperature, all the ventilation openings are closed by the automatic opening and closing type natural ventilation control equipment and the building is not ventilated, and the roof ventilation layer and the hut are always open throughout the summer and winter periods. In the case of a structure with a certain opening that communicates, there is snow on the roof, the degree of heating is various, such as the use of indoor thermal equipment, etc., and it can be warmed according to the degree of indoor temperature If there is snow on the roof during the winter period in both the former and the latter, it is likely to cause condensation due to air stagnation in the back of the roof and the building due to the temperature difference between the attic and roof ventilation layers. On the contrary, it is a bad result of pursuing the heat insulation state of the hut in the winter period, such as a result that the roof part has a ventilation structure with a ventilation layer causes a great harmful effect, and it is still solved through the summer and winter periods It is the current situation that measures are not taken.

本発明は、従来の木造住宅の断熱通気の構造体に上記の如き問題があったことに鑑みて為されたもので、常時木材の調湿作用を生かし、建物の形状、規模に係わることのない、構造体内環境を満足し、常時通気性、断熱性、保温性さらに湿度対策及び施工性にも優れ、又効果的な通気制御を容易とする通気形態、構造形態から成る断熱通気構造体とすべく、又、夏、冬期間を通していずれにも共通する断熱通気構造体として、構造体を構造用途区画別の、所謂る専用ゾーン別に常時通気を要する専用ゾーンと、通気制御を要する専用ゾーンに分別し、且つ、専用ゾーン別通気構造から構成される断熱通気構造体とした上で、自然気流を対象とした常時開口の自然開放通気機器又、通気制御の自動開閉式の自然通気制御機器を専用ゾーン別に基本常設機能として附設し、さらに、ソーラーエネルギーを主とした設定温度、設定湿度を感知して自動運転・停止する自動制御の換気ファンを補助促進機能として基本常設機能に附設し混用するハイブリッド通気及び通気制御の断熱通気構造体とし、自然気流の状態に左右されることなく、省エネルギーで室内環境と構造体の長期耐久性を大幅に向上させることのできる専用ゾーン別通気構造から構成され、且つ、専用ゾーン別ハイブリッド通気及び通気制御を行う断熱通気構造体の木造住宅、更には、同構造体系を主に応用する多様化の断熱通気構造体の木造住宅を提供することを技術的課題とするものである。 The present invention has been made in view of the above-mentioned problems in the conventional heat insulation and ventilation structure of wooden houses, and is always related to the shape and scale of the building by utilizing the humidity control action of wood. A heat-insulating and air-permeable structure consisting of an air-permeable form and a structural form that satisfy the environment in the structure, is always breathable, heat-insulating, heat-retaining, excellent in humidity control and workability, and that facilitates effective air-flow control. In addition, as a heat insulating ventilation structure that is common throughout summer and winter, the structure is divided into a dedicated zone that requires constant ventilation and a dedicated zone that requires ventilation control for each structural use section, so-called dedicated zones. A heat insulating ventilation structure that is separated and made up of a ventilation structure for each dedicated zone, and a natural opening ventilation device that is always open for natural air flow or a natural ventilation control device that automatically opens and closes ventilation control. Based on dedicated zones Hybrid ventilation and ventilation that are installed as a permanent function and mixed with the basic permanent function as an auxiliary facilitating function of an automatically controlled ventilation fan that automatically operates and stops by sensing the set temperature and humidity, mainly solar energy It is made up of a controlled adiabatic ventilation structure and is composed of dedicated zone ventilation structure that can greatly improve the indoor environment and long-term durability of the structure with energy saving without being influenced by the state of natural airflow. It is a technical problem to provide a wooden house with a heat insulation ventilation structure that performs hybrid ventilation and ventilation control by zone, and a diversified heat insulation ventilation structure wooden house that mainly applies the structure system. is there.

本発明は上記技術的課題を解決するために、構造体を構造用途別の常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーンとして分別し、通気及び通気制御を行う上で、常時開放通気の専用ゾーンに常時開口の自然開放通気機器、通気及び通気制御の専用ゾーンに温度差利用の形状記憶合金使用とする自動開閉式の自然通気制御機器を専用ゾーン別基本常設機能として附設し、常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーンを気密断熱区画し、且つ専用ゾーン別通気構造から構成される断熱通気構造体1であって、
当該断熱通気構造体1が常時開放通気の独立した専用ゾーンの屋根断熱通気構造YDで一体形状の棟部常時通気専用経路Z11を形成する屋根裏ゾーンZ1と、通気及び通気制御の専用ゾーンとする小屋裏断熱通気構造KD又は小屋裏通気構造KD1の小屋裏ゾーンZ2及び床下断熱通気構造UDの床下ゾーンZ3の専用ゾーン別通気構造から構成され又、通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2と床下ゾーンZ3の連通による連携で通気及び通気制御を行うとし又、当該小屋裏ゾーンZ2と床下ゾーンZ3の連絡通気を形成する上で、さらに、内壁断熱通気構造WDの内壁通気構造体WZから構成されることを特徴とするものであり、
当該小屋裏ゾーンZ2及び床下ゾーンZ3が連結状態の外壁に面する内壁が全周一連の内壁断熱通気構造WDの内壁通気構造体WZを介し、常時連通され、連携して通気及び通気制御を行うものであって又、上記断熱通気構造体1の特徴とする常時開放通気の専用ゾーンの屋根裏ゾーンZ1の通気構造形状が屋根下葺材Nと小屋裏とを一定の厚さの板状の断熱フォームAを用い気密断熱区画し、屋根通気層V1を形成する屋根断熱通気構造YDと棟部常時通気専用経路Z11が一体形状で形成され、軒天に軒天換気口Ng、棟部常時通気専用経路Z11に棟部妻面換気ガラリRV及び棟換気口Mの常時開口の自然開放通気機器が基本常設機能として附設構成されることを特徴とする屋根裏ゾーンZ1であり、
又、屋根断熱通気構造YDと一体形状で形成される棟部常時通気専用経路Z11とする特徴が、屋根棟中心に位置し、棟を頂点とし、底面が平面状の一定の幅 e1で左右h1の高さのコ型の形状とした三方を一定の厚さの板状の断熱フォームAを用い下地構成し、棟を含む内部空洞の通気層とする箱状で、さらに両端を小屋裏の両側の妻壁と一体形成とした一連の左右h1の高さで小屋裏ゾーンZ2と気密断熱区画され、屋根断熱通気構造YDと一体形状の左右連通で形成される場合と、又はその形状が棟を頂点とし、棟を含む内部空洞で平面状の底面の一面で屋根断熱通気構造YDと左右一体形状とし、左右連通で形成され、底面より棟までの高さを両側の棟部妻面換気ガラリRVが取り付け可能な高さとし、底面を一定の厚さの板状の断熱フォームAを用い下地構成し、内部空洞の通気層とし、両端を小屋裏の両側の妻壁と一体形成とした一連の形状で小屋裏ゾーンZ2と気密断熱区画し形成される場合の、いずれも屋根裏ゾーンZ1の常時通気専用経路Z11の特徴とするもので、同棟部常時通気専用経路Z11に附設構成された基本常設機能の両側の妻面壁の妻面換気ガラリRV及び、棟換気口Mの通気による常時直接外気Gの進入・通気・排出を促す棟部常時通気専用経路Z11であり、
さらに、当該棟部常時通気専用経路Z11と屋根断熱通気構造YDの一体形成である屋根裏ゾーンZ1の通気形態が、常時開口の軒天換気口Ng又は外壁通気層V2より進入する外気G又は気流g0が屋根断熱通気構造YDの屋根通気層V1の通気路V11を経過し、同棟部常時通気専用経路Z11内に進入し、同棟部妻面換気ガラリRVと棟換気口Mの連携により常時通気・排出される常時開放通気の独立した通気専用ゾーンであることを特徴とし、
又、小屋裏ゾーンZ2は、屋根断熱通気構造YDの、小屋裏面の一定の厚さの板状の断熱フォームAと一定の厚さの板状の断熱フォームCを密接した室内天井又は天井C0で区画され、小屋裏断熱通気構造KD又は小屋裏通気構造KD1で、同ゾーンZ2を通気層とし、又、当該小屋裏ゾーンZ2と連結状態の外壁に面する内壁に一定の厚さの板状の断熱フォームBを施した内壁通気構造体WZの内壁断熱通気構造WDの内壁通気層V3と常時連通の状態であり、同ゾーンZ2の小屋裏の両側妻壁に通気及び通気制御の自動開閉式の自然通気制御機器で、上下一定の温度を定め開閉する温度差利用の熱感知式形状記憶合金使用の換気ガラリT1が通気及び通気制御の基本常設機能として構成されていることを特徴とする、小屋裏の通気及び通気制御をする小屋裏断熱通気構造KD又は小屋裏通気構造KD1の小屋裏ゾーンZ2であり又、
床下ゾーンZ3は、床下地断熱施工の一定の厚さの板状の床断熱フォームDと、一体土間的仕様で防湿施工のベタ基礎ベースF及び、一定の厚さの板状の断熱フォームD´で内側断熱施工された立ち上り断熱布基礎F1にて断熱区画され、同ゾーンZ3を通気層とする床下断熱通気構造UDであって、
又、小屋裏ゾーンZ2と連結し、一連の通気層として形成される、外壁に面する内壁通気構造体WZの内壁断熱通気構造WDの内壁通気層V3と常時連通の連結状態であり、同立ち上り断熱布基礎F1に通気及び通気制御の自動開閉式の自然通気制御機器で、小屋裏ゾーンZ2と同型式の温度差利用の熱感知式形状記憶合金使用の床下換気口T1が、通気及び通気制御の基本常設機能として構成されていることを特徴とし、床下の通気及び通気制御をする床下断熱通気構造UDの床下ゾーンZ3で、
連通状態の小屋裏ゾーンZ2との通気形態は、外気温が一定温度以上の場合同時開口し、両ゾーン内の直接外気Gの進入と通気排出を促し、又床下ゾーンZ3に進入し、上昇する気流が連通する内壁通気層V3の通気路V33を経過し、小屋裏ゾーンZ2内に進入し、同ゾーンZ2内の気流と合流した気流が、両側妻壁に附設された自動開閉式の換気ガラリT1により通気排出され又、一定の温度以下で同時閉鎖され、外気の進入を自動通気制御し、連携して通気及び通気制御を行う小屋裏ゾーンZ2と床下ゾーンZ3であり、
常時開放通気の専用ゾーンとする断熱通気構造の屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする断熱通気構造又は通気構造の小屋裏ゾーンZ2及び断熱通気構造の床下ゾーンZ3の専用ゾーン別通気構造から構成され、常時開放通気の専用ゾーンに棟部常時通気専用経路Z11を附設構成し、常時開口の自然開放通気機器を附設し又、通気及び通気制御の専用ゾーンに自動開閉式の自然通気制御機器を附設し専用ゾーン別基本常設機能として用い、専用ゾーン別通気及び通気制御を行うという技術的手段を採用した。
In order to solve the above technical problem, the present invention separates the structure into a dedicated zone for normally open ventilation and a dedicated zone for ventilation and ventilation control for each structural application, and performs ventilation and ventilation control. The automatic opening and closing natural ventilation control device that uses a shape memory alloy that uses a temperature difference in the dedicated zone for ventilation and ventilation control is attached as a basic permanent function for each dedicated zone. A heat-insulating ventilation structure 1 comprising a dedicated zone for open ventilation and a dedicated zone for ventilation and ventilation control in a hermetic and heat-insulating section and a ventilation structure for each dedicated zone,
The heat insulation ventilation structure 1 is a roof insulation zone Z1 that forms a ridge continuous ventilation route Z11 integrally formed with the roof heat insulation ventilation structure YD of a dedicated zone independent of always open ventilation, and a hut that is a dedicated zone for ventilation and ventilation control. It is composed of a dedicated ventilation structure for each zone of the back floor zone Z2 of the back heat insulation ventilation structure KD or the roof back ventilation structure KD1 and the under floor zone Z3 of the under floor heat insulation ventilation structure UD, It is assumed that ventilation and ventilation control are performed in cooperation with the communication of the underfloor zone Z3. Further, in order to form the communication ventilation between the hut back zone Z2 and the underfloor zone Z3, the inner wall aeration structure WD further includes an inner wall ventilation structure WZ. It is characterized by being
The inner wall facing the outer wall in which the cabin zone Z2 and the underfloor zone Z3 are connected is always communicated via the inner wall ventilation structure WZ of the entire inner wall thermal insulation ventilation structure WD, and performs ventilation and ventilation control in cooperation. Further, the ventilation structure of the attic zone Z1 of the dedicated zone for normally open ventilation, which is a feature of the above-described heat insulating ventilation structure 1, is a plate-like heat insulating foam having a constant thickness between the roof underneath N and the attic. The roof heat insulation ventilation structure YD that forms the air ventilation layer V1 and the ridge part normal ventilation route Z11 are formed in an integrated shape, and the eave sky ventilation port Ng, the ridge part normal ventilation route. The attic zone Z1 is characterized in that a natural opening ventilation device with a permanent opening of the ridge part ventilation ventilation RV and the ridge ventilation opening M is attached to Z11 as a basic permanent function.
Also, the characteristic of the ridge part ventilation route Z11 formed integrally with the roof heat insulation ventilation structure YD is located at the center of the roof ridge, with the ridge at the top and the bottom surface being a flat width e1 and right and left h1. A three-sided, U-shaped shape with a plate-shaped heat-insulating foam A with a certain thickness as a base, and a ventilation layer for the internal cavity including the ridge, with both ends on both sides of the hut The case is formed with a series of left and right h1 heights that are integrally formed with the wife wall of the roof and hermetic zone Z2 and hermetic heat insulation compartments, and is formed with left and right continuous communication with the roof heat insulation ventilation structure YD. The top is an internal cavity that includes the ridge, and one side of the flat bottom surface is integrated with the roof heat insulation ventilation structure YD. It is formed by left and right communication, and the height from the bottom to the ridge is the height of the ridge part on both sides. The bottom surface of the plate is cut to a certain thickness. In the case where it is formed by forming a base using Form A, forming an air-permeable layer of an internal cavity, and forming a hermetic heat-insulating section with the hut back zone Z2 in a series of shapes that are integrally formed with the end walls on both sides of the shed back It is a feature of the constant ventilation route Z11 in the attic zone Z1, and the built-in continuous ventilation route Z11 of the same building has a built-in basic ventilation function. It is a ridge always ventilating exclusive route Z11 that prompts the direct entry, ventilation, and discharge of the outside air G by direct ventilation.
Furthermore, the ventilation form of the attic zone Z1, which is an integral formation of the ridge continuous ventilation path Z11 and the roof heat insulation ventilation structure YD, is the outside air G or the air flow g0 entering from the eaves vent Ng or the outer wall ventilation layer V2 that is always open. Passes through the ventilation passage V11 of the roof ventilation layer V1 of the roof thermal insulation ventilation structure YD, enters the same building part regular ventilation route Z11, and is constantly ventilated by the cooperation of the same building's wife ventilation gallery RV and the building ventilation port M.・ It is a dedicated ventilation zone that is always open and vented.
Further, the hut zone Z2 is an indoor ceiling or ceiling C0 of the roof heat insulating ventilation structure YD, in which a plate-like heat insulation foam A having a certain thickness on the back surface of the hut and a plate-like heat insulation foam C having a certain thickness are in close contact. In the hut back heat insulation structure KD or the shed back structure KD1, the zone Z2 serves as a ventilation layer, and the inner wall facing the outer wall connected to the hut back zone Z2 has a plate-like shape with a certain thickness. The inner wall ventilation structure WZ of the inner wall ventilation structure WZ with the heat insulation foam B is in continuous communication with the inner wall ventilation layer V3 of the inner wall insulation ventilation structure WD. A natural ventilation control device, a ventilation gallery T1 using a heat-sensitive shape memory alloy that uses a temperature difference that opens and closes at a constant temperature is constructed as a basic permanent function of ventilation and ventilation control. Back ventilation and ventilation An attic zone Z2 of attic insulation breathable structure KD or attic vent structure KD1 to control also
The under-floor zone Z3 includes a plate-like floor insulation foam D having a certain thickness for floor base insulation construction, a solid foundation base F for moisture-proof construction with an integral soil specification, and a plate-like insulation foam D 'having a certain thickness. The underfloor heat insulation ventilation structure UD that is insulated by the rising heat insulation cloth foundation F1 that has been insulated by the inner side and uses the zone Z3 as a ventilation layer,
Also, it is connected to the hut back zone Z2 and is always connected to the inner wall ventilation layer V3 of the inner wall insulation ventilation structure WD of the inner wall ventilation structure WZ facing the outer wall, which is formed as a series of ventilation layers. The heat insulating fabric foundation F1 is an automatic open / close natural ventilation control device with ventilation and ventilation control, and the underfloor ventilation port T1 using the same type of temperature difference and heat sensitive shape memory alloy as the hut back zone Z2 has ventilation and ventilation control. In the underfloor zone Z3 of the underfloor heat insulation ventilation structure UD that controls the underfloor ventilation and ventilation,
The ventilation mode with the hut zone Z2 in the communication state opens simultaneously when the outside air temperature is equal to or higher than a certain temperature, prompts the direct outside air G to enter and exhaust the air in both zones, and enters the underfloor zone Z3 and rises. The airflow passage V33 of the inner wall ventilation layer V3 through which the airflow communicates enters the hut back zone Z2, and the airflow merged with the airflow in the zone Z2 is an automatic opening / closing type ventilation garage attached to both side walls. It is a hut zone Z2 and an underfloor zone Z3 that are ventilated and discharged by T1 and are simultaneously closed below a certain temperature, automatically control the ventilation of outside air, and perform ventilation and ventilation control in cooperation with each other.
The attic zone Z1 of a heat insulating ventilation structure that is a dedicated zone for a normally open ventilation, the heat insulating ventilation structure or the attic zone Z2 of the ventilation structure that is a dedicated zone for ventilation and ventilation control, and the under-floor zone Z3 of the heat insulating ventilation structure by a dedicated zone Consists of a dedicated zone for constantly ventilating ridges Z11 in a dedicated zone for normally ventilated ventilation, a naturally open ventilating device that is always open, and an automatic opening / closing type natural ventilation control in a dedicated zone for venting and venting control. The technical means of attaching a device, using it as a basic permanent function for each dedicated zone, and performing ventilation and ventilation control for each dedicated zone was adopted.

また本発明は上記技術的課題を解決するために、前記常時開放通気の専用ゾーンとする屋根断熱通気構造YDの屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする小屋裏断熱通気構造KD又は通気構造KD1の小屋裏ゾーンZ2及び床下断熱通気構造UDの床下ゾーンZ3の専用ゾーン別通気構造から構成される断熱通気構造体1であって、通気及び通気制御の専用ゾーンの床下ゾーンZ3と小屋裏ゾーンZ2の連通による連携の通気及び通気制御を行い、さらに床下ゾーンZ3と小屋裏ゾーンZ2の連絡通気を形成する上で、連結され連通状態の断熱通気構造の内壁通気構造体WZから構成されていることを特徴とする断熱通気構造体1の、
床下ゾーンZ3の床下を防湿施工の土間コンクリート仕様で、周囲立ち上りを板状の断熱フォームD´で内側断熱された断熱布基礎F1とし床下地に断熱施工をせず、床下の通気・換気をなくし、床下熱源媒介の床暖房施工とする場合の床下密閉構造の床下密閉ゾーンZ4とした断熱通気構造体1´であり、
当該断熱通気構造体1´とする専用ゾーン別構成が、上記の屋根裏ゾーンZ1、小屋裏ゾーンZ2及び床下密閉ゾーンZ4の構成と、さらに、小屋裏ゾーンZ2と連結され、連通状態の内壁断熱通気構造WDの内壁通気構造体WZから構成されることを特徴とし又、外壁に面する外周一連の断熱通気構造WDで通気層V3を形成する内壁通気構造体WZと小屋裏ゾーンZ2の連通による連携の通気及び通気制御を行う通気形態として、
周囲外壁Уの下部に一定の数量を定め、同外壁Уの通気層V2を貫通し、当該外壁に面して全周一連の連通状態の内壁通気構造体WZの内壁断熱通気構造WDの下部通気層V3への取り込みとする、上下一定の温度を定め開閉する、小屋裏ゾーンZ2の自動開閉式の自然通気制御機器と同型式の温度差利用の熱感知式形状記憶合金使用の換気ガラリT1を附設し、取り込み通気と通気制御の基本常設機能とし、連結状態で連通する小屋裏ゾーンZ2と連携の通気及び通気制御を行うもので、
外気温が一定温度以上の場合に、小屋裏ゾーンZ2の両側の妻壁の基本常設機能の自動開閉式換気ガラリT1と同時に開口し、附設され取り込み通気とした同型式の換気ガラリT1に進入する外気Gが、上記通気層V3の通気路V33を同通気層内の熱気又は湿気を伴う上昇気流g2として経過し、小屋裏ゾーンZ2内に進入し、さらに同ゾーンZ2内の熱気あるいは淀んだ空気を伴い、又は同ゾーンZ2内に直接進入する外気Gとの合流の気流g3として同ゾーンZ2の両妻壁の同換気ガラリT1により通気・排出され、又、外気温が一定温度以下の場合は同時に閉鎖し、外気の進入を自動通気制御するものであり、
前記断熱通気構造体1の床下断熱通気構造UDの床下ゾーンZ3を床下密閉ゾーンZ4とし、通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2と連携して通気及び通気制御を行うべく、同ゾーンZ2と連結し連通する内壁通気構造体WZの下部に、自動開閉式の自然通気制御機器T1を取り込み通気として附設構成し、前記断熱通気構造体1と組み合わせ構成されるという技術的手段を採用した。
Further, in order to solve the above technical problem, the present invention provides an attic zone Z1 of the roof heat insulation ventilation structure YD as the dedicated zone for the normally open ventilation, a hut insulation heat ventilation structure KD or a ventilation as the dedicated zone for the ventilation and ventilation control. The heat insulation ventilation structure 1 is composed of a dedicated ventilation structure for each zone of the attic zone Z2 of the structure KD1 and the underfloor zone Z3 of the underfloor heat insulation ventilation structure UD, and the underfloor zone Z3 and the attic of the exclusive zone for ventilation and ventilation control It is composed of an inner wall ventilation structure WZ that is connected and connected to form a communication ventilation between the underfloor zone Z3 and the hut back zone Z2 in order to perform cooperative ventilation and ventilation control through communication of the zone Z2. Of the heat insulating ventilation structure 1 characterized by
Underfloor zone Z3 under floor concrete specification with moisture-proof construction, the surrounding rise is a heat insulating fabric foundation F1 that is thermally insulated inside with a plate-like heat insulation foam D ', without heat insulation work on the floor base, eliminating underfloor ventilation , A heat insulating ventilation structure 1 ′ that is the underfloor sealed zone Z4 of the underfloor sealed structure in the case of floor heating construction mediated by the underfloor heat source,
The structure according to the exclusive zone as the heat insulating ventilation structure 1 ′ is connected to the structure of the attic zone Z1, the attic zone Z2 and the underfloor sealing zone Z4, and further to the attic zone Z2, and is connected to the inner wall insulative ventilation in the communication state. The inner wall ventilation structure WZ of the structure WD is constituted by the inner wall ventilation structure WZ that forms the ventilation layer V3 with a series of outer peripheral heat insulation ventilation structures WD facing the outer wall, and is linked by communication between the hut back zone Z2 As a ventilation form that performs ventilation and ventilation control of
A fixed quantity is defined at the lower part of the surrounding outer wall wall, penetrates the ventilation layer V2 of the outer wall wall, and faces the outer wall, and the lower wall ventilation of the inner wall heat insulation ventilation structure WD of the inner wall ventilation structure WZ in a continuous state all around the outer wall. Ventilation gallery T1 using heat-sensing shape memory alloy using temperature difference of the same type as the automatic open / close type natural ventilation control device in the back of the hut zone Z2, which opens and closes at a constant upper and lower temperature, which is taken into layer V3 Attached, is a basic permanent function of intake ventilation and ventilation control, performs ventilation and ventilation control in cooperation with the hut back zone Z2 communicating in a connected state,
When the outside air temperature is above a certain level, it opens simultaneously with the automatic opening / closing type ventilation gallery T1 of the basic permanent function of the wife wall on both sides of the attic zone Z2, and enters the same type of ventilation gallery T1 which is attached and used as intake ventilation. The outside air G passes through the ventilation path V33 of the ventilation layer V3 as an ascending air flow g2 accompanied by hot air or moisture in the ventilation layer, enters the hut zone Z2, and further heat or stagnant air in the zone Z2. If the outside air temperature is below a certain temperature, it is ventilated and exhausted by the same ventilation gall T1 on both the walls of the same zone Z2 as an air flow g3 that merges with the outside air G that directly enters the same zone Z2. It closes at the same time and automatically ventilates the outside air.
The underfloor zone Z3 of the underfloor heat insulation ventilation structure UD of the heat insulation ventilation structure 1 is set as an underfloor sealing zone Z4, and the zone Z2 is used to perform ventilation and ventilation control in cooperation with the hut zone Z2 which is a dedicated zone for ventilation and ventilation control. A technical means is adopted in which an automatic opening / closing type natural ventilation control device T1 is provided as an intake ventilation at the lower part of the inner wall ventilation structure WZ that is connected to and communicates with the heat insulation ventilation structure 1.

さらに、また本発明は上記技術的課題を解決するために、当該屋根の形状が四方傾斜状態の場合の屋根裏ゾーンZ1で、四方傾斜状態の屋根断熱通気構造YDと四方一体形状で構成される場合の前記断熱通気構造体1の屋根裏ゾーンZ1の棟部常時通気専用経路Z11に、通気専用棟WTが附設構成され、棟部常時通気専用経路Z12として組み合わせ構成されることを特徴とする屋根裏ゾーンZ1で、又、前記小屋裏ゾーンZ2の通気及び通気制御の基本常設機能が棟部常時通気専用経路Z12に附設構成され、同小屋裏ゾーンZ2の通気及び通気制御の媒介ゾーンとして構成されることを特徴とする屋根裏ゾーンZ1であって、
屋根の長辺方向又は短辺方向の傾斜面に、屋根棟及び妻壁が構成される通気専用棟WTを、棟を中心とし、両側に平行して構築し、屋根裏ゾーンZ1として屋根断熱通気構造YDと一体形状で構成される棟部常時通気専用経路であり、当該専用経路の底面が平面状の一定の幅 e2で最高の高さh2の、四方を連通する屋根通気層V1を形成する屋根断熱通気構造YDと一体形状で形成され又、両端部が両側の通気専用棟WTの妻壁と一体形成とした一連の形状で、長さLとし、棟を含む内部空洞の通気層とし、周囲が一定の厚さの板状の断熱フォームAで小屋裏ゾーンZ2と気密断熱区画された一体箱状の棟部常時通気専用経路Z12として構成され、当該四方傾斜状態の屋根断熱通気構造YDと一体形状で構成されることを特徴とする屋根裏ゾーンZ1であって、
軒天及び同通気専用経路Z12に、軒天換気口Ng、妻面換気ガラリRV及び棟換気口Mの常時開口の自然開放通気機器が基本常設機能として附設構成され、同軒天換気口Ng及び外壁通気層V2より進入する外気G又は上昇気流g0が屋根通気層V1の通気路V11を経過し、同通気専用経路Z12の換気ガラリRV及び棟換気口Mの連携により通気・排出されるものであり、
又、小屋裏ゾーンZ2の通気・排出及び通気制御が、同通気専用経路Z12を媒介しておこなわれるもので、同通気専用経路Z12の左右の最高の高さh2で周囲気密断熱区画された立上り壁部分に、小屋裏ゾーンZ2の通気媒介とする上下一定の温度を定め開閉する温度差利用の熱感知式形状記憶合金使用の自動開閉式の換気ガラリT1、あるいはソーラーエネルギーを主とした設定温度、設定湿度を感知し自動開閉する開閉専用の電気式シャッターK4のいずれかの自動開閉式の自然通気制御機器を最低一台附設とし、小屋裏ゾーンZ2の通気及び通気制御の媒介機能とし、屋根裏ゾーンZ1の基本常設機能として附設構成されることを特徴とするもので、
その通気形態は、床下ゾーンZ3に進入した気流が上昇気流として連通する内壁通気構造体WZの通気層V3の通気路V33を経過し、小屋裏ゾーンZ2内に進入し、上記のいずれかの附設される自動開閉式の自然通気制御機器が一定温度以上で開口し、連通状態となった同通気専用経路Z12内に進入し、常設の常時開口の自然開放通気機器の換気ガラリRV及び棟換気口Mにより通気・排出され又、外気温及び同ゾーンZ2さらに同通気専用経路Z12内の温度が一定以下の場合、床下換気口と同時閉鎖し気流の侵入を自動制御するもので、小屋裏ゾーンZ2の通気及び通気制御が屋根裏ゾーンZ1を媒介し行われることを特徴とし、
さらに、小屋裏ゾーンZ2の通気及び通気制御を媒介して行う上で、自動開閉式の換気ガラリT1あるいは開閉専用の電気式シャッターK4を媒介の機能として、通気専用棟WTと直角方向の同通気専用経路Z12の立ち上り区画壁面に附設する特徴が、底部開閉式ダンパー設置による底部のほこり溜りを因とした開閉の支障をなくすべく解決策とするものであり、又、小屋裏ゾーンZ2の占用面積あるいは同構造体規模に応じた通気効果を得る場合、同常時通気専用経路Z12の最高の高さh2として形成される立ち上り区画壁の両側を取り付け面とし、一定多数の自動開閉式の自然通気制御機器を附設することができることを特徴とし、前記屋根裏ゾーンZ1の屋根の形状が四方傾斜状態となる場合の屋根断熱通気構造YDの同屋根裏ゾーンZ1に通気専用棟WTを附設構成し、前記棟部常時通気専用経路Z11が四方傾斜状態の屋根断熱通気構造YDと四方連通の一体形状の棟部常時通気専用経路Z12として附設構成されるという技術的手段を採用した。
Furthermore, in order to solve the above technical problem, the present invention is an attic zone Z1 in the case where the shape of the roof is in a four-sided inclined state, and a case where the four-sided inclined roof insulating ventilation structure YD and a four-sided integrated shape are formed. The attic zone Z1 is characterized in that a dedicated ventilation passage WT is added to the ridge continuous ventilation route Z11 of the attic zone Z1 of the heat insulating ventilation structure 1 and combined with the ridge continuous ventilation route Z12. In addition, the basic permanent function of ventilation and ventilation control of the attic zone Z2 is attached to the ridge always venting exclusive route Z12, and is configured as a mediation zone for ventilation and ventilation control of the attic zone Z2. A featured attic zone Z1,
A ventilation wing WT consisting of a roof ridge and a wife wall on the inclined surface in the long side direction or short side direction of the roof is constructed in parallel with both sides centering on the ridge, and the roof heat insulation ventilation structure as the attic zone Z1 A roof that forms a roof ventilation layer V1 that communicates in all directions with a constant width e2 having a flat bottom surface and a maximum height h2. A series of shapes that are formed integrally with the heat insulating ventilation structure YD and that both ends are formed integrally with the end walls of the ventilation wing WT on both sides, the length L, and the ventilation layer of the internal cavity including the building, Is formed as a single box-shaped ridge always ventilating exclusive path Z12, which is a plate-shaped heat insulation foam A having a certain thickness and is hermetically insulated from the attic zone Z2, and is integrated with the roof heat insulation ventilation structure YD in the four-sided inclined state. A roof characterized by comprising a shape A zone Z1,
In the eaves and the dedicated ventilation route Z12, the eaves ventilation port Ng, the wife ventilating gallery RV, and the building ventilation port M are always open and naturally open as a basic permanent function. The outside air G or the rising air flow g0 entering from the outer wall ventilation layer V2 passes through the ventilation channel V11 of the roof ventilation layer V1, and is ventilated and discharged by the cooperation of the ventilation gallery RV and the building ventilation port M of the ventilation channel Z12. Yes,
In addition, the ventilation / discharge and ventilation control of the hut back zone Z2 is performed through the ventilation dedicated path Z12, and the surrounding air-tight heat insulation section is divided at the maximum left and right heights h2 of the ventilation dedicated path Z12. Automatic opening / closing type ventilation gallery T1 using heat-sensitive shape memory alloy that uses a temperature difference that opens and closes by setting a constant upper and lower temperature through the ventilation of the attic zone Z2 on the wall part, or set temperature mainly using solar energy At least one automatic opening / closing type natural ventilation control device for opening and closing dedicated electric shutter K4 that senses the set humidity and automatically opens and closes, and serves as a mediation function for ventilation and ventilation control in the attic zone Z2, It is constructed as a basic permanent function of zone Z1,
The ventilation form passes through the ventilation path V33 of the ventilation layer V3 of the inner wall ventilation structure WZ in which the airflow entering the underfloor zone Z3 communicates as the rising airflow, enters the hut back zone Z2, The automatic opening / closing type natural ventilation control device opens at a certain temperature or more and enters into the ventilation dedicated route Z12 which is in a communication state, and the ventilation louver RV and the building ventilation opening of the permanent open natural ventilation device which is always open If the outside air temperature and the zone Z2 and the temperature in the dedicated ventilation route Z12 are below a certain level, the airflow is closed simultaneously with the underfloor vent and the intrusion of airflow is automatically controlled. The ventilation and ventilation control is performed through the attic zone Z1,
In addition, the ventilation in the hut zone Z2 and the ventilation control are performed as an intermediary function of the automatic opening / closing type ventilation gallery T1 or the opening / closing dedicated electric shutter K4. The feature attached to the rising section wall of the exclusive route Z12 is a solution to eliminate the trouble of opening and closing due to dust accumulation at the bottom by installing the bottom opening and closing type damper, and the occupied area of the hut back zone Z2 Alternatively, in order to obtain a ventilation effect corresponding to the same structure size, both sides of the rising partition wall formed as the maximum height h2 of the normal ventilation dedicated path Z12 are used as attachment surfaces, and a certain number of automatic open / close natural ventilation controls. A device can be provided, and the attic zone of the roof heat insulating ventilation structure YD when the roof shape of the attic zone Z1 is in a four-sided inclined state. Z1 is equipped with a dedicated ventilation wing WT, and the ridge continuous ventilation path Z11 is configured as a four-way slanted roof insulation ventilation structure YD and a four-way integrated ridge continuous ventilation path Z12. Adopted technical means.

更にまた本発明は上記技術的課題を解決するために、前記断熱通気構造体1の専用ゾーン別通気構造で常時開放通気の専用ゾーンとする屋根裏ゾーンZ1を構成するにあたり、
当該屋根裏ゾーンZ1として構成される屋根断熱通気構造YDが、異なる屋根の通気形態と異なる屋根の通気構造形態の組み合わせ選択施工で構成されることを特徴とするもので、施工する外壁Уの通気構法による施工別屋根通気形態と、屋根の断熱通気の施工別屋根通気構造形態の組み合わせにより構成される屋根断熱通気構造YDであり、
当該屋根断熱通気構造YDの常時開口の自然開放通気機器の軒天換気口Ngからの外気Gの進入による軒天通気、及び外壁Уの通気構法別の外壁通気路V22を経過する進入した外気の通気形態の如何による屋根通気形態と、屋根下葺材Nと小屋裏を屋根断熱フォームAで気密断熱区画し、屋根通気層V1を形成すべく屋根断熱施工別の屋根通気構造形態で、
当該屋根の通気形態をA1とする場合の、外壁Уの施工を軒天通過型の通気構法k1とし、軒天通気、外壁通気を共に伴う場合、又、屋根の通気形態をA2とする場合の、外壁yの施工を軒天不通過型の通気構法k2とし、外壁yの上方を開放通気の状態とし、外壁通気を伴わない軒天通気のみの場合等、屋根の通気形態がA1又はA2から成る屋根断熱通気構造YDと、
又、当該屋根の通気構造形態をB1とする場合の屋根の気密断熱施工で、一定の厚さの板状の屋根断熱フォームAを垂木下の母屋間気密断熱施工とし、垂木間を通気層として屋根下葺材Nと屋根通気層V1を形成する場合であり、又、屋根の通気構造形態をB2とする場合の屋根の気密断熱施工で、一定の厚さの板状の屋根断熱フォームAを垂木間または垂木間と垂木上にも密接施工する場合の、いずれかかの通気下地を伴う気密断熱施工とし、屋根下葺材Nと屋根通気層V1を形成する場合で、屋根の通気構造形態がB1又はB2から成る屋根断熱通気構造YDの屋根裏ゾーンZ1であって、
当該屋根裏ゾーンZ1が屋根の通気形態A1又はA2と、屋根の通気構造形態B1又はB2の組み合わせ選択施工として構成されるという技術的手段を採用した。
Furthermore, in order to solve the above technical problem, the present invention constitutes an attic zone Z1 which is a dedicated zone for always open ventilation in the dedicated zone-specific ventilation structure of the heat insulating ventilation structure 1.
The roof heat insulation ventilation structure YD configured as the attic zone Z1 is configured by a combination selection construction of a different roof ventilation structure and a different roof ventilation structure form. It is a roof insulation ventilation structure YD configured by a combination of roof ventilation form according to construction and roof ventilation structure form according to construction of insulation ventilation of the roof,
The eaves of the outside through the eaves of the outdoor air G from the eaves vent Ng of the normally open naturally ventilating equipment of the roof heat insulation ventilation structure YD, and the outside air that has passed through the outer wall ventilation path V22 according to the ventilation construction method of the outer wall fence. In the roof ventilation structure according to the roof insulation construction to form the roof ventilation layer V1 by dividing the roof ventilation form according to the ventilation form, the roof underneath material N and the hut back with the heat insulation foam A, and forming the roof ventilation layer V1,
In the case where the ventilation form of the roof is A1, the construction of the outer wall fence is the eave-top passage type ventilation construction method k1, and when both the eave ceiling ventilation and the outer wall ventilation are accompanied, or the roof ventilation form is A2. The construction of the outer wall y is the eaves-topless ventilation structure k2, the upper part of the outer wall y is in the open ventilation state, and the roof ventilation mode is from A1 or A2 only in the eaves ventilation with no outer wall ventilation. A roof insulation ventilation structure YD comprising:
In addition, in the case of airtight heat insulation construction of the roof when the ventilation structure form of the roof is B1, the plate-like roof heat insulation foam A of a certain thickness is made airtight heat insulation construction between the purlins under the rafters, and the space between the rafters is made as a ventilation layer In the case where the roof underfloor material N and the roof ventilation layer V1 are formed, and the roof ventilation structure is set to B2, the roof of the roof is hermetically insulated. In the case of close construction between the rafters or between the rafters and on the rafters, it is an airtight insulation construction with any ventilation base, and the roof underfloor material N and the roof ventilation layer V1 are formed. Or the attic zone Z1 of the roof insulation ventilation structure YD made of B2,
The technical means that the attic zone Z1 is configured as a combination selection construction of the roof ventilation form A1 or A2 and the roof ventilation structure form B1 or B2.

更にまた本発明は上記技術的課題を解決するために、常時開放通気の専用ゾーンの屋根裏ゾーンZ1と通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2及び床下ゾーンZ3の、又、両ゾーンの連通による連携の通気及び通気制御とする断熱通気構造体1の専用ゾーン別ハイブリッド通気及び通気制御を行うにあたり、
当該通気及び通気制御に用いる屋根裏ゾーンZ1の常時開口の自然開放通気機器と小屋裏ゾーンZ2及び床下ゾーンZ3の自動開閉式の自然通気制御機器の専用ゾーン別基本常設機能に、補助として、ソーラーエネルギーを主とする設定温度、設定湿度を感知して自動運転・停止する自動制御の換気ファンを附設機能とし、又、同換気ファンを自動制御する太陽光発電を供給する装置の太陽電池パネルE0を設置し、ソーラーエネルギーを主として自動運転・停止を制御するコントローラCR、温度スイッチTS、湿度スイッチHS及び連動運転と夜・雨天時の家庭用電源の自動切換えのリレーユニットRUから構成される制御装置を専用ゾーン別とし、屋根裏ゾーンZ1に附設される換気ファンK1と制御装置YC、小屋裏ゾーンZ2及び間近に連結される内壁通気構造体WZの上部に附設される換気ファンK2と同一制御装置KC、さらに、床下ゾーンZ3に附設される床下専用換気ファンK3と制御装置UCとして附設し、専用ゾーン別ハイブリッド通気制御機能として構成し、混用して通気及び通気制御を行うことを特徴とする断熱通気構造体1の専用ゾーン別ハイブリッド通気及び通気制御の方法であり、
当該屋根裏ゾーンZ1のハイブリッド通気機能KC−1とし、軒天換気口Ng、妻面換気ガラリRV及び棟換気口Mの基本常設機能に自動制御の換気ファンK1を附設構成し混用する通気促進機能であって、屋根裏ゾーンZ1の棟部常時通気専用経路Z11の両側の妻面壁に妻面換気ガラリRV及び棟に棟換気口Mが常設され、同通気専用経路Z11内の常時直接外気Gの進入、通気、排出を促し、又、軒天換気口Ng又は外壁通気層V2より進入する外気G又は気流g1が屋根通気層V1の屋根通気路V11を合流して経過し、屋根通気層V1内の熱気、湿気を含み同通気専用経路Z11内に進入した合流の上昇気流g1の排出を促すものであって、外部の自然気流の進入を主とする通気、排出であり、又、補助として自動制御の換気ファンK1を同通気専用経路Z11の両側妻面壁のいずれか一方に附設し、同通気専用経路Z11内の設定温度、設定湿度を、温度センサーTC、湿度センサーHCが感知し、同通気専用経路Z11内の中央よりパイプダクトP1にて吸引し、自動運転で通気及び気流の排出を強制的に行い、設定以下で自動停止するもので、屋根裏ゾーンZ1内の常時通気の状態と、促進を計り、且つ外気流の状態にとらわれず、自然と強制の両用の機能を混用し、通気を促進することを特徴とする屋根裏ゾーンZ1のハイブリッド通気促進の方法であり、又、
当該小屋裏ゾーンZ2のハイブリッド通気及び通気制御機能KC−2とし、自動開閉式自然通気制御機器の上下一定の温度を定め開閉する、温度差利用の熱感知式形状記憶合金使用の換気ガラリT1の基本常設機能に、自動制御の換気ファンK2を附設構成し混用する通気及び通気制御機能であって、同小屋裏ゾーンZ2の両側の妻壁に基本常設機能の自動開閉式の自然通気制御機器の換気ガラリT1が常設され、連通する床下ゾーンZ3の同自動開閉式の自然通気制御機器の床下換気口T1と連携の通気及び通気制御を行うもので、自然気流の進入による通気を主とし、外気温が一定温度以上の場合開口し、同ゾーンZ2内に直接外気Gの進入と通気・排出を促し、連通状態の床下ゾーンZ3より上昇する気流g2が内壁通気構造体WZの通気層V3の通気路V33を経過し小屋裏ゾーンZ2内に進入経過し、開放状態の同換気ガラリT1が同ゾーンZ2内の気流と合流の気流g4の排出を促すもので、又、一定温度以下の場合閉鎖し、外気Gの進入を自動通気制御するものであり、又、補助として同ゾーンZ2内の設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し、同ゾーンZ2内の中央よりパイプダクトP2にて吸引する自動制御の換気ファンK2が同ゾーンZ2の両側妻壁のいずれか一方に附設し、又、近接の連結される外壁周囲の内壁通気構造体WZの上部に附設する同型式の換気ファンK2が同通気構造体WZの通気層V3内の設定温度、設定湿度を温度センサーTC、湿度センサーHCにて感知し、自動運転し同通気層V3内の通気及び気流の排出を強制的に行い、設定以下で自動停止するもので、一定の温度、湿度の上昇を自動制御し、且つ、外気温が一定温度以下で閉じ、外気の進入を自動通気制御する、自然と強制の両用の機能を混用し、通気を促進し、又、通気制御を行うことを特徴とする小屋裏ゾーンZ2のハイブリッド通気及び通気制御の方法であって、
又、当該床下ゾーンZ3のハイブリッド通気及び通気制御機能KC−3とし、上記小屋裏ゾーンZ2同様、自動開閉式の自然通気制御機器の温度差利用の熱感知式形状記憶合金使用の床下換気口T1の基本常設機能に、自動制御の床下専用換気ファンK3を附設構成し混用する通気制御機能であって、立ち上り断熱布基礎F1の周囲に一定の数量を定め常設する基本常設機能の自動開閉式の自然通気制御機器の床下換気口T1が、連通する小屋裏ゾーンZ2の同自動開閉式の自然通気制御機器の換気ガラリT1と連携を行うもので、外気温が一定温度以上の場合開口し、同ゾーンZ3内に直接外気Gの進入と通気、排出を促し、又同ゾーンZ3内の進入経過する気流が上昇気流g2として、連通する内壁通気構造体WZの通気層V3の通気路V33を経過し、上部の小屋裏ゾーンZ2へ上昇気流g3として導かれる連携の通気形態であり、又、一定温度以下の場合閉鎖し、外気Gの進入を自動通気制御するものであり、さらに、補助として立ち上り断熱布基礎F1に一定の数量を定め附設する自動制御の床下専用換気ファンK3は、当該床下ゾーンZ3内の湿度状況対応とするもので、設定湿度を湿度センサーHCが感知し、同ゾーンZ3内の中央よりパイプダクトP3にて吸引し、自動運転で通気、排出を強制的に行い、設定以下で自動停止するもので、一定の湿度の上昇を自動制御し、又は上下一定の外気温度で開閉し、一定の温度以下で外気の進入を自動閉鎖する、自然と強制の両用の機能を混用し、通気を促進し、又通気制御を行うことを特徴とする床下ゾーンZ3のハイブリッド通気及び通気制御の方法であり、
専用ゾーン別通気構造から構成され、又、常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーンから構成される断熱通気構造体1の通気及び通気制御を行うにあたり、常時開口の自然開放通気機器と自動開閉式の自然通気制御機器の専用ゾーン別基本常設機能に、補助としてソーラーエネルギーを主とし、自動制御装置を用いた自動制御の換気ファンを専用ゾーン別に附設し、専用ゾーン別ハイブリッド通気及び通気制御機能として構成し、混用して通気及び通気制御を行うという技術的手段を採用した。
Furthermore, in order to solve the above technical problem, the present invention provides communication between the attic zone Z1, which is a dedicated zone for normally open ventilation, the attic zone Z2, and the underfloor zone Z3, which are dedicated zones for ventilation and ventilation control. In carrying out hybrid ventilation and ventilation control for each dedicated zone of the heat insulating ventilation structure 1 to be linked ventilation and ventilation control by
As a supplement to the basic permanent function for each dedicated zone of the naturally open ventilating device that is always open in the attic zone Z1 and the automatic opening and closing type natural venting control device in the attic zone Z2 and the underfloor zone Z3 used for the ventilation and ventilation control It is equipped with an automatically controlled ventilation fan that senses the set temperature and humidity, and automatically operates and stops, and the solar panel E0 of the device that supplies photovoltaic power generation that automatically controls the ventilation fan. Installed controller that consists of a controller CR, temperature switch TS, humidity switch HS, and automatic operation / stop switching of household power supply during night and rain. Ventilation fan K1 and control device YC attached to the attic zone Z1, and the attic zone Z2 The same control device KC as the ventilation fan K2 attached to the upper part of the inner wall ventilation structure WZ connected nearby, and the underfloor dedicated ventilation fan K3 attached to the underfloor zone Z3 and the control device UC It is a hybrid ventilation control function, and is a hybrid ventilation and ventilation control method for each dedicated zone of the heat insulating ventilation structure 1 that is mixed and performs ventilation and ventilation control.
It is a hybrid ventilation function KC-1 of the attic zone Z1, and the ventilation promotion function that mixes the automatic ventilation fan K1 with the basic permanent function of the eaves ventilation port Ng, the wife ventilation gallery RV, and the building ventilation port M. In the attic zone Z1, the ridge ventilation passage R11 on both sides of the ridge always ventilating exclusive route Z11 and the ridge ventilation port M are permanently installed in the ridge, and the ridge ventilation opening M is always in the ventilation exclusive route Z11. Ventilation and exhaust are promoted, and the outside air G or the air flow g1 entering from the eaves vent Ng or the outer wall ventilation layer V2 passes through the roof ventilation passage V11 of the roof ventilation layer V1 and passes, and the hot air in the roof ventilation layer V1 passes. , Which encourages the discharge of the combined updraft g1 that contains moisture and entered into the ventilation dedicated path Z11, and is mainly for the ventilation and discharge mainly for the entrance of an external natural airflow. Ventilation fan K1 is attached to either one of the side walls on both sides of the ventilation path Z11, and the temperature sensor TC and humidity sensor HC sense the set temperature and humidity in the ventilation path Z11, and the ventilation path Z11 Is sucked from the center of the pipe duct P1, forcibly vents and discharges air by automatic operation, automatically stops below the setting, measures the state of continuous ventilation in the attic zone Z1, and promotes it, and It is a hybrid ventilation promotion method for the attic zone Z1, characterized by promoting the ventilation by mixing both natural and forced functions without being bound by the state of the external airflow,
The ventilation and ventilation control function KC-2 of the hut back zone Z2 is used as a ventilation gallery T1 using a temperature-sensitive heat-sensitive shape memory alloy that opens and closes a constant temperature of an automatic open / close natural ventilation control device. Ventilation and ventilation control function that mixes the basic permanent function with an automatically controlled ventilation fan K2, which is a natural ventilation control device that opens and closes the basic permanent function on the side wall on both sides of the hut back zone Z2. Ventilation gallery T1 is permanently installed and performs ventilation and ventilation control in conjunction with the underfloor ventilation port T1 of the automatic open / close type natural ventilation control device in the communicating underfloor zone Z3. When the air temperature is above a certain temperature, it opens and prompts the outside air G to enter and ventilate / exhaust directly into the zone Z2, and the airflow g2 rising from the communicating under-floor zone Z3 is generated in the inner wall vent structure WZ. After passing through the air passage V33 of the air layer V3 and entering the hut back zone Z2, the open ventilation gallery T1 promotes the discharge of the air flow g4 combined with the air flow in the zone Z2, and at a constant temperature. In the following cases, it is closed and the automatic ventilation control is performed for the ingress of the outside air G, and as a supplement, the temperature sensor TC and the humidity sensor HC sense the set temperature and set humidity in the zone Z2, and the zone Z2 An automatically controlled ventilation fan K2 that sucks in the pipe duct P2 from the center is attached to either side wall of the same zone Z2, and is attached to the upper part of the inner wall ventilation structure WZ around the adjacent connected outer wall. The same type of ventilation fan K2 senses the set temperature and set humidity in the ventilation layer V3 of the ventilation structure WZ with the temperature sensor TC and the humidity sensor HC, and automatically operates to control the ventilation and airflow in the ventilation layer V3. Excretion It automatically stops at or below the setting, automatically controls the rise of constant temperature and humidity, closes outside temperature below a certain temperature, and automatically controls the entry of outside air. A method of hybrid ventilation and ventilation control in the attic zone Z2, characterized by mixing the functions of both, promoting ventilation and controlling ventilation,
Also, the hybrid ventilation and ventilation control function KC-3 of the underfloor zone Z3 is used, and the underfloor ventilation port T1 using a heat-sensitive shape memory alloy using the temperature difference of the automatic open / close type natural ventilation control device as in the hut zone Z2. The basic permanent function is an air-control function that mixes and mixes an automatically controlled underfloor ventilation fan K3. The basic permanent function is an automatic opening and closing type that establishes a fixed quantity around the rising heat insulation fabric foundation F1. Underfloor ventilation port T1 of the natural ventilation control device cooperates with the ventilation gallery T1 of the automatic opening and closing natural ventilation control device in the back hut zone Z2 that communicates, and opens when the outside air temperature is above a certain temperature. The ventilation path V3 of the inner wall ventilation structure WZ that communicates as the rising airflow g2 is urged to enter, ventilate and exhaust the outside air G directly into the zone Z3. 33 is a cooperative ventilation mode that is led as an updraft g3 to the upper shed zone Z2 after passing through 33, is closed when the temperature is below a certain temperature, and automatically controls the entry of outside air G, The automatic underfloor ventilation fan K3, which is fixedly attached to the rising insulation cloth foundation F1 as an auxiliary, is adapted to the humidity situation in the underfloor zone Z3. The humidity sensor HC detects the set humidity and The air is sucked from the center of the zone Z3 through the pipe duct P3, and is automatically forced to ventilate and discharge, and automatically stops below the set value. The underfloor zone Z3 is characterized by opening and closing at a temperature, automatically closing the entrance of outside air below a certain temperature, using both natural and forced functions, promoting ventilation and controlling ventilation. A method for the lid vent and vent control,
Naturally ventilating equipment that is always open when performing ventilation and ventilation control of the heat insulating ventilation structure 1 that is configured by a ventilation structure for each dedicated zone and that is configured by a dedicated zone for normally open ventilation and a dedicated zone for ventilation and ventilation control. In addition to the basic permanent function for each dedicated zone of the natural ventilation control device with automatic opening and closing, solar energy is mainly used as an auxiliary, and an automatic control ventilation fan using an automatic control device is attached for each dedicated zone, It was configured as an air flow control function, and a technical means was used to mix and perform air flow and air flow control.

更にまた本発明は上記技術的課題を解決するために、前記請求項3記載の屋根の形状が四方傾斜状態の場合の屋根裏ゾーンZ1の通気及び通気制御機能が、小屋裏ゾーンZ2の通気及び通気制御を媒介する共用の通気及び通気制御の機能であって、屋根裏ゾーンZ1に位置し、専用ゾーン別ハイブリッド通気及び通気制御機能KC−4又は、ハイブリッド通気及び通気制御機能KC−5として構成されることを特徴とする、屋根裏ゾーンZ1と小屋裏ゾーンZ2共用のハイブリッド通気及び通気制御の方法であって、常時開放通気の専用ゾーンとする屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御とすべく、
当該屋根裏ゾーンZ1の基本常設機能の常時開口の自然開放通気機器以外に、小屋裏ゾーンZ2の屋根裏ゾーンZ1への取り込み通気媒介とする、通気及び通気制御の自動開閉式の自然通気制御機器又は開閉専用の電気式シャッターK4を附設した屋根裏ゾーンZ1の基本常設機能とし、補助としてソーラーエネルギーを主とする設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し、自動運転・停止する自動制御の換気ファンを附設機能とし、混用して通気及び通気制御を行う、ハイブリッド通気及び通気制御を特徴としたもので、
又、当該換気ファンを自動制御する制御装置が、太陽光発電を供給する装置の太陽電池パネルE0を設置し、ソーラーエネルギーを主として自動運転・停止を自動制御するコントローラCR、温度スイッチTS、湿度スイッチHS及び連動運転と夜・雨天時の家庭用電源の自動切換のリレーユニットRUから構成され、屋根裏ゾーンZ1の棟部常時通気専用経路Z12に附設される換気ファンK1の制御装置YC、及び小屋裏ゾーンZ2専用の換気ファンK2の制御装置KCとして附設されるものであり、
当該屋根裏ゾーンZ1に位置し、屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御を行うにあたり、ハイブリッド通気及び通気制御機能KC−4として構成される特徴が、
当該屋根裏ゾーンZ1の常時開口の自然開放通気機器と、小屋裏ゾーンZ2の通気及び通気制御を行う屋根裏ゾーンZ1の棟部常時通気専用経路Z12に附設される同通気専用経路Z12と小屋裏ゾーンZ2の通気媒介の自動開閉式の自然通気制御機器を屋根裏ゾーンZ1の基本常設機能とし、さらに補助としてソーラーエネルギーを主とし、設定温度、設定湿度を感知し、自動運転・停止する自動制御の換気ファンK1を同通気専用経路Z12内のいずれか一方に附設し、且つ、同換気ファンK1のパイプダクトP1を分岐し、一方は同通気専用経路Z12内の中央に、一方は貫通挿入し小屋裏ゾーンZ2内へ装着し、同ゾーンZ2と屋根裏ゾーンZ1を同時に通気、換気するものであり、両ゾーンの通気及び通気制御を自然と強制の両機能を混用し行うゾーン別ハイブリッド通気及び通気制御機能KC−4であって、両ゾーン共用の通気及び通気制御機能であり、
当該屋根裏ゾーンZ1の棟部常時通気専用経路Z12の両側の通気専用棟WTの妻壁に常設する常時開口の自然開放通気機器の換気ガラリRVと棟の換気口Mは、連携する通気排出機能で、同通気専用経路Z12内の常時直接外気Gの進入、通気、排出を促し、さらに軒天換気口Ng又は外壁通気層V2より進入する外気G及び上昇気流g0が屋根通気路V11を合流して経過し、同通気専用経路Z12内に進入した合流の上昇気流g1の通気、排出を促すものであって、
又、小屋裏ゾーンZ2と気密断熱区画された同通気専用経路Z12の最高の高さh2とした部分に、同小屋裏ゾーンZ2と同通気専用経路Z12との通気媒介とする自動開閉式で温度差利用の熱感知式形状記憶合金使用の自然通気制御機器の換気ガラリT1もしくは、自動開閉式の開閉専用電気式シャッターK4のいずれかを最低一台附設するものとし、同機能を屋根裏ゾーンZ1の基本常設機能に附設構成とするものであり、一定の温度以上の場合開口し、小屋裏ゾーンZ2と連通する床下ゾーンZ3に進入した外気Gが上昇気流g2として連通の内壁通気構造体WZの通気路V33を経過し、同ゾーンZ2に進入経過し、開口状態の自動開閉式の自然通気制御機器を媒介し、連通状態となった同通気専用経路Z12に進入し、常設機能の換気ガラリRV又は棟換気口Mの連携により通気・排出され、又一定温度以下で閉鎖し、同通気専用経路Z12の気流及び進入外気Gの同小屋裏ゾーンZ2内への進入を自動通気制御するものであり、又、さらに、補助としてソーラーエネルギーを主とし、附設する同通気専用経路Z12内への自動制御の換気ファンK1のパイプダクトP1を分岐し、一方は同通気専用経路Z12の中央に、一方は貫通挿入し、小屋裏ゾーンZ2内へ装着し両ゾーンの設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し、自動運転し、通気排出され、又、設定以下で停止するもので、両ゾーンの通気及び通気制御を自然と強制の両機能を混用し専用ゾーン別通気及び通気制御を行うゾーン別ハイブリッド通気及び通気制御機能KC−4であり、
又、当該屋根裏ゾーンZ1に位置し、屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御を行うハイブリッド通気及び通気制御機能KC−5とした場合の特徴として、上記ハイブリッド通気及び通気制御機能KC−4の機能をそのままに、さらに、屋根裏ゾーンZ1へ小屋裏ゾーンZ2専用の通気制御機能として附設する自動制御の換気ファンK1と同型式の小屋裏ゾーンZ2内の設定温度、設定湿度を感知し、自動運転・停止の自動制御の換気ファンK2を換気ファンK1の附設位置と反対側へ附設し、常時通気専用経路Z12の底面を貫通挿入し同ゾーンZ2専用のパイプダクトP2を装着し、同ゾーンZ2に分岐配管し吸引する換気ファンK1と換気ファンK2による自動制御の強制機能と自然機能の両機能を混用し共用して通気を促進し、又、通気制御を行うことを特徴とするハイブリッド通気及び通気制御機能KC−5であって、上記ハイブリッド通気及び通気制御機能KC−4同様、屋根裏ゾーンZ1と小屋裏ゾーンZ2共用の通気及び通気制御機能を特徴とするものであり、常時開放通気の専用ゾーンとする屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする小屋裏ゾーンZ2として、屋根の形状が四方傾斜状態の場合の専用ゾーン別通気及び通気制御にあたり、屋根裏ゾーンZ1に位置する通気及び通気制御の両機能が小屋裏ゾーンZ2の通気及び通気制御を媒介し、又、同機能が両ゾーンに共用する常時開口の自然開放通気機器と自動開閉式の自然通気制御機器を基本常設機能とした自然気流対象機能と、ソーラーエネルギーを主とし、自動制御装置を用いた自動制御の換気ファンの両機能を混用する屋根裏ゾーンZ1と小屋裏ゾーンZ2の共用するハイブリッド通気及び通気制御機能KC−4又はハイブリッド通気及び通気制御機能KC−5であり、
屋根裏ゾーンZ1及び小屋裏ゾーンZ2の通気及び通気制御が、ハイブリッド通気及び通気制御機能KC−4又は同機能KC−5として屋根裏ゾーンZ1に附設構成され行われるという技術的手段を採用した。
Further, in order to solve the above technical problem, the present invention provides the ventilation and ventilation control function of the attic zone Z1 when the roof shape is in a four-sided inclined state. A common ventilation and ventilation control function that mediates control, and is located in the attic zone Z1 and is configured as a hybrid ventilation and ventilation control function KC-4 or a hybrid ventilation and ventilation control function KC-5 for each dedicated zone A hybrid ventilation and ventilation control method shared by the attic zone Z1 and the attic zone Z2, characterized in that the attic zone Z1 is a dedicated zone for always open ventilation, and the attic is a dedicated zone for ventilation and ventilation control. In order to control the ventilation and ventilation for each zone in zone Z2,
In addition to the naturally open ventilator that is always open for the basic permanent function of the attic zone Z1, the natural ventilator or the automatic ventilator that automatically opens and closes the ventilator and ventilator that uses the ventilator Z2 in the attic zone Z1 as a ventilation medium Automatic control that automatically operates / stops with the temperature sensor TC and humidity sensor HC detecting the set temperature and set humidity mainly using solar energy as an auxiliary function as the basic permanent function of the attic zone Z1 with a dedicated electric shutter K4. It is characterized by the hybrid ventilation and ventilation control, which uses the ventilation fan as an additional function, and mixes and controls ventilation and ventilation.
In addition, the control device for automatically controlling the ventilation fan is installed with a solar battery panel E0 of a device for supplying solar power generation, and a controller CR, temperature switch TS, humidity switch for automatically controlling solar energy mainly for automatic operation / stop. A control unit YC for the ventilation fan K1, which is composed of a relay unit RU for HS and interlocking operation and automatic switching of household power supply in the night and rain, and attached to the ridge normal ventilation route Z12 in the attic zone Z1, and the attic It is attached as a control device KC for the ventilation fan K2 dedicated to the zone Z2,
In the attic zone Z1, in order to perform ventilation and ventilation control by dedicated zone of the attic zone Z1 and the attic zone Z2, the characteristics configured as a hybrid ventilation and ventilation control function KC-4,
A naturally open ventilating device that is normally open in the attic zone Z1, and a ventilation exclusive route Z12 and an attic zone Z2 that are attached to the ridge continuous ventilation exclusive route Z12 of the attic zone Z1 that controls ventilation and ventilation in the attic zone Z2. The automatic ventilation fan that automatically operates and stops by sensing the set temperature and set humidity mainly by using solar energy as an auxiliary function, with the natural ventilation control device of the automatic opening and closing type mediated by the ventilation system as the basic permanent function of the attic zone Z1 K1 is attached to one of the ventilation-only paths Z12, and the pipe duct P1 of the ventilation fan K1 is branched, one is inserted into the center of the ventilation-only path Z12, and one is penetrated to enter the hut back zone. Installed in Z2, ventilates and ventilates the same zone Z2 and attic zone Z1 at the same time. A zone-specific hybrid ventilation and venting control function KC-4 to mix the performing a ventilating and venting control functions of both zones shared,
The ventilation gallery RV of the normally open naturally-opening ventilation device and the ventilation opening M of the ridge that are permanently installed in the end wall of the ventilation dedicated building WT on both sides of the ridge continuous ventilation dedicated route Z12 in the attic zone Z1 are linked with the ventilation discharge function. In addition, the direct passage of outside air G in the ventilation exclusive route Z12 is always urged to enter, ventilate, and discharge, and the outside air G and the rising air flow g0 entering from the eaves vent Ng or the outer wall ventilation layer V2 join the roof ventilation passage V11. Elapsed and urged to vent and discharge the converging ascending air flow g1 that entered the ventilation-only path Z12,
In addition, in the part with the highest height h2 of the ventilation zone Z12 that is hermetically insulated from the cabin zone Z2, the temperature is automatically opened and closed using the ventilation between the cabin zone Z2 and the ventilation route Z12. At least one of the ventilation gallery T1 of the natural ventilation control device using the heat sensing type memory alloy of difference utilization or the electric shutter K4 dedicated to automatic opening and closing is attached, and the same function is provided in the attic zone Z1. It is an additional component to the basic permanent function, and is opened when the temperature is higher than a certain temperature, and the outside air G that has entered the under-floor zone Z3 that communicates with the hut zone Z2 is ventilated through the communicating inner wall ventilation structure WZ as the rising air flow g2. Passing through the route V33, entering into the same zone Z2, passing through an open / closed natural ventilation control device, and entering the communication-only route Z12 in a communicating state, Ventilation / exhaust by the cooperation of the air louver RV or the building ventilation port M, and it closes below a certain temperature, and automatically controls the ventilation of the air flow in the ventilation exclusive route Z12 and the approaching outside air G into the cabin back zone Z2. In addition, solar energy is mainly used as an auxiliary, and the pipe duct P1 of the automatically controlled ventilation fan K1 into the dedicated ventilation path Z12 is branched, and one of them is in the center of the ventilation dedicated path Z12. One is inserted through and installed in the hut zone Z2, and the temperature sensor TC and humidity sensor HC detect the set temperature and set humidity of both zones, and automatically operate, ventilate and exhaust, and stop below the setting. The zone-specific hybrid ventilation and ventilation control function KC-4, which performs both ventilation and ventilation control in both zones, using both natural and forced functions to perform ventilation and ventilation control by dedicated zone. ,
Further, the hybrid ventilation and ventilation control function KC-5, which is located in the attic zone Z1 and performs the ventilation and ventilation control for each exclusive zone of the attic zone Z1 and the attic zone Z2, is characterized by the above hybrid ventilation and ventilation control. While maintaining the function of function KC-4, the set temperature and humidity in the attic zone Z2 of the same model as the automatic control ventilation fan K1 that is added to the attic zone Z1 as a ventilation control function dedicated to the attic zone Z2 A ventilation fan K2 for automatic control of automatic operation / stop is installed on the opposite side of the installation position of the ventilation fan K1, and the bottom of the dedicated ventilation path Z12 is always inserted and a pipe duct P2 dedicated to the zone Z2 is installed. Both the forced and automatic functions of the automatic control by the ventilation fan K1 and the ventilation fan K2 that branch piping into the zone Z2 and suction are mixed. The hybrid ventilation and ventilation control function KC-5, which is commonly used to promote ventilation and control ventilation, and is similar to the hybrid ventilation and ventilation control function KC-4, and the attic zone Z1 and the cabin. Features a ventilation and ventilation control function shared by the back zone Z2, and has an attic zone Z1 as a dedicated zone for always open ventilation, and a hut zone Z2 as a dedicated zone for ventilation and ventilation control. In the ventilation and ventilation control for each dedicated zone in the inclined state, the ventilation and ventilation control functions located in the attic zone Z1 mediate the ventilation and ventilation control of the attic zone Z2, and the functions are shared by both zones. A natural airflow target function that uses a naturally open ventilating device that is always open and an automatically opening and closing natural ventilation control device as a basic permanent function, and solar energy The hybrid ventilation and ventilation control function KC-4 or the hybrid ventilation and ventilation control function KC-5 shared by the attic zone Z1 and the attic zone Z2 that use both functions of the automatically controlled ventilation fan using the automatic control device. ,
The technical means was adopted that the ventilation and ventilation control of the attic zone Z1 and the attic zone Z2 is performed by being added to the attic zone Z1 as the hybrid ventilation and ventilation control function KC-4 or the function KC-5.

本発明に係る専用ゾーン別通気構造から構成される断熱通気構造体及び同構造体の専用ゾーン別ハイブリッド通気及び通気制御の方法にあっては、常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーン別通気構造から構成される断熱通気構造体であり、夏の直射日光を浴びる過酷な条件と、冬の積雪による内、外の温度差の厳しい屋根部分を、常時開放通気専用ゾーンの屋根裏ゾーンとし、又、小屋裏部分、床下部分を冬の保温を考慮した通気及び通気制御の専用ゾーンの小屋裏ゾーン及び床下ゾーンとし、連通した、連携の通気及び通気制御を行うとしたもので、又、特に特徴とする常時開放通気の専用ゾーンとした屋根裏ゾーンを通気及び通気制御の専用ゾーンと気密断熱区画し、双方の干渉をなくし、常時開放通気の屋根通気層とした上でさらに、屋根棟部に同通気層と一体形成の通気・排出専用の一連の経路の棟部常時通気専用経路を構成し、棟換気口のみならず、両妻壁にも自然開放通気機器を附設することで、軒天通気あるいは外壁通気を含みより通気性を高めることになり、冬の温度差による外壁の通気層内の壁体内結露の防止にもつながる。 In the heat insulating ventilation structure comprising the dedicated zone-specific ventilation structure according to the present invention and the hybrid zone-specific hybrid ventilation and ventilation control method for the same structure, the dedicated zone for always open ventilation and the dedicated ventilation and ventilation control A heat insulation ventilation structure consisting of ventilation structures according to zones. The roof zone of a dedicated open ventilation zone for the severely exposed conditions of direct sunlight in summer and the roof part where the temperature difference between the outside and the outside is severe due to winter snow. In addition, the back of the hut part and the lower part of the floor are made into a hut back zone and an under floor zone of a dedicated zone for ventilation and ventilation control in consideration of warming in winter, and communicated and linked ventilation and ventilation control are performed. The attic zone, which is a special zone for normally open ventilation, which is a special feature, is hermetically insulated with a dedicated zone for ventilation and ventilation control, eliminating both interference, and a roof ventilation layer with always open ventilation In addition, the roof building has a continuous ventilation route that is a series of ventilation and exhaust passages that are integrated with the ventilation layer in the roof building. By attaching the equipment, the air permeability is further enhanced including the eaves ventilation or the outer wall ventilation, and it is also possible to prevent the dew condensation in the wall in the ventilation layer of the outer wall due to the temperature difference in winter.

夏、冬期間を通し、外周の屋根通気層、外壁通気層の一連の通気層を常時開放通気とし、内側を冬期間の室内保温を目的に、連通し、連携の通気制御を行い、一連の無通気層とし、室内を中央に、周囲を保温層とする構成から、最も容易に高い通気効果と通気制御効果が得られることから、夏、冬期間における冷房効果と暖房効果をもたらし、さらに省エネルギーを促進するものであり、従来のように、棟換気口のみによる通気・排出とさらに兼用で通気制御を行うとして、断熱通気の構造体全体の通気・排出不足を招くこともなく、たとえ冬期間に棟換気口が積雪で閉ざされたとしても常時通気専用経路の常時開口通気の両側妻面換気ガラリにて屋根の通気・排出が充分行われ、屋根の通気性が低下する弊害がなく、さらに、夏の屋根の直射日光による輻射熱の排出を棟換気口のみとするより、同通気専用経路の棟換気口、両側妻面換気ガラリ、さらには小屋裏ゾーンの両妻壁換気ガラリの二重で通気・排出する通気効果は明らかであり、夏、冬期間を共通して無理なく効率よく、全体が通気促進または通気制御され、建物の通気性、保温性の向上とさらに省エネルギーで長期耐久性の向上に大きく貢献できるものである。 Throughout the summer and winter periods, a series of ventilation layers of the outer roof ventilation layer and outer wall ventilation layer are always open ventilation, and the inside is connected for the purpose of keeping the indoors warm during the winter period, and a series of ventilation control is performed. The structure is made of a non-ventilated layer, with the room in the center and the surroundings as a heat insulating layer, so the highest ventilation effect and ventilation control effect can be obtained most easily, resulting in cooling and heating effects in summer and winter, and further energy saving As in the past, the ventilation and exhaust only by the building vents are used to control the ventilation. Even if the ridge ventilation opening is closed due to snow, the roof ventilation and exhaust on both sides of the constantly ventilated side of the always ventilated passage are sufficiently ventilated and exhausted, and there is no harmful effect of reducing the ventilation of the roof. The summer roof directly Ventilation effect that ventilates and exhausts in a double way from the building ventilation port of the same ventilation route, both sides's wife ventilation gallery, and the both sides wall ventilation gallery in the hut back zone, rather than only emitting the radiant heat due to sunlight. It is obvious that the whole summer and winter period is reasonably efficient and the whole is ventilated or ventilated, and the whole can greatly contribute to the improvement of long-term durability by improving the breathability and heat insulation of the building and further saving energy It is.

さらに、屋根裏ゾーンの常時開口の自然開放通気機器と連通し、連携で通気及び通気制御を行う小屋裏ゾーン及び床下ゾーンの自動開閉式の自然通気制御機器の専用ゾーン別基本常設機能に、補助として、ソーラーエネルギーを主とし、又夜・雨天時は家庭用電源に自動切換する自動制御装置を用いた自動制御の換気ファンを専用ゾーン別として、屋根裏ゾーンと小屋裏ゾーンに、又床下ゾーンに床下専用換気ファンを附設し、自動通気・通気制御機器と強制の両機能を混用する、専用ゾーン別ハイブリッド通気及び通気制御機能とし、
従来のように、自然気流の状態による自然の影響に左右されることなく、夏の梅雨時における高温多湿で、無風状態であっても、各専用ゾーン内の設定温度、設定湿度を、温度センサー・湿度センサーが感知し、自動運転し、設定以下で停止する、常時温度、湿度対策に効果的で、
又、冬期間は連通し、連携して通気制御する小屋裏ゾーンと床下ゾーンの基本常設機能の、上下一定の温度を定め開閉する自動開閉式の自然通気制御機器の換気ガラリと床下換気口が一定の温度以下で同時自動閉鎖され、冬期間を室内保温状態の無通気層とし、周囲を保温層として構成するハイブリッド通気及び通気制御を行う断熱通気構造体であり、常時安定した通気効果で、夏の冷房効果と冬の暖房効果を向上させることができる。
Furthermore, as an auxiliary to the basic permanent function according to the dedicated zone of the automatic ventilation system that automatically opens and closes in the attic zone and the under floor zone that communicates with the naturally open ventilation device that is always open in the attic zone and controls ventilation and ventilation in cooperation. In the attic zone and the attic zone, and in the underfloor zone, the ventilation fan of the automatic control using an automatic control device that automatically switches to the household power source at night and in the rain A dedicated ventilation fan is installed, and the hybrid ventilation and ventilation control function for each dedicated zone, which uses both automatic ventilation and ventilation control equipment and forced functions,
The temperature sensor detects the set temperature and set humidity in each dedicated zone even in the hot and humid and no wind conditions during the rainy season in the summer without being affected by the natural effects of the natural airflow as in the past.・ The humidity sensor senses, automatically operates, and stops below the setting.
In addition, there is a ventilation gallery and an underfloor vent of an automatic open / close type natural ventilation control device that opens and closes the basic permanent function of the attic zone and the underfloor zone that communicate and control the ventilation in cooperation with each other during the winter period. It is a heat insulation ventilation structure that performs hybrid ventilation and ventilation control that is automatically closed at a certain temperature or less at the same time, makes the winter period indoors an airless layer and the surroundings as a heat insulating layer, and has a stable ventilation effect. The cooling effect in summer and the heating effect in winter can be improved.

又、小屋裏ゾーンとして構成される室内天井に断熱フォームを附設し密接施工とし、断熱通気構造の小屋裏ゾーンとして構成され、ハイブリッド通気及び通気制御を行う断熱通気構造体とする場合の冷房効果で、夏の直射日光を受ける屋根部分の輻射熱を屋根裏ゾーンと小屋裏ゾーンの二重の断熱通気構造として形成されるもので、又、二重にハイブリッド通気されることから、高い断熱効果と通気効果を発揮し、小屋裏ゾーン内の輻射熱をさらに軽減し強制通気・排出され又、床下、壁体内及び小屋裏ゾーンの連通によるハイブリッド通気・排出にて同壁体内、小屋裏ゾーン内の通気・排出が促進され、室内の冷房効果をさらにもたらし、冬期間においても天井断熱、屋根断熱の二重の断熱と室内の温度の天井逃避をなくし、通気制御された床下ゾーン、小屋裏ゾーンと壁体の周囲保温層がさらに保温効果を向上させるもので、保温効果の向上から室内の暖房効果をさらにもたらす、断熱通気構造の屋根裏ゾーン、小屋裏ゾーン、床下ゾーンから構成され、専用ゾーン別ハイブリッド通気及び通気制御の断熱通気構造体の効果を特徴として、
夏、冬期間共通して、最も冷房効果と、暖房効果を促進し、又、ソーラーエネルギー主体の自動制御の換気ファンと自然開放通気機器及び自然通気制御機器の混用のハイブリッド通気及び通気制御にて最も省エネルギーで安定した通気・排出ができる。
In addition, it is a cooling effect in the case where a heat insulating foam is attached to the indoor ceiling configured as the back of the hut zone and in close contact, and it is configured as a back of the hut zone of the heat insulating ventilation structure, which is a heat insulating ventilation structure that performs hybrid ventilation and ventilation control. The radiant heat of the roof part that receives direct sunlight in summer is formed as a double heat insulation ventilation structure of the attic zone and the attic zone, and since it is double hybrid ventilation, high heat insulation effect and ventilation effect The radiant heat in the attic zone is further reduced and forced ventilation / exhaustion is performed, and the ventilation / exhaustion in the same wall and in the attic zone is performed by hybrid ventilation / exhaustion through communication between the floor, inside the wall and the attic zone. The air conditioning is further promoted, and the indoor cooling effect is further improved.In winter, the ceiling insulation and double insulation of the roof insulation and the ceiling escape of the indoor temperature are eliminated, and the ventilation is controlled. The underfloor zone, the attic zone and the thermal insulation layer around the wall further improve the thermal insulation effect. From the attic zone, the attic zone, and the underfloor zone with a heat insulating ventilation structure that further improves the heat insulation effect and the indoor heating effect. Constructed and characterized by the effects of adiabatic ventilation structure of hybrid ventilation and ventilation control by dedicated zone,
In summer and winter, the most effective cooling and heating effects are achieved. In addition, the hybrid ventilation and ventilation control of solar energy-based automatic control ventilation fans, natural open ventilation devices, and natural ventilation control devices are used together. The most energy-saving and stable ventilation / discharge is possible.

さらに、従来のように、建物の形状によって設置する棟換気の数が限られたり、又、規模による通気・排出不足からの構造体内の通気不良から起こる結露の発生による弊害又は、密集地の場合の立地条件で、外の気流不足からの構造体内の通気不良から起こる床下の多湿又は、密集地特有の梅雨時の屋根通気層内と壁体通気層内の気流通気不足による通気不良から起こる屋根・壁体内の結露の発生による弊害が専用ゾーン別通気構造の専用ゾーン別ハイブリッド通気とすることで、専用ゾーン別に設定温度、設定湿度を感知し、自動運転し、設定以下で自動停止とした、自然通気機器で補えない場合の自然と強制の両方を混用するハイブリッド通気及び通気制御機能であり、又、任意の温度、湿度設定であるため、以上のような弊害がなく又、任意の温度・湿度の設定であることから温暖地域、寒冷地域に応じた設定が可能で常時専用ゾーン別に温度・湿度の状態を自己診断し通気を促進し、温度対策、湿度対策に最も効果的で、建物の通気性と長期耐久性の向上に大きく貢献できるもので又、全地域に対応可能である。 Furthermore, as in the past, the number of building ventilation to be installed is limited depending on the shape of the building, and there is a bad effect due to the occurrence of condensation due to poor ventilation in the structure due to insufficient ventilation or discharge due to the scale, or in the case of densely populated areas Caused by poor ventilation in the structure due to poor airflow in the structure due to insufficient airflow outside, or from poor ventilation due to insufficient airflow in the roof ventilation layer and wall ventilation layer during rainy season peculiar to crowded areas The adverse effect of condensation on the roof and walls is the hybrid ventilation by dedicated zone with the ventilation structure for each dedicated zone. This is a hybrid ventilation and ventilation control function that mixes both natural and forced air when it cannot be supplemented with natural ventilation equipment. Since it can be set to any temperature and humidity, it can be set according to the warm and cold regions, and the self-diagnosis of the temperature and humidity conditions for each dedicated zone always promotes ventilation, making it the most effective for temperature and humidity measures. Therefore, it can greatly contribute to the improvement of the breathability and long-term durability of the building, and can be applied to all regions.

更に又、床下を床下熱源媒介とする1階全室あるいは1階の全床を床暖房とする場合の床下土間的仕様で、床下密閉ゾーンとする一般木造住宅及び木造の大型施設等において、常時通気促進の屋根裏ゾーンをハイブリッド通気機能とし、通気及び通気制御を行う小屋裏ゾーンをハイブリッド通気及び通気制御機能とし、さらに小屋裏ゾーンと連通する外壁周囲の断熱通気構造の内壁通気構造体に取り込み通気とする、自動開閉式の自然通気制御機器の換気ガラリを附設し、床下換気口の代用としたもので、小屋裏ゾーンが外壁周囲の同内壁通気構造体の下方に附設された同換気ガラリによって、同内壁通気構造体の通気層と常時連通し連携で通気及び通気制御を行い、上下一定の温度を定め開閉する温度差利用の熱感知式形状記憶合金使用の自動開閉式換気ガラリで、冬期間の一定の温度以下で小屋裏ゾーンの同型式の換気ガラリと同時閉鎖し、通気制御され一連の無通気層として室内を中央に、床下暖房と周囲を保温層で構成し、又、外周の屋根通気層・外壁通気層が一連の通気層で夏、冬期間を通し常時通気の状態であり、
夏、冬期間共通して床下ゾーンがなくても安定した通気と通気制御ができ又、外壁周囲の壁体内通気層の通気不良とする通気不足もしくは同壁体内の通気層の内と外の温度差による結露の発生による弊害もなく、構造体の耐久性が損なわれることなく、このような現代の生活様式の変貌から断熱通気構造体の構造体系を主に応用する多様化の断熱通気構造体の木造住宅も充分対応できるものである。
In addition, it is a floor-to-soil specification when all floors of the first floor or the entire floor of the first floor are heated under the floor as a heat source medium. The attic zone that promotes ventilation has a hybrid ventilation function, the attic zone that controls ventilation and ventilation has a hybrid ventilation and ventilation control function, and is taken into the inner wall ventilation structure around the outer wall that communicates with the attic zone. A ventilation gallery of an automatic opening and closing type natural ventilation control device is used as a substitute for the underfloor ventilation opening, and the hut back zone is attached by the same ventilation gallery attached below the inner wall ventilation structure around the outer wall. The use of a heat-sensitive shape memory alloy that utilizes a temperature difference that opens and closes by setting a constant temperature above and below by controlling ventilation and ventilation in constant communication with the ventilation layer of the inner wall ventilation structure. This is a dynamic opening and closing ventilation gallery that is closed at the same time as the same type ventilation gallery in the hut zone below a certain temperature during the winter period. In addition, the outer roof ventilation layer / outer wall ventilation layer is a series of ventilation layers that are in constant ventilation throughout the summer and winter periods.
Stable ventilation and ventilation control can be achieved even in the summer and winter periods without the underfloor zone. Diverse heat insulation ventilation structure that mainly applies the structural system of heat insulation ventilation structure from such modern lifestyle changes without harming the occurrence of condensation due to differences and without impairing the durability of the structure The wooden house can also handle it.

以下、本発明を添付図面に示す実施例に基づき詳しく説明する。
図1の(a)は本発明に係る実施例1の断熱通気構造体1とする概略断面図及び(b)・(b´)の専用ゾーン別基本常設機能の附設構成図であり、なお、図2の(a)・(a´)は常時開放通気の屋根裏ゾーンZ1と通気及び通気制御の小屋裏ゾーンZ2並びに床下ゾーンZ3の通気専用ゾーンと通気及び通気制御の専用ゾーン別通気構造の概略断面分断図であり、(b)及び(b´)は同専用ゾーン別通気構造の通気層及び通気路の通気専用ゾーンZ1と通気及び通気制御の専用ゾーンZ2・Z3の概略分解図である。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
(A) of FIG. 1 is a schematic cross-sectional view of the heat insulating ventilation structure 1 of Example 1 according to the present invention, and (b) and (b ′) additional configuration diagrams of basic permanent functions according to dedicated zones. 2 (a) and 2 (a ') are schematic views of the attic zone Z1 with a normally open ventilation, the attic zone Z2 with ventilation and ventilation control, and the ventilation dedicated zone and the ventilation structure with ventilation and ventilation control dedicated zones in the underfloor zone Z3. It is a sectional view, and (b) and (b ′) are schematic exploded views of a ventilation layer and ventilation zone Z1 for ventilation zones and ventilation zones and ventilation zones and ventilation zones Z2 and Z3.

また図3の(a)は図1(a)の小屋裏ゾーンZ2の小屋裏断熱通気構造KDが小屋裏通気構造KD1として構成される場合であり、(b)は棟部常時通気専用経路Z11の形成の特徴で、いずれも共通の棟部常時通気専用経路Z11とする、底面が一面で、左右の屋根断熱通気構造YDと一体形状で形成される場合の屋根裏ゾーンZ1を示す概略断面分断図である。 FIG. 3A shows a case where the hut back heat insulation structure KD in the shed back zone Z2 of FIG. 1A is configured as the shed back structure KD1, and FIG. Schematic cross-sectional view showing the attic zone Z1 when the bottom surface is a single surface and is formed integrally with the left and right roof heat insulation ventilation structure YD. It is.

図4及び図5は同実施例1の屋根裏ゾーンZ1として構成される屋根断熱通気構造YDが、異なる屋根の通気形態と異なる屋根の通気構造形態の組み合わせ選択施工で構成されることを特徴とし、いずれも屋根断熱通気構造であり、常時開放通気の専用ゾーンとして共通の屋根裏ゾーンZ1とする図4の全体通気層断面(a)、(b)及び図5の概略通気構造断面の分断図(a)・(b)であり、同図4(a)は屋根の通気形態が外壁Уの施工を通気構法k1とした軒天通過型の外壁の通気を伴う場合をA1とし、同(b)は外壁Уの施工を通気構法k2とした軒天不通過型の外壁の通気を伴わない軒天通気のみの場合をA2とし、
夏をS、冬をWとし、夏、冬期間における専用ゾーン別通気構造の通気層内の通気による気流の進入及び排出の工程と通気制御の状態を示す比較対称の全体通気層断面図(a)・(b)であり、又、図5(a)は、屋根の通気構造形態が一定の厚さの板状の断熱フォームAによる母屋間気密断熱施工の場合の屋根断熱通気構造YDをB1とし、(b)は垂木間または垂木間と垂木上の気密断熱施工の場合の屋根断熱通気構造YDをB2とする概略通気構造断面の分断図である。
4 and 5 are characterized in that the roof insulation ventilation structure YD configured as the attic zone Z1 of Example 1 is configured by a combination selection construction of a different roof ventilation structure and a different roof ventilation structure form, All are roof heat insulation ventilation structures, and the entire ventilation layer cross section (a), (b) of FIG. 4 and the schematic ventilation structure cross section of FIG. 4 (a) is A1 when the roof ventilation form is accompanied by ventilation of the eaves-top-passage type outer wall where the construction of the outer wall fence is the ventilation construction method k1, and (b) A2 is the case where only the eaves of the eaves that do not pass through the eaves that do not pass through the eaves that do not pass through the eaves are k2
Comparatively symmetric overall ventilation layer cross-sectional view showing the state of air flow entry and discharge process and ventilation control by ventilation in the ventilation layer of the ventilation structure for each dedicated zone in summer and winter periods, where S is summer and W is winter FIG. 5 (a) shows the roof heat insulation ventilation structure YD in the case of the airtight heat insulation construction between the main buildings by the plate-like heat insulation foam A having a constant thickness as the roof air ventilation structure. (B) is a schematic sectional view of the cross section of the ventilation structure with B2 as the roof insulation ventilation structure YD in the case of the airtight insulation construction between the rafters or between the rafters and the rafters.

また図6の(a)は同実施例1の夏をS、冬をWとし、夏・冬期間を例に、専用ゾーン別通気構造の通気層内の通気による気流の進入及び排出の工程及び通気制御の状態を軒天通気・外壁通気を伴う屋根の通気形態A1として示す比較対称の全体通気層断面図であり、前記図4(c)の自動開閉式の自然通気制御機器T1の開閉状態をもとに、(c)の1のT1−Cは閉鎖状態を示し、2のT1−0は開口状態を示すものであり、(a−1)(a−2)は夏をSとし、夏期間の通気及び通気制御の専用ゾーンの床下ゾーンZ3と小屋裏ゾーンZ2の通気による気流の進入と排出が専用ゾーン別基本常設機能の図1の(b´)によって行われることを示す概略横断面図で、(a−3)は夏、冬期間を問わず、常時開放通気の専用ゾーンの屋根裏ゾーンZ1の通気による気流の進入と排出が、基本常設機能の図1の(b)によって行われることを示す概略横断面図である。 6 (a) shows the steps of entering and discharging the air flow by ventilation in the ventilation layer of the ventilation structure according to the dedicated zone, with the summer of the embodiment 1 as S, the winter as W, and the summer / winter period as an example. FIG. 9 is a cross-sectional view of the overall symmetrical ventilation layer showing the state of ventilation control as a roof ventilation form A1 with eave sky ventilation and outer wall ventilation, and the open / closed state of the automatic opening / closing natural ventilation control device T1 of FIG. (1) T1-C in (c) indicates a closed state, 2 T1-0 indicates an open state, (a-1) and (a-2) are S in summer, Schematic crossing showing that the inflow and discharge of the air flow by the ventilation of the under-floor zone Z3 and the attic zone Z2 of the dedicated zone for ventilation and ventilation control in the summer period are performed according to FIG. 1 (b ′) of the basic permanent function for each dedicated zone. In the plan, (a-3) is the attic of a dedicated zone with always open ventilation, regardless of summer or winter period. Discharging the approach of the airflow by airflow over emissions Z1 is a schematic cross-sectional view showing that performed by the Figure 1 of the basic Permanent function (b).

図7の(a)は同実施例1の屋根の通気形態A2とする軒天通気のみの外壁通気を伴わない屋根裏ゾーンZ1の場合の全体通気層断面図で、(a−1)(a−2)(a−3)は図6同様、専用ゾーン別基本常設機能の図1(b)・(b´)とした専用ゾーン別通気による気流の進入と排出を示す概略横断面図である。
(A) of FIG. 7 is a cross-sectional view of the entire ventilation layer in the case of the attic zone Z1 without the outer wall ventilation of only the eaves ventilation, which is the roof ventilation mode A2 of the first embodiment. 2) (a-3) is a schematic cross-sectional view showing the inflow and the discharge of the airflow by the dedicated zone-specific ventilation as shown in FIGS.

図8は同実施例1の屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別基本常設機能の(b)の附設構成を示す概略断面斜視図で又、図9は夏期間をSとし、例とする開放通気専用ゾーンの屋根裏ゾーンZ1の常時通気専用経路Z11内への直接外気Gの進入と屋根通気層V1内への通気による気流の進入および同専用経路Z11による排出の工程と、又、通気及び通気制御の専用ゾーンである小屋裏ゾーンZ2と床下ゾーンZ3に附設される自動開閉式の自然通気制御機器のT1の開口による両ゾーンの連通する通気層内の通気による気流の進入及び排出の工程を示す概略全体断面斜視図。 FIG. 8 is a schematic cross-sectional perspective view showing an additional configuration of (b) of the basic permanent function according to the dedicated zone of the attic zone Z1 and the attic zone Z2 of the first embodiment, and FIG. The process of entering the direct outside air G into the constant ventilation route Z11 in the attic zone Z1 of the open ventilation zone Z1 and entering the air flow by the ventilation into the roof ventilation layer V1 and discharging it through the dedicated route Z11, and ventilation. And the entrance and discharge of the airflow by the ventilation in the ventilation layer connected to both zones by the opening of T1 of the automatic opening and closing type natural ventilation control device attached to the attic zone Z2 and the underfloor zone Z3 which are dedicated zones for ventilation control FIG. 3 is a schematic overall cross-sectional perspective view showing a process.

図10は同実施例1の、組み合わせ構成される断熱通気構造体1の屋根の形状が四方傾斜状態の場合の屋根裏ゾーンZ1の通気専用棟WTの附設構成図であり、図11の(a)は、屋根裏ゾーンZ1の棟部常時通気専用経路Z12及び小屋裏ゾーンZ2の概略斜視図と、両ゾーンに係る専用ゾーン別基本常設機能の(b)・(b´)の附設構成を示すもので、又、図12の(a)は両ゾーンの専用ゾーン別通気構造の通気層内の通気による気流の進入と排出の状態を示す概略通気層断面の分断図で、(b)は夏をS、冬をWとし、夏、冬期間を例に(c)の自動開閉式の自然通気制御機器T1の開閉の状態図をもとに、1のT1−Cは閉鎖状態、2のT1−Oは開口状態を示し、専用ゾーン別通気層内の通気による気流の進入及び排出の工程と通気制御の状態を比較対称とした全体通気層断面図。 FIG. 10 is an attached configuration diagram of the ventilation-only wing WT in the attic zone Z1 when the roof shape of the heat insulating ventilation structure 1 configured in combination in the first embodiment is in a four-side inclined state, and FIG. These are the schematic perspective views of the ridge always ventilation exclusive route Z12 and the attic zone Z2 in the attic zone Z1, and the supplementary configurations (b) and (b ') of the basic permanent function according to the dedicated zones related to both zones. FIG. 12 (a) is a schematic sectional view of the cross section of the ventilation layer showing the state of air flow entering and discharging by ventilation in the ventilation layer of the ventilation structure for each zone in both zones, and FIG. , W is winter, and summer and winter are taken as an example. Based on the open / close state diagram of natural ventilation control device T1 of (c), 1 T1-C is closed, 2 T1-O is closed Indicates the state of opening, and the process of entering and discharging airflow by ventilation in the ventilation layer for each dedicated zone Whole was compared symmetry state of the ventilation control ventilation layer cross section.

図13の(a)は同実施例1の専用ゾーン別基本常設機能の(b)をもとに補助として(b´)のソーラーエネルギーを主とする自動制御の換気ファンを附設構成し、混用する専用ゾーン別ハイブリッド通気及び通気制御を行う断熱通気構造体1の概略断面図及び専用ゾーン別ハイブリッド通気及び通気制御機能の附設構成図であり、夏をS、冬をWとし、夏、冬期間を例に、(c)の自動開閉式の自然通気制御機器T1の開閉状態図に基づき比較対称したもので、なお、図14の(a)は同図13の(a)を説明する、常時通気の専用ゾーンの屋根裏ゾーンZ1のハイブリッド通気機能KC−1と制御装置YC、同(a´)は通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2のハイブリッド通気及び通気制御機能KC−2と制御装置KC、及び床下ゾーンZ3の同機能KC−3と制御装置UCとして専用ゾーン別通気構造に附設構成される概略断面分断図で又、(b)及び(b´)はその常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーン別機能に基づくハイブリッド通気及び通気制御が行われる専用ゾーン別通気構造の通気層と通気路の概略分解図。 (A) in FIG. 13 is based on (b) of the basic permanent function for each dedicated zone in Example 1 and is supplemented with an automatically controlled ventilation fan mainly using solar energy (b ′). FIG. 2 is a schematic cross-sectional view of a heat insulating ventilation structure 1 that performs hybrid ventilation and ventilation control for each dedicated zone and an additional configuration diagram of the hybrid ventilation and ventilation control function for each dedicated zone, where summer is S, winter is W, summer and winter periods As an example, FIG. 14 (a) is a symmetrical diagram based on the open / close state diagram of the automatic open / close natural ventilation control device T1. The hybrid ventilation function KC-1 and the control device YC of the attic zone Z1 of the exclusive zone for ventilation and the control device YC are controlled by the hybrid ventilation and ventilation control function KC-2 of the attic zone Z2 of the exclusive zone for ventilation and ventilation control. Device KC, And the same sectional view KC-3 of the underfloor zone Z3 and the control device UC, which is a schematic cross-sectional view attached to a dedicated zone-specific ventilation structure. FIG. 5 is a schematic exploded view of a ventilation layer and a ventilation path of a ventilation structure for each dedicated zone in which hybrid ventilation and ventilation control based on a function for each dedicated zone for ventilation control is performed.

図15の(a)は同実施例1の屋根の通気形態を外壁Уの通気を軒天通過型のA1とする専用ゾーン別ハイブリッド通気及び通気制御を行う断熱通気構造体1の全体通気層断面図で、夏をS、冬をWとし、夏、冬期間を例に図13の(c)の自動開閉式の自然通気制御機器T1の開閉状態図をもとに、専用ゾーン別通気構造の通気層内のハイブリッド通気及び通気制御機能による気流の進入及び排出の工程と通気制御の状態を示すもので、(a−1)、(a−2)は床下ゾーンZ3及び小屋裏ゾーンZ2のハイブリッド通気及び通気制御機能KC−3及びKC−2による夏期間をSとし、例とした自然通気と自動制御の強制通気とする気流の進入及び排出の工程を示し、(a−3)は外壁の通気を伴うA1施工の屋根裏ゾーンZ1の常時通気のハイブリッド通気制御機能KC−1による、自然通気と強制通気とする気流の進入及び排出を示す工程と、同機能が常時通気専用経路Z11に附設構成されていることを示す概略横断面図。 FIG. 15A is a cross-sectional view of the entire ventilation layer of the heat insulating ventilation structure 1 that performs hybrid ventilation for each dedicated zone and ventilation control in which the ventilation mode of the roof of the first embodiment is the A1 of the eaves-passage type with the ventilation of the outer wall fence. In the figure, assuming that summer is S and winter is W, and the summer and winter periods are taken as an example, based on the open / close state diagram of the automatic open / close natural ventilation control device T1 in FIG. The steps of air flow entry and discharge by the hybrid ventilation and ventilation control function in the ventilation layer and the state of ventilation control are shown. (A-1) and (a-2) are hybrids of the underfloor zone Z3 and the attic zone Z2. The summer period by the ventilation and ventilation control functions KC-3 and KC-2 is S, and the air flow entering and discharging processes are shown as natural ventilation and automatic forced ventilation as an example, (a-3) shows the outer wall Continuous ventilation in the attic zone Z1 of A1 construction with ventilation According to the hybrid ventilation control function KC-1, a schematic cross-sectional view showing the step of indicating the entry and discharge of air flow forced ventilation natural ventilation, that the function is Fusetsu configured to always vent dedicated route Z11.

図16の(a)は同実施例1の専用ゾーン別ハイブリッド通気及び通気制御を行う(b)の基本常設機能及び(b´)のソーラーエネルギーを主とする、自動制御の換気ファンを附設し混用する屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別ハイブリッド通気及び通気制御機能の附設構成と、ソーラーエネルギーの太陽電池パネル及び自動制御の制御装置の附設構成を示す概略断面斜視図で又、図17は夏をSとし、夏期間を例に専用ゾーン別通気構造の通気層内の通気による気流の通気形態で、専用ゾーン別ハイブリッド通気及び通気制御機能の自然通気と自動制御の強制通気とする気流の進入及び排出の工程を示す概略全体断面斜視図。 (A) in FIG. 16 is provided with an automatically controlled ventilation fan mainly using the basic permanent function of (b) and the solar energy of (b ′) for performing hybrid ventilation and ventilation control by dedicated zone of the first embodiment. It is a schematic cross-sectional perspective view showing the additional configuration of the hybrid ventilation and ventilation control function for each exclusive zone of the attic zone Z1 and the attic zone Z2 to be mixed, and the additional configuration of the solar energy solar panel and the control device for automatic control. 17 is summer and S, and the summer period is taken as an example, and the airflow form of the airflow in the airflow layer of the airflow structure by dedicated zone is the natural airflow of the dedicated zone and the airflow control function, and the forced airflow of the automatic control. FIG. 3 is a schematic overall cross-sectional perspective view showing steps of air flow entry and discharge.

図18の(a)はハイブリッド通気及び通気制御を行う、屋根の形状が四方傾斜状態の場合の、実施例1の屋根裏ゾーンZ1に(b)のハイブリッド通気及び通気制御機能を附設構成し、ハイブリッド通気及び通気制御を行う断熱通気構造体1の屋根裏ゾーンZ1及び小屋裏ゾーンZ2の概略斜視図及びハイブリッド通気制御機能KC−4の附設構成を示すものであり、図19(a)はその両ゾーンの概略通気層断面の分断図、(b)は夏をS、冬をWとし、夏、冬期間の専用ゾーン別通気構造の通気層内の通気による気流の進入及び排出を(c)の自動開閉式の自然通気制御機器T1の開閉状態図にもとに、例として比較対称し示す全体通気層断面図及び専用ゾーン別自動制御装置の構成図で同(c)の1のT1−Cは閉鎖状態、2のT1−0は開口状態を示す。 (A) of FIG. 18 performs hybrid ventilation and ventilation control. The hybrid ventilation and ventilation control function of (b) is added to the attic zone Z1 of the first embodiment when the shape of the roof is in a four-side inclined state. A schematic perspective view of the attic zone Z1 and the attic zone Z2 of the heat insulating ventilation structure 1 for performing ventilation and ventilation control, and an attached configuration of the hybrid ventilation control function KC-4 are shown. FIG. 19A shows both zones. (B) is a sectional view of the cross section of the vent layer, (b) is S in summer and W in winter, and the inflow and discharge of air flow by ventilation in the vent layer of the vent structure of the dedicated zone in the summer and winter period are automatically in (c) Based on the open / close state diagram of the open / close natural ventilation control device T1, as an example, the cross-sectional view of the entire ventilation layer and the configuration diagram of the automatic control device for each dedicated zone shown in FIG. Closed state, 2 T1 0 indicates the open state.

図20の(a)は専用ゾーン別ハイブリッド通気及び通気制御を行う実施例1の図18の(a)に、屋根裏ゾーンZ1の棟部常時通気専用経路Z12に小屋裏ゾーンZ2専用の自動制御の換気ファンK2を附設構成し、(b)のハイブリッド通気及び通気制御機能KC−5として附設構成する断熱通気構造体1の屋根裏ゾーンZ1及び小屋裏ゾーンZ2の概略斜視図であり、図21の(a)は、その両ゾーンの概略通気層断面図の分断図及び(b)は全体通気層断面図及び専用ゾーン別通気制御装置の構成図。 FIG. 20A shows the automatic ventilation dedicated to the attic zone Z2 in the lane always dedicated ventilation route Z12 of the attic zone Z1 in FIG. FIG. 22 is a schematic perspective view of the attic zone Z1 and the attic zone Z2 of the heat insulating ventilation structure 1 additionally provided with the ventilation fan K2 and provided as the hybrid ventilation and ventilation control function KC-5 of FIG. a) is a sectional view of a schematic cross-sectional view of the ventilation layer in both zones, and (b) is a cross-sectional view of the entire ventilation layer and a configuration diagram of a dedicated zone-specific ventilation control device.

図22の(a)は本発明に係る実施例2とする、実施例1と組み合わせ構成される床下密閉ゾーンZ4とした場合の断熱通気構造体1´の概略断面図及び(b)・(c)の専用ゾーン別基本常設機能の附設構成を示すものであり、又、図23の(a)・(a´)は常時開放通気の専用ゾーンの屋根裏ゾーンZ1と、連携の通気及び通気制御を行う小屋裏ゾーンZ2と内壁通気構造体WZの専用ゾーン別通気構造の概略通気層分解図で、(b)は夏をS、冬をWとし、夏、冬期間を例に(c)の自動開閉式の自然通気制御機器T1の開閉の状態図をもとに比較対称としたもので、(c)の1のT1−Cは閉鎖状態、2のT1−0は開口状態を示し、夏、冬期間における専用ゾーン別通気構造の通気層内の通気による通気形態を例に比較対称とした気流の進入及び排出の工程と通気制御の状態を示す全体通気層断面図。 22A is a schematic cross-sectional view of a heat-insulating ventilating structure 1 ′ in the case of an underfloor sealed zone Z4 configured in combination with Example 1 as Example 2 according to the present invention, and FIGS. ) In FIG. 23 (a) and FIG. 23 (a ') show the attic zone Z1 of the normally open dedicated zone and the associated ventilation and ventilation control. A schematic ventilation layer exploded view of the ventilation structure by dedicated zone of the hut back zone Z2 and the inner wall ventilation structure WZ to be performed. (B) is S in summer, W in winter, (c) automatic in the summer and winter periods as an example Based on the open / close state diagram of the open / close type natural ventilation control device T1, the T1-C in (c) is closed, the T1-0 in 2 is the open state, the summer, In the winter period, the ventilation structure by ventilation in the ventilation layer of the ventilation structure by dedicated zone is made symmetrical as an example The whole ventilation layer sectional view showing the state of the approach and discharge of air current, and the air flow control.

図24の(a)は実施例2の断熱通気構造体1´の専用ゾーン別基本常設機能に補助として、ソーラーエネルギーを主とした自動制御の換気ファンを附設機能とした(b)及び(b´)の構成で、専用ゾーン別ハイブリッド通気及び通気制御を行う断熱通気構造体1´の概略断面図であり、附設機能の附設構成図であって、又、図25の(a)・(a´)は専用ゾーン別通気構造部分に附設構成されるハイブリッド通気及び通気制御機能のKC−1及びKC−2と専用ゾーン別通気層及び通気路を示す概略分解図で、(b)は夏をS、冬をWとし、夏、冬期間を例に、前記図23の(c)の自動開閉式の自然通気制御機器T1の開閉図の状態をもとに比較対称とした、専用ゾーン別通気構造のハイブリッド通気及び通気制御機能による専用ゾーン別通気層内の通気による気流の進入と排出の工程及び通気制御の状態を示す全体通気層断面図である。 FIG. 24A shows an auxiliary function of an automatic control ventilation fan mainly using solar energy as an auxiliary function to the basic permanent function according to the dedicated zone of the heat insulating ventilation structure 1 ′ of the second embodiment (b) and (b). ′) Is a schematic sectional view of a heat insulating ventilation structure 1 ′ that performs hybrid ventilation and ventilation control for each dedicated zone, and is an additional configuration diagram of an additional function, and also includes (a) and (a) in FIG. ′) Is a schematic exploded view showing the hybrid ventilation and ventilation control function KC-1 and KC-2, the ventilation layer and ventilation path for each dedicated zone, and (b) summer. S, winter is W, and summer and winter periods are taken as an example. Ventilation by dedicated zone, which is comparatively symmetric based on the open / close state of the automatic open / close natural ventilation control device T1 in FIG. 23 (c). Exclusive zone with hybrid ventilation and ventilation control functions It is an overall breathable layer cross-sectional view showing a state of the process and the vent control the entry and discharge of the air flow by insufflation another ventilation layer.

実施例1の断熱通気構造体1は図1(a)及び図2(a)・(a´)に示すように、常時開放通気の専用ゾーンの屋根断熱通気構造YDで、1体形状の棟部常時通気専用経路Z11が形成されている屋根裏ゾーンZ1と、通気及び通気制御の専用ゾーンとする小屋裏断熱通気構造KD又は図3(a)の小屋裏通気構造KD1の小屋裏ゾーンZ2及び床下断熱通気構造UDの床下ゾーンZ3の専用ゾーン別通気構造から構成され、又、図2(b´)の通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2と床下ゾーンZ3の連通による連携で通気及び通気制御を行なうとし、両ゾーンの連絡通気を形成する上で、さらに内壁断熱通気構造WDの内壁通気構造体WZから構成されていて、常時開放通気の専用ゾーンの屋根裏ゾーンZ1に図1(b)に示す常時開口の自然開放通気機器の棟換気口M、妻面換気ガラリRV、及び軒天換気口Ngと、又、通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2及び床下ゾーンZ3に市販の上下一定の温度を定め開閉する、温度差利用の熱感知式形状記憶合金使用とする図1(b´)の自動開閉式の自然通気制御機器の換気ガラリT1及び同型式の床下換気口T1が専用ゾーン別基本常設機能として附設構成されている。 As shown in FIGS. 1 (a) and 2 (a), (a ′), the heat insulation ventilation structure 1 of the first embodiment is a roof heat insulation ventilation structure YD in a dedicated zone for always open ventilation, and is a one-piece building. The attic zone Z1 in which the partly dedicated ventilation path Z11 is formed, the attic heat insulating ventilation structure KD used as a dedicated zone for ventilation and ventilation control, or the attic zone Z2 of the attic ventilation structure KD1 in FIG. The aeration structure is composed of a dedicated zone-specific ventilation structure of the underfloor zone Z3 of the adiabatic ventilation structure UD, and the ventilation and the ventilation control in FIG. 2 (b ') are performed through cooperation between the attic zone Z2 and the underfloor zone Z3. When the ventilation control is performed and the communication ventilation between both zones is formed, the inner wall ventilation structure WZ of the inner wall heat insulation ventilation structure WD is further formed. ) Commercially available top and bottom natural ventilation vents M, wife face ventilation garage RV, eaves ventilation vent Ng, and hut back zone Z2 and underfloor zone Z3 for ventilation and ventilation control. A ventilation gallery T1 and an underfloor vent T1 of the same type are used for the automatic opening / closing natural ventilation control device shown in FIG. 1 (b '), which uses a temperature-sensitive heat-sensitive shape memory alloy that opens and closes a certain temperature. It is added and configured as a basic permanent function for each zone.

以下、専用ゾーン別通気構造で常時開放通気の専用ゾーンZ1と通気及び通気制御の専用ゾーンZ2及びZ3から成る本実施例の断熱通気構造体1を構成する上で専用ゾーン別通気形態及び通気構造形態、さらに組み合わせ形成し構成される形態及び附設構成される専用ゾーン別基本常設機能による専用ゾーン別通気及び通気制御を行なう工程を図1〜図12を参照しながら詳しく説明する。 Hereinafter, in constructing the heat insulation ventilation structure 1 of this embodiment, which is composed of the dedicated zone-specific ventilation zone Z1 of the normally open ventilation and the ventilation and ventilation control dedicated zones Z2 and Z3, the ventilation mode and ventilation structure for the dedicated zone The process of performing ventilation and ventilation control for each dedicated zone by the configuration, further configured and configured, and the basic permanent function for each dedicated zone that is provided will be described in detail with reference to FIGS.

常時開放通気の専用ゾーンとする屋根裏ゾーンZ1は、図2(a)及び(b)に示すように、屋根下葺材Nと小屋裏とを一定の厚さの板状の屋根断熱フォームAを用い気密断熱区画し、屋根通気層V1を形成する屋根断熱通気構造YDと、屋根棟中心に位置し、棟を頂点とし、底面が平面状の一定の幅 e1で、左右h1の高さのコ型の形状とした三方を一定の厚さの板状の断熱フォームAを用い下地構成し、棟を含む内部空洞の通気層とする箱状で、さらに両端を小屋裏の両側の妻壁と一体形成とした一連の左右h1の高さで小屋裏ゾーンZ2と気密断熱区画された棟部常時通気専用経路Z11が左右連通し、一体形状で形成され、軒天に軒天換気口Ng、同棟部常時通気専用経路Z11の両妻壁に妻面換気ガラリRV及び棟に棟換気口Mの常時開口の自然開放通気機器が附設構成されている(図1(b)、図8参照)。 As shown in FIGS. 2A and 2B, the attic zone Z1, which is a dedicated zone for always open ventilation, uses a plate-shaped roof insulation foam A having a certain thickness for the roof underlay material N and the attic. A roof insulation ventilation structure YD that forms an airtight insulation section and forms a roof ventilation layer V1, and a U-shape located at the center of the roof ridge, with the ridge at the top and a flat bottom surface with a constant width e1 and a height of left and right h1 The three sides of the shape are made of base material using a plate-shaped heat insulation foam A of a certain thickness, and are made into a box shape as a ventilation layer for the internal cavity including the ridge, and both ends are integrally formed with the wife walls on both sides of the back of the hut The building's continuous ventilation route Z11, which is separated from the hut zone Z2 and hermetically insulated by a series of left and right h1 heights, communicates with the left and right, and is formed in an integrated shape. The regular ventilation route Z11 has two wife walls on the wife's face ventilation RV and the ridge has a ventilation opening M When natural open vent apparatus of openings are configured Fusetsu (FIG. 1 (b), the see Figure 8).

又、屋根裏ゾーンZ1の棟部常時通気専用経路Z11は図3(b)のように形成される場合があり、いずれも共通する棟部常時通気専用経路Z11であることを示すもので、棟を頂点とし、棟を含む内部空洞で、平面状の底面の一面で屋根断熱通気構造YDと左右1体形状とし、左右連通で形成され、底面より棟までの高さを両側の妻面換気ガラリが取り付け可能な高さとし、底面を一定の厚さの板状の断熱フォームAを用い下地構成し、内部通気層とし、両端を小屋裏の両側の妻壁と1体形成とした一連の形状で小屋裏ゾーンZ2と気密断熱区画し形成され、両側の妻壁及び棟に、図1(b)に示す妻面換気ガラリRV及び棟換気口Mの常時開口の自然開放通気機器が基本常設機能として附設構成される。 In addition, there is a case where the ridge always ventilation dedicated path Z11 in the attic zone Z1 may be formed as shown in FIG. 3B, and both indicate that the ridge always ventilation dedicated path Z11 is common. It is an internal cavity that includes the ridge at the top, one side of the roof insulation ventilation structure YD on one side of the flat bottom, and is formed with left and right communication, the height from the bottom to the ridge is the wife ventilation gallery on both sides The hut is a series of shapes that have a height that can be attached, the bottom is made up of a plate-shaped heat-insulating foam A with a certain thickness, is used as an internal ventilation layer, and both ends form a single body wall on both sides of the back of the hut. Formed as a hermetic heat-insulating compartment with the back zone Z2, and a natural ventilating device with a permanent opening at the wife ventilation gallery RV and the building ventilation port M shown in Fig. 1 (b) is attached as a basic permanent function to the wife walls and buildings on both sides. Composed.

さらに又、屋根裏ゾーンZ1を構成する屋根断熱通気構造YDは、図4(a)・(b)、図5(a)・(b)に示すように専用ゾーン別通気構造で、常時開放通気の専用ゾーンの屋根裏ゾーンZ1として構成される屋根断熱通気構造YDが、図4(a)・(b)の異なる屋根の通気形態と、図5(a)・(b)の異なる屋根の通気構造形態の組み合わせ選択施工で構成されることを示すもので、施工する外壁Уの通気構法による施工別屋根通気形態と屋根の断熱通気の施工別通気構造形態の組み合わせより構成される屋根断熱通気構造YDであって、図4(a)及び(b)に示すように、屋根断熱通気構造YDの常時開口の自然開放通気機器の軒天換気口Ngからの通気による外気の進入と、外壁Уの通気構法別の外壁通気路V22を経過する進入した外気の通気形態の如何による屋根通気形態と、図5(a)及び(b)に示すように、屋根下葺材Nと小屋裏を屋根断熱フォームAで気密断熱区画し、屋根通気層V1を形成すべく、屋根断熱施工別の屋根通気構造形態があり、組み合わせ構成される。 Furthermore, the roof heat insulation ventilation structure YD constituting the attic zone Z1 is a dedicated zone ventilation structure as shown in FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b). The roof heat insulation ventilation structure YD configured as the attic zone Z1 of the exclusive zone is different from the ventilation structure of the different roofs of FIGS. 4 (a) and 4 (b) and the ventilation structure of the different roofs of FIGS. 5 (a) and 5 (b). It is shown that it is configured by the combination selection construction of the roof, and the roof insulation ventilation structure YD is composed of the combination of the roof ventilation form according to the construction by the ventilation construction method of the outer wall fence to be constructed and the ventilation structure form according to the construction of the thermal insulation ventilation of the roof. 4 (a) and 4 (b), the ingress of outside air by the ventilation from the eaves vent Ng of the naturally open ventilation device of the normally open roof heat insulation structure YD and the ventilation structure of the outer wall fence Pass through another outer wall ventilation path V22 As shown in FIGS. 5 (a) and 5 (b), the roof ventilation structure N and the back of the roof are hermetically insulated by the roof insulation foam A, and the roof ventilation layer V1 is formed. In order to form the roof, there is a roof ventilation structure form according to the roof insulation construction, which is configured in combination.

図4(a)に示すように、屋根裏ゾーンZ1の屋根断熱通気構造YDの屋根の通気形態が、外壁の施工を軒天通過型の通気構法k1とし、軒天通気・外壁通気を共に伴う場合の屋根の通気形態をA1とし、又、図4(b)に示すように、外壁Уの施工を軒天不通過型の通気構法k2とし、外壁の上方を開放通気の状態とし、外壁の通気を伴わない、軒天通気のみの場合をA2とし、屋根の通気形態がA1又はA2から成る、いずれも屋根通気層V1の通気路V11を気流g1が通過する常時開放通気としての共通性をもつ屋根断熱通気構造YDである。 As shown in FIG. 4 (a), when the roof ventilation mode of the roof insulation ventilation structure YD in the attic zone Z1 is the eaves-passing type ventilation construction method k1 with the construction of the outer wall, both the eaves ventilation and the outer wall ventilation are involved. As shown in FIG. 4 (b), the construction of the outer wall fence is the eaves-in-passage type ventilation construction method k2, the upper part of the outer wall is in an open ventilation state, and the ventilation of the outer wall is performed. A2 is the eave sky only, and the roof ventilation form is A1 or A2, both of which have commonality as the normally open ventilation through which the airflow g1 passes through the ventilation path V11 of the roof ventilation layer V1. It is a roof heat insulation ventilation structure YD.

又、図5(a)に示すように、屋根断熱通気構造YDの屋根の通気構造形態で、屋根の気密断熱施工を、一定の厚さの板状の屋根断熱フォームAを垂木下の母屋間気密断熱施工とし、垂木間を通気層とし、屋根下葺材Nと屋根通気層V1を形成する屋根の通気構造形態をB1とし、又、図5(b)に示すように、一定の厚さの板状の屋根断熱フォームAを垂木間又は垂木間と垂木上にも密接施工する場合の、いずれかの通気下地を伴う気密断熱施工とし、屋根下葺材Nと屋根通気層V1を形成する場合をB2とし、屋根の通気構造形態がB1又はB2から成り、いずれも屋根通気層V1を形成し、断熱通気構造としての共通性をもつ屋根断熱通気構造YDであり、屋根裏ゾーンZ1を構成する屋根断熱通気構造YDが、屋根の通気形態A1又はA2と、屋根の通気構造形態B1又はB2の組み合わせ選択施工として構成される。 In addition, as shown in FIG. 5 (a), in the roof ventilation structure form of the roof insulation ventilation structure YD, the roof is hermetically insulated, and the plate-shaped roof insulation foam A having a certain thickness is formed between the purlins under the rafters. Airtight heat insulation construction, between the rafters as a ventilation layer, the roof ventilation structure form the roof underlaying material N and the roof ventilation layer V1 as B1, and as shown in FIG. When the plate-like roof insulation form A is closely installed between the rafters or between the rafters and the rafters, it is an airtight insulation construction with any ventilation base, and the case where the roof underlaying material N and the roof ventilation layer V1 are formed. B2 and the roof ventilation structure form B1 or B2, both of which form a roof ventilation layer V1 and is a roof insulation ventilation structure YD having commonality as a heat insulation ventilation structure, and constitutes an attic zone Z1. Ventilation structure YD is roof ventilation form A1 or And A2, configured as a combination selected construction of breathable structure forms B1 or B2 of the roof.

さらに屋根裏ゾーンZ1の図4(a)及び図6(a)の場合の、夏をS、冬をWとし、夏、冬期間を例として、外壁Уの施工を軒天通過型の通気構法k1とした軒天通気及び外壁通気を伴う屋根の通気形態A1の場合の屋根断熱通気構造YDの屋根裏ゾーンZ1であり、同常時開放通気の屋根裏ゾーンZ1の図1の基本常設機能の通気及び外壁の通気による気流の進入及び排出の工程で、周囲外壁Уと外壁の透湿シートT0の間で形成される外壁通気層V2の下方と屋根裏ゾーンZ1の常時開口の自然開放通気機器である図1(b)の軒天換気口Ngと棟部常時通気専用経路Z11の妻面ガラリRV及び棟換気口Mが常時連通で常時開放通気の状態であり、夏、冬期間を問わず常時同外壁Уの下方より進入する外気Gが同通気層V2内の夏の太陽S1の副射熱を伴う熱気あるいは冬の湿気を含み、
上昇気流g0として同通気層V2の通気路V22を経過し、軒天換気口Ngより進入する外気Gと合流し、上昇気流g1として屋根通気層V1の通気路V11を経過し、棟部常時通気専用経路Z11内に進入し図8に示す同両側妻壁に附設された妻面換気ガラリRVと棟換気口Mにより通気・排出され又、同常時通気専用経路Z11内は両側妻壁の同妻面換気ガラリRV及び同棟換気口Mによる常時開放通気の状態であり、常時直接外気Gの進入及び排出が連携で行われている。(図6(a−3)、図9参照)
Further, in the case of FIGS. 4A and 6A in the attic zone Z1, summer is S, winter is W, summer and winter periods are taken as an example, and the eaves construction is an eaves-through type ventilation construction method k1 1 is the attic zone Z1 of the roof insulation ventilation structure YD in the case of the roof ventilation form A1 with eave sky ventilation and outer wall ventilation, and the basic permanent function ventilation and outer wall of FIG. 1 of the normally open ventilation attic zone Z1. FIG. 1 shows a naturally open ventilating device that is constantly open in the attic zone Z1 below the outer wall ventilation layer V2 formed between the surrounding outer wall wall and the moisture permeable sheet T0 on the outer wall in the process of entering and discharging the airflow by ventilation. b) The eaves ventilation port Ng, the wife's gall RV and the building ventilation port M of the ridge continuous ventilation dedicated route Z11 are always in communication and are always in open ventilation, and are always open regardless of the summer or winter period. Outside air G entering from below is summer thick in the ventilation layer V2 Includes a hot air or winter moisture with sub Inetsu of S1,
Ascending air flow g0 passes through the ventilation path V22 of the ventilation layer V2 and merges with the outside air G entering from the eaves-top ventilation port Ng, and as the rising air flow g1 passes through the ventilation path V11 of the roof ventilation layer V1 and continuously ventilates the building. 8 enters the exclusive route Z11 and is ventilated and exhausted by the wife ventilation gallery RV and the ridge ventilation port M attached to the both sides of the wife wall shown in FIG. It is in a state of constantly open ventilation by the surface ventilation louver RV and the same building ventilation port M, and the direct entry and discharge of the outside air G is always performed in cooperation. (See FIG. 6 (a-3) and FIG. 9)

又、さらに図4(b)及び図7(a)の場合の夏をS、冬をWとし、夏、冬期間を例として、外壁Уの施工を軒天不通過型の通気構法k2とした、外壁に上方を開放通気の状態の、外壁の通気を伴わない軒天通気のみの屋根の通気形態A2の場合の屋根断熱通気構造YDの屋根裏ゾーンZ1であり、常時開放通気の屋根裏ゾーンZ1の基本常設機能の通気による気流の進入及び排出の工程と外壁通気の工程で、
外壁の通気として、周囲外壁Уと透湿シートT0の間で形成される外壁通気層V2の下部及び上部が開放状態の常時開放通気の状態であって、同通気層V2下部より進入する外気Gが、同通気層V2内の通気路V22を通過し、開放通気状態の外壁上部より直に排出される単純循環の気流の進入及び排出が行われているもので、同通気層V2内に熱気、湿気が滞ることがなく、又、屋根裏ゾーンZ1の常時開口の自然開放通気機器の基本常設機能の図1(b)の軒天換気口Ngと棟部常時通気専用経路Z11の妻面換気ガラリRV及び棟換気口Mが常時連通で常時開放通気の状態であり、夏、冬期を問わず、常時軒天換気口より進入する外気Gが、屋根断熱通気構造YDの屋根通気層V1へ進入し、同通気層内の太陽S1の副射熱を含んだ熱気あるいは冬期間の湿気を伴う上昇気流g1として同通気層V1の通気路V11を経過し、棟部常時通気専用経路Z11内に進入し、軒天換気口Ngと通気状態の同両側妻壁に附設された妻面換気ガラリRVと棟換気口Mにて、通気排出され、又、同常時通気専用経路Z11内は同両側妻壁の換気ガラリRV及び棟換気口Mが常時通気状態であり常時直接外気Gの進入・排出が行われている。(図7(a−3)参照)
Further, in the case of FIG. 4B and FIG. 7A, the summer is S, the winter is W, and the summer and winter periods are taken as an example for the construction of the outer wall fence to the eaveless non-passing type ventilation construction method k2. This is the attic zone Z1 of the roof heat insulation ventilation structure YD in the case of the roof ventilation form A2 of the eaves-only roof without the ventilation of the outer wall in the state of the open ventilation above the outer wall, In the process of entering and discharging airflow by ventilation of the basic permanent function and the process of venting the outer wall,
As the ventilation of the outer wall, the lower part and the upper part of the outer wall ventilation layer V2 formed between the surrounding outer wall wall and the moisture permeable sheet T0 are in the normally open ventilation state with the opened state, and the outside air G entering from the lower part of the ventilation layer V2 However, a simple circulating air flow that passes through the air passage V22 in the air-permeable layer V2 and is directly discharged from the upper part of the outer wall in the open air-permeable state is entered and exhausted. In addition, moisture does not stagnate, and the permanent ventilation function N11 in FIG. 1 (b) of the basic permanent function of a naturally open ventilating device that is always open in the attic zone Z1 and the wife ventilation ventilator on the ridge always ventilating route Z11 The RV and the building ventilation port M are always in communication and are always in the open ventilation state. Regardless of summer or winter, the outside air G that always enters from the eaves ventilation port enters the roof ventilation layer V1 of the roof insulation ventilation structure YD. , Heat including sub-radiant heat of the sun S1 in the ventilation layer Alternatively, ascending air flow g1 with winter humidity passes through the ventilation path V11 of the ventilation layer V1 and enters the ridge always ventilation path Z11, and is attached to the eave sky ventilation opening Ng and the both-sides wife wall in the ventilation state. The ventilating vent RV and the building ventilation port M are ventilated and exhausted, and the ventilation ventilator RV and the building ventilating port M on both sides of the same wall are always ventilated at all times in the regular ventilation route Z11. The outside air G is entering and discharging. (See Fig. 7 (a-3))

このように本実施例1の屋根裏ゾーンZ1の形成において通気及び通気制御の専用ゾーンと気密断熱区画し、双方の干渉をなくし、常時開放通気の屋根通気層とした上でさらに、屋根棟部に同通気層と一体形成の通気・排出専用の一連の経路の棟部常時通気専用経路を構成し、棟換気口のみならず、両妻壁にも自然開放通気機器を附設することで、軒天通気あるいは外壁通気を含み、より通気性を高めることになり、夏の屋根又は外壁を含む副射熱の排出拡大と、冬の温度差による外壁の通気層内の壁体内結露の防止にもつながり、又、積雪による棟換気口がたとえ閉ざされたとしても通気性による弊害を招くこともない。 As described above, in the formation of the attic zone Z1 of the first embodiment, the exclusive zone for ventilation and ventilation control and the airtight heat insulation section are formed, the interference between the two is eliminated, and the roof ventilation layer of the normally open ventilation is further formed. By constructing a building-specific ventilation route that is a series of ventilation and exhaust passages that are integrated with the ventilation layer, a natural opening ventilation device is installed not only on the building ventilation opening, but also on both wife walls. Ventilation or external wall ventilation is included to increase air permeability, leading to increased discharge of secondary heat including the roof or outer wall in summer and prevention of dew condensation inside the ventilation layer of the outer wall due to winter temperature difference Moreover, even if the ridge ventilation opening due to snow is closed, there will be no adverse effects of air permeability.

一方、通気及び通気制御の専用ゾーンとする小屋裏ゾーンZ2は図2(a´)及び(b´)に示すように、屋根断熱通気構造YDの小屋裏面の一定の厚さの板状の屋根断熱フォームAと一定の厚さの板状の断熱フォームCを密接した室内天井または図3(a)に示す天井C0で区画され、小屋裏断熱通気構造KD又は、小屋裏通気構造KD1で、同ゾーンZ2を通気層とし、又、同ゾーンZ2と連結状態の外壁に面する内壁に、一定の厚さの板状の断熱フォームBを施した内壁通気構造体WZの内壁断熱通気構造WDの内壁通気層V3と常時連通の状態であり、さらに、同ゾーンZ2の小屋裏の両側妻壁に、上下一定の温度を定め開閉する、温度差利用の熱感知式形状記憶合金使用とする自動開閉式の自然通気制御機器の換気ガラリT1が基本常設機能として附設構成されている。(図1(b´)、図8参照) On the other hand, as shown in FIGS. 2 (a ′) and 2 (b ′), the attic zone Z2, which is a dedicated zone for ventilation and ventilation control, is a plate-like roof having a constant thickness on the back surface of the roof of the roof insulation ventilation structure YD. The heat insulating foam A and the plate-shaped heat insulating foam C having a certain thickness are partitioned by a close indoor ceiling or the ceiling C0 shown in FIG. 3A, and the roof back heat insulating ventilation structure KD or the roof back ventilation structure KD1 is the same. The inner wall of the inner wall ventilation structure WD of the inner wall ventilation structure WZ in which the zone Z2 is a ventilation layer and the inner wall facing the outer wall connected to the zone Z2 is provided with a plate-shaped insulation foam B having a certain thickness. An automatic opening and closing type that uses a heat-sensitive shape memory alloy that uses a temperature difference that is in constant communication with the ventilation layer V3 and that opens and closes to both side walls of the back of the hut in the same zone Z2 by setting a constant temperature above and below. Based on natural ventilation control equipment T1 It is added and configured as a permanent function. (See FIG. 1 (b ') and FIG. 8)

又、通気及び通気制御の専用ゾーンで小屋裏ゾーンZ2と連携で通気及び通気制御を行う床下ゾーンZ3は図2(a´)及び(b´)に示すように、床下地断熱施工の一定の厚さの板状の床断熱フォームDと、一体土間的仕様で防湿シートf0による防湿施工のベタ基礎ベースF及び一定の厚さの板状の基礎断熱フォームD´で内側断熱施工された立ち上り断熱布基礎F1にて断熱区画された床下断熱通気構造UDで、同ゾーンZ3を通気層とし、又、小屋裏ゾーンZ2と連結し、一連の通気層として形成される外壁に面する内壁通気構造体WZの内壁断熱通気構造WDの内壁通気層V3と常時連通の連結状態であり、さらに同ゾーンZ3の立ち上り断熱布基礎F1に、自動開閉式で自然通気制御機器の、小屋裏ゾーンZ2と同型式の温度差利用の熱感知式形状記憶合金使用の床下換気口T1が基本常設機能として附設構成されている。(図1(b´)、図9参照) The underfloor zone Z3 that controls ventilation and ventilation in cooperation with the attic zone Z2 in the dedicated zone for ventilation and ventilation control, as shown in FIGS. 2 (a ') and (b'), has a constant floor base insulation construction. Thick plate-like floor insulation foam D, solid foundation base F with moisture-proof construction by moisture-proof sheet f0 with integrated soil specifications, and rising insulation with inner insulation construction with plate-like foundation insulation foam D 'of constant thickness Underfloor heat insulation ventilation structure UD that is insulated by cloth foundation F1, the inner wall ventilation structure facing the outer wall formed as a series of ventilation layers by connecting the zone Z3 as a ventilation layer and connecting to the hut back zone Z2 The inner wall ventilation layer V3 of the inner wall heat insulation ventilation structure WD of WZ is always connected to the inner wall ventilation layer V3, and the same type as the rear roof zone Z2 of the natural ventilation control device with automatic opening and closing on the rising insulation fabric base F1 of the same zone Z3 Temperature margin of Heat-sensitive shape memory alloy used in underfloor vents T1 is Fusetsu configured as a basic permanent features. (See FIG. 1 (b ') and FIG. 9)

一方、図4(a)及び図6(a)の通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2と床下ゾーンZ3の図1(b´)の基本常設機能による通気及び通気制御の工程で、小屋裏の通気及び通気制御する小屋裏ゾーンZ2及び床下の通気及び通気制御する床下ゾーンZ3は常時連通状態で、両ゾーンの基本常設機能の上下一定の温度を定め開閉する、温度差利用の熱感知式形状記憶合金使用の自動開閉式の換気ガラリ及び床下換気口のT1による通気及び通気制御は、図4(c)の2に示すように外気温が一定以上の場合同時開口し、通気状態となり、両ゾーン内への直接外気Gの進入と、通気・排出を促し、又、床下ゾーンZ3に進入し上昇する気流g2が連通する内壁通気層V3の通気路V33を経過し、気流g3として小屋根ゾーンZ2内に進入し、同ゾーンZ2内の気流と合流した気流g4として同ゾーンZ2の両側妻壁に附設された同自動開閉式の換気ガラリT1により通気・排出され、又、図4(c)の1に示すように一定温度以下で同時閉鎖され、外気の進入を自動通気制御し、連携して通気及び通気制御を行なう小屋裏ゾーンZ2と床下ゾーンZ3であり、又常時開放通気の専用ゾーンの屋根裏ゾーンZ1と同小屋裏ゾーンZ2とは気密断熱区画され、互いの干渉による弊害もなく、屋根裏ゾーンZ1は夏、冬期間を問わず外壁通気層を含み常時開放通気の状態で、一方、通気及び通気制御を行なう小屋裏ゾーンZ2及び床下ゾーンZ3は、一定温度以下となる冬期間は連携で通気制御され、又、連結状態の内壁通気構造体WZを含み一連の室内保温状態である。(図6(a−1),(a−2),図9参照) On the other hand, in the step of ventilation and ventilation control by the basic permanent function of FIG. 1 (b ′) of the hut back zone Z2 and the underfloor zone Z3 of the dedicated zone for ventilation and ventilation control of FIGS. 4 (a) and 6 (a), The attic zone Z2 that controls the ventilation and ventilation of the attic and the under-floor zone Z3 that controls the ventilation and ventilation of the underfloor are always in communication, and heat that uses a temperature difference is determined by opening and closing the basic permanent function of both zones. The ventilation and ventilation control by T1 of the automatic opening and closing type ventilation gallery and the underfloor ventilation hole using the sensing shape memory alloy is opened simultaneously when the outside air temperature is above a certain level as shown in 2 of FIG. As a result, the outside air G enters the both zones directly, and ventilates / discharges, and passes through the air passage V33 of the inner wall ventilation layer V3 through which the airflow g2 that enters and rises into the underfloor zone Z3 is communicated as an airflow g3. Small roof zone Z As shown in FIG. 4 (c), the air flow g4 merged with the air flow in the zone Z2 is vented and discharged by the automatic opening and closing ventilation gallery T1 attached to both side walls of the zone Z2. As shown in Fig. 1, it is a hut zone Z2 and an underfloor zone Z3 that are closed simultaneously at a certain temperature or lower, automatically control the ventilation of outside air, and perform ventilation and ventilation control in cooperation with each other. The attic zone Z1 and the attic zone Z2 are hermetically insulated and have no harmful effects due to mutual interference. The attic zone Z1 includes an outer wall ventilation layer regardless of summer and winter periods, and is always in an open ventilation state. Further, the attic zone Z2 and the underfloor zone Z3 that perform ventilation control are controlled in ventilation during the winter period when the temperature is below a certain temperature, and include a connected inner wall ventilation structure WZ and are in a series of indoor heat insulation states. (Refer to FIG. 6 (a-1), (a-2), FIG. 9)

さらに、小屋裏ゾーンZ2と床下ゾーンZ3の基本常設機能の図1(b´)による通気及び通気制御の工程で、図6(a)あるいは図7(a)に示す夏をS、冬をWとし、夏、冬期間の例として、夏期間Sの太陽S1の直射日光Eを受ける屋根及び外壁を含み外気温が一定温度以上と高い場合、小屋裏ゾーンZ2及び床下ゾーンZ3に附設される図1(b´)の温度差利用の熱感知式形状記憶合金使用の自動開閉式の換気ガラリ及び床下換気口のT1−0とする図4(c)の2の開口状態であり、両ゾーン内の通気による直接外気Gの進入と排出が図6(a−1),(a−2)あるいは図7(a−1),(a−2)に示すように行なわれ、又、床下ゾーンZ3の立ち上り断熱布基礎F1に附設される同床下換気口T1を介し進入する外気Gが直接又は同ゾーン内の床下の冷気を含み上昇気流のg2として内壁断熱通気構造WDの通気層V3内へ進入し、同通気層V3内の熱気あるいは温度差による湿気を伴ない上昇気流のg3として連通する小屋裏ゾーンZ2内に進入し、さらに同ゾーンZ2内の熱気を伴う気流のg4あるいは同ゾーンZ2内に直接進入する外気Gと合流の気流のg4として両側妻壁に附設され自動開口状態の換気ガラリT1及び床下換気口T1との連携の通気状態にて排出され、又、屋根裏ゾーンZ1の常時開放通気と連携の自然通気による気流の進入と通気・排出が行なわれる二重の通気・排出であり、構造体内の通気性を高め、さらにはその通気効果による夏の室内の冷房効果を得るものである(図9参照)。 Further, in the process of ventilation and ventilation control in FIG. 1 (b ′) of the basic permanent function of the attic zone Z2 and the underfloor zone Z3, the summer shown in FIG. 6 (a) or FIG. As an example of summer and winter periods, when the outside air temperature including the roof and the outer wall receiving the direct sunlight E of the sun S1 in the summer period S is higher than a certain temperature, the figure is attached to the attic zone Z2 and the underfloor zone Z3. 4 (c) is the open state of T1-0 of the automatic opening and closing type ventilation gallery and the underfloor ventilation opening using the heat sensing type shape memory alloy using the temperature difference of 1 (b '), in both zones The direct entry and discharge of the outside air G by aeration of air is performed as shown in FIGS. 6 (a-1) and (a-2) or FIGS. 7 (a-1) and (a-2). The outside air G entering through the underfloor ventilation port T1 attached to the rising fabric base F1 is directly As the rising air flow g2 including the cold air under the floor in the same zone or in the same zone, it enters the ventilation layer V3 of the inner wall heat insulation ventilation structure WD, and as the rising air flow g3 with the hot air in the ventilation layer V3 or the humidity due to the temperature difference. Enters into the hut back zone Z2 that communicates, and is attached to both side walls as g4 of the airflow accompanied by hot air in the zone Z2 or the airflow G4 that merges directly with the outside air G that enters the zone Z2 and is automatically opened Double ventilating that vents and ventilates / discharges natural airflow in conjunction with the normally open venting of the attic zone Z1 and ventilated in a coordinated manner with the ventilation gallery T1 and the underfloor vent T1. This is a discharge, which enhances the air permeability in the structure, and further obtains a cooling effect in the summer room due to the ventilation effect (see FIG. 9).

次に図10に示すように、実施例1の屋根の形状が四方傾斜状態の場合の通気専用棟WTを附設構成し、屋根断熱通気構造YDと一体形成する屋根裏ゾーンZ1の通気形態及び通気構造形態、さらに通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2の通気及び通気制御の形態の構成にあたり、図10、図12(a)・(b)に示すように、前記屋根裏ゾーンZ1の棟部常時通気専用経路Z11が、屋根断熱通気構造YDと四方一体形状で形成され、通気専用棟WTを附設構成し棟部常時通気専用経路Z12として組み合わせ構成される屋根裏ゾーンZ1であり、同通気専用棟WTは屋根の長辺方向又は短辺方向の傾斜面に屋根棟及び妻壁が構成され、棟を中心とし、両側に平行して構築し、底面が平面状の一定の幅 e2で最高の高さh2の四方の屋根通気層V1を形成する屋根断熱通気構造YDと連通とした一体形状で形成され、さらに、両端部を両側の通気専用棟WTの妻壁と一体形成とした一連の形状で、長さLとし、棟を含む内部空洞の通気層とし、周囲を一定の厚さの板状の断熱フォームAで小屋裏ゾーンZ2と気密断熱区画された一体箱状の棟部常時通気専用経路Z12として構成される。 Next, as shown in FIG. 10, the ventilation form and ventilation structure of the attic zone Z <b> 1 that is integrally formed with the roof heat insulating ventilation structure YD by additionally providing a ventilation wing WT when the roof shape of the first embodiment is in a four-sided inclined state. As shown in FIGS. 10, 12A and 12B, the ridge portion of the attic zone Z1 in the configuration of the form and the form of ventilation and ventilation control in the attic zone Z2 of the exclusive zone for ventilation and ventilation control. The permanent ventilation passage Z11 is an attic zone Z1 that is formed in a four-way integrated shape with the roof heat insulation ventilation structure YD, and is constructed by adding a ventilation ventilation wing WT and combined with the ridge portion ventilation ventilation passage Z12. The WT is constructed with a roof ridge and end walls on the inclined surface in the long side or short side direction of the roof. The WT is built around the ridge and parallel to both sides. H2 It is formed in an integral shape that communicates with the roof heat insulation ventilation structure YD that forms the roof ventilation layer V1 of the other side, and in addition, a series of shapes in which both ends are integrally formed with the end walls of the ventilation dedicated wing on both sides, L is a ventilation layer of an internal cavity including the wing, and the surrounding area is configured as a unitary ventilation passage Z12 in a unitary box-like ridge portion that is hermetically insulated from the hut zone Z2 by a plate-shaped heat insulation foam A having a constant thickness. Is done.

又、図11(a)、図12(a)に示すように軒天及び同棟部常時通気専用経路Z12に前記同様の基本常設機能とする軒天換気口Ng、妻面換気ガラリRV及び棟換気口Mの常時開口の自然開放通気機器が附設構成され、同軒天換気口Ng及び外壁通気層V2より進入する外気G又は上昇気流g0が屋根通気層V1の通気層V11を経過し、同棟部常時通気専用経路Z12の換気ガラリRV及び棟換気口Mの連携により通気・排出される。(図11(b)参照) Further, as shown in FIGS. 11 (a) and 12 (a), the eave sky and the ridge part normal ventilation dedicated route Z12 have the same basic permanent function as the eave heaven ventilation port Ng, the wife ventilation galley RV, and the ridge. A naturally open ventilation device with a normally open ventilation port M is attached, and the outside air G or the rising air flow g0 entering from the eaves ventilation port Ng and the outer wall ventilation layer V2 passes through the ventilation layer V11 of the roof ventilation layer V1. Ventilation vent RV and ridge ventilation port M of the ridge always ventilating exclusive route Z12 are ventilated and discharged. (See FIG. 11 (b))

又、小屋裏ゾーンZ2の通気・排出と通気制御は図11(a)、図12(a)に示すように、棟部常時通気専用経路Z12を媒介し行われ、同棟部常時通気専用経路Z12の左右の最高の高さh2で周囲小屋裏ゾーンZ2と周囲気密断熱区画された立ち上り壁部分に、小屋裏ゾーンZ2の通気媒介とする自動開閉式の自然通気制御機器の換気ガラリT1あるいは自動開閉する開閉専用の電気式シャッターK4のいずれかが附設構成される。(図11(b´)参照) In addition, as shown in FIGS. 11 (a) and 12 (a), the ventilation / discharge and ventilation control in the hut back zone Z2 are performed via the ridge always ventilation path Z12, and the ridge always ventilation dedicated path. Ventilation gallery T1 of an automatic opening / closing type natural ventilation control device that uses ventilation of the attic zone Z2 on the rising wall portion that is the maximum height h2 on the right and left of Z12 and the surrounding attic zone Z2 and the surrounding airtight insulation section. One of the open / close dedicated electric shutters K4 is additionally provided. (See FIG. 11 (b ′))

次いで、図12(b)に示すように、夏をS、冬をWとし、夏、冬期間を例に、専用ゾーン別通気構造の通気層内の通気による気流の進入及び排出の工程及び通気制御の状態を屋根の通気形態A1として示す比較対称の全体通気層断面図をもとに詳しく説明する。なお、図12(c)は自動開閉式の自然通気制御機器T1の開閉状態を示すもので、1のT1−Cは外気温が一定温度以下で閉鎖の状態を示し、2のT1−0は一定温度以上で開口状態を示す。 Next, as shown in FIG. 12 (b), with summer as S, winter as W, and summer and winter periods as an example, the process of entering and discharging airflow by ventilation in the ventilation layer of the ventilation structure for each dedicated zone and ventilation The control state will be described in detail based on a cross-sectional view of the entire symmetrical ventilation layer showing the ventilation state A1 of the roof. FIG. 12 (c) shows the open / close state of the automatic open / close natural ventilation control device T1, where T1-C is a closed state when the outside air temperature is below a certain temperature, and T1-0 is 2 The opening state is shown above a certain temperature.

常時開放通気の屋根裏ゾーンZ1の通気による通気層内の気流の進入及び排出の工程で、周囲外壁Уの通気層V2の下方と、屋根裏ゾーンZ1の常時開口で開放通気の基本常設機能図11(b)の軒天換気口Ng、妻面換気ガラリRV及び棟換気口Mが夏、冬を問わず常時連通で常時開放通気の状態であり、同外壁Уの通気層V2の下方より外気Gが進入し、同通気層V2内の夏の太陽S1の輻射熱を伴う熱気、あるいは冬の湿気を含んだ上昇気流g0として同通気層V2の通気路V22を経過し、軒天換気口Ngより進入する外気Gと合流の上昇気流g1として屋根通気層V1の通気路V11を経過し、棟部常時通気専用経路Z12内に進入し、同通気専用経路Z12の両妻壁に附設された妻面換気ガラリRV及び同棟換気口Mより気流g1又は、夏の外気温が一定温度以上の場合の、同通気専用経路Z12内へ小屋裏ゾーンZ2より進入する気流g4と合流の気流g5として通気・排出され、又、同通気専用経路Z12内は、両側の妻壁の同妻面換気ガラリRV及び同棟換気口Mによる常時開放通気の状態であり、常時直接外気Gの進入及び排出が連携で行われている。(図12(b)参照) In the process of entering and discharging the air flow in the ventilation layer by the ventilation of the attic zone Z1 with the normally open ventilation, the basic permanent functional diagram of the open ventilation with the ventilation layer V2 below the surrounding outer wall wall and the always open of the attic zone Z1 FIG. b) The eaves ventilation port Ng, the wife ventilation garari RV, and the building ventilation port M are in continuous communication and open air regardless of summer and winter, and the outside air G is below the ventilation layer V2 of the outer wall wall. Enters and passes through the air passage V22 of the air vent layer V2 as hot air accompanied by radiant heat of the summer sun S1 in the air vent layer V2 or ascending air flow g0 including winter moisture, and enters from the eaves vent Ng. Ascending airflow g1 that merges with the outside air G1 passes through the ventilation passage V11 of the roof ventilation layer V1, enters the ridge part regular ventilation route Z12, and is attached to both wife walls of the ventilation passage Z12. Airflow g1 from RV and Ventilation vent M Or, when the outside air temperature in summer is higher than a certain temperature, the air flow g4 entering the air passage exclusive route Z12 and the air flow g5 that merges with the air flow g5 that joins the air flow are exhausted and exhausted. The airflow is constantly open by the same-face ventilation galley RV and the same building ventilation port M on both sides of the wife wall, and the direct entry and discharge of the outside air G is always performed in cooperation. (See FIG. 12 (b))

一方、通気及び通気制御の専用ゾーンである小屋裏ゾーンZ2と床下ゾーンZ3の通気及び通気制御の工程は外気温が一定温度以上と高い夏の場合を例に、床下ゾーンZ3に附設される図11(b´)の温度差利用の熱感知式形状記憶合金使用の自動開閉式の床下換気口T1が図12(c)の2の開口状態となり、さらに、小屋裏ゾーンZ2の通気媒介とする棟部常時通気専用経路Z12の同小屋裏ゾーンZ2と気密断熱区画された同立ち上り壁に附設構成された同型式の換気ガラリT1、あるいは図11(b´)の開閉専用の電気式シャッターK4が同時開口し、通気状態となり、外気Gが開口状態の床下換気口T1を介し、同ゾーンZ3内へ進入し、同ゾーン内の床下の冷気を伴う上昇気流g2として内壁通気層V3内へ進入し、さらに、同通気層V3の熱気あるいは湿気を伴う上昇気流g3として同通気層V3の通気路V33を経過し小屋裏ゾーンZ2内へ進入し、附設構成された通気媒介の換気ガラリT1あるいは電気式シャッターK4を介し屋根裏ゾーンZ1の棟部常時通気専用経路Z12内へ同小屋裏ゾーンZ2内の淀んだ空気、熱気、あるいは湿気等を伴う気流g4として進入し、同通気専用経路Z12内の基本常設機能の両側妻壁の妻面換気ガラリRV及び棟換気口Mの自然開放通気機器によって同通気専用経路内へ同時進入する、屋根通気路V11を経過した上昇気流g1と合流の気流g5として通気・排出される。(図12(b)参照) On the other hand, the steps of ventilation and ventilation control in the attic zone Z2 and the underfloor zone Z3, which are dedicated zones for ventilation and ventilation control, are attached to the underfloor zone Z3 in the case of the summer when the outside air temperature is higher than a certain temperature. 11 (b ′) using a heat-sensitive shape memory alloy utilizing a temperature difference, an automatic open / close type under-floor ventilation port T1 is in the open state of 2 in FIG. 12C, and further serves as a ventilation medium for the attic zone Z2. The same type ventilation louver T1 attached to the same rising wall that is hermetically insulated with the same roof back zone Z2 of the ridge always ventilating exclusive route Z12, or the electric shutter K4 dedicated to opening and closing shown in FIG. At the same time, the ventilation state is established, and the outside air G enters the zone Z3 through the underfloor ventilation port T1, and enters the inner wall ventilation layer V3 as the rising air flow g2 accompanied by the cold under the floor in the zone. ,further, Ascending air flow g3 accompanied by hot air or moisture of the air-permeable layer V3 passes through the air passage V33 of the air-permeable layer V3 and enters the hut back zone Z2, and the ventilating medium ventilation gallery T1 or the electric shutter K4 provided as an accessory is installed. The air flow g4 with stagnant air, hot air, or moisture in the attic zone Z2 enters the ridge always ventilation dedicated route Z12 in the attic zone Z1 and both sides of the basic permanent function in the ventilation dedicated route Z12. It is ventilated and exhausted as an airflow g5 that merges with the rising airflow g1 that has passed through the roof airway V11 and enters the exclusive ventilation route simultaneously by the natural ventilation ventilator at the wife's face ventilation RV and the building vent M. . (See FIG. 12 (b))

又、外気温が一定温度以下となる冬の場合を例に、床下ゾーンZ3及び小屋裏ゾーンZ2の通気媒介の同自動開閉式の床下換気口及び同型式の換気ガラリT1あるいは開閉専用の電気式シャッターK4が同時に(c)の1の閉鎖状態となり、自動通気制御され、床下ゾーンZ3及び小屋裏ゾーンZ2が無通気状態となり、周囲外壁通気と屋根通気状態を維持し、床、壁、小屋裏による室内保温状態が形成されるのである。(図12(b)参照) In addition, in the case of winter when the outside air temperature is below a certain temperature, for example, the same automatic opening / closing underfloor vent and the same type ventilation gallery T1 of the underfloor zone Z3 and the attic zone Z2 At the same time, the shutter K4 is in the closed state (1) of (c), the automatic ventilation control is performed, the under-floor zone Z3 and the attic zone Z2 are in the non-venting state, and the surrounding outer wall ventilation and the roof ventilation are maintained, and the floor, wall, and shed The indoor heat insulation state by is formed. (See FIG. 12 (b))

このように屋根の形状が四方傾斜状態の場合であっても通気専用棟WTを附設し棟部常時通気専用経路Z12として構成することで、常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーンを分別することができる実施例1の場合の例であり、さらに小屋裏ゾーンZ2の占用面積あるいは同構造体規模に応じた通気効果を得る場合、同専用経路Z12の最高の高さh2として形成される立ち上り区画壁の両側を取り付け面とし、一定多数の自動開閉式の自然通気制御機器の附設構成も可能である。(図11(a)、図12(a)参照) In this way, even when the roof is in a four-sided inclined state, a dedicated ventilation wing WT is provided and the ridge portion is configured as a dedicated ventilation route Z12, so that a dedicated zone for always open ventilation and a dedicated zone for ventilation and ventilation control are provided. Is the example in the case of Example 1, and when the ventilation effect according to the occupied area of the hut back zone Z2 or the same structure size is obtained, it is formed as the maximum height h2 of the dedicated path Z12. A fixed number of automatic opening / closing type natural ventilation control devices can be installed on both sides of the rising partition wall. (See FIG. 11 (a) and FIG. 12 (a))

次にこれらの専用ゾーン別通気構造から構成され、専用ゾーン別基本常設機能を用い、通気及び通気制御を行う実施例1の断熱通気構造体1の専用ゾーン別ハイブリッド通気及び通気制御の方法について、図13〜図21を参照しながら詳しく説明する。
なお図13(c)、図19(c)は自動開閉式の自然通気制御機器T1の開閉図であり、以下各図、夏をS、冬をWとし夏、冬期間を例に、1のT1−Cは一定温度以下で閉鎖状態を示し、2のT1−0は一定温度以上で開口状態を示すものである。
Next, a method for hybrid ventilation and ventilation control for each dedicated zone of the heat insulation ventilation structure 1 of the first embodiment, which is configured by the ventilation structure for each dedicated zone and performs ventilation and ventilation control using the basic permanent function for each dedicated zone, This will be described in detail with reference to FIGS.
FIGS. 13 (c) and 19 (c) are open / close views of the automatic open / close natural ventilation control device T1. In the following figures, the summer is S, the winter is W and the summer and winter periods are 1 as an example. T1-C indicates a closed state below a certain temperature, and T1-0 of 2 indicates an opened state above a certain temperature.

前記図1(a)の常時開放通気の専用ゾーンの屋根裏ゾーンZ1と通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2及び床下ゾーンZ3の、又、両ゾーンの連通による連携の通気及び通気制御とする断熱通気構造体1の専用ゾーン別ハイブリッド通気及び通気制御を行うにあたり、
図13(b)に示す通気及び通気制御に用いる、屋根裏ゾーンZ1の常時開口の自然開放通気機器と、小屋裏ゾーンZ2及び床下ゾーンZ3の自動開閉式の自然通気制御機器の専用ゾーン別基本常設機能に補助として図13(b´)に示すソーラーエネルギーを主とする設定温度、設定湿度を感知して自動運転・停止する自動制御の換気ファンを附設機能とし、又、同換気ファンを自動制御する、太陽光発電を供給する装置の太陽電池パネルE0を設置し、ソーラーエネルギーを主として自動運転・停止を自動制御するコントローラCR、温度スイッチTS、湿度スイッチHS及び連動運転とし夜・雨天時の家庭用電源の自動切換のリレーユニットRUから構成される制御装置を専用ゾーン別とし、屋根裏ゾーンZ1に附設される換気ファンK1と制御装置YC、小屋裏ゾーンZ2及び間近に連結される内壁通気構造体WZの上部に附設される換気ファンK2と同一制御装置KC、さらに床下ゾーンZ3に附設される床下専用換気ファンK3と制御装置UCとして附設し、専用ゾーン別ハイブリッド通気及び通気制御機能として構成する。(図14(a)・(a´)、図16(a)・(b)・(b´)参照)
The attic zone Z1 of the exclusive zone of the normally open ventilation of FIG. 1 (a) and the attic zone Z2 and the underfloor zone Z3 of the exclusive zones of the ventilation and ventilation control, and the linked ventilation and ventilation control by the communication of both zones, In performing hybrid ventilation and ventilation control for each dedicated zone of the heat insulating ventilation structure 1
Basic permanent installation by dedicated zone of the naturally open ventilating device that is always open in the attic zone Z1 and the automatic ventilating device that is automatically opened and closed in the attic zone Z2 and the underfloor zone Z3, which are used for venting and venting control shown in FIG. As an auxiliary to the function, an automatic control ventilation fan that automatically detects the set temperature and humidity shown in Fig. 13 (b ') and automatically starts and stops is provided as an auxiliary function, and the ventilation fan is automatically controlled. Install solar panel E0, a device that supplies solar power, and use a CR controller, a temperature switch TS, a humidity switch HS, and linked operation to automatically control solar energy mainly in automatic operation / stop. Ventilation unit attached to the attic zone Z1, with a control device composed of a relay unit RU for automatic switching of power supply for each zone. 1 and the control device YC, the same roof control zone K2 as the ventilation fan K2 provided at the upper part of the inner wall ventilation structure WZ connected to the hut zone Z2, and the underfloor ventilation fan K3 attached to the underfloor zone Z3. It is attached as a control unit UC and is configured as a hybrid ventilation and ventilation control function for each dedicated zone. (Refer to Fig. 14 (a), (a '), Fig. 16 (a), (b), (b'))

図14(a)・(b)、図15(a−3)・(b)に示すように、
屋根裏ゾーンZ1のハイブリッド通気機能KC−1とし、軒天換気口Ng、妻面換気ガラリRV及び棟換気口Mの基本常設機能に自動制御の換気ファンK1を附設構成し混用する、通気促進機能であって、屋根裏ゾーンZ1の棟部常時通気専用経路Z11の両側の妻面壁に妻面換気ガラリRV及び棟に棟換気口Mが常設され、同通気専用経路Z11内の常時直接外気Gの進入・通気・排出を促し、又軒天換気口Ng又は外壁通気層V2より進入する外気Gまたは気流g1が屋根通気層V1の通気路V11を合流して経過し、屋根通気層V1内の熱気、湿気を含み同通気専用経路Z11内に進入した合流の上昇気流g1の排出を促すものであって、外部の自然気流の進入を主とする通気・排出であり、又、補助として自動制御の換気ファンK1を同通気専用経路の両側妻面壁のいずれか一方に附設し、同通気専用経路Z11内の設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し同通気専用経路Z11内の中央よりパイプダクトP1にて吸引し、自動運転で通気及び気流の排出を強制的に行い、設定以下で自動停止するもので、屋根裏ゾーンZ1内の常時通気の状態と、促進を計り、且つ外気流の状態にとらわれず、自然と強制の両用の機能を混用し、通気を促進することを特徴とする屋根裏ゾーンZ1のハイブリッド通気促進の方法である。(図15(a)、図17参照)
As shown in FIGS. 14A and 14B and FIGS. 15A-3 and 15B,
A ventilation ventilation function that uses the hybrid ventilation function KC-1 in the attic zone Z1 and mixes and mixes the automatic ventilation fan K1 with the basic permanent functions of the eaves vent Ng, the wife ventilation gallery RV, and the building ventilation opening M. In addition, a wife ventilation gallery RV is permanently installed in the wife wall on both sides of the ridge permanent ventilation route Z11 in the attic zone Z1, and a ridge ventilation port M is permanently installed in the ridge. The outside air G or air flow g1 that promotes ventilation / discharge and enters from the eaves vent Ng or the outer wall ventilation layer V2 merges through the ventilation passage V11 of the roof ventilation layer V1, and passes through the air and moisture in the roof ventilation layer V1. The ventilation air flow g1 of the merged air flowing into the ventilation exclusive path Z11 is promoted, and is mainly ventilation and discharge mainly by the entrance of an external natural air flow. K1 Attached to either side wall on both sides of the ventilation path, pipe ducts from the center of the ventilation path Z11 are detected by the temperature sensor TC and humidity sensor HC. Suction at P1, forcibly ventilate and discharge airflow in automatic operation, automatically stop below setting, measure the state of constant ventilation in the attic zone Z1, and promote the state of external airflow It is a method for promoting hybrid ventilation in the attic zone Z1, characterized by mixing natural and forced functions and promoting ventilation. (See FIG. 15 (a) and FIG. 17)

又、図14(a´)・(b´)、図15(a−2)・(b)に示すように通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2のハイブリッド通気及び通気制御機器KC−2とし、自動開閉式の自然通気制御機器の上下一定の温度を定め開閉する、温度差利用の熱感知式形状記憶合金使用の換気ガラリT1の基本常設機能に自動制御の換気ファンK2を附設構成し、混用する通気及び通気制御機能であって、同小屋裏ゾーンZ2の両側の妻壁に基本常設機能の自動開閉式の自然通気制御機器の換気ガラリT1が常設され、連通する床下ゾーンZ3の同自動開閉式の自然通気制御機器の床下換気口T1と連携の通気及び通気制御を行うもので、自然気流の進入による通気を主とし、図15(a)に示すように、夏をS、冬をWとし、外気温が一定温度以上の場合開口し、同ゾーンZ2内に直接外気Gの進入と通気、排出を促し、連通状態の床下ゾーンZ3より上昇する気流g2が内壁通気構造体WZの通気層V3の通気路V33を経過し上昇気流g3として小屋裏ゾーンZ2内に進入、経過し、開放状態の同換気ガラリT1が同ゾーンZ2内の気流と合流の気流g4の排出を促すもので、又一定の温度以下の場合閉鎖し、外気Gの進入を自動通気制御する。(図16(a)参照) Further, as shown in FIGS. 14 (a '), (b') and FIGS. 15 (a-2), (b), the hybrid ventilation and ventilation control device KC- in the rear zone Z2 of the exclusive zone for ventilation and ventilation control is provided. The automatic ventilation fan K2 is added to the basic permanent function of the ventilation gallery T1 using a heat-sensitive shape memory alloy that uses a temperature difference that opens and closes a constant temperature of an automatic open / close natural ventilation control device. In addition, the ventilation and ventilation control functions to be used in combination, and the ventilation gallery T1 of the automatic opening / closing type natural ventilation control device of the basic permanent function is permanently installed on the both side walls of the hut back zone Z2, and the underfloor zone Z3 communicates. It performs ventilation and ventilation control in cooperation with the underfloor ventilation opening T1 of the automatic opening / closing type natural ventilation control device, and mainly performs ventilation by the entry of natural airflow, as shown in FIG. Winter is W and the outside temperature is constant The air flow g2 that opens from the under-zone zone Z3 that directly enters the zone Z2 and promotes the entry, ventilation, and discharge of the outside air G through the zone Z2 passes through the ventilation path V33 of the ventilation layer V3 of the inner wall ventilation structure WZ. Elapsed ascending airflow g3, entering and passing through the attic zone Z2, and the opened ventilation gallery T1 prompts the discharge of the airflow g4 that joins the airflow in the zone Z2 and is below a certain temperature. It closes and automatically ventilates the entrance of outside air G. (See FIG. 16 (a))

又、図14(a)、図15(a−2)・(b)に示すように補助として小屋裏ゾーンZ2内の設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し、同ゾーンZ2内の中央よりパイプダクトP2にて吸引する自動制御の換気ファンK2が同ゾーンZ2の両側妻壁のいずれか一方に附設し、又、近接の連結される外壁周囲の内壁通気構造体WZの上部に附設する同型式の換気ファンK2が同通気構造体WZの通気層V3内の設定温度、設定湿度を温度センサーTC、湿度センサーHCにて感知し自動運転し、同通気層V3内の通気及び気流の排出を強制的に行い、設定以下で自動停止するもので、一定の温度、湿度の上昇を自動制御し、且つ、外気温が一定温度以下で閉じ、外気の進入を自動通気制御する、自然と強制の両用の機能を混用し、通気を促進し、又、通気制御を行う小屋裏ゾーンZ2のハイブリッド通気及び通気制御の方法である。(図17参照) Further, as shown in FIGS. 14A, 15A-2, and 15B, the temperature sensor TC and the humidity sensor HC sense the set temperature and set humidity in the cabin back zone Z2 as an auxiliary, and the same zone. An automatically controlled ventilation fan K2 that sucks in the pipe duct P2 from the center in Z2 is attached to either one of both side walls of the same zone Z2, and the inner wall ventilation structure WZ around the adjacent outer wall to be connected is provided. The ventilation fan K2 of the same type attached to the upper part senses the set temperature and set humidity in the ventilation layer V3 of the ventilation structure WZ by the temperature sensor TC and the humidity sensor HC and automatically operates to ventilate the ventilation layer V3. Forcibly discharges airflow and automatically stops at a setting or less, automatically controls the rise of constant temperature and humidity, and closes outside air temperature below a certain temperature, and automatically controls the entry of outside air. Both natural and forced Mix the ability to promote ventilation, also the method for a hybrid ventilation and aeration control of attic zone Z2 which performs the ventilation control. (See Figure 17)

さらに図14(a´)・(b´)、図15(a−1)・(b)に示すように
床下ゾーンZ3のハイブリッド通気及び通気制御機能KC−3とし上記小屋裏ゾーンZ2同様、自動開閉式の自然通気制御機器の温度差利用の熱感知式形状記憶合金使用の床下換気口T1の基本常設機能に自動制御の床下専用換気ファンK3を附設構成し、混用する通気制御機能であって、立ち上り断熱布基礎F1の周囲に一定の数量を定め常設する、基本常設機能の自動開閉式の自然通気制御機器の床下換気口T1が連通する小屋裏ゾーンZ2の同自動開閉式の自然通気制御機器の換気ガラリT1と連携の通気及び通気制御を行うもので図15(a)に示すように、夏をS、冬をWとし、外気温が一定温度以上の場合開口し、同ゾーンZ3内に直接外気Gの進入と通気、排出を促し、又、同ゾーンZ3内の進入経過する気流が上昇気流g2として、連通する内壁通気構造体WZの通気層V3の通気路V33を経過し、上部の小屋裏ゾーンZ2へ上昇気流g3として導かれる、連携の通気形態であり、又、一定の温度以下の場合閉鎖し、外気Gの進入を自動通気制御する。(図17参照)
Further, as shown in FIGS. 14 (a ′), (b ′) and FIGS. 15 (a-1), (b), the hybrid ventilation and ventilation control function KC-3 of the under-floor zone Z3 is set to be automatic as in the above hut zone Z2. This is a ventilation control function that is combined with an automatic underfloor ventilation fan K3 that is added to the basic permanent function of the underfloor ventilation port T1 that uses a heat-sensitive shape memory alloy that uses a temperature difference of an open / close natural ventilation control device. The automatic opening / closing type natural ventilation control in the back of the hut zone Z2, which communicates with the underfloor ventilation port T1 of the automatic opening / closing type natural ventilation control device with a basic permanent function, which is fixedly installed around the rising insulation cloth base F1. As shown in FIG. 15 (a), the ventilating and venting control is performed in cooperation with the ventilation gallery T1 of the device. As shown in FIG. 15 (a), the summer is S, the winter is W, and the outside air temperature is above a certain temperature. Entry and passage of outside air G directly The airflow that has passed through the zone Z3 is ascending airflow g2 and passes through the ventilation path V33 of the ventilation layer V3 of the communicating inner wall ventilation structure WZ and rises to the upper shed zone Z2 This is a cooperative ventilation mode guided as an air flow g3, and closes when the temperature is below a certain temperature, and automatically controls the entry of outside air G. (See Figure 17)

図14(a´)、図15(a−1)・(b)に示すように、補助として、
床下ゾーンZ3の立ち上り断熱布基礎F1に一定の数量を定め附設する自動制御の床下専用換気ファンK3は、当該床下ゾーンZ3内の湿度状況対応とするもので、設定湿度を湿度センサーHCが感知し同ゾーンZ3内の中央よりパイプダクトP3にて吸引し、自動運転で通気・排出を強制的に行い、設定以下で自動停止するもので、一定の湿度の上昇を自動制御し、又は上下一定の外気温で開閉し一定の温度以下で外気の進入を自動閉鎖する、自然と強制の両用の機能を混用し、通気を促進し、又、通気制御を行うことを特徴とする床下ゾーンZ3のハイブリッド通気及び通気制御の方法である。(図17参照)
As shown in FIG. 14 (a ′) and FIGS. 15 (a-1) and 15 (b),
The automatic underfloor ventilation fan K3, which is fixedly attached to the rising insulation cloth foundation F1 in the underfloor zone Z3, corresponds to the humidity condition in the underfloor zone Z3, and the humidity sensor HC detects the set humidity. The air is sucked from the center in the same zone Z3 through the pipe duct P3, forced to ventilate and discharge by automatic operation, and automatically stopped below the set value. A hybrid in the underfloor zone Z3 that mixes the functions of both natural and forced, which automatically opens and closes at outside temperature and automatically closes outside air at a certain temperature or less, promotes ventilation, and controls ventilation It is a method of ventilation and ventilation control. (See Figure 17)

次に図18(a)及び(b)に示すように、
屋根の形状が四方傾斜状態の場合の専用ゾーン別ハイブリッド通気及び通気制御をするにあたり、屋根裏ゾーンZ1に位置する通気及び通気制御の両機能が小屋裏ゾーンZ2の通気及び通気制御を媒介し、又、同機能が両ゾーンに共用する、常時開口の自然開放通気機器と自動開閉式の自然通気制御機器を基本常設機能とした自然気流対象機能と、ソーラーエネルギーを主とし、自動制御装置を用いた自動制御の換気ファンの両機能を混用するハイブリッド通気及び通気制御機能KC−4又は、ハイブリッド通気及び通気制御機能KC−5から構成されることを特徴とする、屋根裏ゾーンZ1と小屋裏ゾーンZ2共用のハイブリッド通気及び通気制御の方法であって、常時通気の専用ゾーンとする屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御とすべく、
当該屋根裏ゾーンZ1の基本常設機能の常時開口の自然開放通気機器以外に、図19(a)に示すように小屋裏ゾーンZ2の屋根裏ゾーンZ1への取り込み通気媒介とする通気及び通気制御の自動開閉式の自然通気制御機器又は開閉専用の電気式シャッターK4を附設した屋根裏ゾーンZ1の基本常設機能とし、補助してソーラーエネルギーを主とする設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し、自動運転・停止する自動制御の換気ファンを附設機能とし、混用して通気及び通気制御を行う、ハイブリッド通気及び通気制御を特徴としたものであり、なお、床下ゾーンZ3のKC−3の機能は前記と同様である。
Next, as shown in FIGS. 18A and 18B,
In performing hybrid ventilation and ventilation control for each dedicated zone when the roof shape is in a four-sided inclined state, both ventilation and ventilation control functions located in the attic zone Z1 mediate ventilation and ventilation control in the attic zone Z2, , The same function is shared by both zones, the natural airflow target function that is the basic permanent function of the naturally open ventilating device that is always open and the natural venting control device of the automatic opening and closing type, and solar energy mainly, using the automatic control device The attic zone Z1 and the attic zone Z2 are shared by the hybrid ventilation and ventilation control function KC-4 or the hybrid ventilation and ventilation control function KC-5. Hybrid aeration and ventilation control method for the attic zone Z1, dedicated to ventilation and ventilation control. In order to the only zone specific aeration and ventilation control of attic zone Z2 to over emissions,
In addition to the normally open ventilating device that is always open for the basic permanent function of the attic zone Z1, as shown in FIG. 19 (a), automatic opening and closing of ventilation and venting control through the ventilation into the attic zone Z1 of the attic zone Z2 This is a basic permanent function of the attic zone Z1 with a natural ventilation control device or an open / close electric shutter K4. However, it is characterized by hybrid ventilation and ventilation control, which uses an automatically controlled ventilation fan that automatically operates and stops as an additional function, and mixes and controls ventilation and ventilation. The function is the same as described above.

図17〜図21に示す、換気ファンを自動制御する制御装置が、太陽光発電を供給する装置の太陽電池パネルEOを設置し、ソーラーエネルギーを主として自動運転・停止を自動制御する、コントローラーCR、温度スイッチTS、湿度スイッチHS及び連動運転と夜・雨天時の家庭用電源の自動切換のリレーユニットRUから構成され、ハイブリッド通気及び通気制御機能KC−4とする場合、屋根裏ゾーンZ1の棟部常時通気専用経路Z12に附設される換気ファンK1の制御装置YC、及びハイブリッド通気及び通気制御機能KC−5とする場合はさらに、小屋裏ゾーンZ2専用の換気ファンK2の制御装置KCとして附設される。 The controller CR that automatically controls the ventilation fan shown in FIGS. 17 to 21 is provided with a solar panel EO of a device that supplies photovoltaic power generation, and automatically controls solar energy mainly for automatic operation / stop, a controller CR, Consists of a temperature switch TS, a humidity switch HS, and a relay unit RU for automatic operation and switching of household power supply during night and rain. When using the hybrid ventilation and ventilation control function KC-4, the ridge in the attic zone Z1 is always In the case of the control device YC for the ventilation fan K1 attached to the dedicated ventilation path Z12 and the hybrid ventilation and ventilation control function KC-5, it is further provided as the control device KC for the ventilation fan K2 dedicated to the hut zone Z2.

又、図19(a),(b)及び図18(b)に示すように、ハイブリッド通気及び通気制御機能KC−4として構成される場合の屋根裏ゾーンZ1に位置し、同屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御を行なうにあたり、屋根裏ゾーンZ1の常時開口の自然開放通気機器と、小屋裏ゾーンZ2の通気及び通気制御を行なう屋根裏ゾーンZ1の棟部常時通気専用経路Z12に附設される同通気専用経路Z12と小屋裏ゾーンZ2の通気媒介の自動開閉式の自然通気制御機器T1、あるいはK4を屋根裏ゾーンZ1の基本常設機能とし、さらに補助としてソーラーエネルギーを主とし、設定温度、設定湿度を感知し、自動運転・停止する自動制御の換気ファンK1を同通気専用経路Z12内のいずれか一方に附設し、且つ、同換気ファンK1のパイプダクトP1を分岐し、一方は同通気専用経路Z12内の中央に、一方は貫通挿入し小屋裏ゾーンZ2内へ装着し、同ゾーンZ2と屋根裏ゾーンZ1を同時に通気・換気するものであり、両ゾーンの通気及び通気制御を自然と強制の両機能を混用し行なう専用ゾーン別ハイブリッド通気及び通気制御機能KC−4であって、両ゾーン共用の通気及び通気制御機能である。(図18(a)参照) Further, as shown in FIGS. 19 (a), 19 (b) and 18 (b), it is located in the attic zone Z1 when configured as the hybrid ventilation and ventilation control function KC-4, and is located in the attic zone Z1 and the hut. When performing ventilation and ventilation control for each dedicated zone in the back zone Z2, a naturally open ventilation device that is always open in the attic zone Z1, and a ridge always ventilation dedicated path Z12 in the attic zone Z1 that controls ventilation and ventilation in the attic zone Z2. The automatic ventilation open / close type natural ventilation control device T1 or K4 of the ventilation dedicated route Z12 and the attic zone Z2 attached to the roof is made the basic permanent function of the attic zone Z1, and solar energy is mainly set as an auxiliary. An automatically controlled ventilation fan K1 that senses temperature and humidity and automatically starts and stops is attached to one of the ventilation paths Z12. In addition, the pipe duct P1 of the ventilation fan K1 is branched, one is inserted into the center of the ventilation dedicated route Z12, the other is inserted through and inserted into the attic zone Z2, and the zone Z2 and the attic zone Z1 are simultaneously installed. A dedicated zone-specific hybrid ventilation and ventilation control function KC-4 that mixes both natural and compulsory functions for ventilation and ventilation control in both zones. It is a function. (See FIG. 18 (a))

ハイブリッド通気及び通気制御機能KC−4とする場合で、図18(b´)に示すように、まず、前記の通常の屋根裏ゾーンZ1の基本常設機能のみによる気流の進入及び排出は、同屋根裏ゾーンZ1の棟部常時通気専用経路Z12の両側の通気専用棟WTの妻壁に常設する、常時開口の自然開放通気機器の換気ガラリRVと棟の棟換気口Mは、連携する通気・排出機能で、同通気専用経路Z12内の常時直接外気Gの進入、通気・排出を促し、又は軒天換気口Ng又は外壁通気層V2より進入する外気G又は上昇気流g0が屋根通気路V11を合流して経過し、同通気専用経路Z12内に進入した合流の上昇気流g1の通気・排出を促すものである。 In the case of the hybrid ventilation and ventilation control function KC-4, as shown in FIG. 18 (b '), first, the inflow and the discharge of the air flow only by the basic permanent function of the normal attic zone Z1 are the same as the attic zone. The ventilation gallery RV of the natural opening ventilation device and the ridge ventilation port M of the building, which are permanently installed on the end walls of the ventilation wing WT on both sides of the Z1 ridge always ventilation route Z12, are linked with the ventilation and discharge function. The outside air G is always in the ventilation exclusive route Z12, and the outside air G or the ascending air flow g0 entering from the eaves vent Ng or the outer wall ventilation layer V2 joins the roof ventilation channel V11. After the passage, the combined ascending air flow g1 that has entered the exclusive ventilation path Z12 is encouraged to be vented and discharged.

次に図19(a)及び(b)さらに図18(b)に示すように、小屋裏ゾーンZ2の通気及び通気制御が、同小屋裏ゾーンZ2と気密断熱区画された同通気専用経路Z12の最高の高さh2とした部分に、同小屋裏ゾーンZ2と同通気専用経路Z12との通気媒介とする自動開閉式で、温度差利用の熱感知式形状記憶合金使用の自然通気制御機器の換気ガラリT1もしくは、自動開閉式の開閉専用電気式シャッターK4のいずれかを最低1台附設するものとし、同機能を屋根裏ゾーンZ1の基本常設機能に附設構成とするものであり、一定の温度以上の場合開口し、小屋裏ゾーンZ2と連通する床下ゾーンZ3に進入した外気Gが上昇気流g2として連通の内壁通気構造体WZの通気路V33を上昇気流g3として経過し、同ゾーンZ2内に進入し、経過し、さらに気流g4として開口状態の自動開閉式の自然通気制御機器を媒介し、連通状態となった同通気専用経路Z12内に進入し、同専用経路内に進入する上昇気流g1と合流しg5として常設機能の換気ガラリRV又は棟換気口Mの連携により通気・排出され、又、一定温度以下で閉鎖し、同通気専用経路Z12内の気流及び同専用経路内に進入する外気Gの同小屋裏ゾーンZ2内への進入を自動通気制御するものである。 Next, as shown in FIGS. 19 (a) and 19 (b) and FIG. 18 (b), the ventilation and ventilation control in the cabin zone Z2 is performed in the ventilation exclusive route Z12 that is hermetically insulated from the cabin zone Z2. Ventilation of natural ventilation control equipment using heat-sensitive shape memory alloy using temperature difference, with automatic opening and closing mechanism that uses ventilation space between the same attic zone Z2 and the ventilation route Z12 at the highest height h2. At least one of the gallery T1 or the automatic opening / closing electric shutter K4 for automatic opening / closing shall be attached, and the same function shall be added to the basic permanent function of the attic zone Z1, and the temperature will exceed a certain temperature. In this case, the outside air G that has entered the underfloor zone Z3 that opens and communicates with the attic zone Z2 passes through the ventilation path V33 of the communicating inner wall ventilation structure WZ as the updraft g3 as the updraft g2, and enters the zone Z2 As the air flow g4 enters, the air flow g1 passes through the automatically opened / closed natural ventilation control device in the open state, enters the communication dedicated route Z12 and enters the communication route, and the rising air flow g1 enters the dedicated route. As a g5, it is ventilated / exhausted by the cooperation of the permanent ventilation vent RV or the building ventilation port M as a permanent function, and is closed below a certain temperature, and the air flowing in the dedicated ventilation path Z12 and the outside air entering the dedicated path The automatic ventilation control is performed to enter G into the same attic zone Z2.

図19(b)に示すように、上記屋根裏ゾーンZ1と小屋裏ゾーンZ2をハイブリッド通気及び通気制御する方法の一つのKC−4は、上記基本常設機能に補助としてソーラーエネルギーを主とし、附設する同通気専用経路Z12内の自動制御の換気ファンK1のパイプダクトP1を分岐し、一方は同通気専用経路Z12内の中央に、一方は貫通挿入し、小屋裏ゾーンZ2内へ装着し、両ゾーンの設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し自動運転し、通気・排出され、又、設定以下で停止するもので、両ゾーンの通気及び通気制御を自然と強制の両機能を混用し、専用ゾーン別通気及び通気制御を行なうハイブリット通気及び通気制御機能KC−4であり、なお床下ゾーンZ3のKC−3の機能は前記と同様である。 As shown in FIG. 19 (b), KC-4, which is one of the methods for hybrid ventilation and ventilation control in the attic zone Z1 and the attic zone Z2, mainly includes solar energy as an auxiliary to the basic permanent function. The pipe duct P1 of the automatically controlled ventilation fan K1 in the dedicated ventilation path Z12 is branched, one is inserted into the center of the dedicated ventilation path Z12, the other is inserted through, and installed in the hut zone Z2. The temperature sensor TC and humidity sensor HC sense the set temperature and set humidity automatically, and ventilate / exhaust, and stop at or below the setting. Is a hybrid ventilation and ventilation control function KC-4 that performs ventilation and ventilation control for each dedicated zone, and the function of KC-3 in the underfloor zone Z3 is the same as described above. .

又さらに、図20(a)及び(b)、図21(b)に示すように、屋根裏ゾーンZ1及び小屋裏ゾーンZ2のハイブリッド通気及び通気制御のもうひとつの方法で、屋根裏ゾーンZ1に位置し、屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御を行うハイブリッド通気及び通気制御機能KC−5とした場合の特徴として、上記ハイブリッド通気及び通気制御機能KC−4の機能をそのままに、さらに屋根裏ゾーンZ1へ小屋裏ゾーンZ2専用の通気促進機能として附設する自動制御の換気ファンK1、同型式の小屋裏ゾーンZ2内の設定温度、設定湿度を感知し、自動運転・停止の自動制御の換気ファンK2を換気ファンK1の附設位置と反対側へ附設し、常時通気専用経路Z12の底面を貫通挿入し、同ゾーンZ2専用のパイプダクトP2を装着し、同ゾーンZ2内に分岐配管し吸引する換気ファンK1と換気ファンK2による、自動制御の強制機能と自然機能の両機能を混用し、共用して通気を促進し、又、通気制御を行うことを特徴とする専用ゾーン別ハイブリッド通気及び通気制御機能KC−5であり、上記ハイブリッド通気及び通気制御機能KC−4同様、屋根の形状が四方傾斜状態の場合の実施例1とする断熱通気構造体1の専用ゾーン別ハイブリッド通気及び通気制御を行うにあたり、屋根裏ゾーンZ1と小屋裏ゾーンZ2と共用の通気及び通気制御機能を示すものである。 Furthermore, as shown in FIGS. 20 (a) and 20 (b) and FIG. 21 (b), another method of hybrid ventilation and ventilation control in the attic zone Z1 and the attic zone Z2 is located in the attic zone Z1. As a feature of the hybrid ventilation and ventilation control function KC-5 that performs ventilation and ventilation control for the exclusive zones of the attic zone Z1 and the attic zone Z2, the function of the hybrid ventilation and ventilation control function KC-4 is left as it is. In addition, the automatic ventilation fan K1, which is attached to the attic zone Z1 as a ventilation promotion function dedicated to the attic zone Z2, senses the set temperature and humidity in the same type attic zone Z2, and automatically controls automatic operation / stop. The ventilation fan K2 is attached to the opposite side of the attachment position of the ventilation fan K1, and the bottom surface of the always ventilating exclusive route Z12 is inserted through the same zone Z2. A pipe duct P2 is installed, and the forced and natural functions of the automatic control by the ventilation fan K1 and the ventilation fan K2 that are branched and sucked into the zone Z2 are mixed to promote ventilation by sharing them. Also, the hybrid zone-specific hybrid ventilation and ventilation control function KC-5 characterized in that ventilation control is performed. Like the hybrid ventilation and ventilation control function KC-4, the roof shape is implemented in a four-sided inclined state. In performing hybrid ventilation and ventilation control for each dedicated zone of the heat insulating ventilation structure 1 as Example 1, the ventilation and ventilation control functions shared by the attic zone Z1 and the attic zone Z2 are shown.

以上のように、実施例1の通気及び通気制御において、自然気流を対称とする基本常設機能に、補助としてソーラーエネルギーを主とし専用ゾーン別に設定温度、設定湿度を感知し、自動運転・停止する自動制御の換気機能を附設し、混用するハイブリッド通気及び通気制御機能とすることが自然の気流の状態による自然の影響に左右されず、常時安定した通気効果を示し、さらに任意の温度、湿度設定ができ、無風状態であっても地域環境に左右されることなく、通気性を向上させることができ、構造体内の温度差における、夏、冬期間の結露による弊害を低下することができ、又、夏の冷房効果を向上させることができ、さらに、冬期間を床、内壁、及び天井間近の小屋裏を通気制御し無通気層とし、室内を保温状態にするもので、冬の暖房効果を向上させることができる方法である。 As described above, in the ventilation and ventilation control of the first embodiment, solar energy is mainly used as an auxiliary to the basic permanent function that is symmetric with the natural airflow, and the set temperature and set humidity are sensed for each dedicated zone, and automatic operation is stopped. An automatic control ventilation function is added, and the mixed hybrid ventilation and ventilation control functions are not affected by the natural influence of the natural airflow condition, and always show a stable ventilation effect, and any temperature and humidity settings The air permeability can be improved without being affected by the local environment even in the absence of wind, and the adverse effects of condensation during the summer and winter periods due to temperature differences within the structure can be reduced. In addition, it can improve the cooling effect in summer, and further, it controls the ventilation of the floor, the inner wall, and the back of the hut near the ceiling in the winter period to make it a non-ventilated layer and keeps the room warm. A method capable of improving the tufts effect.

実施例2の断熱通気構造体1´は図22(a)に示すように、常時開放通気の専用ゾーンの屋根断熱通気構造YDで、一体形状の棟部常時通気専用経路Z11が形成されている屋根裏ゾーンZ1と、通気及び通気制御の専用ゾーンとする小屋裏断熱通気構造KD又は、図3(a)の小屋裏断熱通気構造KD1の小屋裏ゾーンZ2及び床下密閉ゾーンZ4から構成され、さらに小屋裏ゾーンZ2と連結で連通状態の内壁断熱通気構造WDの内壁通気構造体WZから構成されていて、常時開放通気の屋根裏ゾーンZ1に図22の(b)に示す常時開口の自然開放通気機器の棟換気口M、妻面換気ガラリRV及び軒天換気口Ngと又、通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2に図22の(c)に示す、上下一定の温度を定め開閉する、温度差利用の熱感知式形状記憶合金使用とする自動開閉式の自然通気制御機器の換気ガラリT1と、さらに同ゾーンZ2と連通する、外壁に面する内壁が全周一連の内壁断熱通気構造WDの内壁通気構造体WZに同ゾーンZ2に附設されるのと同型式の自動開閉式の自然通気制御機器の換気ガラリT1と、床下密閉ゾーンZ4に床下熱源媒介による図22(b´)の室内床用の自然開閉型換気ガラリfgの、専用ゾーン別基本常設機能として附設構成されている。(図23(a)・(a´)参照) As shown in FIG. 22 (a), the heat insulation ventilation structure 1 'of the second embodiment is a roof heat insulation ventilation structure YD of a dedicated zone for always open ventilation, and an integral ridge continuous ventilation dedicated path Z11 is formed. The attic zone Z1 and the attic heat insulation ventilation structure KD as a dedicated zone for ventilation and ventilation control, or the attic zone Z2 and the underfloor sealing zone Z4 of the attic heat insulation ventilation structure KD1 in FIG. The inner wall ventilation structure WZ of the inner wall heat insulation ventilation structure WD connected to and communicated with the back zone Z2 is provided in the normally open ventilation attic zone Z1 of the normally open ventilation apparatus shown in FIG. 22 (b). A constant upper and lower temperature shown in FIG. 22 (c) is opened and closed in the ridge ventilation port M, the wife ventilation garage RV, and the eaves ventilation port Ng, and the hut back zone Z2 of the exclusive zone for ventilation and ventilation control. Warm Ventilation gallery T1 of an automatic opening / closing type natural ventilation control device using a heat sensing type shape memory alloy of difference utilization, and further, the inner wall facing the outer wall communicating with the same zone Z2 is a series of inner wall heat insulation ventilation structure WD of the entire circumference. Ventilation gallery T1 of an automatic opening / closing type natural ventilation control device of the same type as that attached to the inner wall ventilation structure WZ in the same zone Z2, and the indoor floor in FIG. It is added and configured as a basic permanent function for each dedicated zone of the natural open / close type ventilation garage fg. (See FIGS. 23 (a) and (a '))

又、図22(a)の常時開放通気の専用ゾーンの屋根裏ゾーンZ1と通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2の構成は、図1(a)に示す実施例1と同様で、屋根断熱通気構造YDであり屋根の通気形態を軒天通気及び外壁通気を伴うA1、屋根の通気構造形態をB1の例とし、屋根下葺材Nと小屋裏とを一定の厚さの板状の断熱フォームAを用い気密断熱区画し、屋根通気層V1を形成する屋根断熱通気構造YDと、棟部常時通気専用経路Z11が左右連通し一体形成され図22(b)に示す、軒天に軒天換気口Ng、同棟部常時通気専用経路Z11の両妻壁に妻面換気ガラリRV及び棟に棟換気口Mが附設構成され、又、通気及び通気制御の専用ゾーンZ2の構成は、同屋根断熱通気構造YDの小屋裏面の一定の厚さの板状の断熱フォームAと、一定の厚さの板状の断熱フォームCを密接した室内天井又は、図1(a)、図3(a)に示す天井C0で区画され、小屋裏断熱通気構造KD又は小屋裏通気構造KD1で、同ゾーンZ2を通気層とし、又、同ゾーンZ2と連結状態の外壁に面する内壁に、一定の厚さの板状の壁断熱フォームBを施した内壁通気構造体WZの内壁断熱通気構造WDの内壁通気層V3と常時連通の状態であり、図22(a)に示すように、土台D0に近接する同内壁通気層V3の取り込み部分と同ゾーンZ2の小屋裏の両側妻壁に附設構成された自動開閉式の自然通気制御機器の換気ガラリT1が連携して同ゾーンZ2内及び同通気層V3内の通気及び通気制御を行うものである。(図22(c)、図23(b)参照) Further, the construction of the attic zone Z1 which is a dedicated zone for normally open ventilation and the attic zone Z2 which is a dedicated zone for ventilation and ventilation control in FIG. 22A is the same as that of the first embodiment shown in FIG. Insulating ventilation structure YD, the roof ventilation form is A1 with eave sky ventilation and outer wall ventilation, and the roof ventilation structure form is B1 as an example. A roof insulation ventilation structure YD that forms an airtight insulation partition using Form A and forms a roof ventilation layer V1 and a ridge portion regular ventilation dedicated path Z11 are integrally formed on the left and right, integrally shown in FIG. 22 (b). Ventilation port Ng, both sides of the building's regular ventilation route Z11 both have a wife ventilation gallery RV and a building ventilation port M on the building, and a dedicated zone Z2 for ventilation and ventilation control has the same roof A plate of constant thickness on the back of the hut of the heat insulating ventilation structure YD The thermal foam A and a plate-shaped heat insulating foam C having a certain thickness are partitioned by a close indoor ceiling or a ceiling C0 shown in FIGS. An inner wall ventilation structure WZ having a rear ventilation structure KD1 with the zone Z2 as a ventilation layer and a plate-like wall heat insulation foam B having a certain thickness on the inner wall facing the outer wall connected to the zone Z2. The inner wall ventilation layer V3 of the inner wall heat insulation ventilation structure WD is always in communication with the intake portion of the inner wall ventilation layer V3 close to the base D0 and the back of the hut in the zone Z2, as shown in FIG. Ventilation gallery T1 of an automatic opening / closing type natural ventilation control device attached to both side wall walls cooperates to perform ventilation and ventilation control in the same zone Z2 and the same ventilation layer V3. (See FIG. 22 (c) and FIG. 23 (b))

さらに、図22(a)の床下密閉ゾーンZ4の構成は床下へ防湿シートf0を施し一体土間的仕様のベタ基礎ベースFと一定の厚さの板状の基礎断熱フォームD´で内壁断熱施工された立ち上り断熱布基礎F1と、床下地に断熱施工せず、床下の通気・換気をなくし、床下熱源媒介の床暖房とするもので、電熱埋設、温水配管埋設あるいは床下放熱器等の施設等であり、室内床fに図22(b´)の室内床用の自然開閉型換気ガラリfgを附設し、夏をS、冬をWとし、夏、冬期間を例として、夏は床下密閉ゾーンZ4のベタ基礎ベースFと地中の外気温より低い地熱・コンクリートの冷熱caを床用の開閉型換気ガラリfgを開口し室内に取り込み、冬期間は例として、ベタ基礎ベースFを蓄熱体とする熱源埋設の場合等温熱waを、同換気ガラリfgを開口し室内に取り込む。(図23(b)参照) Furthermore, the structure of the underfloor sealed zone Z4 in FIG. 22 (a) is that the moisture barrier sheet f0 is applied to the underfloor and the inner wall is insulated with a solid foundation base F with a solid soil specification and a plate-like foundation insulation foam D 'with a certain thickness. Insulating fabric base F1 and heat insulation under floor, without underfloor ventilation, and underfloor heat source mediated floor heating, such as electric heat burial, hot water pipe burial or underfloor radiator There is a natural open / close type ventilation gallery fg for indoor floor shown in FIG. 22 (b ′) on the indoor floor f, summer is S, winter is W, summer and winter periods are taken as an example, and summer is under-floor sealed zone Z4. The solid foundation base F of the ground and the cold heat ca of concrete below the outside air temperature in the ground are taken into the room by opening an openable ventilation gallery fg for the floor, and the solid foundation base F is used as a heat storage for the winter period as an example In the case of heat source burying, isothermal heat wa, the same ventilation Open the louver fg and take it into the room. (See FIG. 23 (b))

又、図23(b)の全体通気層断面図の夏をS、冬をWとし、夏、冬期間を例として、外壁Уの施工を軒天通過型の通気構法k1とした軒天通気及び外壁通気を伴う屋根の通気形態A1の場合の常時開放通気の屋根裏ゾーンZ1の通気による気流の進入及び排出の工程で、周囲外壁Уと外壁透湿シートT0との間で形成される外壁通気層V2の下方と、屋根裏ゾーンZ1の常時開口の自然開放通気機器である図22(b)の軒天換気口Ngと棟部常時通気専用経路Z11の妻面換気ガラリRV及び棟換気口Mが常時連通で開放通気の状態であり、夏、冬を問わず常時外壁下方より進入する外気Gが同通気層V2内の夏の太陽S1の輻射熱を伴う熱気あるいは冬の湿気を含み、上昇気流g0として同通気層V2の通気路V22を経過し、軒天換気口Ngより進入する外気Gと合流し、上昇気流g1として屋根通気層V1の通気路V11を経過し、棟部常時通気専用経路Z11内に進入し、図22(b)に示す同常時通気専用経路Z11の両側妻壁に附設された妻面換気ガラリRVと棟換気口Mにより通気・排出され、又、同常時通気専用経路Z11内は同基本常設機能による常時通気の状態であり、常時直接外気Gの進入及び排出が行われている。(図6(a−3)及び図8と同様に付き参照) Further, in the cross-sectional view of the entire ventilation layer in FIG. 23 (b), summer is S, winter is W, and summer and winter periods are taken as an example. In the case of roof ventilation form A1 with outer wall ventilation, the outer wall ventilation layer formed between the surrounding outer wall fence and the outer wall moisture-permeable sheet T0 in the process of entering and discharging the air flow by the ventilation of the attic zone Z1 of the normally open ventilation. Underneath V2, the eaves vent Ng in FIG. 22 (b), which is a naturally open ventilating device that is always open in the attic zone Z1, and the wife ventilation gall RV and the building vent M on the ridge always ventilating route Z11 are always on. As the rising air flow g0, the outside air G that is in communication and has open ventilation, and that always enters from below the outer wall regardless of summer or winter, includes hot air accompanied by radiant heat of the summer sun S1 or winter humidity in the ventilation layer V2. After passing through the ventilation path V22 of the ventilation layer V2, eave sky ventilation It merges with the outside air G entering from the opening Ng, passes through the ventilation passage V11 of the roof ventilation layer V1 as the rising air flow g1, enters into the ridge always ventilation route Z11, and is dedicated to the same ventilation as shown in FIG. 22 (b). Vented and exhausted by the wife ventilation garage RV attached to both side walls of the route Z11 and the building ventilation port M, and the inside of the route Z11 dedicated to continuous ventilation is always in a state of continuous ventilation by the same basic permanent function, and is always directly The outside air G is entering and discharging. (Refer to the same as FIG. 6 (a-3) and FIG. 8)

一方、実施例2の、実施例1と異なる床下密閉ゾーンZ4とする場合の、通気及び通気制御において、図22(c)の温度差利用の熱感知式形状記憶合金使用の自動開閉式の自然通気制御機器の換気ガラリT1が附設構成される通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2及び、同ゾーンZ2と連結し、常時連通の内壁通気構造体WZの内壁断熱通気構造WDの図23(a´)に示す土台D0に近接する通気層V3の取り込み部分との連携による通気及び通気制御の工程で、図23(b)に示すように、夏をSとし、外気温が一定以上の場合に同時に自動開口し、図23(c)の2の状態で同ゾーンZ2と通気層V3の取り込み部分が通気状態となり、又、同ゾーンZ2の両側妻壁の同換気ガラリの通気による同ゾーンZ2内への直接外気Gの進入・通気・排出を促し、又、通気状態の通気層V3の取り込み部分より進入する外気Gが同通気層V3内の熱気、湿気を伴い上昇気流g2として同通気層V3の通気路V33を経過し小屋裏ゾーンZ2内へ進入し、同ゾーンZ2内の気流と合流した上昇気流g3として同ゾーンZ2の自動開閉式の換気ガラリT1が図23(c)の2のT1−0の開口状態であり、通気排出され、又冬期間の一定温度以下で同(c)の1のT1−Cの状態で同時閉鎖され、外気の進入を自動制御し、連携の通気及び通気制御が行われ室内を保温状態とし、暖房効果を高めるのである。 On the other hand, in the case of the underfloor sealed zone Z4 different from the first embodiment in the second embodiment, in the ventilation and ventilation control, the automatic opening / closing natural using the heat sensitive shape memory alloy utilizing the temperature difference of FIG. FIG. 23 is a view of the inner wall heat insulation ventilation structure WD of the inner wall ventilation structure WZ that is connected to the hut back zone Z2 and the zone Z2 of the exclusive zone for ventilation and ventilation control to which the ventilation gallery T1 of the ventilation control device is additionally provided. In the step of ventilation and ventilation control in cooperation with the intake portion of the ventilation layer V3 adjacent to the base D0 shown in (a ′), as shown in FIG. In the case shown in FIG. 23 (c), the zone Z2 and the intake portion of the ventilation layer V3 are in the ventilation state, and the same zone due to ventilation of the ventilation walls on both side walls of the zone Z2. Direct into Z2 The outside air G that promotes the entry / ventilation / discharge of the air G and enters from the intake portion of the air-permeable layer V3 is a rising air flow g2 accompanied by hot air and moisture in the air-permeable layer V3, and the air passage of the air-permeable layer V3 After passing through V33, the vehicle enters the hut back zone Z2, and the ascending air flow g3 merged with the air flow in the zone Z2 is the automatic opening and closing type ventilation gallery T1 in the zone Z2 at T1-0 of 2 in FIG. It is in an open state, ventilated and exhausted, and simultaneously closed in the state of 1-T1-C of (c) below a certain temperature during the winter period, automatically controls the entry of outside air, and performs coordinated ventilation and ventilation control. The indoor space is kept warm and the heating effect is enhanced.

次に本実施例2の断熱通気構造体1´の専用ゾーン別ハイブリッド通気及び通気制御の方法は図24(a)及び図25(a)・(a´)に示すように、屋根裏ゾーンZ1のハイブリッド通気機能KC−1は図24の(b)で、又、小屋裏ゾーンZ2のハイブリッド通気及び通気制御機能KC−2は、同図24の(b´)であり、又、両機能のKC−1自体、KC−2自体の構成は実施例1のハイブリッド通気及び通気制御機能の形態及び方法と同様であり、実施例2の基本常設機能に補助としてソーラーエネルギーを主とした換気ファンK1を屋根裏ゾーンZ1に附設し、換気ファンK2は小屋裏ゾーンに附設構成され図24の(a)は断面図又は附設機能の構成図、図25(b)は全体通気層断面図で(a)及び(a´)は通気層断面の分断図であり、又、夏をS、冬をWとし、(b)の全体通気層断面図は夏、冬期間における専用ゾーン別通気構造の通気層内の通気による気流の進入及び排出の工程と、通気制御の状態を図23(c)の自動開閉式の自然通気制御機能の状態図をもとに示すもので(c)の1のTC−1は閉鎖状態を示し、(c)の2のT1−0は開口状態を示し比較対称とし、実施例2の常時開放通気の専用ゾーンの屋根裏ゾーンZ1及び通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2の夏、冬期間を例とする専用ゾーン別ハイブリッド通気及び通気制御の方法及び通気形態は実施例1と同様で、又、同機能による通気効果も同様であり、夏、冬期間を共通して、実施例1の床下ゾーンZ3がない床下密閉ゾーンの場合でも安定した通気及び通気制御ができることを示すものである。
Next, the hybrid zone-specific hybrid ventilation and ventilation control method of the heat insulation ventilation structure 1 ′ of the second embodiment is as shown in FIGS. 24 (a) and 25 (a) / (a ′) in the attic zone Z 1. The hybrid ventilation function KC-1 is shown in FIG. 24 (b), and the hybrid ventilation and ventilation control function KC-2 in the hut back zone Z2 is shown in FIG. 24 (b '). -1 itself and the configuration of KC-2 itself are the same as the form and method of the hybrid ventilation and ventilation control function of the first embodiment, and the ventilation fan K1 mainly using solar energy as an auxiliary to the basic permanent function of the second embodiment. Attached to the attic zone Z1, the ventilation fan K2 is attached to the attic zone, FIG. 24A is a sectional view or a structural view of the attached function, FIG. 25B is a sectional view of the entire ventilation layer, and FIG. (A ′) is the cross section of the ventilation layer Further, assuming that summer is S, winter is W, and the entire ventilation layer cross-sectional view of (b) is a process of entering and discharging airflow by ventilation in the ventilation layer of the ventilation structure according to the dedicated zone in the summer and winter periods, The state of ventilation control is shown based on the state diagram of the automatic opening / closing type natural ventilation control function of FIG. 23 (c), where 1 TC-1 in (c) indicates a closed state and 2 in (c). T1-0 indicates an open state and is comparatively symmetric. The exclusive zone in the summer and winter periods of the attic zone Z1 of the exclusive zone for normally open ventilation and the attic zone Z2 of the exclusive zone for ventilation and ventilation control of the second embodiment are taken as examples. Another hybrid ventilation and ventilation control method and ventilation mode are the same as those of the first embodiment, and the ventilation effect by the same function is the same, and the underfloor zone Z3 of the first embodiment is not common in the summer and winter periods. Stable ventilation and ventilation control even in the closed zone It shows that.

本発明に係る実施例1の断熱通気構造体1の概略断面図(a)及び専用ゾーン別基本常設機能(b)・(b´)の構成図である。It is a schematic sectional drawing (a) of the heat insulation ventilation structure 1 of Example 1 which concerns on this invention, and a block diagram of the basic permanent function (b) and (b ') according to a dedicated zone. 同実施例1の専用ゾーン別概略断面の分断図(a)及び(a´)で、(b)・(b)は専用ゾーン別通気構造の通気層の概略分解図である。Sectional views (a) and (a ′) of the schematic cross section for each dedicated zone in the first embodiment, and (b) and (b) are schematic exploded views of the ventilation layer of the ventilation structure for each dedicated zone. 同実施例1の小屋裏ゾーンZ2の小屋裏断熱通気構造KDの場合の屋根断熱通気構造YDを含む概略断面分断図(a)で、(b)は屋根裏ゾーンZ1の共通する棟部常時通気専用経路Z11の屋根断熱通気構造YD及び小屋裏断熱通気構造KDを含む概略断面分断図である。FIG. 2A is a schematic cross-sectional view (a) including a roof heat insulation ventilation structure YD in the case of the attic heat insulation structure KD of the attic zone Z2 of the first embodiment. FIG. It is a general | schematic cross-section fragmentary view including the roof heat insulation ventilation structure YD of the path | route Z11, and a hut back heat insulation ventilation structure KD. 同実施例1のいずれも共通の屋根裏ゾーンZ1とする、異なる屋根の通気形態の全体通気層断面図(a)及び(b)で、(a)の場合をA1、(b)の場合をA2とし(c)は自動開閉式の自然通気制御機器の開閉の状態を示すものである。In the same example 1 as the common attic zone Z1, sectional views (a) and (b) of the entire ventilation layer of ventilation forms of different roofs, A1 in the case of (a), A2 in the case of (b) And (c) shows the open / close state of the automatic open / close natural ventilation control device. 同実施例1の母屋間気密断熱施工の屋根断熱通気構造YDで、B1とする(a)で、(b)は垂木間又は、垂木間と垂木上の気密断熱施工の屋根断熱通気構造YDでB2とし、いずれも屋根通気構造形態の屋根裏ゾーンZ1とする概略通気構造断面の分断図である。The roof heat insulation ventilation structure YD for the airtight heat insulation construction between the purlins of Example 1 is B1 (a), (b) is the roof heat insulation ventilation structure YD for the airtight heat insulation construction between the rafters or between the rafters and the rafters. B2 is a sectional view of the schematic cross section of the ventilation structure, which is the attic zone Z1 in the form of the roof ventilation structure. 同実施例1の屋根の通気形態A1とし、(a)は夏、冬期間の通気による気流の進入・排出の工程及び通気制御の例を示す全体通気層断面図。(a−1)・(a−2)は夏期間をSとした例で、(a−3)は常時通気とする専用ゾーン別の通気による気流の進入及び排出を示す概略横断面図であり、前記(a)は夏をS、冬をWとし、夏、冬期間を例とする。FIG. 4 is a cross-sectional view of the entire ventilation layer showing an example of air flow entry / exhaust process and ventilation control by ventilation during summer and winter periods in the roof ventilation mode A1 of the first embodiment. (A-1) and (a-2) are examples in which the summer period is set to S, and (a-3) is a schematic cross-sectional view showing the inflow and discharge of airflow by the ventilation of the dedicated zone that is always ventilated. In (a), summer is S, winter is W, and summer and winter periods are examples. 同実施例1の屋根の通気形態A2とし(a)は夏をS、冬をWとし、夏、冬期間の通気による気流の進入・排出の工程及び通気制御の例を示す全体通気層断面図。 (a−1)・(a−2)は夏期間をSとし、(a−3)は常時通気とする専用ゾーン別通気による気流の進入及び排出を示す概略横断面図である。The ventilation form A2 of the roof of the first embodiment (a) is S for summer and W for winter, and the entire ventilation layer sectional view showing an example of air flow entry / exhaust process and ventilation control in the summer and winter periods. . (A-1) and (a-2) are schematic cross-sectional views showing the entry and discharge of airflow by dedicated zone-specific ventilation, where S is the summer period and (a-3) is always ventilated. 同実施例1の基本常設機能の附設構成を示す斜視図で又、屋根の通気形態A1の、屋根の通気構造形態B2とした概略断面斜視図でもある。It is a perspective view which shows the attachment structure of the basic permanent function of the Example 1, and is also a general | schematic cross-sectional perspective view made into roof ventilation structure form B2 of roof ventilation form A1. 同実施例1の夏をSとし、例とする、専用ゾーン別通気層内の通気による気流の進入及び排出の工程を示す概略全体断面斜視図である。It is a schematic whole cross-sectional perspective view which shows the process of the inflow and discharge | emission of the airflow by ventilation | gas_flowing in the ventilation layer classified by exclusive zone which makes the summer of the Example 1 S as an example. 同実施例1の屋根の形状が四方傾斜状態の場合に組み合わせて構成される通気専用棟WTの附設構成図である。It is an attachment block diagram of the ventilation only building WT comprised combining in the case where the shape of the roof of the Example 1 is a four-way inclination state. 同実施例1の屋根の形状が四方傾斜状態の屋根裏ゾーンZ1及び小屋裏ゾーン Z2に係る基本常設機能(b)及び(b´)の附設構成を示す両ゾーンの概略斜視図(a)である。It is the schematic perspective view (a) of both zones which shows the attachment configuration of the basic permanent function (b) and (b ') concerning the attic zone Z1 and the attic zone Z2 in which the shape of the roof of Example 1 is inclined in all directions. . 同実施例1の屋根の形状が四方傾斜状態の屋根裏ゾーンZ1及び小屋裏ゾーン Z2の概略通気層断面図(a)で、(b)は同屋根の通気形態を図(a)に示すA1とした、夏をS、冬をWとし、夏、冬期間を例とした全体通気層断面図で、(c)は自動開閉式の自然通気制御機器の開閉状態図である。FIG. 4A is a schematic ventilation layer cross-sectional view of the attic zone Z1 and the attic zone Z2 in which the shape of the roof of the first embodiment is inclined in all directions (a), and (b) is A1 shown in FIG. FIG. 2 is a cross-sectional view of the entire ventilation layer in which summer is S, winter is W, and summer and winter periods are examples. FIG. 3C is an open / close state diagram of an automatic open / close natural ventilation control device. 同実施例1の断熱通気構造体1の概略断面図(a)であり、基本常設機能(b)をもとに(b´)の機能を専用ゾーン別に附設し混用する専用ゾーン別ハイブリッド通気及び通気制御機能の附設構成図でもある。It is schematic sectional drawing (a) of the heat insulation ventilation structure 1 of the Example 1, based on the basic permanent function (b), the function of (b ') is added for each exclusive zone, and the hybrid ventilation for each exclusive zone and mixed It is also an additional configuration diagram of the ventilation control function. 同実施例1の常時通気の専用ゾーンと通気及び通気制御の専用ゾーン別ハイブリッド通気及び通気制御機能と制御装置の附設構成を示す概略断面分断図(a)及び(a´)で、(b)・(b´)は専用ゾーン別通気層の概略分解図である。FIG. 2B is a schematic cross-sectional view (a) and (a ′) showing the additional configuration of the hybrid ventilation and ventilation control function and the control device according to the dedicated zone for constant ventilation and the dedicated zone for ventilation and ventilation control according to the first embodiment; (B ′) is a schematic exploded view of a ventilation layer for each dedicated zone. 同実施例1のハイブリッド通気及び通気制御を行う断熱通気構造体1の全体通気層断面図(a)で、(a−1)・(a−2)・(a−3)は(b)の専用ゾーン別ハイブリッド通気及び通気制御機能による、専用ゾーン別気流の進入及び排出の工程を示す概略横断面図である。又、夏をS、冬をWとし、夏、冬期間を例とする。FIG. 3A is a cross-sectional view of the entire ventilation layer of the heat insulating ventilation structure 1 that performs hybrid ventilation and ventilation control according to the first embodiment (a), (a-1), (a-2), and (a-3) are those in (b). It is a schematic cross-sectional view showing the steps of entering and discharging the airflow by dedicated zone by the hybrid ventilation and ventilation control function by dedicated zone. Further, S is summer, W is winter, and summer and winter periods are examples. 同実施例1の屋根裏ゾーンZ1及び小屋裏ゾーンZ2を主に、専用ゾーン別ハイブリッド通気及び通気制御機能(b)・(b´)と制御装置の附設構成を示す概略断面斜視図(a)である。The attic zone Z1 and the attic zone Z2 of the first embodiment are mainly a cross sectional perspective view (a) showing a dedicated zone-specific hybrid ventilation and ventilation control function (b), (b ') and a control device. is there. 同実施例1の夏をSとし、夏期間を例に、図16の(b)・(b´)のハイブリッド通気及び通気制御機能による自然通気と自動制御の強制通気とする気流の進入・排出の工程を示す概略全体断面斜視図である。In the summer of Example 1, S is taken as an example, and the summer period is taken as an example. Air flow entering and discharging with natural ventilation and automatic control forced ventilation by the hybrid ventilation and ventilation control functions of FIGS. 16B and 16B It is a schematic whole cross-sectional perspective view which shows this process. 同実施例1の屋根の形状が四方傾斜状態の場合のハイブリッド通気及び通気制御機能(b)のKC−4が屋根裏ゾーンZ1に附設構成されることを示す概略斜視図(a)である。It is a schematic perspective view (a) which shows that KC-4 of the hybrid ventilation and ventilation control function (b) when the shape of the roof of Example 1 is in a four-sided inclined state is attached to the attic zone Z1. 同実施例1の屋根の形状が四方傾斜状態の場合の図18に示す屋根裏ゾーンZ1及び小屋裏ゾーンZ2の概略通気層断面の分解図(a)で、(b)は夏をS、冬をWとし、夏、冬期間を例とする専用ゾーン別ハイブリッド通気及び通気制御機能による気流の進入・排出の工程及び通気制御の状態を示す全体通気層断面図である。18 is an exploded view (a) of a schematic ventilation layer cross section of the attic zone Z1 and the attic zone Z2 shown in FIG. 18 when the shape of the roof of the first embodiment is in a four-sided inclined state. FIG. 3 is a cross-sectional view of the entire ventilation layer showing the state of airflow entry / exhaust and the state of airflow control by the hybrid airflow and airflow control function for each dedicated zone in the summer and winter periods as an example. 同実施例1の屋根の形状が四方傾斜状態の場合の図18の(b)のハイブリッド通気及び通気制御機能KC−4を同KC−5とした(b)の附設構成を示す概略斜視図 (a)である。18 is a schematic perspective view showing an additional configuration of (b) in which the hybrid ventilation and ventilation control function KC-4 in FIG. 18 (b) when the shape of the roof of the first embodiment is in a four-sided inclined state is the same as KC-5. a). 同実施例1の屋根の形状が四方傾斜状態の場合のハイブリッド通気及び通気制御機能KC−5とした屋根裏ゾーンZ1及び小屋裏ゾーンZ2の概略通気層断面の分断図(a)で、(b)は夏をS、冬をWとし、夏、冬期間を例とする図20(b)、(c)の専用ゾーン別ハイブリッド通気及び通気制御機能による気流の進入・排出の工程及び通気制御の状態を示す全体通気層断面図である。FIG. 6A is a schematic sectional view (a) of a cross section of the ventilation layer in the attic zone Z1 and the attic zone Z2 with the hybrid ventilation and ventilation control function KC-5 when the shape of the roof of the first embodiment is in a four-side inclined state; 20 is summer, winter is W, summer and winter periods are taken as an example in FIG. 20 (b) and FIG. 20 (c). FIG. 本発明に係る同実施例2の断熱通気構造体1´の概略断面図(a)であり、 (b)・(b´)及び(c)の専用ゾーン別基本常設機能の構成図である。It is a schematic sectional drawing (a) of the heat insulation ventilation structure 1 'of the Example 2 which concerns on this invention, It is a block diagram of the basic permanent function according to the exclusive zone of (b) * (b') and (c). 同実施例2の専用ゾーン別通気構造の通気層の概略分解図(a)・(a´)で、 (b)は夏をS、冬をWとし、夏、冬期間を例とする図22の(b)及び(c)の基本常設機能による気流の進入・排出の工程及び通気制御の状態を示す全体通気層断面図である。又(c)は自動開閉式の自然通気制御機器T1の開閉状態図で1は閉鎖状態を示し、2は開口状態を示す。FIG. 22 is a schematic exploded view (a) and (a ′) of the ventilation layer of the ventilation structure by dedicated zone according to the second embodiment, where (b) is S for summer, W for winter, and summer and winter as an example. It is whole ventilation layer sectional drawing which shows the state of the process of ventilation | gas_flow in / out by the basic permanent function of (b) and (c), and the state of ventilation control. (C) is an open / close state diagram of the automatic open / close type natural ventilation control device T1, in which 1 indicates a closed state and 2 indicates an open state. 同実施例2の断熱通気構造体1´の概略断面図(a)であり、又、実施例2がハイブリッド通気及び通気制御を行う(b)・(b´)の附設機能の構成を専用ゾーン別に示す附設構成図でもある。It is schematic sectional drawing (a) of the heat insulation ventilation structure 1 'of the Example 2, and also the structure of the attachment function of (b) and (b') in which Example 2 performs hybrid ventilation and ventilation control. It is also an attached configuration diagram shown separately. 同実施例2がハイブリッド通気及び通気制御を行う専用ゾーン別附設機能の構成及び専用ゾーン別通気層を示す概略分解図(a)・(a´)で、(b)は夏をS、冬をWとし、夏、冬期間を例とする専用ゾーン別ハイブリッド通気及び通気制御機能による、気流の進入・排出の工程及び通気制御の状態を示す全体通気層断面図である。Example 2 is a schematic exploded view (a) and (a ') showing the configuration of the dedicated function for each dedicated zone for performing hybrid ventilation and ventilation control and the dedicated zone-specific ventilation layer. (B) is for summer and winter. FIG. 3 is an overall ventilation layer cross-sectional view showing a state of air flow entry / exhaust process and air flow control by a hybrid air flow and air flow control function for each dedicated zone in the summer and winter periods as an example.

1 断熱通気構造体
1´ 断熱通気構造体(床下密閉ゾーンZ4の場合で断熱通気構造体1と組み合わせ 構成される)
Z1 屋根裏ゾーン
Z11 棟部常時通気専用経路(又は常時通気専用経路)
Z12 〃 ( 〃 )
Z2 小屋裏ゾーン
Z3 床下ゾーン
Z4 床下密閉ゾーン
WZ 内壁通気構造体(外周の内壁構造部分)
WT 通気専用棟
WD 内壁断熱通気構造
YD 屋根断熱通気構造
KD 小屋裏断熱通気構造
KD1 小屋裏通気構造
UD 床下断熱通気構造
A 屋根の板状の断熱フォーム
B 外壁に面する内壁の板状の断熱フォーム又は壁断熱フォーム
C 室内天井の板状の断熱フォーム又は天井断熱フォーム
D 床下地の板状の断熱フォーム又は床断熱フォーム
D´ 立ち上り断熱布基礎の板状の断熱フォーム又は基礎断熱フォーム
F ベタ基礎ベース又は土間的仕様のベタ基礎
F1 立ち上り断熱布基礎
f0 土間防湿シート
T0 外壁の透湿シート
N 野路板及び透湿防水シートを含む屋根下葺材
M0 母屋
D0 土台
У 外壁
C0 室内天井
W0 室内の壁
f 室内の床
S1 太陽
E 太陽光エネルギー又は直射日光
S 夏(又は夏期間)
W 冬(又は冬期間)
e1 Z11の底面の一定の幅
e2 Z12の底面の一定の幅
h1 Z11の左右の高さ
h2 Z12の左右の高さ
L Z12の一連の長さ
Ng 軒天換気口(常時開口の自然開放通気機器)
M 棟換気口(常時開口の自然開放通気機器)
RV 妻面換気ガラリ(常時開口の自然開放通気機器)
fg 床用(室内)開閉型換気ガラリ
T1 自動開閉式換気ガラリ(角型)又は床下換気口(常時開口の自然開放通気機器 又は自動開閉式の温度差利用の熱感知式形状記憶合金使用の換気ガラリ(角型)又は(床下換気口)
T1−0 T1の開口状態を示す
T1−C T1の閉鎖状態を示す
A1 軒天通気・外壁通気を含む屋根の通気形態(k1の施工)
A2 軒天通気のみの屋根の通気形態(k2の施工)
k1 外壁の施工で軒天通過型の通気構法
k2 外壁の施工で軒天不通過型の通気構法(外壁上部開放通気)
B1 母屋間気密断熱施工の屋根の通気構造形態
B2 垂木間または垂木間と垂木上気密断熱施工の屋根の通気構造形態
V1 屋根通気層
V11 屋根通気路
V2 外壁通気層
V22 外壁通気路
V3 内壁通気層(外壁に面する内壁の通気層)
V33 内壁通気路V33(外壁に面する内壁の通気路)
G 外気
g0 外壁通気路を通過する上昇気流
g1 屋根通気路を通過する合流気流
g2 床下からの上昇気流又は床下ゾーン内の気流
g3 壁体内湿気を伴う上昇気流
g4 小屋裏ゾーン内の合流気流(g3と小屋裏ゾーン内の気流の合流気流)
g5 Z12内を通過するg1とg4の合流気流
wa 温熱
ca 冷熱
K1 自動制御の換気ファン(ソーラーエネルギー使用の屋根裏用換気ファン)
K2 自動制御の換気ファン(ソーラーエネルギー使用の小屋裏及び内壁通気構造体 用換気ファン)
K3 自動制御の床下専用換気ファン(ソーラーエネルギー使用の床下専用換気ファン)
K4 開閉専用の電気式シャッター
P1 パイプダクト(換気ファンK1用)
P2 パイプダクト(換気ファンK2用)
P3 パイプダクト(床下専用換気ファン用)
Q1 換気ファンK1の強制排気
Q2 換気ファンK2の強制排気
Q3 床下専用換気ファンK3の強制排気
KC−1 ハイブリッド通気機能(屋根裏用:NgとRVとM及びK1の混用の通気・排 出機能)
KC−2 ハイブリッド通気及び通気制御機能(内壁通気構造体WZを含む小屋裏用:T 1とK2の混用の通気・排出及び通気制御機能)
KC−3 ハイブリッド通気及び通気制御機能(床下用:T1とK3の混用の通気・排出 及び通気制御機能)
KC−4 ハイブリッド通気及び通気制御機能(屋根裏用:NgとRVとM及びK1とさ らにK4又はT1の混用の通気・排出及び通気制御機能)
KC−5 ハイブリッド通気及び通気制御機能(屋根裏用:NgとRVとM及びK1とさ らにK4又はT1の混用の通気・排出及び通気制御機能)
E0 太陽電池パネル
E1 増設用太陽電池パネル
CR 自動制御コントローラ
TS 温度スイッチ
HS 湿度スイッチ
TC 温度センサー
HC 湿度センサー
RU リレーユニット(連動運転と家庭用電源の自動切換)
CB コントロールボックス
YC 換気ファンK1の制御装置
KC 換気ファンK2又は換気ファンK2及びK4を含む制御装置
UC 床下専用換気ファンK3の制御装置
1 Insulated ventilation structure
1 'heat insulation ventilation structure (in the case of underfloor sealing zone Z4, it is combined with heat insulation ventilation structure 1)
Z1 Attic zone Z11 Building dedicated ventilation route (or dedicated ventilation route)
Z12 〃 (〃)
Z2 Hidden Zone Z3 Under Floor Zone
Z4 Underfloor sealing zone WZ Inner wall ventilation structure (outer inner wall structure part)
WT Ventilation dedicated building WD Inner wall heat insulation ventilation structure YD Roof heat insulation ventilation structure KD Hut back heat insulation ventilation structure KD1 Hut back heat ventilation structure UD Underfloor heat insulation ventilation structure A Roof plate-like heat insulation foam B Plate-like heat insulation foam on the inner wall facing the outer wall Or wall insulation foam C Plate-like insulation foam or ceiling insulation foam D for indoor ceiling Plate-like insulation foam or floor insulation foam D 'for floor foundations Plate-like insulation foam or foundation insulation foam F for rising insulation cloth foundations Solid base base Or a solid foundation F1 of a soil-like specification F1 rising heat insulation cloth foundation f0 Moisture-proof sheet T0 Moisture-proof sheet N of outer wall Roof covering material M0 including base plate and moisture-permeable waterproof sheet M0 Main building D0 Base wall Outer wall C0 Indoor ceiling W0 Indoor wall f Indoor Floor S1 Solar E Solar energy or direct sunlight S Summer (or summer period)
W Winter (or winter period)
e1 Constant width of the bottom of Z11
e2 Constant width of the bottom of Z12
h1 Z11 left and right height h2 Z12 left and right height L Z12 series length Ng eaves vent (natural open ventilator that is always open)
M Building Ventilation Port (Naturally Open Ventilation Equipment with Opening)
RV Wife ventilation gallery (Naturally open ventilator with constant opening)
fg Floor (indoor) open / close ventilation vent
T1 Automatic open / close ventilator (square) or underfloor vent (normally open naturally open ventilator or automatic open / close heat sensing type memory alloy using temperature difference (square) or (underfloor vent) )
T1-0 T1 indicating the open state of T1 A1 indicating the closed state of T1 Aeration form of roof including eaves of the eaves and outer wall ventilation (construction of k1)
A2 Aeration style of roof with only eaves (construction of k2)
k1 The eaves-top type ventilation construction method for the outer wall construction k2 The eaves-top passage type ventilation construction method for the outer wall construction (outer wall upper open ventilation)
B1 Roof ventilation structure for airtight insulation construction between purlins B2 Roof ventilation structure for airtight insulation construction between rafters or between rafters and rafters V1 Roof ventilation layer
V11 Roof vent
V2 Outer wall ventilation layer V22 Outer wall ventilation path V3 Inner wall ventilation layer (inner wall ventilation layer facing the outer wall)
V33 Inner wall ventilation path V33 (Inner wall ventilation path facing the outer wall)
G Outside air g0 Ascending airflow passing through the outer wall airway g1 Converging airflow passing through the roof airway g2 Ascending airflow from under the floor or airflow in the underfloor zone g3 Ascending airflow with moisture in the wall g4 And airflow in the attic zone)
g5 G1 and g4 combined airflow wa passing through Z12 Warm heat ca Cold heat K1 Ventilation fan with automatic control (attic ventilation fan using solar energy)
K2 Ventilation fan with automatic control (Ventilation fan for solar energy shed and inner wall ventilation structure)
K3 Automatic underfloor ventilation fan with automatic control (solar energy-use underfloor ventilation fan)
K4 Electric shutter P1 for opening and closing pipe duct (for ventilation fan K1)
P2 pipe duct (for ventilation fan K2)
P3 pipe duct (for underfloor ventilation fan)
Q1 Forced exhaust of ventilation fan K1 Q2 Forced exhaust of ventilation fan K2 Q3 Forced exhaust of underfloor dedicated ventilation fan K3
KC-1 Hybrid ventilation function (for attic: mixed ventilation and discharge function of Ng, RV, M and K1)
KC-2 Hybrid ventilation and ventilation control function (for the back of the hut including the inner wall ventilation structure WZ: mixed ventilation and discharge of T1 and K2 and ventilation control function)
KC-3 Hybrid ventilation and ventilation control function (under floor: mixed ventilation and discharge of T1 and K3 and ventilation control function)
KC-4 Hybrid ventilation and ventilation control function (for attic: Ng, RV, M, K1 and K4 or T1 mixed ventilation / discharge and ventilation control function)
KC-5 Hybrid ventilation and ventilation control function (for attic: Ng, RV, M, K1 and K4 or T1 mixed ventilation / discharge and ventilation control function)
E0 Solar panel E1 Additional solar panel CR Automatic controller TS Temperature switch HS Humidity switch TC Temperature sensor HC Humidity sensor RU Relay unit (automatic operation and automatic switching of household power supply)
CB Control Box YC Control Device KC for Ventilation Fan K1 Control Device UC including Ventilation Fan K2 or Ventilation Fans K2 and K4 Control Device for Ventilation Fan K3 Under Floor

Claims (3)

構造体を構造用途別の常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーンとして分別し、通気及び通気制御を行う上で、常時開放通気の専用ゾーンに常時開口の自然開放通気機器、通気及び通気制御の専用ゾーンに温度差利用の形状記憶合金使用とする自動開閉式の自然通気制御機器を専用ゾーン別基本常設機能として附設し、常時開放通気の専用ゾーンと通気及び通気制御の専用ゾーンを気密断熱区画し、且つ専用ゾーン別通気構造から構成される断熱通気構造体1であって、
当該断熱通気構造体1が常時開放通気の独立した専用ゾーンの屋根断熱通気構造YDで一体形状の棟部常時通気専用経路Z11を形成する屋根裏ゾーンZ1と、通気及び通気制御の専用ゾーンとする小屋裏断熱通気構造KD又は小屋裏通気構造KD1の小屋裏ゾーンZ2及び床下断熱通気構造UDの床下ゾーンZ3の専用ゾーン別通気構造から構成され又、通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2と床下ゾーンZ3の連通による連携で通気及び通気制御を行うとし又、当該小屋裏ゾーンZ2と床下ゾーンZ3の連絡通気を形成する上で、さらに、内壁断熱通気構造WDの内壁通気構造体WZから構成されることを特徴とするものであり、
当該小屋裏ゾーンZ2及び床下ゾーンZ3が連結状態の外壁に面する内壁が全周一連の内壁断熱通気構造WDの内壁通気構造体WZを介し、常時連通され、連携して通気及び通気制御を行うものであって又、上記断熱通気構造体1の特徴とする常時開放通気の専用ゾーンの屋根裏ゾーンZ1の通気構造形状が屋根下葺材Nと小屋裏とを一定の厚さの板状の断熱フォームAを用い気密断熱区画し、屋根通気層V1を形成する屋根断熱通気構造YDと棟部常時通気専用経路Z11が一体形状で形成され、軒天に軒天換気口Ng、棟部常時通気専用経路Z11に棟部妻面換気ガラリRV及び棟換気口Mの常時開口の自然開放通気機器が基本常設機能として附設構成されることを特徴とする屋根裏ゾーンZ1であり、
又、屋根断熱通気構造YDと一体形状で形成される棟部常時通気専用経路Z11とする特徴が、屋根棟中心に位置し、棟を頂点とし、底面が平面状の一定の幅 e1で、左右h1の高さのコ型の形状とした三方を一定の厚さの板状の断熱フォームAを用い下地構成し、棟を含む内部空洞の通気層とする箱状で、さらに両端を小屋裏の両側の妻壁と一体形成とした一連の左右h1の高さで小屋裏ゾーンZ2と気密断熱区画され、屋根断熱通気構造YDと一体形状の左右連通で形成される場合と、又はその形状が棟を頂点とし、棟を含む内部空洞で平面状の底面の一面で屋根断熱通気構造YDと左右一体形状とし、左右連通で形成され、底面より棟までの高さを両側の棟部妻面換気ガラリRVが取り付可能な高さとし、底面を一定の厚さの板状の断熱フォームAを用い下地構成し、内部空洞の通気層とし、両端を小屋裏の両側の妻壁と一体形成とした一連の形状で小屋裏ゾーンZ2と気密断熱区画し形成される場合の、いずれも屋根裏ゾーンZ1の常時通気専用経路Z11の特徴とするもので、同棟部常時通気専用経路Z11に附設構成された基本常設機能の両側の妻面壁の妻面換気ガラリRV及び、棟換気口Mの通気による常時直接外気Gの進入・通気・排出を促す棟部常時通気専用経路Z11であり、
さらに、当該棟部常時通気専用経路Z11と屋根断熱通気構造YDの一体形成である屋根裏ゾーンZ1の通気形態が、常時開口の軒天換気口Ng又は外壁通気層V2より進入する外気G又は気流g0が屋根断熱通気構造YDの屋根通気層V1の通気路V11を経過し、同棟部常時通気専用経路Z11内に進入し、同棟部妻面換気ガラリRVと棟換気口Mの連携により常時通気・排出される常時開放通気の独立した通気専用ゾーンであることを特徴とし、
又、小屋裏ゾーンZ2は、屋根断熱通気構造YDの、小屋裏面の一定の厚さの板状の断熱フォームAと一定の厚さの板状の断熱フォームCを密接した室内天井又は天井C0で区画され、小屋裏断熱通気構造KD又は小屋裏通気構造KD1で、同ゾーンZ2を通気層とし、又、当該小屋裏ゾーンZ2と連結状態の外壁に面する内壁に一定の厚さの板状の断熱フォームBを施した内壁通気構造体WZの内壁断熱通気構造WDの内壁通気層V3と常時連通の状態であり、同ゾーンZ2の小屋裏の両側妻壁に、通気及び通気制御の自動開閉式の自然通気制御機器で、上下一定の温度を定め開閉する温度差利用の熱感知式形状記憶合金使用の換気ガラリT1が通気及び通気制御の基本常設機能として構成されていることを特徴とする、小屋裏の通気及び通気制御をする小屋裏断熱通気構造KD又は、小屋裏通気構造KD1の小屋裏ゾーンZ2であり又、
床下ゾーンZ3は、床下地断熱施工の一定の厚さの板状の床断熱フォームDと、一体土間的仕様で防湿施工のベタ基礎ベースF及び、一定の厚さの板状の断熱フォームD´で内側断熱施工された立ち上り断熱布基礎F1にて断熱区画され、同ゾーンZ3を通気層とする床下断熱通気構造UDであって、
又、小屋裏ゾーンZ2と連結し、一連の通気層として形成される、外壁に面する内壁通気構造体WZの内壁断熱通気構造WDの内壁通気層V3と常時連通の連結状態であり、同立ち上り断熱布基礎F1に通気及び通気制御の自動開閉式の自然通気制御機器で、小屋裏ゾーンZ2と同型式の温度差利用の熱感知式形状記憶合金使用の床下換気口T1が、通気及び通気制御の基本常設機能として構成されていることを特徴とし、床下の通気及び通気制御をする床下断熱通気構造UDの床下ゾーンZ3で、
連通状態の小屋裏ゾーンZ2との通気形態は、外気温が一定温度以上の場合同時開口し、両ゾーン内の直接外気Gの進入と通気排出を促し、又床下ゾーンZ3に進入し、上昇する気流が連通する内壁通気層V3の通気路V33を経過し、小屋裏ゾーンZ2内に進入し、同ゾーンZ2内の気流と合流した気流が、両側妻壁に附設された自動開閉式の換気ガラリT1により通気排出され又、一定の温度以下で同時閉鎖され、外気の進入を自動通気制御し、連携して通気及び通気制御を行う小屋裏ゾーンZ2と床下ゾーンZ3であり、
常時開放通気の専用ゾーンとする断熱通気構造の屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする断熱通気構造又は通気構造の小屋裏ゾーンZ2及び断熱通気構造の床下ゾーンZ3の専用ゾーン別通気構造から構成され、常時開放通気の専用ゾーンに棟部常時通気専用経路Z11を附設構成し、常時開口の自然開放通気機器を附設し又、通気及び通気制御の専用ゾーンに自動開閉式の自然通気制御機器を附設し専用ゾーン別基本常設機能として用い、専用ゾーン別通気及び通気制御を行うことを特徴とする断熱通気構造体1の、
当該屋根の形状が四方傾斜状態の場合の屋根裏ゾーンZ1で、四方傾斜状態の屋根断熱通気構造YDと四方一体形状で構成される場合の屋根裏ゾーンZ1の棟部常時通気専用経路Z11に、通気専用棟WTが附設構成され、棟部常時通気専用経路Z12として組み合わせ構成されることを特徴とする屋根裏ゾーンZ1で、又、前記小屋裏ゾーンZ2の通気及び通気制御の基本常設機能が棟部常時通気専用経路Z12に附設構成され、同小屋裏ゾーンZ2の通気及び通気制御の媒介ゾーンとして構成されることを特徴とする屋根裏ゾーンZ1であって、
屋根の長辺方向又は短辺方向の傾斜面に、屋根棟及び妻壁が構成される通気専用棟WTを、棟を中心とし、両側に平行して構築し、屋根裏ゾーンZ1として屋根断熱通気構造YDと一体形状で構成される棟部常時通気専用経路であり、当該専用経路の底面が平面状の一定の幅2で最高の高さh2の、四方を連通する屋根通気層V1を形成する屋根断熱通気構造YDと一体形状で形成され又、両端部が両側の通気専用棟WTの妻壁と一体形成とした一連の形状で、長さLとし、棟を含む内部空洞の通気層とし、周囲が一定の厚さの板状の断熱フォームAで小屋裏ゾーンZ2と気密断熱区画された一体箱状の棟部常時通気専用経路Z12として構成され、当該四方傾斜状態の屋根断熱通気構造YDと一体形状で構成されることを特徴とする屋根裏ゾーンZ1であって、
軒天及び同通気専用経路Z12に、軒天換気口Ng、妻面換気ガラリRV及び棟換気口Mの常時開口の自然開放通気機器が基本常設機能として附設構成され、同軒天換気口Ng及び外壁通気層V2より進入する外気G又は上昇気流g0が屋根通気層V1の通気路V11を経過し、同通気専用経路Z12の換気ガラリRV及び棟換気口Mの連携により通気・排出されるものであり、
又、小屋裏ゾーンZ2の通気・排出及び通気制御が、同通気専用経路Z12を媒介しておこなわれるもので、同通気専用経路Z12の左右の最高の高さh2で周囲気密断熱区画された立ち上り壁部分に、小屋裏ゾーンZ2の通気媒介とする上下一定の温度を定め開閉する温度差利用の熱感知式形状記憶合金使用の自動開閉式の換気ガラリT1、あるいはソーラーエネルギーを主とした設定温度、設定湿度を感知し自動開閉する開閉専用の電気式シャッターK4のいずれかの自動開閉式の通気制御機器を最低一台附設とし、小屋裏ゾーンZ2の通気及び通気制御の媒介機能とし、屋根裏ゾーンZ1の基本常設機能として附設構成されることを特徴とするもので、
その通気形態は、床下ゾーンZ3に進入した気流が上昇気流として連通する内壁通気構造体WZの通気層V3の通気路V33を経過し、小屋裏ゾーンZ2内に進入し、上記のいずれかの附設される自動開閉式の通気制御機器が一定温度以上で開口し、連通状態となった同通気専用経路Z12内に進入し、常設の常時開口の自然開放通気機器の換気ガラリRV及び棟換気口Mにより通気・排出され又、外気温及び同ゾーンZ2さらに同通気専用経路Z12内の温度が一定以下の場合、床下換気口と同時閉鎖し気流の侵入を自動制御するもので、小屋裏ゾーンZ2の通気及び通気制御が屋根裏ゾーンZ1を媒介し行われることを特徴とし、
さらに、小屋裏ゾーンZ2の通気及び通気制御を媒介して行う上で、自動開閉式の換気ガラリT1あるいは開閉専用の電気式シャッターK4を媒介の機能として、通気専用棟WTと直角方向の同通気専用経路Z12の立ち上り区画壁面に附設する特徴が、底部開閉式ダンパー設置による底部のほこり溜りを因とした開閉の支障をなくすべく解決策とするものであり、又、小屋裏ゾーンZ2の占用面積あるいは同構造体規模に応じた通気効果を得る場合、同常時通気専用経路Z12の最高の高さh2として形成される立ち上り区画壁の両側を取り付け面とし、一定多数の自動開閉式の通気制御機器を附設することができることを特徴とし、前記屋根裏ゾーンZ1の屋根の形状が四方傾斜状態となる場合の屋根断熱通気構造YDの同屋根裏ゾーンZ1に通気専用棟WTを附設構成し、前記棟部常時通気専用経路Z11が四方傾斜状態の屋根断熱通気構造YDと四方連通の一体形状の棟部常時通気専用経路Z12として附設構成されることを特徴とする断熱通気構造体1の施工方法。
The structure is separated into a dedicated zone for normally open ventilation and a dedicated zone for ventilation and ventilation control according to the structural application. The automatic opening / closing type natural ventilation control equipment using a shape memory alloy utilizing temperature difference is attached to the dedicated zone for ventilation and ventilation control as a basic permanent function for each dedicated zone, and the dedicated zone for always open ventilation and the dedicated zone for ventilation and ventilation control A heat-insulating ventilation structure 1 constituted by a dedicated zone-specific ventilation structure,
The heat insulation ventilation structure 1 is a roof insulation zone Z1 that forms a ridge continuous ventilation route Z11 integrally formed with the roof heat insulation ventilation structure YD of a dedicated zone independent of always open ventilation, and a hut that is a dedicated zone for ventilation and ventilation control. It is composed of a dedicated ventilation structure for each zone of the back floor zone Z2 of the back heat insulation ventilation structure KD or the roof back ventilation structure KD1 and the under floor zone Z3 of the under floor heat insulation ventilation structure UD, It is assumed that ventilation and ventilation control are performed in cooperation with the communication of the underfloor zone Z3. Further, in order to form the communication ventilation between the hut back zone Z2 and the underfloor zone Z3, the inner wall aeration structure WD further includes an inner wall ventilation structure WZ. It is characterized by being
The inner wall facing the outer wall in which the cabin zone Z2 and the underfloor zone Z3 are connected is always communicated via the inner wall ventilation structure WZ of the entire inner wall thermal insulation ventilation structure WD, and performs ventilation and ventilation control in cooperation. Further, the ventilation structure of the attic zone Z1 of the dedicated zone for normally open ventilation, which is a feature of the above-described heat insulating ventilation structure 1, is a plate-like heat insulating foam having a constant thickness between the roof underneath N and the attic. The roof heat insulation ventilation structure YD that forms the air ventilation layer V1 and the ridge part normal ventilation route Z11 are formed in an integrated shape, and the eave sky ventilation port Ng, the ridge part normal ventilation route. The attic zone Z1 is characterized in that a natural opening ventilation device with a permanent opening of the ridge part ventilation ventilation RV and the ridge ventilation opening M is attached to Z11 as a basic permanent function.
Moreover, the characteristic of the ridge part ventilation route Z11 formed integrally with the roof heat insulation ventilation structure YD is located at the center of the roof ridge, with the ridge at the top and the bottom surface having a flat width e1, The box-shaped heat insulation foam A with a certain thickness is used for the three sides of the h1 height of the U-shape, and it is a box shape that serves as a ventilation layer for the internal cavity including the wing. A case where the roof zone Z2 is hermetically insulated with a series of left and right h1 heights integrally formed with the wife walls on both sides, and the roof heat insulating ventilation structure YD is formed with left and right integral communication, or the shape is a ridge Is the internal cavity including the ridge, one side of the roof heat insulation ventilation structure YD on one side of the flat bottom surface, and the left and right continuous shape, and the height from the bottom to the ridge is the height of the ridge part on both sides. The height is such that the RV can be mounted, and the bottom surface is cut into a plate with a certain thickness. In the case where it is formed by forming a base using Form A, forming an air-permeable layer of an internal cavity, and forming a hermetic heat-insulating section with the hut back zone Z2 in a series of shapes that are integrally formed with the end walls on both sides of the shed back It is a feature of the constant ventilation route Z11 in the attic zone Z1, and the built-in continuous ventilation route Z11 of the same building has a built-in basic ventilation function. It is a ridge always ventilating exclusive route Z11 that prompts the direct entry, ventilation, and discharge of the outside air G by direct ventilation.
Furthermore, the ventilation form of the attic zone Z1, which is an integral formation of the ridge continuous ventilation path Z11 and the roof heat insulation ventilation structure YD, is the outside air G or the air flow g0 entering from the eaves vent Ng or the outer wall ventilation layer V2 that is always open. Passes through the ventilation passage V11 of the roof ventilation layer V1 of the roof thermal insulation ventilation structure YD, enters the same building part regular ventilation route Z11, and is constantly ventilated by the cooperation of the same building's wife ventilation gallery RV and the building ventilation port M.・ It is an exclusive ventilation zone that is always open and vented.
Further, the hut zone Z2 is an indoor ceiling or ceiling C0 of the roof heat insulating ventilation structure YD, in which a plate-like heat insulation foam A having a certain thickness on the back surface of the hut and a plate-like heat insulation foam C having a certain thickness are in close contact. In the hut back heat insulation structure KD or the shed back structure KD1, the zone Z2 serves as a ventilation layer, and the inner wall facing the outer wall connected to the hut back zone Z2 has a plate-like shape with a certain thickness. The inner wall ventilation structure WZ of the inner wall ventilation structure WZ provided with the heat insulation foam B is always in communication with the inner wall ventilation layer V3 of the inner wall insulation ventilation structure WD. In the natural ventilation control device, a ventilation gallery T1 using a heat-sensitive shape memory alloy that uses a temperature difference that opens and closes a constant temperature is configured as a basic permanent function of ventilation and ventilation control. Ventilation in the back of the hut and Attic insulation ventilation structure to the air control KD or a hut back zone Z2 of attic ventilation structure KD1 also,
The under-floor zone Z3 includes a plate-like floor insulation foam D having a certain thickness for floor base insulation construction, a solid foundation base F for moisture-proof construction with an integral soil specification, and a plate-like insulation foam D 'having a certain thickness. The underfloor heat insulation ventilation structure UD that is insulated by the rising heat insulation cloth foundation F1 that has been insulated by the inner side and uses the zone Z3 as a ventilation layer,
Also, it is connected to the hut back zone Z2 and is always connected to the inner wall ventilation layer V3 of the inner wall insulation ventilation structure WD of the inner wall ventilation structure WZ facing the outer wall, which is formed as a series of ventilation layers. The heat insulating fabric foundation F1 is an automatic open / close natural ventilation control device with ventilation and ventilation control, and the underfloor ventilation port T1 using the same type of temperature difference and heat sensitive shape memory alloy as the hut back zone Z2 has ventilation and ventilation control. In the underfloor zone Z3 of the underfloor heat insulation ventilation structure UD that controls underfloor ventilation and ventilation,
The ventilation mode with the hut zone Z2 in the communication state opens simultaneously when the outside air temperature is equal to or higher than a certain temperature, prompts the direct outside air G to enter and exhaust the air in both zones, and enters the underfloor zone Z3 and rises. The airflow passage V33 of the inner wall ventilation layer V3 through which the airflow communicates enters the hut back zone Z2, and the airflow merged with the airflow in the zone Z2 is an automatic opening / closing type ventilation garage attached to both side walls. It is a hut zone Z2 and an underfloor zone Z3 that are ventilated and discharged by T1 and are simultaneously closed below a certain temperature, automatically control the ventilation of outside air, and perform ventilation and ventilation control in cooperation with each other.
The attic zone Z1 of a heat insulating ventilation structure that is a dedicated zone for a normally open ventilation, the heat insulating ventilation structure or the attic zone Z2 of the ventilation structure that is a dedicated zone for ventilation and ventilation control, and the under-floor zone Z3 of the heat insulating ventilation structure by a dedicated zone Consists of a dedicated zone for constantly ventilating ridges Z11 in a dedicated zone for normally ventilated ventilation, a naturally open ventilating device that is always open, and an automatic opening / closing type natural ventilation control in a dedicated zone for venting and venting control. The heat insulating ventilation structure 1 is characterized in that it is equipped with equipment and used as a basic permanent function for each dedicated zone, and performs ventilation and ventilation control for each dedicated zone.
In the attic zone Z1 when the shape of the roof is in a four-sided inclined state, it is dedicated to ventilation in the ridge always ventilation dedicated path Z11 of the attic zone Z1 in the case of the four-sided integrated shape with the roof heat insulating ventilation structure YD in the four-sided inclined state. In the attic zone Z1, the building WT is additionally provided and combined with the building constantly ventilating route Z12, and the basic permanent function of ventilation and ventilation control in the attic zone Z2 is the building constantly ventilating. An attic zone Z1 that is attached to the exclusive route Z12 and is configured as a mediation zone for ventilation and ventilation control of the attic zone Z2,
A ventilation wing WT consisting of a roof ridge and a wife wall on the inclined surface in the long side direction or short side direction of the roof is constructed in parallel with both sides centering on the ridge, and the roof heat insulation ventilation structure as the attic zone Z1 A roof that forms a roof ventilation layer V1 that communicates in all directions with a constant width 2 and a maximum height h2 with a flat bottom at the bottom surface of the ridge, which is configured integrally with YD. A series of shapes that are formed integrally with the heat insulating ventilation structure YD and that both ends are formed integrally with the end walls of the ventilation wing WT on both sides, the length L, and the ventilation layer of the internal cavity including the building, Is formed as a single box-shaped ridge always ventilating exclusive path Z12, which is a plate-shaped heat insulation foam A having a certain thickness and is hermetically insulated from the attic zone Z2, and is integrated with the roof heat insulation ventilation structure YD in the four-sided inclined state. Attic characterized by its shape A over down Z1,
In the eaves and the dedicated ventilation route Z12, the eaves ventilation port Ng, the wife ventilating gallery RV, and the building ventilation port M are always open and naturally open as a basic permanent function. The outside air G or the rising air flow g0 entering from the outer wall ventilation layer V2 passes through the ventilation channel V11 of the roof ventilation layer V1, and is ventilated and discharged by the cooperation of the ventilation gallery RV and the building ventilation port M of the ventilation channel Z12. Yes,
In addition, the ventilation / discharge and ventilation control of the hut back zone Z2 is performed through the ventilation dedicated path Z12, and the surrounding airtight heat insulation section is divided at the maximum left and right heights h2 of the ventilation dedicated path Z12. Automatic opening / closing type ventilation gallery T1 using heat-sensitive shape memory alloy that uses a temperature difference that opens and closes by setting a constant upper and lower temperature through the ventilation of the attic zone Z2 on the wall part, or set temperature mainly using solar energy At least one automatic opening and closing type air flow control device for opening and closing dedicated electric shutter K4 that detects and opens the set humidity automatically is installed, and it serves as a mediation function for ventilation and ventilation control in the attic zone Z2, and the attic zone It is characterized by being configured as a basic permanent function of Z1,
The ventilation form passes through the ventilation path V33 of the ventilation layer V3 of the inner wall ventilation structure WZ in which the airflow entering the underfloor zone Z3 communicates as the rising airflow, enters the hut back zone Z2, The automatic opening / closing type ventilation control device opens at a certain temperature or more and enters into the ventilation dedicated route Z12 which is in a communication state, and the ventilation gallery RV and the building ventilation port M of the permanent open natural ventilation device which is always open. When the outside air temperature and the temperature in the zone Z2 and the ventilation route Z12 are below a certain level, the airflow is closed simultaneously with the underfloor vent and the intrusion of airflow is automatically controlled. Ventilation and ventilation control is performed through the attic zone Z1,
In addition, the ventilation in the hut zone Z2 and the ventilation control are performed as an intermediary function of the automatic opening / closing type ventilation gallery T1 or the opening / closing dedicated electric shutter K4. The feature attached to the rising section wall of the exclusive route Z12 is a solution to eliminate the trouble of opening and closing due to dust accumulation at the bottom by installing the bottom opening and closing type damper, and the occupied area of the hut back zone Z2 Alternatively, in order to obtain a ventilation effect according to the structure scale, a fixed number of automatic opening / closing type ventilation control devices with both sides of the rising partition wall formed as the maximum height h2 of the always-only ventilation path Z12 as attachment surfaces. The attic zone of the roof heat insulating ventilation structure YD when the roof shape of the attic zone Z1 is in a four-side inclined state 1 a ventilation-only building WT and Fusetsu configuration, said ridge portion continuously venting dedicated route Z11 is Fusetsu configured as ridge portion continuously venting dedicated route Z12 roof insulation breathable structure YD integral shape of the four-way communication of the four-way tilt state The construction method of the heat insulation ventilation structure 1 characterized .
常時開放通気の専用ゾーンとする屋根断熱通気構造YDの屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする小屋裏断熱通気構造KD又は通気構造KD1の小屋裏ゾーンZ2及び床下断熱通気構造UDの床下ゾーンZ3の専用ゾーン別通気構造から構成される断熱通気構造体1であって、通気及び通気制御の専用ゾーンの床下ゾーンZ3と小屋裏ゾーンZ2の連通による連携の通気及び通気制御を行い、さらに床下ゾーンZ3と小屋裏ゾーンZ2の連絡通気を形成する上で、連結され連通状態の断熱通気構造の内壁通気構造体WZから構成されていることを特徴とする断熱通気構造体1の、
床下ゾーンZ3の床下を防湿施工の土間コンクリート仕様で、周囲立ち上りを板状の断熱フォームD´で内側断熱された断熱布基礎F1とし床下地に断熱施工をせず、床下の通気・換気をなくし、床下熱源媒介の床暖房施工とする場合の床下密閉構造の床下密閉ゾーンZ4とした断熱通気構造体1´であり、
当該断熱通気構造体1´とする専用ゾーン別構成が、上記の屋根裏ゾーンZ1、小屋裏ゾーンZ2及び床下密閉ゾーンZ4の構成と、さらに、小屋裏ゾーンZ2と連結され、連通状態の内壁断熱通気構造WDの内壁通気構造体WZから構成されることを特徴とし又、外壁に面する外周一連の断熱通気構造WDで通気層V3を形成する内壁通気構造体WZと小屋裏ゾーンZ2の連通による連携の通気及び通気制御を行う通気形態として、
周囲外壁Уの下部に一定の数量を定め常設する、同外壁Уの通気層V2を貫通し、当該外壁に面して全周一連の連通状態の内壁通気構造体WZの内壁断熱通気構造WDの下部通気層V3への取り込み通気とする、上下一定の温度を定め開閉する、小屋裏ゾーンZ2の自動開閉式の自然通気制御機器と同型式の温度差利用の熱感知式形状記憶合金使用の換気ガラリT1を附設し、取り込み通気と通気制御の基本常設機能とし、連結状態で連通する小屋裏ゾーンZ2と連携の通気及び通気制御を行うもので、
外気温が一定温度以上の場合に、小屋裏ゾーンZ2の両側の妻壁の基本常設機能の自動開閉式換気ガラリT1と同時に開口し、附設され取り込み通気とした同型式の換気ガラリT1に進入する外気Gが、上記通気層V3の通気路V33を同通気層内の熱気又は湿気を伴う上昇気流g2として経過し、小屋裏ゾーンZ2内に進入し、さらに同ゾーンZ2内の熱気あるいは淀んだ空気を伴い、又は同ゾーンZ2内に直接進入する外気Gとの合流の気流g3として同ゾーンZ2の両妻壁の同換気ガラリT1により通気・排出され、又、外気温が一定温度以下の場合は同時に閉鎖し、外気の進入を自動通気制御するものであり、
前記断熱通気構造体1の床下断熱通気構造UDの床下ゾーンZ3を床下密閉ゾーンZ4と
し、通気及び通気制御の専用ゾーンの小屋裏ゾーンZ2と連携して通気及び通気制御を行うべく、同ゾーンZ2と連結し連通する内壁通気構造体WZの下部に、自動開閉式の自然通気制御機器T1を取り込み通気として附設構成し、前記断熱通気構造体1と組み合わせ構成されることを特徴とする断熱通気構造体1´の、
当該屋根の形状が四方傾斜状態の場合の屋根裏ゾーンZ1で、四方傾斜状態の屋根断熱通気構造YDと四方一体形状で構成される場合の屋根裏ゾーンZ1の棟部常時通気専用経路Z11に、通気専用棟WTが附設構成され、棟部常時通気専用経路Z12として組み合わせ構成されることを特徴とする屋根裏ゾーンZ1で、又、前記小屋裏ゾーンZ2の通気及び通気制御の基本常設機能が棟部常時通気専用経路Z12に附設構成され、同小屋裏ゾーンZ2の通気及び通気制御の媒介ゾーンとして構成されることを特徴とする屋根裏ゾーンZ1であって、
屋根の長辺方向又は短辺方向の傾斜面に、屋根棟及び妻壁が構成される通気専用棟WTを、棟を中心とし、両側に平行して構築し、屋根裏ゾーンZ1として屋根断熱通気構造YDと一体形状で構成される棟部常時通気専用経路であり、当該専用経路の底面が平面状の一定の幅2で最高の高さh2の、四方を連通する屋根通気層V1を形成する屋根断熱通気構造YDと一体形状で形成され又、両端部が両側の通気専用棟WTの妻壁と一体形成とした一連の形状で、長さLとし、棟を含む内部空洞の通気層とし、周囲が一定の厚さの板状の断熱フォームAで小屋裏ゾーンZ2と気密断熱区画された一体箱状の棟部常時通気専用経路Z12として構成され、当該四方傾斜状態の屋根断熱通気構造YDと一体形状で構成されることを特徴とする屋根裏ゾーンZ1であって、
軒天及び同通気専用経路Z12に、軒天換気口Ng、妻面換気ガラリRV及び棟換気口Mの常時開口の自然開放通気機器が基本常設機能として附設構成され、同軒天換気口Ng及び外壁通気層V2より進入する外気G又は上昇気流g0が屋根通気層V1の通気路V11を経過し、同通気専用経路Z12の換気ガラリRV及び棟換気口Mの連携により通気・排出されるものであり、
又、小屋裏ゾーンZ2の通気・排出及び通気制御が、同通気専用経路Z12を媒介しておこなわれるもので、同通気専用経路Z12の左右の最高の高さh2で周囲気密断熱区画された立ち上り壁部分に、小屋裏ゾーンZ2の通気媒介とする上下一定の温度を定め開閉する温度差利用の熱感知式形状記憶合金使用の自動開閉式の換気ガラリT1、あるいはソーラーエネルギーを主とした設定温度、設定湿度を感知し自動開閉する開閉専用の電気式シャッターK4のいずれかの自動開閉式の通気制御機器を最低一台附設とし、小屋裏ゾーンZ2の通気及び通気制御の媒介機能とし、屋根裏ゾーンZ1の基本常設機能として附設構成されることを特徴とするもので、
その通気形態は、取り込み通気として附設構成された内壁通気構造体WZの下部の自動開閉式の自然通気制御機器T1に進入した気流が上昇気流として同通気構造体WZの通気層V3の通気路V33を経過し、小屋裏ゾーンZ2内に進入し、上記のいずれかの附設される自動開閉式の通気制御機器が一定温度以上で開口し、連通状態となった同通気専用経路Z12内に進入し、常設の常時開口の自然開放通気機器の換気ガラリRV及び棟換気口Mにより通気・排出され又、外気温及び同ゾーンZ2さらに同通気専用経路Z12内の温度が一定以下の場合、内壁通気構造体WZの下部の自動開閉式の自然通気制御機器T1と同時閉鎖し気流の侵入を自動制御するもので、小屋裏ゾーンZ2の通気及び通気制御が屋根裏ゾーンZ1を媒介し行われることを特徴とし、
さらに、小屋裏ゾーンZ2の通気及び通気制御を媒介して行う上で、自動開閉式の換気ガラリT1あるいは開閉専用の電気式シャッターK4を媒介の機能として、通気専用棟WTと直角方向の同通気専用経路Z12の立ち上り区画壁面に附設する特徴が、底部開閉式ダンパー設置による底部のほこり溜りを因とした開閉の支障をなくすべく解決策とするものであり、又、小屋裏ゾーンZ2の占用面積あるいは同構造体規模に応じた通気効果を得る場合、同常時通気専用経路Z12の最高の高さh2として形成される立ち上り区画壁の両側を取り付け面とし、一定多数の自動開閉式の通気制御機器を附設することができることを特徴とし、前記屋根裏ゾーンZ1の屋根の形状が四方傾斜状態となる場合の屋根断熱通気構造YDの同屋根裏ゾーンZ1に通気専用棟WTを附設構成し、前記棟部常時通気専用経路Z11が四方傾斜状態の屋根断熱通気構造YDと四方連通の一体形状の棟部常時通気専用経路Z12として附設構成されることを特徴とする断熱通気構造体1の施工方法。
Attic zone Z1 of roof insulation ventilation structure YD as a dedicated zone for always open ventilation, attic insulation ventilation structure KD or attic zone Z2 of ventilation structure KD1 and underfloor insulation ventilation structure UD as a dedicated zone for ventilation and ventilation control It is a heat insulating ventilation structure 1 constituted by a dedicated zone-specific ventilation structure of zone Z3, and performs linked ventilation and ventilation control through communication between the underfloor zone Z3 and the hut back zone Z2 of the dedicated zone for ventilation and ventilation control, and In forming the communication ventilation between the underfloor zone Z3 and the attic zone Z2, the heat insulation ventilation structure 1 is composed of the inner wall ventilation structure WZ of the insulation ventilation structure connected and in communication.
Underfloor zone Z3 under floor concrete specification with moisture-proof construction, the surrounding rise is a heat insulating fabric foundation F1 that is thermally insulated inside with a plate-like heat insulation foam D ', without heat insulation work on the floor base, eliminating underfloor ventilation , A heat insulating ventilation structure 1 ′ that is an underfloor sealed zone Z4 of an underfloor sealed structure in the case of underfloor heat source-mediated floor heating construction,
The structure according to the exclusive zone as the heat insulating ventilation structure 1 ′ is connected to the structure of the attic zone Z1, the attic zone Z2 and the underfloor sealing zone Z4, and further to the attic zone Z2, and is connected to the inner wall insulative ventilation in the communication state. The inner wall ventilation structure WZ of the structure WD is constituted by the inner wall ventilation structure WZ that forms the ventilation layer V3 with a series of outer peripheral heat insulation ventilation structures WD facing the outer wall, and is linked by communication between the hut back zone Z2 As a ventilation form that performs ventilation and ventilation control of
The inner wall heat insulation ventilation structure WD of the inner wall ventilation structure WZ in a continuous state all the way through the ventilation layer V2 of the outer wall fence, which is fixedly provided at a lower portion of the surrounding outer wall fence, and that faces the outer wall. Ventilation using heat sensitive shape memory alloy using temperature difference of the same type as the automatic ventilation type natural ventilation control device in the back of the hut zone Z2, which opens and closes by setting a certain temperature up and down, which is taken in and vented to the lower ventilation layer V3 It is equipped with a gallery T1 as a basic permanent function of intake ventilation and ventilation control, and performs ventilation and ventilation control in cooperation with the hut back zone Z2 communicating in a connected state.
When the outside air temperature is above a certain temperature, it opens simultaneously with the automatic opening / closing type ventilation gallery T1 of the basic permanent function of the wife wall on both sides of the attic zone Z2, and enters the same type of ventilation gallery T1 that is attached and used as intake ventilation. The outside air G passes through the ventilation path V33 of the ventilation layer V3 as an ascending air flow g2 accompanied by hot air or moisture in the ventilation layer, enters the hut zone Z2, and further heat or stagnant air in the zone Z2. If the outside air temperature is below a certain temperature, it is ventilated and exhausted by the same ventilation gall T1 on both the walls of the same zone Z2 as an air flow g3 that merges with the outside air G that directly enters the same zone Z2. It closes at the same time and automatically ventilates the outside air.
The underfloor zone Z3 of the underfloor heat insulation ventilation structure UD of the heat insulation ventilation structure 1 is referred to as an underfloor sealing zone Z4.
In order to perform ventilation and ventilation control in cooperation with the attic zone Z2 of the exclusive zone for ventilation and ventilation control, the natural ventilation control of the automatic opening and closing type is provided at the lower part of the inner wall ventilation structure WZ connected to and communicated with the zone Z2. The heat insulating ventilation structure 1 ′ is characterized in that the apparatus T1 is additionally provided as intake ventilation and is configured in combination with the heat insulation ventilation structure 1.
In the attic zone Z1 when the shape of the roof is in a four-sided inclined state, it is dedicated to ventilation in the ridge always ventilation dedicated path Z11 of the attic zone Z1 in the case of the four-sided integrated shape with the roof heat insulating ventilation structure YD in the four-sided inclined state. In the attic zone Z1, the building WT is additionally provided and combined with the building constantly ventilating route Z12, and the basic permanent function of ventilation and ventilation control in the attic zone Z2 is the building constantly ventilating. An attic zone Z1 that is attached to the exclusive route Z12 and is configured as a mediation zone for ventilation and ventilation control of the attic zone Z2,
A ventilation wing WT consisting of a roof ridge and a wife wall on the inclined surface in the long side direction or short side direction of the roof is constructed in parallel with both sides centering on the ridge, and the roof heat insulation ventilation structure as the attic zone Z1 A roof that forms a roof ventilation layer V1 that communicates in all directions with a constant width 2 and a maximum height h2 with a flat bottom at the bottom surface of the ridge, which is configured integrally with YD. A series of shapes that are formed integrally with the heat insulating ventilation structure YD and that both ends are formed integrally with the end walls of the ventilation wing WT on both sides, the length L, and the ventilation layer of the internal cavity including the building, Is formed as a single box-shaped ridge always ventilating exclusive path Z12, which is a plate-shaped heat insulation foam A having a certain thickness and is hermetically insulated from the attic zone Z2, and is integrated with the roof heat insulation ventilation structure YD in the four-sided inclined state. Attic characterized by its shape A over down Z1,
In the eaves and the dedicated ventilation route Z12, the eaves ventilation port Ng, the wife ventilating gallery RV, and the building ventilation port M are always open and naturally open as a basic permanent function. The outside air G or the rising air flow g0 entering from the outer wall ventilation layer V2 passes through the ventilation channel V11 of the roof ventilation layer V1, and is ventilated and discharged by the cooperation of the ventilation gallery RV and the building ventilation port M of the ventilation channel Z12. Yes,
In addition, the ventilation / discharge and ventilation control of the hut back zone Z2 is performed through the ventilation dedicated path Z12, and the surrounding airtight heat insulation section is divided at the maximum left and right heights h2 of the ventilation dedicated path Z12. Automatic opening / closing type ventilation gallery T1 using heat-sensitive shape memory alloy that uses a temperature difference that opens and closes by setting a constant upper and lower temperature through the ventilation of the attic zone Z2 on the wall part, or set temperature mainly using solar energy At least one automatic opening and closing type air flow control device for opening and closing dedicated electric shutter K4 that detects and opens the set humidity automatically is installed, and it serves as a mediation function for ventilation and ventilation control in the attic zone Z2, and the attic zone It is characterized by being configured as a basic permanent function of Z1,
The ventilation form is such that the airflow entering the automatic opening / closing type natural ventilation control device T1 below the inner wall ventilation structure WZ provided as intake ventilation is the rising airflow and the ventilation path V33 of the ventilation layer V3 of the ventilation structure WZ. After passing through the hut zone Z2, one of the above-mentioned automatic opening / closing type air flow control devices opens at a certain temperature or more, and enters the communication exclusive route Z12 which is in a communication state. If the outside air temperature and the zone Z2 and the temperature in the dedicated ventilation route Z12 are below a certain level, the inner wall ventilation structure Closes the automatic opening / closing type natural ventilation control device T1 below the body WZ and automatically controls the intrusion of the air flow. The ventilation and ventilation control of the attic zone Z2 is performed through the attic zone Z1. And characterized in that,
In addition, the ventilation in the hut zone Z2 and the ventilation control are performed as an intermediary function of the automatic opening / closing type ventilation gallery T1 or the opening / closing dedicated electric shutter K4. The feature attached to the rising section wall of the exclusive route Z12 is a solution to eliminate the trouble of opening and closing due to dust accumulation at the bottom by installing the bottom opening and closing type damper, and the occupied area of the hut back zone Z2 Alternatively, in order to obtain a ventilation effect according to the structure scale, a fixed number of automatic opening / closing type ventilation control devices with both sides of the rising partition wall formed as the maximum height h2 of the always-only ventilation path Z12 as attachment surfaces. The attic zone of the roof heat insulating ventilation structure YD when the roof shape of the attic zone Z1 is in a four-side inclined state 1 a ventilation-only building WT and Fusetsu configuration, said ridge portion continuously venting dedicated route Z11 is Fusetsu configured as ridge portion continuously venting dedicated route Z12 roof insulation breathable structure YD integral shape of the four-way communication of the four-way tilt state The construction method of the heat insulation ventilation structure 1 characterized .
前記請求項1または請求項2記載の屋根の形状が四方傾斜状態の場合の屋根裏ゾーンZ1の通気及び通気制御機能が、小屋裏ゾーンZ2の通気及び通気制御を媒介する共用の通気及び通気制御の機能であって、屋根裏ゾーンZ1に位置し、専用ゾーン別ハイブリッド通気及び通気制御機能KC−4又は、ハイブリッド通気及び通気制御機能KC−5として構成されることを特徴とする、屋根裏ゾーンZ1と小屋裏ゾーンZ2共用のハイブリッド通気及び通気制御の方法であって、常時開放通気の専用ゾーンとする屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御とすべく、当該屋根裏ゾーンZ1の基本常設機能の常時開口の自然開放通気機器以外に、小屋裏ゾーンZ2の屋根裏ゾーンZ1への取り込み通気媒介とする、通気及び通気制御の自動開閉式の自然通気制御機器又は開閉専用の電気式シャッターK4を附設した屋根裏ゾーンZ1の基本常設機能とし、補助としてソーラーエネルギーを主とする設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し、自動運転・停止する自動制御の換気ファンを附設機能とし、混用して通気及び通気制御を行う、ハイブリッド通気及び通気制御を特徴としたもので、
又、当該換気ファンを自動制御する制御装置が、太陽光発電を供給する装置の太陽電池パネルE0を設置し、ソーラーエネルギーを主として自動運転・停止を自動制御するコントローラCR、温度スイッチTS、湿度スイッチHS及び連動運転と夜・雨天時の家庭用電源の自動切換のリレーユニットRUから構成され、屋根裏ゾーンZ1の棟部常時通気専用経路Z12に附設される換気ファンK1の制御装置YC、及び小屋裏ゾーンZ2専用の換気ファンK2の制御装置KCとして附設されるものであり、
当該屋根裏ゾーンZ1に位置し、屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御を行うにあたり、ハイブリッド通気及び通気制御機能KC−4として構成される特徴が、
当該屋根裏ゾーンZ1の常時開口の自然開放通気機器と、小屋裏ゾーンZ2の通気及び通気制御を行う屋根裏ゾーンZ1の棟部常時通気専用経路Z12に附設される同通気専用経路Z12と小屋裏ゾーンZ2の通気媒介の自動開閉式の自然通気制御機器を屋根裏ゾーンZ1の基本常設機能とし、さらに補助としてソーラーエネルギーを主とし、設定温度、設定湿度を感知し、自動運転・停止する自動制御の換気ファンK1を同通気専用経路Z12内のいずれか一方に附設し、且つ、同換気ファンK1のパイプダクトP1を分岐し、一方は同通気専用経路Z12内の中央に、一方は貫通挿入し小屋裏ゾーンZ2内へ装着し、同ゾーンZ2と屋根裏ゾーンZ1を同時に通気、換気するものであり、両ゾーンの通気及び通気制御を自然と強制の両機能を混用し行うゾーン別ハイブリッド通気及び通気制御機能KC−4であって、両ゾーン共用の通気及び通気制御機能であり、
当該屋根裏ゾーンZ1の棟部常時通気専用経路Z12の両側の通気専用棟WTの妻壁に常設する常時開口の自然開放通気機器の換気ガラリRVと棟の換気口Mは、連携する通気排出機能で、同通気専用経路Z12内の常時直接外気Gの進入、通気、排出を促し、さらに軒天換気口Ng又は外壁通気層V2より進入する外気G及び上昇気流g0が屋根通気路V11を合流して経過し、同通気専用経路Z12内に進入した合流の上昇気流g1の通気、排出を促すものであって、
又、小屋裏ゾーンZ2と気密断熱区画された同通気専用経路Z12の最高の高さh2とした部分に、同小屋裏ゾーンZ2と同通気専用経路Z12との通気媒介とする自動開閉式で温度差利用の熱感知式形状記憶合金使用の自然通気制御機器の換気ガラリT1もしくは、自動開閉式の開閉専用電気式シャッターK4のいずれかを最低一台附設するものとし、同機能を屋根裏ゾーンZ1の基本常設機能に附設構成とするものであり、一定の温度以上の場合開口し、小屋裏ゾーンZ2と連通する床下ゾーンZ3に進入した外気G、あるいは取り込み通気として附設構成された内壁通気構造体WZの下部の自動開閉式の自然通気制御機器T1に直接進入した外気Gが上昇気流g2として連通の内壁通気構造体WZの通気路V33を経過し、同ゾーンZ2に進入経過し、開口状態の自動開閉式の通気制御機器を媒介し、連通状態となった同通気専用経路Z12に進入し、常設機能の換気ガラリRV又は棟換気口Mの連携により通気・排出され、又一定温度以下で閉鎖し、同通気専用経路Z12の気流及び進入外気Gの同小屋裏ゾーンZ2内への進入を自動通気制御するものであり、又、さらに、補助としてソーラーエネルギーを主とし、附設する同通気専用経路Z12内への自動制御の換気ファンK1のパイプダクトP1を分岐し、一方は同通気専用経路Z12の中央に、一方は貫通挿入し、小屋裏ゾーンZ2内へ装着し両ゾーンの設定温度、設定湿度を温度センサーTC、湿度センサーHCが感知し、自動運転し、通気排出され、又、設定以下で停止するもので、両ゾーンの通気及び通気制御を自然と強制の両機能を混用し専用ゾーン別通気及び通気制御を行うゾーン別ハイブリッド通気及び通気制御機能KC−4であり、
又、当該屋根裏ゾーンZ1に位置し、屋根裏ゾーンZ1及び小屋裏ゾーンZ2の専用ゾーン別通気及び通気制御を行うハイブリッド通気及び通気制御機能KC−5とした場合の特徴として、上記ハイブリッド通気及び通気制御機能KC−4の機能をそのままに、さらに、屋根裏ゾーンZ1へ小屋裏ゾーンZ2専用の通気制御機能として附設する自動制御の換気ファンK1と同型式の小屋裏ゾーンZ2内の設定温度、設定湿度を感知し、自動運転・停止の自動制御の換気ファンK2を換気ファンK1の附設位置と反対側へ附設し、常時通気専用経路Z12の底面を貫通挿入し同ゾーンZ2専用のパイプダクトP2を装着し、同ゾーンZ2に分岐配管し吸引する換気ファンK1と換気ファンK2による自動制御の強制機能と自然機能の両機能を混用し共用して通気を促進し、又、通気制御を行うことを特徴とするハイブリッド通気及び通気制御機能KC−5であって、上記ハイブリッド通気及び通気制御機能KC−4同様、屋根裏ゾーンZ1と小屋裏ゾーンZ2共用の通気及び通気制御機能を特徴とするものであり、常時開放通気の専用ゾーンとする屋根裏ゾーンZ1、通気及び通気制御の専用ゾーンとする小屋裏ゾーンZ2として、屋根の形状が四方傾斜状態の場合の専用ゾーン別通気及び通気制御にあたり、屋根裏ゾーンZ1に位置する通気及び通気制御の両機能が小屋裏ゾーンZ2の通気及び通気制御を媒介し、又、同機能が両ゾーンに共用する常時開口の自然開放通気機器と自動開閉式の自然通気制御機器を基本常設機能とした自然気流対象機能と、ソーラーエネルギーを主とし、自動制御装置を用いた自動制御の換気ファンの両機能を混用する屋根裏ゾーンZ1と小屋裏ゾーンZ2の共用するハイブリッド通気及び通気制御機能KC−4又はハイブリッド通気及び通気制御機能KC−5であり、
屋根裏ゾーンZ1及び小屋裏ゾーンZ2の通気及び通気制御が、ハイブリッド通気及び通気制御機能KC−4又は同機能KC−5として屋根裏ゾーンZ1に附設構成され行われることを特徴とする、前記請求項1、請求項2記載の屋根の形状が四方傾斜状態の場合の断熱通気構造体1の専用ゾーン別ハイブリッド通気及び通気制御の方法。
The ventilation and ventilation control function of the attic zone Z1 when the shape of the roof according to claim 1 or 2 is in a four-sided inclined state is a common ventilation and ventilation control function that mediates ventilation and ventilation control of the attic zone Z2. Attic zone Z1 and hut located in attic zone Z1 and configured as dedicated zone-specific hybrid ventilation and ventilation control function KC-4 or hybrid ventilation and ventilation control function KC-5 A method of hybrid ventilation and ventilation control common to the back zone Z2, wherein the attic zone Z1 is a dedicated zone for always open ventilation, and the ventilation and ventilation control for each dedicated zone of the attic zone Z2 is a dedicated zone for ventilation and ventilation control. Therefore, in addition to the normally open naturally open ventilation device of the basic permanent function of the attic zone Z1, the attic zone of the attic zone Z2 The basic permanent function of the attic zone Z1 with an automatic opening and closing type natural ventilation control device for ventilation and ventilation control or an electric shutter K4 dedicated for opening and closing, which is used as a ventilation medium for Z1 incorporation, mainly using solar energy as an auxiliary Featuring a hybrid ventilation and ventilation control that uses a temperature sensor TC and humidity sensor HC to detect the set temperature and humidity, and has an automatically controlled ventilation fan that automatically starts / stops. What
In addition, the control device for automatically controlling the ventilation fan is installed with a solar battery panel E0 of a device for supplying solar power generation, and a controller CR, temperature switch TS, humidity switch for automatically controlling solar energy mainly for automatic operation / stop. A control unit YC for the ventilation fan K1, which is composed of a relay unit RU for HS and interlocking operation and automatic switching of household power supply in the night and rain, and attached to the ridge normal ventilation route Z12 in the attic zone Z1, and the attic It is attached as a control device KC for the ventilation fan K2 dedicated to the zone Z2,
In the attic zone Z1, in order to perform ventilation and ventilation control by dedicated zone of the attic zone Z1 and the attic zone Z2, the characteristics configured as a hybrid ventilation and ventilation control function KC-4,
A naturally open ventilating device that is normally open in the attic zone Z1, and a ventilation exclusive route Z12 and an attic zone Z2 that are attached to the ridge continuous ventilation exclusive route Z12 of the attic zone Z1 that controls ventilation and ventilation in the attic zone Z2. The automatic ventilation fan that automatically operates and stops by sensing the set temperature and set humidity mainly by using solar energy as an auxiliary function, with the natural ventilation control device of the automatic opening and closing type mediated by the ventilation system as the basic permanent function of the attic zone Z1 K1 is attached to one of the ventilation-only paths Z12, and the pipe duct P1 of the ventilation fan K1 is branched, one is inserted into the center of the ventilation-only path Z12, and one is penetrated to enter the hut back zone. Installed in Z2, ventilates and ventilates the same zone Z2 and attic zone Z1 at the same time. A zone-specific hybrid ventilation and venting control function KC-4 to mix the performing a ventilating and venting control functions of both zones shared,
The ventilation gallery RV of the normally open naturally-opening ventilation device and the ventilation opening M of the ridge that are permanently installed in the end wall of the ventilation dedicated building WT on both sides of the ridge continuous ventilation dedicated route Z12 in the attic zone Z1 are linked with the ventilation discharge function. In addition, the direct passage of outside air G in the ventilation exclusive route Z12 is always urged to enter, ventilate, and discharge, and the outside air G and the rising air flow g0 entering from the eaves vent Ng or the outer wall ventilation layer V2 join the roof ventilation passage V11. Elapsed and urged to vent and discharge the converging ascending air flow g1 that entered the ventilation-only path Z12,
In addition, in the part with the highest height h2 of the ventilation zone Z12 that is hermetically insulated from the cabin zone Z2, the temperature is automatically opened and closed using the ventilation between the cabin zone Z2 and the ventilation route Z12. At least one of the ventilation gallery T1 of the natural ventilation control device using the heat sensing type memory alloy of difference utilization or the electric shutter K4 dedicated to automatic opening and closing is attached, and the same function is provided in the attic zone Z1. An internal wall ventilation structure WZ that is provided as a supplement to the basic permanent function, opens when the temperature is higher than a certain temperature, and enters the underfloor zone Z3 that communicates with the hut zone Z2 or as an intake ventilation. The outside air G that has entered directly into the automatic opening / closing type natural ventilation control device T1 in the lower part of the gas passes through the ventilation path V33 of the communicating inner wall ventilation structure WZ as the rising air flow g2, 2 entered, and opened via the automatic opening / closing type ventilation control device in the open state, and entered the ventilation exclusive route Z12 that was in the communication state. It is exhausted and closed below a certain temperature, and the automatic ventilation control of the air flow in the ventilation exclusive route Z12 and the approaching outside air G into the cabin back zone Z2 is carried out. Mainly, the pipe duct P1 of the ventilation fan K1 that is automatically controlled into the attached dedicated ventilation path Z12 is branched, one is inserted into the center of the dedicated ventilation path Z12, and the other is inserted through, and into the hut zone Z2. The temperature sensor TC and humidity sensor HC sense the set temperature and set humidity of both zones, automatically operate, vent the air, and stop at or below the setting. The a zone-specific hybrid ventilation and venting control function KC-4 for performing mix and only zones by aeration and ventilation control functions of both forced and natural,
Further, the hybrid ventilation and ventilation control function KC-5, which is located in the attic zone Z1 and performs the ventilation and ventilation control for each exclusive zone of the attic zone Z1 and the attic zone Z2, is characterized by the above hybrid ventilation and ventilation control. While maintaining the function of function KC-4, the set temperature and humidity in the attic zone Z2 of the same model as the automatic control ventilation fan K1 that is added to the attic zone Z1 as a ventilation control function dedicated to the attic zone Z2 A ventilation fan K2 for automatic control of automatic operation / stop is installed on the opposite side of the installation position of the ventilation fan K1, and the bottom of the dedicated ventilation path Z12 is always inserted and a pipe duct P2 dedicated to the zone Z2 is installed. Both the forced and automatic functions of the automatic control by the ventilation fan K1 and the ventilation fan K2 that branch piping into the zone Z2 and suction are mixed. The hybrid ventilation and ventilation control function KC-5, which is commonly used to promote ventilation and control ventilation, and is similar to the hybrid ventilation and ventilation control function KC-4, and the attic zone Z1 and the cabin. Features a ventilation and ventilation control function shared by the back zone Z2, and has an attic zone Z1 as a dedicated zone for always open ventilation, and a hut zone Z2 as a dedicated zone for ventilation and ventilation control. In the ventilation and ventilation control for each dedicated zone in the inclined state, the ventilation and ventilation control functions located in the attic zone Z1 mediate the ventilation and ventilation control of the attic zone Z2, and the functions are shared by both zones. A natural airflow target function that uses a naturally open ventilating device that is always open and an automatically opening and closing natural ventilation control device as a basic permanent function, and solar energy The hybrid ventilation and ventilation control function KC-4 or the hybrid ventilation and ventilation control function KC-5 shared by the attic zone Z1 and the attic zone Z2 that use both functions of the automatically controlled ventilation fan using the automatic control device. ,
Aeration and ventilation control attic zones Z1 and attic zone Z2, characterized in that performed is Fusetsu configured in the attic zone Z1 as a hybrid ventilation and venting control function KC-4 or Equivalent KC-5, claim 1 A method of hybrid ventilation and ventilation control for each dedicated zone of the heat insulating ventilation structure 1 when the roof shape according to claim 2 is in a four-sided inclined state.
JP2006121754A 2006-04-26 2006-04-26 A method for constructing a heat insulating ventilation structure composed of a zone-specific ventilation structure for constantly opening ventilation and ventilation and ventilation control of a wooden building, and a hybrid ventilation and ventilation control method for the structure. Expired - Fee Related JP4482914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121754A JP4482914B2 (en) 2006-04-26 2006-04-26 A method for constructing a heat insulating ventilation structure composed of a zone-specific ventilation structure for constantly opening ventilation and ventilation and ventilation control of a wooden building, and a hybrid ventilation and ventilation control method for the structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121754A JP4482914B2 (en) 2006-04-26 2006-04-26 A method for constructing a heat insulating ventilation structure composed of a zone-specific ventilation structure for constantly opening ventilation and ventilation and ventilation control of a wooden building, and a hybrid ventilation and ventilation control method for the structure.

Publications (2)

Publication Number Publication Date
JP2007291751A JP2007291751A (en) 2007-11-08
JP4482914B2 true JP4482914B2 (en) 2010-06-16

Family

ID=38762633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121754A Expired - Fee Related JP4482914B2 (en) 2006-04-26 2006-04-26 A method for constructing a heat insulating ventilation structure composed of a zone-specific ventilation structure for constantly opening ventilation and ventilation and ventilation control of a wooden building, and a hybrid ventilation and ventilation control method for the structure.

Country Status (1)

Country Link
JP (1) JP4482914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136877A (en) * 2011-12-28 2013-07-11 Ito Masayoshi Wall structure of building
GR1009523B (en) * 2017-12-18 2019-05-20 Vyacheslav Lev Raykhfeld New safe energy-efficient house

Also Published As

Publication number Publication date
JP2007291751A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US6319115B1 (en) Air cycle houses and house ventilation system
CA2157080C (en) Thermally insulated building and a building panel therefor
JP4485539B2 (en) Solar system house
JP4851147B2 (en) Building air conditioning system
JP4482914B2 (en) A method for constructing a heat insulating ventilation structure composed of a zone-specific ventilation structure for constantly opening ventilation and ventilation and ventilation control of a wooden building, and a hybrid ventilation and ventilation control method for the structure.
JPH0670528B2 (en) Solar system house
JP3944181B2 (en) Building air conditioning system
JP3187707B2 (en) Building cooling / heating / ventilation system
JP4295541B2 (en) Ventilation system
JP6009111B1 (en) Air conditioning system, air conditioning method, and program
JP3274858B2 (en) Solar system house
JP5410112B2 (en) Building ventilation structure
JP2007092323A (en) Roof structure with venting skin and building having roof structure with venting skin
JPH0443172B2 (en)
JP2001279837A (en) Air cycle building/house and ventilation system for building/house
JP4567848B2 (en) Central ventilation
JP5030246B1 (en) Building ventilation insulation structure
KR200407076Y1 (en) System for ventilating of modular type structure
JPH11241843A (en) Building ventilation system
JP3368486B2 (en) Architectural structures and buildings with them
JPS6221870Y2 (en)
JP2004270979A (en) Ventilation house and method of forming cold air reservoir
JP2500106Y2 (en) Ridge ventilation system
JP2001220836A (en) Structure of natural ventilation building for flat roof type house and natural ventilation system
JP2000320031A (en) Building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees