JP4482580B2 - Hot water storage water heater - Google Patents

Hot water storage water heater Download PDF

Info

Publication number
JP4482580B2
JP4482580B2 JP2007271137A JP2007271137A JP4482580B2 JP 4482580 B2 JP4482580 B2 JP 4482580B2 JP 2007271137 A JP2007271137 A JP 2007271137A JP 2007271137 A JP2007271137 A JP 2007271137A JP 4482580 B2 JP4482580 B2 JP 4482580B2
Authority
JP
Japan
Prior art keywords
hot water
hole
intake
temperature
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007271137A
Other languages
Japanese (ja)
Other versions
JP2009097820A (en
Inventor
泰城 村上
宗 平岡
浩二 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007271137A priority Critical patent/JP4482580B2/en
Priority to EP08166422.9A priority patent/EP2051016B1/en
Publication of JP2009097820A publication Critical patent/JP2009097820A/en
Application granted granted Critical
Publication of JP4482580B2 publication Critical patent/JP4482580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えばヒートポンプサイクルを用いて湯水を沸かし、沸かした湯を貯湯タンクに貯留する貯湯式給湯装置に関するものである。   The present invention relates to a hot water storage type hot water supply apparatus that boils hot water using, for example, a heat pump cycle and stores the boiled hot water in a hot water storage tank.

従来、この種の貯湯式給湯装置として、貯湯タンクの下側から低温水(例えば5℃)の湯水を取り出し、ヒートポンプサイクルを用いて沸かした高温水(例えば90℃)の湯水を、貯湯タンクの上側から貯湯タンクに戻すとともに、貯湯タンク内の湯水が温度拡散して生じた中温水を、貯湯タンク内に上下方向に延びて設けられた取水管により外部に取り出して給湯へ利用したものが知られている(例えば特許文献1)。
このものの場合、取水管は外筒または中筒が回転自在な二重管構造であり、外筒及び中筒の周囲に所定の回動位置で互いに連通可能な取水穴を異なる高さ位置に設け、外筒または中筒が回動することにより貯湯タンク内の所定高さに貯留する中温水を取り出すようになっている。
Conventionally, as this type of hot water storage type hot water supply device, hot water of low temperature water (for example, 5 ° C.) is taken out from the lower side of the hot water storage tank, and hot water (for example, 90 ° C.) boiled using a heat pump cycle is used in the hot water storage tank. It is known that the hot water is returned from the upper side to the hot water storage tank, and the medium temperature water generated by the temperature diffusion of the hot water in the hot water storage tank is taken out to the outside by a water intake pipe extending vertically in the hot water storage tank and used for hot water supply. (For example, Patent Document 1).
In this case, the intake pipe has a double pipe structure in which the outer cylinder or the inner cylinder is rotatable, and intake holes that can communicate with each other at predetermined rotation positions are provided at different height positions around the outer cylinder and the inner cylinder. In addition, the warm water stored at a predetermined height in the hot water storage tank is taken out by rotating the outer cylinder or the middle cylinder.

特開2006−57916号公報JP 2006-57916 A

しかしながら、このような貯湯式給湯装置は、所定の高さの一箇所からしか中温水を取り出すことができない。
そのため、貯湯タンク内の中温水の温度が、要求給湯温度(例えば50℃)よりも低下した場合には、その中温水を貯湯タンクから取り出して給湯水として利用することができず、そのまま密閉された貯湯タンク内に貯留されてしまい、貯湯タンク内では要求給湯温度以下の中温水の割合が占める割合が大きくなってしまい、それだけ貯湯タンク内に占める高温水の割合が低下し、高温水が不足するという問題点があった。
また、高温水の不足を解消すべく、この中温水をヒートポンプによりおよそ90℃まで加熱しようとしたときには、加熱量/消費電力量で示されるエネルギー消費効率(COP)は、低温水を加熱する場合と比較して温度差が小さく、COPが低いという問題点もあった。
However, such a hot water storage type hot water supply apparatus can take out the medium-temperature water only from one place of a predetermined height.
Therefore, when the temperature of the medium temperature water in the hot water storage tank is lower than the required hot water supply temperature (for example, 50 ° C.), the medium temperature water cannot be taken out from the hot water storage tank and used as hot water, and is sealed as it is. Stored in the hot water storage tank, the proportion of medium-temperature water below the required hot water supply temperature in the hot water storage tank increases, and the proportion of hot water in the hot water storage tank decreases accordingly, resulting in a lack of high-temperature water. There was a problem of doing.
In addition, when trying to heat this medium temperature water to about 90 ° C. with a heat pump in order to eliminate the shortage of high temperature water, the energy consumption efficiency (COP) indicated by the amount of heating / power consumption is when heating the low temperature water. There are also problems that the temperature difference is small and the COP is low.

この発明は、上記のような問題点を解決することを課題とするものであって、貯湯タンク内に発生した中温水が要求給湯温度よりも低い場合であっても、この中温水を貯湯タンク内に貯留することなく、外部に取り出して給湯水として利用でき、貯湯タンク内の高温水の不足を解消でき、またCOPが高い貯湯式給湯装置を得ることを目的とする。   An object of the present invention is to solve the above-described problems, and even if the medium temperature water generated in the hot water storage tank is lower than the required hot water supply temperature, the medium temperature water is stored in the hot water storage tank. An object of the present invention is to obtain a hot water storage type hot water supply apparatus that can be taken out and used as hot water without being stored inside, can solve the shortage of high temperature water in the hot water storage tank, and has a high COP.

この発明に係る貯湯式給湯装置は、湯水が貯留される貯湯タンクと、この貯湯タンクから送られた前記湯水を加熱する加熱手段と、前記貯湯タンク内に上下方向に延びて設けられ前記湯水を外部に導く取水管体と、前記貯湯タンクの外部に取り出された後の前記湯水が導かれる給湯栓とを備え、前記取水管体には、少なくとも前記貯湯タンクの上部の近傍に形成された上側取水穴、前記上側取水穴より下側に形成された中間取水穴がそれぞれ形成されている。   A hot water storage type hot water supply apparatus according to the present invention comprises a hot water storage tank in which hot water is stored, a heating means for heating the hot water sent from the hot water storage tank, and the hot water provided in the hot water storage tank so as to extend vertically. An intake pipe that leads to the outside, and a hot water tap that guides the hot water after being taken out of the hot water storage tank, and the intake pipe has an upper side formed at least in the vicinity of the upper part of the hot water storage tank A water intake hole and an intermediate water intake hole formed below the upper water intake hole are formed.

この発明に係る貯湯式給湯装置によれば、貯湯タンク内の中温水の温度が、要求給湯温度よりも低下した場合であっても、この中温水を貯湯タンクから取り出して給湯水として利用できるため、貯湯タンク内に占める中温水の割合を大幅に減量することができ、貯湯タンク内の高温水不足を解消でき、また高いCOPが確保されるという効果がある。   According to the hot water storage type hot water supply apparatus according to the present invention, even if the temperature of the intermediate temperature water in the hot water storage tank is lower than the required hot water temperature, the intermediate temperature water can be taken out from the hot water storage tank and used as hot water. The ratio of the medium temperature water in the hot water storage tank can be greatly reduced, the shortage of hot water in the hot water storage tank can be solved, and a high COP can be ensured.

以下、この発明の各実施の形態に図に基づいて説明するが、各図において同一、または相当部材、部位については、同一符号を付して説明する。
実施の形態1。
図1はこの発明の実施の形態1による貯湯式給湯装置を示す構成図である。
この貯湯式給湯装置は、湯水が貯留される貯湯タンク2を有する貯湯タンクユニット1と、貯湯タンク2内の湯水を加熱する加熱手段としてのヒートポンプユニット3と、台所や洗面所などで使用する給湯栓4とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or equivalent members and parts will be described with the same reference numerals.
Embodiment 1. FIG.
1 is a block diagram showing a hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention.
This hot water storage type hot water supply apparatus includes a hot water storage tank unit 1 having a hot water storage tank 2 in which hot water is stored, a heat pump unit 3 as a heating means for heating hot water in the hot water storage tank 2, and hot water supply used in a kitchen or a washroom. And a stopper 4.

ヒートポンプユニット3のヒートポンプ冷媒回路は、圧縮機、凝縮機である冷媒−水熱交換器、電子膨張弁、及び強制空冷式の蒸発器で構成されている。
圧縮機で圧縮された自然冷媒である二酸化炭素は、冷媒−水熱交換器で放熱して液化し、電子膨張弁で減圧膨張した後、蒸発器で大気熱により気化蒸発され、再び圧縮機に流入して1サイクルの運転となる。
貯湯タンク2の下部とヒートポンプユニット3との間は、低温水取り出し配管9で接続されている。また、貯湯タンク2の上部とヒートポンプユニット3との間は、高温水戻り配管10で接続されている。高温水戻り配管10には、温度センサ23及び高温水流入弁6が取り付けられている。
この1サイクルの運転の際、ヒートポンプ冷媒回路では、低温水(例えば5℃)は、冷媒−水熱交換器を介して高温水(例えば90℃)まで加熱される。
The heat pump refrigerant circuit of the heat pump unit 3 includes a compressor, a refrigerant-water heat exchanger that is a condenser, an electronic expansion valve, and a forced air-cooled evaporator.
Carbon dioxide, which is a natural refrigerant compressed by the compressor, dissipates and liquefies by the refrigerant-water heat exchanger, expands under reduced pressure by the electronic expansion valve, vaporizes and evaporates by atmospheric heat in the evaporator, and returns to the compressor again. It flows and becomes 1 cycle operation.
The lower part of the hot water storage tank 2 and the heat pump unit 3 are connected by a low temperature water extraction pipe 9. Further, the hot water storage tank 2 and the heat pump unit 3 are connected by a high-temperature water return pipe 10. A temperature sensor 23 and a high temperature water inflow valve 6 are attached to the high temperature water return pipe 10.
During this one-cycle operation, in the heat pump refrigerant circuit, low-temperature water (for example, 5 ° C.) is heated to high-temperature water (for example, 90 ° C.) via a refrigerant-water heat exchanger.

貯湯タンク2内には、上下方向(鉛直方向)に延びた底部が封止された円筒形状の取水管38が設けられている。貯湯タンク2の外周面には、貯湯タンク2内の湯水の上下方向の温度を検出する湯温センサ34が設けられている。この実施の形態では5個の湯温センサ34a,34b,34c,34d,34eが上下方向に所定の間隔をおいて取り付けられている。   In the hot water storage tank 2, a cylindrical water intake pipe 38 having a bottom portion extending in the vertical direction (vertical direction) is provided. A hot water temperature sensor 34 is provided on the outer peripheral surface of the hot water storage tank 2 to detect the temperature in the vertical direction of the hot water in the hot water storage tank 2. In this embodiment, five hot water temperature sensors 34a, 34b, 34c, 34d, and 34e are attached at predetermined intervals in the vertical direction.

また、取水管体である取水管38の上端部には取水流通配管27の一端部が接続されている。取水流通配管27の他端部は高温水混合三方弁28の第1の弁部と接続されている。この高温水混合三方弁28の第2の弁部は出湯配管7の一端部と接続されている。出湯配管7の他端部は貯湯タンク2の上部に接続され、この出湯配管7を通じて貯湯タンク2内の高温水が外部に流出する。高温水混合三方弁28の第3の弁部は第1の弁下流配管5の一端部と接続されている。この第1の弁下流配管5には、第1の弁下流配管5を流通する湯水の温度を検出する湯水温度センサ29が取り付けられている。
この第1の弁下流配管5の他端部は低温水混合三方弁30の第1の弁部と接続されている。低温水混合三方弁30の第2の弁部は第2の弁下流配管32と接続されている。この第2の弁下流配管32の低温水混合三方弁30近傍では、給湯温度センサ33が取り付けられており、また下流には給湯栓4が取り付けられている。低温水混合三方弁30の第3の弁部は給湯用給水管31と接続されている。
Further, one end portion of the intake water distribution pipe 27 is connected to the upper end portion of the intake pipe 38 which is an intake pipe body. The other end of the intake water distribution pipe 27 is connected to the first valve portion of the high-temperature water mixing three-way valve 28. The second valve portion of the high-temperature water mixing three-way valve 28 is connected to one end portion of the tap water pipe 7. The other end of the hot water supply pipe 7 is connected to the upper part of the hot water storage tank 2, and the hot water in the hot water storage tank 2 flows out through the hot water supply pipe 7. The third valve portion of the high-temperature water mixing three-way valve 28 is connected to one end portion of the first valve downstream pipe 5. A hot water temperature sensor 29 for detecting the temperature of hot water flowing through the first valve downstream pipe 5 is attached to the first valve downstream pipe 5.
The other end portion of the first valve downstream pipe 5 is connected to the first valve portion of the low-temperature water mixing three-way valve 30. The second valve portion of the low-temperature water mixing three-way valve 30 is connected to the second valve downstream pipe 32. In the vicinity of the low-temperature water mixing three-way valve 30 of the second valve downstream pipe 32, a hot water temperature sensor 33 is attached, and a hot water tap 4 is attached downstream. A third valve portion of the low temperature water mixing three-way valve 30 is connected to a hot water supply pipe 31.

この給湯用給水管31は給水管8と接続されている。給水管8には加圧ポンプ(図示せず)が取り付けられており、この加圧ポンプの駆動により、低温水は、貯湯タンク2内に圧送されるともに、給湯用給水管31内にも流れる。この低温水の温度は、給水管8に取り付けられた給水温度センサ37で検知される。   The hot water supply water pipe 31 is connected to the water supply pipe 8. A pressure pump (not shown) is attached to the water supply pipe 8, and by driving the pressure pump, low-temperature water is pumped into the hot water storage tank 2 and also flows into the hot water supply water pipe 31. . The temperature of the low-temperature water is detected by a feed water temperature sensor 37 attached to the feed water pipe 8.

図2は図1に示した取水管体である取水管38の全体斜視図である。
取水管38は、高温水15のある貯湯タンク2の上部の近傍に上側取水穴40が形成され、上側取水穴より下側に中間取水穴43が形成されている。中間取水穴43は,中温水16が貯湯タンク2内に溜まりやすい高さに設けられる。また、上側取水穴40の開口面積は、中間取水穴43の開口面積よりも大きい。
FIG. 2 is an overall perspective view of the intake pipe 38 which is the intake pipe body shown in FIG.
The intake pipe 38 has an upper intake hole 40 formed in the vicinity of the upper portion of the hot water storage tank 2 where the high temperature water 15 is located, and an intermediate intake hole 43 formed below the upper intake hole. The intermediate water intake hole 43 is provided at a height at which the intermediate warm water 16 is likely to accumulate in the hot water storage tank 2. Further, the opening area of the upper intake hole 40 is larger than the opening area of the intermediate intake hole 43.

次に、上記構成の貯湯式給湯装置の動作について説明する。
貯湯タンク2内には湯水が満たされており、上から高温水15、中温水16、低温水17が貯留される。
この実施の形態では、例えば高温水15の温度は、ヒートポンプユニット3によって加熱された温度でおよそ90℃、低温水17の温度は、給水管8を流通する湯水の温度でおよそ5℃である。中温水16は、高温水15からの熱拡散により温度勾配を有して貯留されている。
ここで、中温水16は、低温水17を加熱する場合と比較して温度差が小さく、それだけ湯水を加熱する場合と比較してヒートポンプユニット3のCOPが低い。そのため、この中温水16については、ヒートポンプユニット3に送られ、そこで加熱されるのではなく、給湯水として利用することが高いCOPを確保するために求められる。
Next, the operation of the hot water storage type hot water supply apparatus having the above configuration will be described.
The hot water storage tank 2 is filled with hot water, and high temperature water 15, medium temperature water 16, and low temperature water 17 are stored from above.
In this embodiment, for example, the temperature of the high temperature water 15 is about 90 ° C. when heated by the heat pump unit 3, and the temperature of the low temperature water 17 is about 5 ° C. as hot water flowing through the water supply pipe 8. The intermediate temperature water 16 is stored with a temperature gradient by thermal diffusion from the high temperature water 15.
Here, the intermediate temperature water 16 has a small temperature difference compared with the case where the low temperature water 17 is heated, and the COP of the heat pump unit 3 is lower than that when the hot water is heated. Therefore, the intermediate warm water 16 is not sent to the heat pump unit 3 and heated there, but is required to use it as hot water supply in order to ensure a high COP.

給湯の利用者が、要求する給湯温度、例えば50℃に設定すると、貯湯タンク2の側面に、高さ方向に設けられた湯温センサ34aから34eを用いて、中間取水穴43の位置に中温水が存在するか判断する。ここで、中間取水穴43と湯温センサ34cの高さは等しい。
例えば、湯温センサ34bが90℃、湯温センサ34cが40℃、湯温センサ34dが5℃であれば、湯温センサ34cの温度が5℃より大きく、90℃よりも小さいことから,湯温センサ34cの高さ近くに中温水が存在すると判断できる。また、複数の温度センサ34において、5℃より大きく、90℃よりも小さい場合は、要求給湯設定温度に近い値を示す温度センサ34の位置に、中温水が存在すると判断してもよい。さらに、湯温センサ34cが90℃、湯温センサ34dが5℃となるような場合であって、温度が5℃よりも大きく90℃よりも小さい値を示す湯温センサ34が存在しない場合には、温度差が最も大きくなる湯温センサ34cと湯温センサ34dとの中間に中温水が存在すると判断してもよい。
湯温センサ34cの高さに、40℃の中温水16が存在すると判断された場合、中間取水穴43から取水管38を用いて中温水16を取り出す。このとき、上側取水穴40は、タンク内の上側に設けられているため、上側取水穴40から高温水15も同時に取り出される。
When the user of the hot water supply sets the required hot water supply temperature, for example, 50 ° C., the hot water temperature sensors 34a to 34e provided in the height direction are provided on the side surface of the hot water storage tank 2 so that the intermediate water intake hole 43 is placed in the middle. Determine if hot water is present. Here, the height of the intermediate water intake hole 43 and the hot water temperature sensor 34c are equal.
For example, if the hot water temperature sensor 34b is 90 ° C, the hot water temperature sensor 34c is 40 ° C, and the hot water temperature sensor 34d is 5 ° C, the temperature of the hot water temperature sensor 34c is higher than 5 ° C and lower than 90 ° C. It can be determined that there is medium-temperature water near the height of the temperature sensor 34c. Further, when the temperature sensors 34 are larger than 5 ° C. and smaller than 90 ° C., it may be determined that the medium temperature water exists at the position of the temperature sensor 34 showing a value close to the required hot water supply set temperature. Further, in the case where the hot water temperature sensor 34c is 90 ° C. and the hot water temperature sensor 34d is 5 ° C., and there is no hot water temperature sensor 34 having a temperature higher than 5 ° C. and lower than 90 ° C. May determine that medium temperature water exists between the hot water temperature sensor 34c and the hot water temperature sensor 34d where the temperature difference becomes the largest.
When it is determined that the medium temperature water 16 of 40 ° C. is present at the height of the hot water temperature sensor 34 c, the medium temperature water 16 is taken out from the intermediate water intake hole 43 using the intake pipe 38. At this time, since the upper intake hole 40 is provided on the upper side in the tank, the high temperature water 15 is also taken out from the upper intake hole 40 at the same time.

図3は、本願発明者が貯湯タンク2内の湯水を取水管38を用いて取り出した場合の湯水温度の経時変化を図である。
横軸は、取水管38から湯水の取り出しを開始してからの経過時間を示し、縦軸は、取水管38から取り出した湯水の温度変化を示す。図中の太線は、この実施の形態である、上側取水穴40と中間取水穴43から湯水を取り出した場合、細線は、中間取水穴43のみから湯水を取り出した場合に相当する。
FIG. 3 is a graph showing changes with time in the hot water temperature when the inventor takes out hot water in the hot water storage tank 2 using the water pipe 38.
The horizontal axis shows the elapsed time since the start of taking out hot water from the intake pipe 38, and the vertical axis shows the temperature change of hot water taken out from the intake pipe 38. The thick line in the figure corresponds to the case where hot water is taken out from the upper water intake hole 40 and the intermediate water intake hole 43 in this embodiment, and the thin line corresponds to the case where hot water is taken out only from the intermediate water intake hole 43.

中温水16の高さ方向の温度分布は、およそ5℃から90℃まで大きく変化する。また、中温水16の量は、貯湯式給湯装置の運用方法にもよるが、タンク全体に蓄える湯水量に対して少量の場合がある。このため、図3に示すように、中間取水穴43のみから湯水を取り出した場合、貯湯タンク2から流出した湯水量分だけ、給水管8を通じて低温水17が補充され、中間取水穴43の水位には低温水17が達してしまい、湯水の温度は時間経過とともに急激に低下する。当然に、取り出した湯水の温度は、すぐに要求給湯温度である50℃よりも低くなる。   The temperature distribution in the height direction of the medium-temperature water 16 varies greatly from approximately 5 ° C. to 90 ° C. Moreover, although the amount of the medium-temperature water 16 depends on the operation method of the hot water storage type hot water supply apparatus, there are cases where the amount of the hot water is small relative to the amount of hot water stored in the entire tank. Therefore, as shown in FIG. 3, when hot water is taken out only from the intermediate water intake hole 43, the low-temperature water 17 is replenished through the water supply pipe 8 by the amount of hot water flowing out from the hot water storage tank 2, and the water level in the intermediate water intake hole 43. In this case, the low temperature water 17 reaches, and the temperature of the hot water rapidly decreases with time. Naturally, the temperature of the extracted hot water immediately becomes lower than the required hot water supply temperature of 50 ° C.

一方、高温水15の温度は、加熱に設定した温度90℃で、ほぼ一定となっており、上側取水穴40と中間取水穴43から湯水を取り出す場合、温度変化の大きな中温水16と、ほぼ一定温度の高温水15を同時に取り出するため、湯水の温度低下が緩やかになるとともに、要求給湯温度に到達するまでの時間が長くなる。
なお、取り出した湯水が、要求給湯温度以下になるかどうかは、高温水15と中温水16の温度及び流量比と、要求給湯温度によって決まるが、上側取水穴40と中間取水穴43の開口面積比を調整することにより、取り出す湯水の温度を、要求給湯温度以上となるようにすることもができる。
On the other hand, the temperature of the high-temperature water 15 is substantially constant at a temperature of 90 ° C. set for heating, and when hot water is taken out from the upper intake hole 40 and the intermediate intake hole 43, Since the high-temperature water 15 having a constant temperature is taken out at the same time, the temperature drop of the hot water becomes moderate and the time until the required hot water supply temperature is reached is lengthened.
Whether or not the extracted hot water falls below the required hot water temperature depends on the temperature and flow rate ratio of the high-temperature water 15 and the intermediate hot water 16 and the required hot water temperature, but the opening area of the upper water intake hole 40 and the intermediate water intake hole 43. By adjusting the ratio, the temperature of the hot water to be taken out can be made equal to or higher than the required hot water supply temperature.

この実施の形態では、取水管38から取り出された湯水の温度は、緩やかに低下しながら要求給湯温度に近づくが、湯水の温度が要求給湯温度である50℃よりも高いときには、給湯温度センサ33からの信号により、低温水混合三方弁30が作動し、取水管38から取り出した湯水が給湯用給水管31から供給される低温水と混合し、要求給湯温度の湯水が短時間で第2の弁下流配管32、給湯栓4を通じて給湯水に供される。   In this embodiment, the temperature of the hot water taken out from the water intake pipe 38 approaches the required hot water temperature while gradually decreasing, but when the temperature of the hot water is higher than the required hot water temperature, 50 ° C., the hot water temperature sensor 33. The low-temperature water mixing three-way valve 30 is actuated by the signal from, the hot water taken out from the intake pipe 38 is mixed with the low-temperature water supplied from the hot water supply pipe 31, and the hot water at the required hot water temperature is quickly supplied to the second water. It is supplied to hot water through the valve downstream pipe 32 and the hot water tap 4.

一方、中間取水穴43と同じ高さに配置された湯温センサ34cの位置、即ち取水管38の中間取水穴43の位置に中温水16が存在せず、低温水が存在すると判断された場合は、高温水混合三方弁28が作動し、取水管38からではなく、出湯配管7から高温水15が取り出される。この高温水15は、低温水混合三方弁30で給湯用給水管31から供給される低温水と混合し、第2の弁下流配管32、給湯栓4を通じて給湯水に供される。
給湯温度の調整は、給湯温度センサ33からの信号により、低温水混合三方弁30の第1の弁部及び第3の弁部のそれぞれの開口面積を調整することで行われる。
なお、湯温センサ34cにより、取水管38の中間取水穴43の位置に高温水15が存在すると判断された場合は、出湯配管7からではなく、取水管38から高温水15を取り出すこともできる。
On the other hand, when it is determined that the hot water temperature sensor 34c disposed at the same height as the intermediate water intake hole 43, that is, the intermediate water intake hole 43 of the intake pipe 38 does not have the intermediate hot water 16 and low temperature water exists. The high-temperature water mixing three-way valve 28 is operated, and the high-temperature water 15 is taken out from the tapping pipe 7 instead of from the water intake pipe 38 . The high temperature water 15 is mixed with the low temperature water supplied from the hot water supply pipe 31 by the low temperature water mixing three-way valve 30 and supplied to the hot water through the second valve downstream pipe 32 and the hot water tap 4.
The hot water supply temperature is adjusted by adjusting the respective opening areas of the first valve portion and the third valve portion of the low-temperature water mixing three-way valve 30 based on a signal from the hot water supply temperature sensor 33.
When the hot water temperature sensor 34c determines that the high temperature water 15 exists at the position of the intermediate water intake hole 43 of the intake pipe 38, the high temperature water 15 can be taken out from the intake pipe 38 instead of from the hot water discharge pipe 7. .

貯湯タンク2内には、貯湯タンク2から取り出された湯水の分だけ、給水管8により貯湯タンク2の下側から低温水17が供給される。
また、貯湯タンク内2内の高温水15の量が低下したとき、貯湯タンク2の下側から、低温水取り出し配管9を介して低温水17を取り出し、ヒートポンプユニット3で加熱した高温水を、高温水戻り配管10、高温水流入弁6を介して、貯湯タンク2の上側から戻す。
ここで、ヒートポンプユニット3には、自然冷媒である二酸化炭素が用いられており、ヒートポンプ冷媒回路に設けた冷媒−水熱交換器を介して低温水をおよそ90℃の高温水まで加熱することができる。超臨界となる二酸化炭素をヒートポンプサイクルに用いることにより、エネルギー効率が良い状態で低温水を高温水まで加熱することができる。
Low-temperature water 17 is supplied into the hot water storage tank 2 from the lower side of the hot water storage tank 2 through the water supply pipe 8 by the amount of hot water taken out from the hot water storage tank 2.
Further, when the amount of the high temperature water 15 in the hot water storage tank 2 is reduced, the low temperature water 17 is extracted from the lower side of the hot water storage tank 2 through the low temperature water extraction pipe 9, and the high temperature water heated by the heat pump unit 3 is It returns from the upper side of the hot water storage tank 2 through the hot water return pipe 10 and the hot water inflow valve 6.
Here, carbon dioxide, which is a natural refrigerant, is used for the heat pump unit 3, and the low-temperature water can be heated to about 90 ° C. high-temperature water via a refrigerant-water heat exchanger provided in the heat pump refrigerant circuit. it can. By using supercritical carbon dioxide in the heat pump cycle, low temperature water can be heated to high temperature water with good energy efficiency.

以上のように、貯湯タンク2の内部に、上側取水穴40及び中間取水穴43を有する取水管38を設けることにより、貯湯タンク2内から高温水15及び中温水16を取り出すことで、貯湯タンク2から取り出される湯水の時間の経過に伴う温度変化を小さくすることができる。その結果、要求給湯温度に調整するための低温水混合三方弁30による温度制御が容易になる。
また、中温水16の温度が、要求給湯温度よりも低い場合であっても、この中温水16は、高温水15と同時に取り出されて給湯水に供される。そのため、密閉された貯湯タンク内に占める中温水16の割合が増大することで、その分高温水の割合が低下することはなく、貯湯タンク2内の高温水15の不足が解消され、またヒートポンプユニット3は高いCOPが確保される。
As described above, by providing the intake pipe 38 having the upper intake hole 40 and the intermediate intake hole 43 in the hot water storage tank 2, the hot water tank 15 can be taken out of the hot water tank 2 by taking out the hot water 15 and the intermediate hot water 16. The temperature change with the passage of time of the hot water taken out from 2 can be reduced. As a result, temperature control by the low-temperature water mixing three-way valve 30 for adjusting to the required hot water supply temperature is facilitated.
Further, even when the temperature of the intermediate hot water 16 is lower than the required hot water supply temperature, the intermediate hot water 16 is taken out simultaneously with the high temperature water 15 and supplied to the hot water supply water. Therefore, the proportion of the hot water 16 in the sealed hot water storage tank is increased, so that the proportion of the hot water is not lowered correspondingly, the shortage of the hot water 15 in the hot water storage tank 2 is solved, and the heat pump The unit 3 is secured with a high COP.

なお、この実施の形態では、取水管38を用いて貯湯タンク2から取り出す湯水を要求設定温度以上にすることを説明したが、高温水混合三方弁28の作動により、取水管38及び出湯配管7を用いることで、取水管38から取り出した湯水と、出湯配管7から取り出した高温水を高温水混合三方弁28で混合することで、要求設定温度以上の給湯水を得ることもできる。
この場合、取水管38から取り出した湯水の温度が、要求給湯温度以下であっても、高温水混合三方弁28の作動により、出湯配管7からの高温水15を増量させることで、要求給湯温度以上まで温度を上げることができる。
そのため、貯湯タンク2内の中温水16のほとんどを取り出して給湯水に利用することができ、貯湯タンク2内の高温水15の不足がさらに解消され、ヒートポンプユニット3は高いCOPがさらに確保される。
In this embodiment, it has been explained that the hot water taken out from the hot water storage tank 2 using the intake pipe 38 is set to the required set temperature or higher, but the intake pipe 38 and the outlet pipe 7 are operated by the operation of the high-temperature water mixing three-way valve 28. The hot water extracted from the intake pipe 38 and the high temperature water extracted from the outlet pipe 7 are mixed by the high temperature water mixing three-way valve 28, whereby hot water having a required temperature or higher can be obtained.
In this case, even if the temperature of the hot water taken out from the water intake pipe 38 is equal to or lower than the required hot water supply temperature, the required hot water temperature is increased by increasing the amount of hot water 15 from the hot water piping 7 by the operation of the high temperature water mixing three-way valve 28. The temperature can be increased to the above.
Therefore, most of the medium temperature water 16 in the hot water storage tank 2 can be taken out and used for hot water supply, the shortage of the high temperature water 15 in the hot water storage tank 2 is further eliminated, and the heat pump unit 3 can further secure a high COP. .

また、高温水混合三方弁28、低温水混合三方弁30などの三方弁を用いて、貯湯タンク2から取り出した湯水と高温水または低温水との流量比を調整することを説明したが、三方弁の変わりに2つの弁を用いてそれぞれの流量比を調整してもよい。
また、この実施の形態では、上側取水穴40の開口面積が中間取水穴43の開港面積よりも大きい場合で説明したが、上側取水穴40と中間取水穴43との開口面積が等しくてもよく、さらに、図4に示すように、中間取水穴43の開口面積を上側取水穴40の開口面積より大きくしても構わない。
この場合、取水管38から取り出す湯水の温度は、要求給湯温度よりも低くなる可能性が高くなるが、中温水16のみを取り出す場合に比べて、取水管38から取り出す湯水の温度変化を小さくすることができ、給湯水の温度制御は容易になる。
また、図5、図6に示すように、上側取水穴40の数や中間取水穴43の数を変えることで、取水管38から取り出す高温水15と中温水16との流量割合を調整してもよい。 また、図7に示すように、取水管38の下端部を閉じ加工せず、下端面を中間取水穴40として中温水16を取り出すようにしてもよい。この場合、取水管の下端部の閉じ加工及び中間取水穴43の穴加工が不要となり、加工コストを削減することができる。
さらに、図24に示すように、下端部をクロージング加工することにより、中間取水穴43の開口面積を容易に調整することができる。
In addition, it has been described that the flow rate ratio between hot water taken out of the hot water storage tank 2 and high temperature water or low temperature water is adjusted using three-way valves such as the high-temperature water mixing three-way valve 28 and the low-temperature water mixing three-way valve 30. Instead of the valves, the flow rate ratio may be adjusted using two valves.
Further, in this embodiment, the case where the opening area of the upper intake hole 40 is larger than the opening area of the intermediate intake hole 43 has been described, but the opening areas of the upper intake hole 40 and the intermediate intake hole 43 may be equal. Furthermore, as shown in FIG. 4, the opening area of the intermediate intake hole 43 may be larger than the opening area of the upper intake hole 40.
In this case, the temperature of the hot water taken out from the water intake pipe 38 is likely to be lower than the required hot water supply temperature. This makes it easier to control the temperature of hot water.
Further, as shown in FIGS. 5 and 6, by changing the number of the upper intake holes 40 and the number of the intermediate intake holes 43, the flow rate ratio of the high temperature water 15 and the intermediate temperature water 16 taken out from the intake pipe 38 is adjusted. Also good. In addition, as shown in FIG. 7, the middle temperature water 16 may be taken out with the lower end surface of the intermediate intake hole 40 without closing the lower end portion of the intake pipe 38. In this case, it is not necessary to close the lower end portion of the water intake pipe and the hole processing of the intermediate water intake hole 43, and the processing cost can be reduced.
Furthermore, as shown in FIG. 24, the opening area of the intermediate water intake hole 43 can be easily adjusted by closing the lower end portion.

また、図1に示すように、5個の湯温センサ34a,34b,34c,34d,34eを貯湯タンク2の周側面に設けた場合を示したが、より多くの湯温センサ34を設けることで、中温水16の位置と温度を精度よく検知することができる。例えば、代表的な中温水の層厚みであるおよそ100mmに合わせて、中間取水穴43の中心位置を中心に、湯温センサ34を100mm以下の間隔で高さ方向に設置すると効果的である。
また、湯温センサ34a,34b,34c,34d,34eを高さ方向に一定間隔で配置しても、高さ方向にランダムに配置してもかまわない。
さらに、ここでは3つの湯温センサ34b,34c,34dの測定点を用いて中温水16の位置を判断したが、より多くの測定点を用いることで中温水16の位置をより正確に判断することができる。また、測定精度は低下するが1つの温度センサを用いて、中温水の位置を判断してもよい。この場合、多数の測定点を比較する制御が不要となるため、制御の簡易化と処理速度の向上を図ることができる。
また、貯湯タンク2の外周面(側面)に設置した湯温センサ34で測定した貯湯タンク2の壁面の温度を貯湯タンク2内の湯水の温度としたが、湯温センサ34を貯湯タンク2の内周面(側面)に設置し、貯湯タンク2内の湯水の温度を直接的に測定してもよい。
Moreover, as shown in FIG. 1, although the case where the five hot water temperature sensors 34a, 34b, 34c, 34d, 34e were provided in the surrounding side surface of the hot water storage tank 2 was shown, more hot water temperature sensors 34 are provided. Thus, the position and temperature of the intermediate warm water 16 can be detected with high accuracy. For example, it is effective to install the hot water temperature sensor 34 in the height direction at intervals of 100 mm or less, centering on the center position of the intermediate water intake hole 43 in accordance with a typical intermediate warm water layer thickness of about 100 mm.
The hot water temperature sensors 34a, 34b, 34c, 34d, and 34e may be arranged at regular intervals in the height direction or randomly arranged in the height direction.
Furthermore, here, the position of the intermediate warm water 16 is determined using the measurement points of the three hot water temperature sensors 34b, 34c, 34d, but the position of the intermediate warm water 16 is determined more accurately by using more measurement points. be able to. In addition, although the measurement accuracy is lowered, the position of the medium temperature water may be determined using one temperature sensor. In this case, since control for comparing a large number of measurement points is not necessary, simplification of control and improvement of processing speed can be achieved.
The temperature of the wall surface of the hot water storage tank 2 measured by the hot water temperature sensor 34 installed on the outer peripheral surface (side surface) of the hot water storage tank 2 is defined as the temperature of the hot water in the hot water storage tank 2. You may install in an internal peripheral surface (side surface), and may measure the temperature of the hot water in the hot water storage tank 2 directly.

また、図8、図9に示すように、Lの字形状の取水管38を用いてもよい。
この取水管38は、貯湯タンク2の側壁から先端部が突出しており、貯湯タンク2内の上側に対応した位置に上側取水穴40、貯湯タンク2の中間に対応した位置に中間取水穴43が形成されている。この取水管38を用いることにより、取水管38を貯湯タンク2の側壁から取り出すことができるため、設計の自由度が高くなる。
Further, as shown in FIGS. 8 and 9, an L-shaped intake pipe 38 may be used.
The intake pipe 38 has a tip projecting from the side wall of the hot water storage tank 2, and an upper water intake hole 40 at a position corresponding to the upper side in the hot water storage tank 2 and an intermediate water intake hole 43 at a position corresponding to the middle of the hot water storage tank 2. Is formed. By using this intake pipe 38, the intake pipe 38 can be taken out from the side wall of the hot water storage tank 2, so that the degree of freedom in design is increased.

実施の形態2.
図10はこの発明の実施の形態2の貯湯式給湯装置を示す構成図であり、この実施の形態では、図11,12に示すように、外筒25と中筒26とを重ねた、取水管体である取水管38が用いられている。
取水管38は、外筒25とこの外筒25の内側に周方向に摺動可能に設けられた中筒26とから構成されている。
中筒26の上部には、上側連通穴42が形成されており、中筒81の上部は、上側連通部21で覆われている。上側連通部21の側面には、取水流通配管27の先端部が貫通している。また、中筒26の天部には、駆動モータ35が取り付けられており、この駆動モータ35の駆動によって、中筒81は周方向に回転する。
この実施の形態では、駆動モータ35の駆動によって、中筒26が回転し、外筒25に形成された上側穴部39a、中間穴部39bと、中筒26に形成された上側穴部41a、中間穴部41bの重なりによってできる、取水管38の上側取水穴12a、中間取水穴12bの開口面積を変化させることができる。
Embodiment 2.
10 is a block diagram showing a hot water storage type hot water supply apparatus according to Embodiment 2 of the present invention. In this embodiment, as shown in FIGS. 11 and 12, an outer cylinder 25 and an inner cylinder 26 are stacked. A water intake pipe 38 which is a water pipe body is used.
The intake pipe 38 includes an outer cylinder 25 and an inner cylinder 26 that is provided inside the outer cylinder 25 so as to be slidable in the circumferential direction.
An upper communication hole 42 is formed in the upper part of the middle cylinder 26, and the upper part of the middle cylinder 81 is covered with the upper communication part 21. In the side surface of the upper communication portion 21, the leading end portion of the intake water distribution pipe 27 penetrates. A drive motor 35 is attached to the top of the middle cylinder 26, and the middle cylinder 81 rotates in the circumferential direction by the drive of the drive motor 35.
In this embodiment, the middle cylinder 26 is rotated by driving of the drive motor 35, and the upper hole portion 39 a and the intermediate hole portion 39 b formed in the outer tube 25, and the upper hole portion 41 a formed in the middle tube 26, The opening area of the upper intake hole 12a and the intermediate intake hole 12b of the intake pipe 38, which can be formed by the overlap of the intermediate hole part 41b, can be changed.

湯温センサ34a,34b,34c,34d,34eにより、貯湯タンク2内の中温水16が、中間取水穴12bの位置に存在すると判断された場合、上側取水穴12aから高温水15を、中間取水穴12bから中温水16を取水し、中筒26の上側連通穴42、上側連通口21を介して貯湯タンク2から湯水を取り出す。
湯水温度センサ29で、貯湯タンク2から取り出した湯水の温度を検知しながら、湯水の温度が要求給湯温度より小さくならないように、駆動モータにより上側取水穴12aと中間取水穴12bとの開口面積を変化させて、上側取水穴12aから取り出す高温水15と、中間取水穴12bから取り出す中温水16との流量比を調整する。
取り出された湯水は、取水流通配管27、高温水混合三方弁28を通って低温水混合三方弁30に達する。この低温水混合三方弁30では、取り出された湯水と給湯用給水管8から供給される低温水と混合され、混合された湯水は、第2の弁下流配管32、給湯栓4を通じて給湯水に供される。
なお、要求給湯温度の調整は、給湯温度センサ33の信号により低温水混合三方弁30が作動し、湯水と低温水との混合比を変えることで行われる。
When the hot water sensors 34a, 34b, 34c, 34d, 34e determine that the medium temperature water 16 in the hot water storage tank 2 exists at the position of the intermediate water intake hole 12b, the hot water 15 is supplied from the upper water intake hole 12a to the intermediate water intake. The intermediate warm water 16 is taken from the hole 12 b and hot water is taken out from the hot water storage tank 2 through the upper communication hole 42 and the upper communication port 21 of the middle cylinder 26.
While detecting the temperature of hot water taken out from the hot water storage tank 2 with the hot water temperature sensor 29, the opening area of the upper water intake hole 12a and the intermediate water intake hole 12b is adjusted by the drive motor so that the temperature of the hot water does not become lower than the required hot water supply temperature. By changing, the flow rate ratio between the high-temperature water 15 taken out from the upper water intake hole 12a and the medium- temperature water 16 taken out from the intermediate water intake hole 12b is adjusted.
The extracted hot water reaches the low-temperature water mixing three-way valve 30 through the water intake distribution pipe 27 and the high-temperature water mixing three-way valve 28. In the low-temperature water mixing three-way valve 30, the hot water taken out and the low-temperature water supplied from the hot water supply pipe 8 are mixed, and the mixed hot water is supplied to the hot water through the second valve downstream pipe 32 and the hot water tap 4. Provided.
The required hot water supply temperature is adjusted by operating the low temperature water mixing three-way valve 30 according to the signal from the hot water temperature sensor 33 and changing the mixing ratio of hot water and low temperature water.

この実施の形態では、上側取水穴12aと中間取水穴12bとの開口面積を変化させて、貯湯タンク2から取り出す高温水15と中温水16の流量比を調整することで、取り出す湯温の経時変化をより小さくできるため、要求給湯温度に調整するための低温水混合三方弁30による温度制御をさらに容易にすることができる。
また、駆動モータ25を調整して、中間取水穴12bを完全に閉じて、上側取水穴12aのみから高温水15を取り出すことも可能となる。
このため、図13に示すように、貯湯タンク2の上側から高温水15を取り出すための出湯配管7と、高温水混合三方弁28を取り除いて、構成を簡素化することができる。
In this embodiment, the opening area of the upper water intake hole 12a and the intermediate water intake hole 12b is changed, and the flow rate ratio of the hot water 15 taken out from the hot water storage tank 2 and the medium hot water 16 is adjusted, so that Since the change can be made smaller, temperature control by the low-temperature water mixing three-way valve 30 for adjusting to the required hot water supply temperature can be further facilitated.
It is also possible to adjust the drive motor 25 to completely close the intermediate water intake hole 12b and take out the high temperature water 15 from only the upper water intake hole 12a.
For this reason, as shown in FIG. 13, the hot water supply pipe 7 for taking out the high temperature water 15 from the upper side of the hot water storage tank 2 and the high temperature water mixing three-way valve 28 can be removed to simplify the configuration.

また、図14に示す取水管38のように、貯湯タンク2内の中間位置に、外筒25の高さ位置の異なる中間穴部39b、下部穴部39cと、中筒26の高さ位置の異なる中間穴部41b、下部穴部41cを形成し、貯湯タンク2内の中温水16の領域にあわせて駆動モータ25を調整して、中間取水穴12bの高さを変化させるようにしてもよい。
この場合、中温水16を貯湯タンク2の2箇所の位置から選択して取り出すことができるため、中温水16は効率よく貯湯タンク2から取り出すことができる。そのため、貯湯タンク2内に占める中温水16の容積割合が低減できる分、貯湯タンク2内に占める高温水15の容積を増量することができ、またヒートポンプユニット3は高いCOPが確保される。
なお、外筒25および中筒26に、高さ位置の異なる中間穴部を2箇所設けた例を示したが、中間穴部の数は3箇所以上であってもよく、中間穴部の数が多いほど、より的確に中温水を取り出すことが可能となる。
また、駆動モータ35の駆動によって、取水管38の上側取水穴12a、中間取水穴12bの開口面積を変化させることを説明したが、開口面積を微調整せずに、上側取水穴12a、中間取水穴12bを開閉させるだけでもよく、中間取水穴12bの高さ位置を変更させるだけでもよい。
さらに、駆動モータ35によって中筒26を回転させて、中筒26と外筒25とを相対移動させ、取水管38の上側取水穴12a、中間取水穴12bの開口面積を変化させることを説明したが、駆動モータ35によって外筒25を回転させて、中筒26と外筒25とを相対移動させて、取水管38の上側取水穴12a、中間取水穴12bの開口面積を変化させてもよい。
Further, as in the intake pipe 38 shown in FIG. 14, the intermediate hole portion 39 b , the lower hole portion 39 c, and the intermediate tube 26 at different height positions of the outer cylinder 25 are arranged at intermediate positions in the hot water storage tank 2. Different intermediate hole portions 41b and lower hole portions 41c may be formed, and the drive motor 25 may be adjusted in accordance with the region of the intermediate temperature water 16 in the hot water storage tank 2 to change the height of the intermediate water intake hole 12b. .
In this case, since the intermediate warm water 16 can be selected and taken out from two positions of the hot water storage tank 2, the intermediate hot water 16 can be efficiently taken out from the hot water storage tank 2. Therefore, the volume of the hot water 15 occupying the hot water tank 2 can be increased by the amount by which the volume ratio of the hot water 16 occupying the hot water tank 2 can be reduced, and a high COP is secured in the heat pump unit 3.
In addition, although the example which provided the intermediate hole part in which the height position differs in two places was shown in the outer cylinder 25 and the middle cylinder 26, the number of intermediate hole parts may be three or more, and the number of intermediate hole parts As the amount of water increases, it becomes possible to take out the medium-temperature water more accurately.
In addition, it has been described that the opening area of the upper intake hole 12a and the intermediate intake hole 12b of the intake pipe 38 is changed by driving the drive motor 35. However, the upper intake hole 12a and the intermediate intake water are not adjusted finely. The hole 12b may be simply opened and closed, or the height position of the intermediate water intake hole 12b may be changed.
Further, it has been explained that the middle cylinder 26 is rotated by the drive motor 35 to move the middle cylinder 26 and the outer cylinder 25 relative to each other, thereby changing the opening areas of the upper intake hole 12a and the intermediate intake hole 12b of the intake pipe 38. However, the outer cylinder 25 may be rotated by the drive motor 35, and the middle cylinder 26 and the outer cylinder 25 may be moved relative to each other to change the opening areas of the upper intake hole 12a and the intermediate intake hole 12b of the intake pipe 38. .

また、図15に示す取水管38のように、外筒25の同一高さに開口面積の異なる上側穴部39a,39a'、中間穴部39b,39b'を形成してもよい。
このものの場合、駆動モータ25を駆動して、上側取水穴12aと中間取水穴12bとが異なる面積比となるように選択可能であり、上側取水穴12aを通過する高温水15と、中間取水穴12bを通過する中温水16との流量比を調整することができる。この取水管38では、決まった上側取水穴12a、下側取水穴12bの面積比を選択することになるが、駆動モータ35の位置決め制御を容易にして、高温水15と中温水16との流量比を変化させることができる。
Further, like the intake pipe 38 shown in FIG. 15, upper hole portions 39 a and 39 a ′ and intermediate hole portions 39 b and 39 b ′ having different opening areas may be formed at the same height of the outer cylinder 25.
In this case, the drive motor 25 is driven so that the upper intake hole 12a and the intermediate intake hole 12b can be selected to have different area ratios, and the high-temperature water 15 passing through the upper intake hole 12a and the intermediate intake hole It is possible to adjust the flow rate ratio with the intermediate warm water 16 passing through 12b. In this intake pipe 38, a predetermined area ratio of the upper intake hole 12 a and the lower intake hole 12 b is selected. However, the positioning control of the drive motor 35 is facilitated, and the flow rates of the hot water 15 and the intermediate hot water 16 are changed. The ratio can be changed.

なお、各上記取水管38は、外筒25の穴部39a,39b、中筒26の穴部41a,41bの穴形状は何れも円形の場合を示したが、穴形状は、楕円、三角形、長方形、多角形でもよく、外筒25の穴部39a,39b、中筒26の穴部41a,41bのそれぞれの開口面積を変化させることで、上側取水穴12a、中間取水穴12bを流通する湯水の流量を変化できる構造であればよい。
例えば、図16に示すように、外筒25の穴部41a,41bの高さ方向の開口長さを、回転方向に単純増加または単純減少させ、中筒26の穴部39a,39bを軸線方向が長手の矩形形状に形成することで、回転角度に対して上側取水穴12a、下側取水穴12bの開口面積をほぼ比例的に変化させることができる。
これにより、取水管38により貯湯タンク2の外部に取り出される、高温水15及び中温水16の流量は精度よく制御される。
In each of the intake pipes 38, the hole shapes of the hole portions 39a and 39b of the outer cylinder 25 and the hole portions 41a and 41b of the middle cylinder 26 are all circular, but the hole shapes are oval, triangular, It may be rectangular or polygonal, and the hot water flowing through the upper water intake hole 12a and the intermediate water intake hole 12b by changing the respective opening areas of the holes 39a and 39b of the outer cylinder 25 and the holes 41a and 41b of the intermediate cylinder 26. Any structure can be used as long as the flow rate can be changed.
For example, as shown in FIG. 16, the opening length in the height direction of the holes 41a and 41b of the outer cylinder 25 is simply increased or decreased in the rotational direction, and the holes 39a and 39b of the middle cylinder 26 are axially moved. Are formed in a long rectangular shape, the opening areas of the upper water intake hole 12a and the lower water intake hole 12b can be changed substantially in proportion to the rotation angle.
Thus, the flow rates of the high temperature water 15 and the medium temperature water 16 taken out of the hot water storage tank 2 by the intake pipe 38 are controlled with high accuracy.

実施の形態3.
図17はこの発明の実施の形態3の貯湯式給湯装置を示す構成図である。
この実施の形態では、図17−図19に示すように、取水管38は、貯湯タンク2の底部まで延びており、凹状の受け部44により支持されている。
なお、取水管38は、貯湯タンク2を貫通して、貯湯タンク2の外側で支持されてもよい。
駆動モータ35で、中筒26を回転することにより、外筒25に形成された穴部39a,39b,39cと、中筒26に形成された穴部41a,41b,41cの重なりによってできる取水穴12a,12b,12cの開口面積を変化させることができる。ここで、穴部39a、穴部41aは貯湯タンク2内の上側に位置しており、穴部39b、穴部41bは貯湯タンク2内の中間に位置しており、穴部39c、穴部41cは貯湯タンク2内の下側に位置している。
Embodiment 3 FIG.
FIG. 17 is a block diagram showing a hot water storage type hot water supply apparatus according to Embodiment 3 of the present invention.
In this embodiment, as shown in FIGS. 17 to 19, the water intake pipe 38 extends to the bottom of the hot water storage tank 2 and is supported by a concave receiving portion 44.
The water intake pipe 38 may be supported outside the hot water storage tank 2 through the hot water storage tank 2.
A water intake hole formed by overlapping holes 39a, 39b, 39c formed in the outer cylinder 25 and holes 41a, 41b, 41c formed in the inner cylinder 26 by rotating the inner cylinder 26 with the drive motor 35. The opening area of 12a, 12b, 12c can be changed. Here, the hole 39a and the hole 41a are located on the upper side in the hot water storage tank 2, the hole 39b and the hole 41b are located in the middle of the hot water storage tank 2, and the hole 39c and the hole 41c. Is located below the hot water tank 2.

この実施の形態では、湯温センサ34a,34b,34c,34d,34eにより、貯湯タンク2内の中温水16が、中間穴部39bの位置に存在すると判断された場合、上側取水穴12aからは高温水15を、中間取水穴12bからは中温水16を、下側取水穴12cからは低温水17を取水し、上側連通穴42、上側連通口21を介して貯湯タンク2から湯水を取り出す。湯水温度センサ29では、貯湯タンク2から取り出した湯水の温度を検知しながら、湯水の温度が要求給湯温度より小さくならないように、駆動モータ35の駆動により取水穴12a,12b,12cの開口面積を変化させて、上側取水穴12aから取り出す高温水15と、中間取水穴12bから取り出す中温水16と、下側取水穴12cから取り出す低温水17の流量比を調整する。
取り出された湯水は、取水流通配管27、高温水混合三方弁28を通って低温水混合三方弁30に達する。この低温水混合三方弁30では、取り出された湯水と給湯用給水管8から供給される低温水と混合され、混合された湯水は、第2の弁下流配管32、給湯栓4を通じて給湯水に供される。
なお、要求給湯温度の調整は、給湯温度センサ33の信号により低温水混合三方弁30が作動し、第1の弁下流配管5を流通する湯水と給湯用給水管31を流通する低温水との混合比を変えることで行われる。
In this embodiment, when it is determined by the hot water temperature sensors 34a, 34b, 34c, 34d, 34e that the medium temperature water 16 in the hot water storage tank 2 is present at the position of the intermediate hole 39b, the hot water temperature sensor 34a, 34b, 34c, 34d, 34e Hot water 15, medium warm water 16 from the intermediate intake hole 12 b, low temperature water 17 from the lower intake hole 12 c, and hot water from the hot water storage tank 2 are taken out via the upper communication hole 42 and the upper communication port 21. The hot water temperature sensor 29 detects the temperature of the hot water taken out from the hot water storage tank 2 and drives the drive motor 35 to increase the opening area of the water intake holes 12a, 12b, 12c so that the temperature of the hot water does not become lower than the required hot water supply temperature. By changing, the flow rate ratio of the high temperature water 15 taken out from the upper intake hole 12a, the intermediate warm water 16 taken out from the intermediate intake hole 12b, and the low temperature water 17 taken out from the lower intake hole 12c is adjusted.
The extracted hot water reaches the low-temperature water mixing three-way valve 30 through the water intake distribution pipe 27 and the high-temperature water mixing three-way valve 28. In the low-temperature water mixing three-way valve 30, the hot water taken out and the low-temperature water supplied from the hot water supply pipe 8 are mixed, and the mixed hot water is supplied to the hot water through the second valve downstream pipe 32 and the hot water tap 4. Provided.
The required hot water supply temperature is adjusted by operating the low-temperature water mixing three-way valve 30 in response to a signal from the hot-water supply temperature sensor 33, and the hot water flowing through the first valve downstream pipe 5 and the low-temperature water flowing through the hot water supply water pipe 31. This is done by changing the mixing ratio.

この実施の形態による貯湯式給湯装置によれば、取水穴12a,12b,12cの開口面積を変化させて、貯湯タンク2から取り出す、高温水15、中温水16及び低温水17の流量比を調整することで、取り出す湯温の経時変化をより要求給湯温度に近づけることができ、要求給湯温度を調整するための、低温水混合三方弁30による温度制御をさらに容易にすることができる。
また、駆動モータ25を調整することにより、高温水15と中温水16との組合せ、高温水15と低温水17との組合せ、中温水16と低温水17との組合せ、高温水15、中温水16及び低温水17の全ての組合せが可能になる。
従って、図20に示すように、貯湯タンク2の上側から高温水15を取り出すための出湯配管7、高温水混合三方弁28、湯水温度センサ29、低温水混合三方弁30を取り除いて構成をさらに簡素化することができる。
According to the hot water storage type hot water supply apparatus according to this embodiment, the flow areas of the hot water 15, the intermediate hot water 16 and the low temperature water 17 taken out from the hot water storage tank 2 are adjusted by changing the opening areas of the intake holes 12 a, 12 b and 12 c. By doing so, the temporal change of the hot water temperature to be taken out can be brought closer to the required hot water temperature, and the temperature control by the low-temperature water mixing three-way valve 30 for adjusting the required hot water temperature can be further facilitated.
Further, by adjusting the drive motor 25, a combination of the high temperature water 15 and the medium temperature water 16, a combination of the high temperature water 15 and the low temperature water 17, a combination of the medium temperature water 16 and the low temperature water 17, the high temperature water 15, and the medium temperature water. 16 and all combinations of cold water 17 are possible.
Therefore, as shown in FIG. 20, the hot water storage pipe 2 for taking out the high temperature water 15 from the upper side of the hot water storage tank 2, the high temperature water mixing three-way valve 28, the hot water temperature sensor 29, and the low temperature water mixing three way valve 30 are removed. It can be simplified.

また、図21に示す取水管38のように、駆動モータ25の変わりに、中筒26をスライドできる機構を用いて、中筒26を上下にスライドさせることにより、外筒25に形成した穴部39a,39b,39cと、中筒26に形成した穴部41a,41b,41cの重なりによってできる取水穴12a,12b,12cの開口面積を変化させてもよい。
また、スライドと回転を組み合わせて、取水穴12a,12b,12cの開口面積を変化させてもよく、この場合、取水穴12a,12b,12cの開口面積の組合せが多くなり、より精度の高い流量制御と温度制御が可能となる。
また、図25に示す取水管38のように、貯湯タンク2内の中間位置に、外筒25の高さ位置の異なる中間穴部39b,39dと、中筒26の高さ位置の異なる中間穴部41b,41dを形成し、貯湯タンク2内の中温水16の領域にあわせて駆動モータ25を調整して、中間取水穴12bの高さを変化させるようにしてもよい。
この場合、中温水16を貯湯タンク2の2箇所の位置から選択して取り出すことができるため、中温水16は効率よく貯湯タンク2から取り出すことができる。そのため、貯湯タンク2内に占める中温水16の容積割合が低減できる分、貯湯タンク2内に占める高温水15の容積を増量することができ、またヒートポンプユニット3は高いCOPが確保される。
なお、外筒25および中筒26に、高さ位置の異なる中間穴部を2箇所設けた例を示したが、中間穴部の数は3箇所以上であってもよく、中間穴部の数が多いほど、より的確に中温水を取り出すことが可能となる。
また、駆動モータ35の駆動により、取水管38の上側取水穴12a、中間取水穴12bおよび下側取水穴12cの開口面積を変化させることを説明したが、開口面積を微調整せずに、上側取水穴12a、中間取水穴12b、下側取水穴12cの開閉や、中間取水穴12bの高さ位置を変更させるだけであってもよい。
Further, a hole formed in the outer cylinder 25 by sliding the middle cylinder 26 up and down using a mechanism capable of sliding the middle cylinder 26 instead of the drive motor 25 as in the intake pipe 38 shown in FIG. You may change the opening area of the water intake holes 12a, 12b, 12c formed by overlap of 39a, 39b, 39c and the hole parts 41a, 41b, 41c formed in the middle cylinder 26.
Further, the opening area of the water intake holes 12a, 12b, and 12c may be changed by combining slide and rotation. In this case, the combination of the opening areas of the water intake holes 12a, 12b, and 12c is increased, and the flow rate is higher. Control and temperature control are possible.
Moreover, like the intake pipe 38 shown in FIG. 25, in the intermediate position in the hot water storage tank 2, the intermediate hole parts 39b and 39d from which the height position of the outer cylinder 25 differs, and the intermediate hole from which the height position of the middle cylinder 26 differs The portions 41b and 41d may be formed, and the height of the intermediate water intake hole 12b may be changed by adjusting the drive motor 25 in accordance with the region of the medium temperature water 16 in the hot water storage tank 2.
In this case, since the intermediate warm water 16 can be selected and taken out from two positions of the hot water storage tank 2, the intermediate hot water 16 can be efficiently taken out from the hot water storage tank 2. Therefore, the volume of the hot water 15 occupying the hot water tank 2 can be increased by the amount by which the volume ratio of the hot water 16 occupying the hot water tank 2 can be reduced, and a high COP is secured in the heat pump unit 3.
In addition, although the example which provided the intermediate hole part in which the height position differs in two places was shown in the outer cylinder 25 and the middle cylinder 26, the number of intermediate hole parts may be three or more, and the number of intermediate hole parts As the amount of water increases, it becomes possible to take out the medium-temperature water more accurately.
Further, it has been described that the opening area of the upper intake hole 12a, the intermediate intake hole 12b, and the lower intake hole 12c of the intake pipe 38 is changed by driving the drive motor 35, but the upper area is not adjusted finely. It is only necessary to open / close the water intake hole 12a, the intermediate water intake hole 12b, and the lower water intake hole 12c, or to change the height position of the intermediate water intake hole 12b.

実施の形態4.
図22はこの発明の実施の形態4の貯湯式給湯装置を示す構成図であり、この実施の形態では、図23に示す取水管体が貯湯タンク2内に設けられている。
この取水管体は、並立されているとともに異なる高さにそれぞれ取水穴12a,12b,12c,12d,12eが形成された5本の筒11a,11b,11c,11d,11eで構成されている。各上端面に連通穴20a,20b,20c,20d,20eを有する各筒11a,11b,11c,11d,11eは、連通穴20a,20b,20c,20d,20eの部位で外筒部13と連結されている。この外筒部13の内側には、中筒部14が摺動可能に設けられている。この中筒部14には、筒11a,11b,11c,11d,11eに対応して連通穴18a,18b,18c,18d,18eが形成されている。
Embodiment 4 FIG.
FIG. 22 is a configuration diagram showing a hot water storage type hot water supply apparatus according to Embodiment 4 of the present invention. In this embodiment, the water intake pipe shown in FIG. 23 is provided in the hot water storage tank 2.
This intake pipe body is composed of five cylinders 11a, 11b, 11c, 11d, and 11e that are arranged side by side and in which intake holes 12a, 12b, 12c, 12d, and 12e are respectively formed at different heights. Each of the cylinders 11a, 11b, 11c, 11d, and 11e having the communication holes 20a, 20b, 20c, 20d, and 20e on each upper end surface is connected to the outer cylinder portion 13 at the site of the communication holes 20a, 20b, 20c, 20d, and 20e. Has been. An inner cylinder part 14 is slidably provided inside the outer cylinder part 13. In the middle cylinder portion 14, communication holes 18a, 18b, 18c, 18d, and 18e are formed corresponding to the cylinders 11a, 11b, 11c, 11d, and 11e.

この実施の形態では、実施の形態1に示した取水管38の代わりに、取水穴12a,12b,12c,12d,12eの高さ方向の位置が異なる筒11a,11b,11c,11d,11eを設けて、貯湯タンク2内の中温水16を選択できるようにしたものである。
この実施の形態では、駆動モータ22の駆動させることにより、外筒部13に形成された連通穴20a,20b,20c,20d,20eと、中筒部14に形成された連通穴18a,18b,18c,18d,18eを1箇所または、複数箇所で連通することができる。
例えば、湯温センサ34により、貯湯タンク2内の中温水16が、取水穴12cの位置に存在すると判断された場合、駆動モータ22の駆動で中筒部14を回転させて、外筒部13の連通穴20cと中筒部14の連通穴18c、外筒部13の連通穴20aと中筒部14の連通穴18aとを連通させ、取水穴12cから中温水16を、取水穴12aから高温水15をそれぞれ取水し、上側連通穴19を介して取り出すことができる。
これにより、貯湯タンク2内に存在する中温水16の位置にあわせて、取水穴の位置を高さ方向に変化させることができるとともに、中温水16を取り出すと同時に、高温水15、低温水17を取り出すこともできる。
In this embodiment, instead of the intake pipe 38 shown in the first embodiment, the cylinders 11a, 11b, 11c, 11d, and 11e having different positions in the height direction of the intake holes 12a, 12b, 12c, 12d, and 12e are provided. It is provided so that the medium temperature water 16 in the hot water storage tank 2 can be selected.
In this embodiment, by driving the drive motor 22, the communication holes 20 a, 20 b, 20 c, 20 d, and 20 e formed in the outer cylinder part 13 and the communication holes 18 a, 18 b formed in the middle cylinder part 14, 18c, 18d, and 18e can be communicated at one place or a plurality of places.
For example, when it is determined by the hot water temperature sensor 34 that the medium temperature water 16 in the hot water storage tank 2 exists at the position of the water intake hole 12 c, the inner cylinder portion 14 is rotated by driving the drive motor 22, and the outer cylinder portion 13. The communication hole 20c and the communication hole 18c of the middle cylinder part 14, the communication hole 20a of the outer cylinder part 13 and the communication hole 18a of the middle cylinder part 14 are communicated, and the medium-temperature water 16 from the intake hole 12c is heated to the high temperature from the intake hole 12a. Each of the water 15 can be taken and taken out through the upper communication hole 19.
Accordingly, the position of the water intake hole can be changed in the height direction in accordance with the position of the intermediate warm water 16 existing in the hot water storage tank 2, and at the same time as the intermediate warm water 16 is taken out, the high temperature water 15 and the low temperature water 17 are removed. Can also be taken out.

また、回転動作を行う外筒部13及び中筒部14の長さを、貯湯タンク2の高さ方向に配置するよりも短くすることができるため、回転時の摩擦を軽減することができ、駆動モータ22の消費電力を低減できるとともに、回転角度の位置決め精度を向上することができる。
なお、筒11a,11b,11c,11d,11eを5本用いた例を示したが、設置する本数は任意である。
また、外筒部13に対して中筒部14を回転させる構造としたが、中筒部14をスライドさせることにより、外筒部13の連通穴20a,20b,20c,20d,20eと中筒部14の連通穴18a,18b,18c,18d,18eを連通させる構造であってもよい。
Moreover, since the length of the outer cylinder part 13 and the middle cylinder part 14 that perform the rotation operation can be made shorter than arranging in the height direction of the hot water storage tank 2, friction during rotation can be reduced, The power consumption of the drive motor 22 can be reduced, and the positioning accuracy of the rotation angle can be improved.
In addition, although the example using five cylinders 11a, 11b, 11c, 11d, and 11e was shown, the number to install is arbitrary.
Further, although the middle cylinder part 14 is structured to rotate with respect to the outer cylinder part 13, the communication holes 20a, 20b, 20c, 20d, and 20e of the outer cylinder part 13 and the middle cylinder are formed by sliding the middle cylinder part 14. The structure may be such that the communication holes 18a, 18b, 18c, 18d, and 18e of the portion 14 are communicated.

なお、上記各実施の形態では、加熱手段として、ヒートポンプユニット3を用いた場合について説明したが、勿論ヒートポンプユニット3に限定されるものではなく、ガス、或いは電気ヒータを用いてもよい。
また,ヒートポンプユニット3に使用する冷媒として、二酸化炭素を用いた場合について説明したが、勿論、二酸化炭素に限定されるものではなく、その他の自然冷媒である炭化水素、フロンなどを用いてもよい。
また、取水配管38を金属のような熱伝導率の高い材料ではなく、樹脂材料のような熱伝導性の低い材料で構成してもよい。この場合、取水配管38を熱伝導体として、貯湯タンク2内の高温水45,中温水46,低温水47のそれぞれの領域間を熱が移動することがなくなるため、高温水45の温度低下を防ぐことができ、貯湯タンク2内の高温水不足を解消することができる。また、低温水47の温度上昇を防ぐことができ、高いCOPが確保される。
In each of the above embodiments, the case where the heat pump unit 3 is used as the heating means has been described. However, the present invention is not limited to the heat pump unit 3, and a gas or an electric heater may be used.
Moreover, although the case where carbon dioxide was used as the refrigerant used in the heat pump unit 3 was described, of course, it is not limited to carbon dioxide, and other natural refrigerants such as hydrocarbons and chlorofluorocarbons may be used. .
Further, the intake pipe 38 may be made of a material having a low thermal conductivity such as a resin material instead of a material having a high thermal conductivity such as a metal. In this case, since the intake pipe 38 is used as a heat conductor, heat does not move between the hot water 45, intermediate hot water 46, and low temperature water 47 in the hot water storage tank 2. It is possible to prevent the shortage of hot water in the hot water storage tank 2. Moreover, the temperature rise of the low temperature water 47 can be prevented, and high COP is ensured.

この発明の実施の形態1による貯湯式給湯装置を示す構成図である。It is a block diagram which shows the hot water storage type hot-water supply apparatus by Embodiment 1 of this invention. 図1の取水管を示す斜視図である。It is a perspective view which shows the intake pipe of FIG. 図1に示した貯湯式給湯装置において、取水管から湯水を取り出した場合の、湯水温度の経時変化を示す図である。In the hot water storage type hot water supply apparatus shown in FIG. 1, it is a figure which shows the time-dependent change of the hot water temperature when hot water is taken out from the intake pipe. 図1の取水管の変形例を示す斜視図である。It is a perspective view which shows the modification of the intake pipe of FIG. 図1の取水管の他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the intake pipe of FIG. 図1の取水管のさらに他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the intake pipe of FIG. 図1の取水管のさらに他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the intake pipe of FIG. 図1の貯湯式給湯装置の変形例を示す構成図である。It is a block diagram which shows the modification of the hot water storage type hot-water supply apparatus of FIG. 図8の取水管を示す斜視図である。It is a perspective view which shows the intake pipe of FIG. この発明の実施の形態2による貯湯式給湯装置を示す構成図である。It is a block diagram which shows the hot water storage type hot-water supply apparatus by Embodiment 2 of this invention. 図10の取水管を示す斜視図である。It is a perspective view which shows the intake pipe of FIG. 図10の要部断面図である。It is principal part sectional drawing of FIG. 図10の貯湯式給湯装置の変形例を示す構成図である。It is a block diagram which shows the modification of the hot water storage type hot-water supply apparatus of FIG. 図13の取水管の変形例を示す斜視図である。It is a perspective view which shows the modification of the intake pipe of FIG. 図13の取水管の他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the intake pipe of FIG. 図13の取水管のさらに他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the intake pipe of FIG. この発明の実施の形態3による貯湯式給湯装置を示す構成図である。It is a block diagram which shows the hot water storage type hot water supply apparatus by Embodiment 3 of this invention. 図17の取水管を示す斜視図である。It is a perspective view which shows the intake pipe of FIG. 図17の要部断面図である。It is principal part sectional drawing of FIG. 図17の貯湯式給湯装置の変形例を示す構成図である。It is a block diagram which shows the modification of the hot water storage type hot-water supply apparatus of FIG. 図20の取水管の変形例を示す斜視図である。It is a perspective view which shows the modification of the intake pipe of FIG. この発明の実施の形態4による貯湯式給湯装置を示す構成図である。It is a block diagram which shows the hot water storage type hot water supply apparatus by Embodiment 4 of this invention. 図22の取水管体を示す斜視図である。It is a perspective view which shows the water intake pipe body of FIG. 図1の取水管のさらに他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the intake pipe of FIG. 図17の取水管の変形例を示す斜視図である。It is a perspective view which shows the modification of the intake pipe of FIG.

符号の説明Explanation of symbols

1 貯湯タンクユニット、2 貯湯タンク、3 ヒートポンプユニット(加熱手段)、4 給湯栓、5 第1の弁下流配管(弁下流配管)、6 高温水流入弁、7 出湯配管、8 給水管、9 低温水取り出し配管、10 高温水戻り配管、11a,11b,11c,11d,11e 筒、12a 上側取水穴、12b 中間取水穴、12c 下側取水穴、13 外筒部、14 中筒部、15 高温水、16 中温水、17 低温水、18a,18b,18c,18d,18e 連通穴、21 上側連通部、23 加熱温度センサ、25 外筒、26 中筒、27 取水流通配管、28 高温水混合三方弁、29 湯水温度センサ、30 低温水混合三方弁、31 給湯用給水管、32 第2の弁下流配管(弁下流配管)、33 給湯温度センサ、34a,34b,34c,34d,34e 湯温センサ、35 駆動モータ、37 給水温度センサ、38 取水管(取水管体)、39a 上側穴部、39b 中間穴部、39c 下側穴部、40 上側取水穴、41a 上側穴部、41b 中間穴部、42 上側連通中間取水穴、44 受け部。
DESCRIPTION OF SYMBOLS 1 Hot water storage tank unit, 2 Hot water storage tank, 3 Heat pump unit (heating means), 4 Hot water tap, 5 1st valve downstream piping (valve downstream piping), 6 Hot water inflow valve, 7 Hot water piping, 8 Water supply pipe, 9 Low temperature Water extraction pipe, 10 high temperature water return pipe, 11a, 11b, 11c, 11d, 11e cylinder, 12a upper intake hole, 12b intermediate intake hole, 12c lower intake hole, 13 outer cylinder part, 14 intermediate cylinder part, 15 hot water , 16 Medium temperature water, 17 Low temperature water, 18a, 18b, 18c, 18d, 18e Communication hole, 21 Upper communication part, 23 Heating temperature sensor, 25 Outer cylinder, 26 Medium cylinder, 27 Water intake distribution pipe, 28 High temperature water mixing three-way valve , 29 hot water temperature sensor, 30 cold water mixing three-way valve, a water supply pipe 31 hot-water supply, 32 a second valve downstream pipe (valve downstream pipe), 33 hot water temperature sensor, 34a, 34b, 34c, 34d, 34 e Hot water temperature sensor, 35 drive motor, 37 water supply temperature sensor, 38 intake pipe (intake pipe body), 39a upper hole, 39b intermediate hole, 39c lower hole, 40 upper intake hole, 41a upper hole, 41b Intermediate hole part, 4 2 Upper communication intermediate water intake hole, 44 receiving part.

Claims (11)

湯水が貯留される貯湯タンクと、
この貯湯タンクから送られた前記湯水を加熱する加熱手段と、
前記貯湯タンク内に上下方向に延びて設けられ前記湯水を外部に導く取水管体と、
前記貯湯タンクの外部に取り出された後の前記湯水が導かれる給湯栓とを備え、
前記取水管体には、少なくとも前記貯湯タンクの上部の近傍に形成された上側取水穴、前記上側取水穴より下側に形成された中間取水穴がそれぞれ形成されていることを特徴とする貯湯式給湯装置。
A hot water storage tank for storing hot water,
Heating means for heating the hot water sent from the hot water storage tank;
A water intake pipe that extends vertically in the hot water storage tank and guides the hot water to the outside;
A hot water tap to which the hot water after being taken out of the hot water storage tank is guided,
The hot water storage type, wherein the intake pipe body is formed with at least an upper intake hole formed near the upper portion of the hot water storage tank and an intermediate intake hole formed below the upper intake hole. Hot water supply device.
前記給湯栓に送られる前記湯水の温度を検出する給湯温度センサと、
一端部が前記貯湯タンクの上部に接続され、前記高温水が流出する出湯配管と、
前記取水管体に一端部が接続され前記貯湯タンクの外部に取り出された前記湯水が流通する取水流通配管とを備え、
前記出湯配管を流通する高温水と前記取水流通配管を流通する湯水とを混合し、前記給湯温度センサでの検出温度から、前記給湯栓に送られる湯水の温度を調整することを特徴とする請求項1に記載の貯湯式給湯装置。
A hot water temperature sensor for detecting the temperature of the hot water sent to the hot water tap;
One end part is connected to the upper part of the hot water storage tank, and the hot water piping from which the high temperature water flows out,
One end is connected to the intake pipe body, and the intake water distribution pipe through which the hot water taken out to the outside of the hot water storage tank circulates,
The hot water flowing through the hot water supply pipe and hot water flowing through the intake water distribution pipe are mixed, and the temperature of the hot water sent to the hot water tap is adjusted from the temperature detected by the hot water supply temperature sensor. Item 2. A hot water storage type hot water supply apparatus according to item 1.
一端部が前記貯湯タンクの下部に接続された前記低温水を前記貯湯タンク内の下部に送る給水管から分岐され、前記低温水が流通する給湯用給水管を備え、
前記貯湯タンクの外部に取り出された湯水と前記給湯用給水管を流通する低温水とを混合し、前記給湯温度センサでの検出温度から、前記給湯栓に送られる湯水の温度を調整することを特徴とする請求項1または2に記載の貯湯式給湯装置。
One end of the hot water storage pipe connected to the lower part of the hot water storage tank is branched from a water supply pipe that sends the low temperature water to the lower part of the hot water storage tank, and includes a hot water supply water supply pipe through which the low temperature water flows.
Mixing hot water taken out of the hot water storage tank with low temperature water flowing through the hot water supply pipe, and adjusting the temperature of the hot water sent to the hot water tap from the temperature detected by the hot water temperature sensor; The hot water storage type hot water supply apparatus according to claim 1 or 2, characterized in that
前記上側取水穴及び前記中間取水穴のそれぞれの穴の開口面積が異なることを特徴とする請求項1から3の何れか1項に記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to any one of claims 1 to 3, wherein opening areas of the upper intake hole and the intermediate intake hole are different from each other. 前記上側取水穴及び前記中間取水穴のそれぞれの穴数が異なることを特徴とする請求項1から4の何れか1項に記載の貯湯式給湯装置。   5. The hot water storage type hot water supply apparatus according to claim 1, wherein the upper intake hole and the intermediate intake hole have different numbers of holes. 前記取水管体は、上側穴部及び中間穴部を有する外筒と、この外筒の内側に重ねて設けられた上側穴部及び中間穴部を有する中筒とから構成され、前記上側取水穴は、前記外筒の前記上側穴部と前記中筒の前記上側穴部とから構成され、前記中間取水穴は、前記外筒の前記中間穴部と前記中筒の前記中間穴部とから構成され、前記外筒及び前記中筒の少なくとも一方が周方向及び軸線方向の少なくとも一方に相対移動することにより、外筒の上側穴部と中筒の上側穴部、外筒の中間穴部と中筒の中間穴部との重なり程度を変えることで、前記上側取水穴及び前記中間取水穴の開口面積が調整されることを特徴とする請求項1から3の何れか1項に記載の貯湯式給湯装置。   The intake pipe body is composed of an outer cylinder having an upper hole part and an intermediate hole part, and an intermediate cylinder having an upper hole part and an intermediate hole part provided to overlap the outer cylinder, and the upper intake hole. Is constituted by the upper hole portion of the outer cylinder and the upper hole portion of the middle cylinder, and the intermediate water intake hole is constituted by the intermediate hole portion of the outer cylinder and the intermediate hole portion of the middle cylinder. When at least one of the outer cylinder and the middle cylinder moves relative to at least one of the circumferential direction and the axial direction, the upper hole of the outer cylinder, the upper hole of the middle cylinder, the middle hole of the outer cylinder, and the middle The hot water storage system according to any one of claims 1 to 3, wherein an opening area of the upper water intake hole and the intermediate water intake hole is adjusted by changing a degree of overlap with the intermediate hole portion of the cylinder. Hot water supply device. 前記外筒及び前記中筒には、前記貯湯タンクの下側に対応した位置に形成された下側取水穴を構成する下側穴部がそれぞれ形成されており、
前記外筒及び前記中筒の相対移動により、外筒の上側穴部と中筒の上側穴部、外筒の中間穴部と中筒の中間穴部、及び外筒の下側穴部と中筒の下側穴部との重なり程度を変えることで、前記上側取水穴、前記中間取水穴及び前記下側取水穴の開口面積が調整されることを特徴とする請求項6に記載の貯湯式給湯装置。
The outer cylinder and the middle cylinder are each formed with a lower hole portion constituting a lower water intake hole formed at a position corresponding to the lower side of the hot water storage tank,
By the relative movement of the outer cylinder and the middle cylinder, the upper hole part of the outer cylinder and the upper hole part of the middle cylinder, the middle hole part of the outer cylinder and the middle hole part of the middle cylinder, and the lower hole part of the outer cylinder and the middle The hot water storage system according to claim 6, wherein opening areas of the upper water intake hole, the intermediate water intake hole, and the lower water intake hole are adjusted by changing a degree of overlap with a lower hole portion of the cylinder. Hot water supply device.
前記外筒及び前記中筒の上下方向に複数の中間穴部を有し、前記外筒及び前記中筒の相対移動により、前記中間取水の位置が上下方向に変化することを特徴とする請求項6または7に記載の貯湯式給湯装置。   A plurality of intermediate hole portions are provided in the vertical direction of the outer cylinder and the middle cylinder, and the position of the intermediate water intake is changed in the vertical direction by relative movement of the outer cylinder and the middle cylinder. The hot water storage type hot water supply apparatus according to 6 or 7. 前記取水管体は、並立されているとともに異なる高さにそれぞれ取水穴が形成された複数本の筒で構成され、
前記取水管体の前記取水穴は、各前記筒の両端部をそれぞれ連結した外筒部の内側に摺動可能に設けられているとともに前記筒に対応して形成された連通穴を有する中筒部の移動により、選択されることを特徴とする請求項1から3の何れか1項に記載の貯湯式給湯装置。
The intake pipe body is composed of a plurality of tubes that are arranged side by side and each have intake holes formed at different heights.
The water intake hole of the water intake tube body is slidably provided on the inner side of the outer cylinder part that connects both ends of the cylinders, and has a communication hole formed corresponding to the cylinder. The hot water storage type hot water supply device according to any one of claims 1 to 3, wherein the hot water storage type hot water supply device is selected by movement of a portion.
前記取水配管は、樹脂材料で構成されることを特徴とする請求項1から9の何れか1項に記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to any one of claims 1 to 9, wherein the intake pipe is made of a resin material. 前記加熱手段は、二酸化炭素を用いたヒートポンプユニットであることを特徴とする請求項1から10の何れか1項に記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to any one of claims 1 to 10, wherein the heating means is a heat pump unit using carbon dioxide.
JP2007271137A 2007-10-18 2007-10-18 Hot water storage water heater Active JP4482580B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007271137A JP4482580B2 (en) 2007-10-18 2007-10-18 Hot water storage water heater
EP08166422.9A EP2051016B1 (en) 2007-10-18 2008-10-13 Storage type hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271137A JP4482580B2 (en) 2007-10-18 2007-10-18 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2009097820A JP2009097820A (en) 2009-05-07
JP4482580B2 true JP4482580B2 (en) 2010-06-16

Family

ID=40700986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271137A Active JP4482580B2 (en) 2007-10-18 2007-10-18 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP4482580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204851A (en) * 2017-06-02 2018-12-27 パナソニックIpマネジメント株式会社 Water heater

Also Published As

Publication number Publication date
JP2009097820A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP4485406B2 (en) Hot water storage water heater
JP3918786B2 (en) Hot water storage type heat pump water heater
EP2051016B1 (en) Storage type hot water supply system
JP6663908B2 (en) Fluid heating and / or cooling system and related methods
JP2007205658A (en) Heat pump type water heater, and control device for heat pump-type water heater
JP4482579B2 (en) Hot water storage water heater
JP2008281260A (en) Mixing branch valve and hot water storage type water heater
JP5245217B2 (en) Hot water storage hot water heater
JP5023608B2 (en) Water heater
JP5257059B2 (en) Hot water storage water heater
JP2007178063A (en) Water heater
JP4482580B2 (en) Hot water storage water heater
JP6988766B2 (en) Flow path switching valve and hot water storage type water heater
JP2011075200A (en) Heat pump hot water supply apparatus
JP2007322084A (en) Heat pump water heater
JP2020133977A (en) Hot water supply device
US11347246B2 (en) Water heater appliances and methods for controlling a mixing valve with a park period
JP4482581B2 (en) Hot water storage water heater
JP4207867B2 (en) Hot water storage water heater
JP2006057916A (en) Hot water storage type water heater
JP4988539B2 (en) Hot water storage water heater
JP2008039339A (en) Hot water supply device
JP2004340450A (en) Hot water storage type water heater and thermostat
KR20150042184A (en) Heat pump heat source system
JP4331052B2 (en) Hot water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4482580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250