JP4480578B2 - Polypropylene wrap film - Google Patents

Polypropylene wrap film Download PDF

Info

Publication number
JP4480578B2
JP4480578B2 JP2004532714A JP2004532714A JP4480578B2 JP 4480578 B2 JP4480578 B2 JP 4480578B2 JP 2004532714 A JP2004532714 A JP 2004532714A JP 2004532714 A JP2004532714 A JP 2004532714A JP 4480578 B2 JP4480578 B2 JP 4480578B2
Authority
JP
Japan
Prior art keywords
film
mass
resin
adhesion
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004532714A
Other languages
Japanese (ja)
Other versions
JPWO2004020195A1 (en
Inventor
隆文 向原
智志 橋本
卓 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Publication of JPWO2004020195A1 publication Critical patent/JPWO2004020195A1/en
Application granted granted Critical
Publication of JP4480578B2 publication Critical patent/JP4480578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene

Description

本発明は、食品包装用ラップなど、物品を包装するのに用いるフィルムに関する。特に、密着性と引出性が一定時間経過後も変化しない品質を保持できるポリプロピレン系ラップフィルムに関する。  The present invention relates to a film used for packaging an article such as a food packaging wrap. In particular, the present invention relates to a polypropylene-based wrap film that can maintain a quality in which adhesion and drawability do not change even after a certain period of time.

飲食店、食品販売店等や一般家庭において、食品を保存したり、電子レンジなどで加熱する場合、熱可塑性樹脂製の薄いフィルムが使用されてきた。中でも、塩化ビニリデン系共重合体樹脂のラップフィルムは、防湿性、酸素ガスバリア性、耐熱性、容器等への密着性、透明性など、優れた性質を兼ね備えているので、食品包装用ラップフィルムとして多用されている。
また近年、ポリオレフィン系樹脂を主体とする食品包装用ラップフィルムが種々提案されてきた。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ4−メチルペンテン−1樹脂などがある。しかし、これらのフィルムは、フィルム表面に密着性がほとんどないので、例えば食品包装用ラップフィルムとして必須の容器への密着性能が不十分である。これらの所望の性能を満たすべく、種々の添加剤等や他の樹脂を混合したり、他の樹脂などと積層したフィルムが多数、提案されている。しかしながらこれらのフィルムは、容器への密着性のみならずフィルム同士の密着性も高くなり、収納箱からの引出性が悪く、実用上使い勝手の悪いフィルムであった。
上述の様々な問題を解決すべく、ラップフィルムの密着性に関する種々の提案がなされてきた。特開平10−202806号公報には、芯層がポリプロピレン系樹脂であり、表層に密着剤として界面活性剤が含まれた自己粘着性のラップフィルムが提案されている。しかしながら、この技術では高い密着性を発現することは困難である。さらに、水分を多く含む食材を包装して電子レンジで加熱すると、ラップフィルム表面上で界面活性剤が水分により泡立つという問題点がある。
密着性を高めようとすると引出力も高くなり、逆に引出力を低くすると密着性が低下してしまう。加えて、コシ感の指標である弾性率を高めようとすると延伸性が悪化してしまうなどのように、相反する特性が多く、これらの特性のバランスをうまく保つことが非常に難解な問題である。
例えば、特開2002−46238号公報には、バリア性を持つ樹脂からなる芯層と密着性を持つ添加剤を含む樹脂組成を表層とする多層フィルムが提案されている。しかし、密着性を発現するための添加剤は低分子量であるか、あるいはガラス転移点が低く、ブリードインと呼ばれるようにフィルム内を移動する。そのため、成膜直後には良好な密着性と引出性のバランスを保持していても、時間の経過により表層に存在した添加剤が内部に移動することにより、密着性や引出性が低下することがある。
また、耐熱性に優れる点から、ポリ(4−メチルペンテン−1)系樹脂を用いたラップの提案が特開2001−121660号公報など多く見られる。しかしながらポリ(4−メチルペンテン−1)樹脂は、元々剛性の高い素材であり、ラップに求められる柔軟性を発現するためには、多量の可塑剤添加が必要であり、本来ポリ(4−メチルペンテン−1)樹脂が有している耐熱性や低い引張破断伸度が損なわれてしまう。
本発明は、ポリプロピレン系樹脂を用いながら、密着性に優れ、収納箱からの引出力が小さく、且つ、時間の経過および保管温度によってこれらの特性変化の少ないラップフィルムを提供することを課題とする。
A thin film made of a thermoplastic resin has been used for storing food or heating it in a microwave oven in restaurants, food stores, etc. and general households. Among them, the vinylidene chloride copolymer resin wrap film has excellent properties such as moisture resistance, oxygen gas barrier properties, heat resistance, adhesion to containers, transparency, etc. It is used a lot.
In recent years, various food packaging wrap films mainly composed of polyolefin resin have been proposed. For example, there are polyethylene resin, polypropylene resin, poly 4-methylpentene-1 resin and the like. However, since these films have almost no adhesion on the film surface, for example, the adhesion performance to a container essential as a wrapping film for food packaging is insufficient. In order to satisfy these desired performances, many films have been proposed in which various additives and other resins are mixed or laminated with other resins. However, these films are not only adhesive to the container but also have high adhesiveness between the films, have poor drawability from the storage box, and are practically unusable.
In order to solve the various problems described above, various proposals have been made regarding the adhesion of the wrap film. JP-A-10-202806 proposes a self-adhesive wrap film in which the core layer is a polypropylene resin and the surface layer contains a surfactant as an adhesive. However, it is difficult to express high adhesion with this technique. Furthermore, when a food containing a lot of moisture is packaged and heated in a microwave oven, there is a problem that the surfactant foams on the surface of the wrap film.
If the adhesion is increased, the pulling power is increased. Conversely, if the pulling power is decreased, the adhesion is lowered. In addition, there are many conflicting properties, such as the extensibility deteriorates when trying to increase the elastic modulus, which is an index of stiffness, and it is a very difficult problem to maintain a good balance between these properties. is there.
For example, Japanese Patent Application Laid-Open No. 2002-46238 proposes a multilayer film having a resin layer containing a core layer made of a resin having a barrier property and an additive having an adhesive property as a surface layer. However, the additive for expressing the adhesiveness has a low molecular weight or a low glass transition point, and moves in the film so as to be called bleed-in. For this reason, even if the balance between good adhesion and drawability is maintained immediately after film formation, the adhesiveness and drawability are reduced by the addition of additives present in the surface layer over time. There is.
Moreover, many proposals, such as Unexamined-Japanese-Patent No. 2001-121660, are proposed of the wrap using a poly (4-methylpentene-1) type-resin from the point which is excellent in heat resistance. However, poly (4-methylpentene-1) resin is originally a highly rigid material, and in order to express the flexibility required for wrapping, a large amount of plasticizer must be added. Penten-1) The heat resistance and low tensile elongation at break of the resin are impaired.
It is an object of the present invention to provide a wrap film having excellent adhesion, small pulling force from a storage box, and little change in these properties over time and storage temperature while using a polypropylene resin. .

本発明者らは、上記の課題を解決すべく鋭意研究に取り組んだ結果、本発明に至った。即ち、本発明は主に下記の通りである。
結晶性ポリプロピレン系樹脂(S1)50〜80質量%、非晶性又は低結晶性プロピレン−αオレフィン共重合体、ブテン−1重合体から選ばれる少なくとも1種の柔軟剤(S2)20〜50質量%からなる第1組成物と、第1組成物の合計100質量部に対し、水添テルペン樹脂(S3)および常温で液体の脂肪族炭化水素(S4)を各々5〜15質量部、10〜20質量部含有する表層(A)と、
結晶性ポリプロピレン系樹脂(C1)80〜98質量%と、常温で液体の脂肪族炭化水素(C2)2〜20質量%を含有する芯層(B)、
を有するポリプロピレン系多層ラップフィルム;
紙管に巻かれた状態のラップフィルムを40℃相対湿度20%にて3週間放置した際の密着仕事量が、放置前の値に対して−20〜+50%以内の変化であり、且つ、引出力が、放置前の値に対して−50〜+20%以内の変化である前記のポリプロピレン系多層ラップフィルム;さらに、
フィルム表面を原子間力顕微鏡の位相像にて40,000倍の倍率で観察した場合、網目状のフィブリルと、その間に存在するマトリックスからなる構造を有し、かつこのフィブリルの平均幅は1nm以上100nm以下であり、かつ孔の平均大きさが3nm以上1μm以下の構造である前記のポリプロピレン系多層ラップフィルム。
上記の構成要件とすることにより、本発明は以下の効果を有する。すなわち、特定の柔軟剤と水添テルペン樹脂と常温で液体の脂肪族炭化水素を特定量組み合わせた樹脂組成物を表層に用いることにより、樹脂が適度に可塑化され、密着性と引出性を両立できる。
また、表層(A)と隣接する芯層(B)に常温で液体の脂肪族炭化水素を添加することにより、密着性および引出性の時間による低下を抑えることが可能となる。
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, the present invention is mainly as follows.
Crystalline polypropylene resin (S1) 50 to 80% by mass, at least one softener (S2) 20 to 50% by mass selected from amorphous or low crystalline propylene-α-olefin copolymer and butene-1 polymer % Hydrogenated terpene resin (S3) and liquid aliphatic hydrocarbon (S4) at room temperature, 5 to 15 parts by mass, A surface layer (A) containing 20 parts by mass;
A core layer (B) containing 80 to 98% by mass of a crystalline polypropylene resin (C1) and 2 to 20% by mass of an aliphatic hydrocarbon (C2) that is liquid at room temperature;
A polypropylene-based multilayer wrap film having:
The adhesion work when the wrap film wound in a paper tube is left to stand for 3 weeks at 40 ° C. and 20% relative humidity is a change within −20 to + 50% with respect to the value before leaving, and The polypropylene-based multilayer wrap film as described above, wherein the pulling power is a change within −50 to + 20% with respect to the value before being left;
When the film surface is observed with a phase image of an atomic force microscope at a magnification of 40,000 times, it has a structure composed of mesh-like fibrils and a matrix existing therebetween, and the average width of the fibrils is 1 nm or more. The polypropylene-based multilayer wrap film having a structure of 100 nm or less and an average pore size of 3 nm to 1 μm.
By setting it as said structural requirement, this invention has the following effects. That is, by using a resin composition that combines a specific amount of a specific softening agent, hydrogenated terpene resin, and a specific amount of aliphatic hydrocarbons that are liquid at room temperature, the resin is appropriately plasticized, achieving both adhesion and drawability. it can.
Moreover, it becomes possible to suppress the fall by time of adhesiveness and drawability by adding a liquid aliphatic hydrocarbon at normal temperature to the core layer (B) adjacent to the surface layer (A).

図1は本発明のラップフィルムを原子間力顕微鏡の位相像にて40,000倍にて観察した写真である。  FIG. 1 is a photograph of the wrap film of the present invention observed at a magnification of 40,000 in a phase image of an atomic force microscope.

以下、本発明を具体的に説明する。
本発明で用いられるポリプロピレン系樹脂は、ポリマー分子鎖中にプロピレンユニットを持つもので、プロピレンユニットのみから成るホモポリマーでもよいし、エチレンやブテン−1などとの2元ないし3元共重合体であってもよい。共重合体の中では、透明性の観点からランダム共重合が好ましい。立体規則性はアイソタクチック、シンジオタクチック構造のいずれか、もしくはその混合物を用いてもよい。その他の制限は特にないが、例えば食品包装用フィルムに用いることを考慮して、安全性の観点から、食品包装に関する規格基準に合格したものが好ましい。また、メルトフローレートは、ASTM D1238に準拠の方法において、230℃、2.16kgの荷重を掛けた状態で、1〜20g/10分の範囲にあることがより好ましい。
表層(A)に含まれる柔軟剤として用いられる成分は、非晶性又は低結晶性プロピレン−αオレフィン共重合体、ブテン−1ポリマーから選ばれる。安全性の観点から、食品包装に関する規格基準に合格したものが好ましい。
ここで、非晶性又は低結晶性プロピレン−αオレフィン共重合体とは、プロピレンとブテン−1、ペンテン−1などの炭素数4以上のαオレフィンとの共重合体である。プロピレン比率は、65質量%から85質量%であることが好ましい。また、メルトフローレートにおいては、ASTM D1238に準拠の方法において、230℃、2.16kgの荷重を掛けた状態で、1〜10g/10分の範囲が好ましい。ASTM D1505における密度が0.85〜0.89g/cmのものが好ましい。それ自体が柔軟性に富み、さらに結晶性ポリプロピレン系樹脂に混合された場合に、透明性を損なうことなく混合され柔軟化効果をもたらす性能を備えるものをいう。なお、非晶性又は低結晶性を有するポリプロピレン−αオレフィン共重合体としては、例えば三井化学のタフマーXR等がある。
ブテン−1重合体とは、液状のブテン−1モノマーを触媒重合したホモポリマーである。メルトフローレートは、ASTM D1238に準拠の方法において、190℃、2.16kgの荷重を掛けた状態で、0.1〜5g/10分の範囲が好ましい。また、ASTM D1505における密度は、0.904〜0.920g/cmのものが好ましい。
上記柔軟剤は、結晶性ポリプロピレン系樹脂に対して相溶性が良く、適量を配合することで、結晶性ポリプロピレン系樹脂本来の透明性、防湿性、耐熱性を大きく損なうことなく、引張弾性率や曲げ弾性率を低減する効果、即ち、柔軟性を付与する効果がある。
これら柔軟剤の配合量は結晶性ポリプロピレン系樹脂と柔軟剤を合わせて100質量%としたとき、柔軟剤は得られるフィルムの柔軟性、手触りの感触、被包装物への形状追従性の観点から20質量%以上であり、安定した製膜性、加工性、製品の外観や品位、コシ感、包装フィルムの使い勝手の観点から50質量%以下である。より好ましくは20〜40質量%、さらに好ましくは20〜30質量%である。
表層(A)にさらに含まれる水添テルペン樹脂は、密着剤として用いられている。
また、水添テルペン系樹脂は、松の樹皮や柑橘類の果実皮などから得られるαピネン、βピネン、リモネン、ジペンテンなどを原料とした単独重合体、またはこれらの共重合体の水素添加物である。水添テルペン樹脂の軟化点は、フィルムのべたつきなどの観点から120℃以上が好ましく、これを配合する表層(A)部分の柔軟性、密着力の観点から135℃以下が好ましい。水添テルペン樹脂は、上記の結晶性ポリプロピレン系樹脂と柔軟剤からなる組成物を100質量部としたとき、密着性能の観点から5質量部以上、フィルム同士のブロッキングを小さくし、引出力を小さくする観点から15質量部以下とする。好ましくは5〜10質量部、より好ましくは5〜8質量部である。
表層(A)に含まれる常温で液体の脂肪族炭化水素は密着助剤として用いられる。密着助剤は、流動パラフィン、ミネラルオイル、白色鉱物油などの原油から精製される飽和炭化水素や、イソブテンを単独重合したポリイソブチレンもしくはイソブテンとノルマルブテンとを共重合したポリブテンのうちいずれか少なくとも1種類を添加する。最も好ましいのはミネラルオイルである。また、添加量は、上記の結晶性ポリプロピレン系樹脂と柔軟剤からなる組成物を100質量部としたとき、これに対して手触りの感触、安定した密着性の観点から10質量部以上、20質量部以下である。また、好ましくは15質量部以上である。
密着剤である水添テルペン樹脂と、密着助剤である常温で液体の脂肪族炭化水素の併用により本発明のラップフィルムは密着性が高く、且つ、引出性に優れる。一方従来技術のように、水添テルペン樹脂が過多である組成は、フィルム同士を強く押し付けることにより密着性が得られるが、低荷重にて押し付けた場合の密着性および引出性に劣る。逆に、常温で液体の脂肪族炭化水素が過多である組成は、フィルム表面が過度に可塑化され、求められる高い密着性が得られない。
上記の組成範囲中でさらに、表層(A)の水添テルペン樹脂の添加量をc質量部、表層(A)の常温で液体の脂肪族炭化水素の添加量をd質量部とした時、
d≧0.75×c+3.8
の式を満たす添加量とすると、さらに良好な密着性と引出性の両立が可能である。つまり、水添テルペン樹脂(S3)と常温で液体の脂肪族炭化水素(S4)を特定の比率で混合することにより、表面が適度に可塑化され、さらに良好な密着性と引出性を発現することができる。
なお、ポリプロピレン系樹脂組成物からなる表層(A)には本発明の目的を逸脱しない範囲で酸化防止剤などの公知の添加剤を混合することも可能である。ただし、グリセリン脂肪酸エステルのような脂肪族多価アルコールの脂肪族エステルを含まないことが好ましい。これらは、一般に防曇、可塑化、加工性改良、帯電防止を目的に添加されるが、前述したように水分を多く含んだ食材を包装して電子レンジにて加熱した際に、ラップ表面に泡が発生し、使用者に不快感を与えることがある。
本発明のフィルムは、前記表層(A)に隣接するように芯層(B)が配されている。このことにより、表層(A)中の常温で液体の脂肪族炭化水素が、ブリード現象により芯層(B)へ移行することにより濃度勾配が生じることを防ぎ、適当な量の脂肪族炭化水素のみ表層中に保有させることができるようになる。芯層(B)を形成する結晶性ポリプロピレン系樹脂は、芯層(A)で用いられるのと同様のものでよい。芯層(A)と同様、食品包装に関する規格もしくは基準に適合するものが好ましい。
本発明の芯層(B)で用いられる常温で液体の脂肪族炭化水素(C2)は、流動パラフィン、ミネラルオイル、白色鉱物油などの飽和炭化水素である。これらの物性は特に制限されないが、通常、40℃における動粘度が10〜80cStが好ましく、より好ましくは、10〜40cStの範囲である。
結晶性ポリプロピレン系樹脂(C1)と常温で液体の脂肪族炭化水素(C2)を合わせて100質量%としたとき脂肪族炭化水素(C2)の添加量は、ブリードイン現象を抑制して、時間の経過による密着性・引出性を保持するため、2質量%以上、コシ感、安定した成膜性の観点から20質量%以下の範囲で配合される。好ましくは、2〜15質量%、さらに好ましくは、2〜12質量%である。
表層(A)に存在する常温で液体の脂肪族炭化水素はブリードイン減少により表層(A)から芯層(B)へ移行するため、表層(A)中での水添テルペン樹脂に対する前記脂肪族炭化水素の比率が低下する。従って、初期に得られた密着性および引出性が変化する。この対策として、表層(A)の層構成比率を上げてブリードイン現象を防止することも容易に考えられるが、高い密着性を発現するために、表層(A)組成は柔軟な組成となっており、そのためフィルム全体の弾性率が低下してコシ感が著しく低下する。そこで本発明では、低粘度の脂肪族炭化水素を表層(A)と隣接する芯層(B)に特定量添加することにより、ブリードイン現象を抑制し、フィルム全体の弾性率を大きく低下させることなく、密着性および引出性を保持することができる。
更に表層(A)の脂肪族炭化水素のブリードインを良好に制御するには、表層(A)の常温で液体の脂肪族炭化水素の添加量をd質量部、芯層(B)の常温で液体の脂肪族炭化水素の添加量をe質量%とし、芯層(B)に対する表層(A)(芯層(B)の両面に設けられている場合はその合計)の体積比率をfとした時に、
0.13×d/(3√f)≦ e ≦0.66×d
の式を満足する添加量とすることにより、密着性・引出性は良好な状態を維持しつつ、フィルムのコシ感も満足しうる。
なお、芯層(B)には、融解ピーク温度が200℃以上の樹脂を含まないことが好ましい。ポリ(4−メチルペンテン−1)樹脂のような融解ピーク温度が高い樹脂を添加することにより、170℃以上の高い耐熱性を発現するが、同時にフィルムの弾性率が大きくなり、目標の密着性が得られず、且つ、コシ感に代表される使い勝手も劣る結果となる。
なお、これらの芯層(B)の組成物には、成形加工性を確保する目的で、本発明の目的を逸脱しない範囲で、酸化防止剤などの公知の添加剤を混合することも可能である。
全体の層構成比としては、芯層(B)に対する表層(A)の体積比率をfとした時に、fは0.2から2.7の範囲が好ましい。表層(A)の体積比が0.2より小さければ、フィルム全面に渡って密着性を発揮できないことがある。表層(A)の体積比が2.7より大きければ、フィルム全体が柔らかくなり、コシ感が低下し、使い勝手が悪くなる。
また、表層(A)の表裏の比率は特に制限されないが、フィルムの表裏の区別をしなくてもよい比率を考えると、ほぼ等分が好ましい。
また、多層フィルムを構成する上で、表層(A)と芯層(B)の他に本発明の目的を阻害しない範囲で、例えば、製造時のトリム端などから構成されるリワーク層などが配されていてもよい。密着性と引出性のバランスから、その他の層は、全層の5質量%以下であり、かつ、全層の体積比の5%以下であることが好ましい。ただし、表層(A)と芯層(B)が隣接した状態を失わないように他の層を積層させることが必要である。
本発明のラップフィルムには、密着性に関する指標として密着仕事量を用いる。密着仕事量とは、容器や食品にラップフィルムを被せたときのフィルム同士や容器との密着性を評価する指標である。この密着性は、前述したように、ラップフィルムにおいて、引出性と合わせて重要な特性である。上記密着仕事量は、密着させたフィルム同士を引き剥がすときの仕事量により求められる。詳細な測定方法は後述する方法による。この密着仕事量は、適度な密着性の観点から1.0〜3.0mJが好ましく、より好ましくは1.5〜2.5mJである。
本発明でいうラップフィルムの引出力は密着性と併せて重要な特性であり、収納箱に収められた巻回フィルムからフィルムを引き出すときの引出易さを評価するものである。測定方法は、後述する方法で行われる。この引出力は、良好な引出性の観点から200〜1000mNが好ましく、より好ましくは200〜800mNであり、さらに好ましくは200〜600mNである。
また、ラップフィルムは、例えば一般家庭の台所や業務用調理場など、高温多湿下にて保管されることがあるが、その間に密着仕事量と引出力が大きく変化しないことが望ましい。この変化の指標として、紙管に巻かれた状態のラップフィルムを40℃相対湿度20%にて3週間放置した前後の密着仕事量および引出力の変化率を用いる。密着仕事量の変化率は、−20〜+50%の範囲の変化が望ましく、引出力の変化率は、−50〜+20%の範囲の変化が望ましい。この範囲内であれば、製品が流通・消費されるまでの期間に、密着性もしくは引出性のバランスが崩れることがないと考えられる。
次に、本発明におけるフィルム表面の観察を、原子間力顕微鏡(以下AFM)カンチレバーの刺激に対する位相の情報の画像化により行った際、特定の構造を有することが好ましい。カンチレバーの刺激に対する位相の情報を画像で40,000倍で観察すると、遅れの少ない部分すなわち、硬い部分が位相像では明るく表示され、位相の遅れの大きい部分すなわち柔らかい部分が位相像では暗く表示される。本発明のラップフィルムのうち、好ましいフィルム表面をこの方法で観察すると、フィブリル状の網目構造とその間に存在するマトリックスとからなる。こうして観察した画像例が、図1の画像である。網目構造とは、画像上で連続的に明るく見える部分をいい、マトリックスとは、この網目構造に囲まれた不連続に暗く見える部分からなる部分をいう。この連続的に観察される繊維状の明るい部分をフィブリル状の網目構造とし、不連続である黒い部分をマトリックスとする。なおこの観察は、10mm x 10mmの範囲から無作為に2ミクロン x 2ミクロンの画像を50個観察し、それらの画像のうち、フィブリルの幅が最も均一であり、各フィブリル間の距離も最も均一である部分を抽出する。その抽出した画像についてフィブリルの幅、および、フィブリル間の距離を100点選択し、このうち上下20点を除く残りの80点について平均値を求め、後述のフィブリルの幅、マトリックスの大きさとする。
このフィブリルの平均幅は1nm以上100nm以下が好ましい。フィブリルの平均幅がこの範囲であると、フィルム表面の平滑性が維持され、密着性がより向上する。さらに好ましくは、10nm以上50nm以下である。
マトリックスの大きさ(すなわちフィブリルとフィブリルの間隔の平均値)は、平均幅が3nm以上1μm以下が好ましい。マトリックスの平均大きさがこの範囲であると、マトリックスを構成する密着成分がフィルム表面の網目構造に保持され、必要以上に表面には露出せず、密着性と引出性のバランスが維持される。さらに好ましくは、10nm以上50nm以下の範囲である。
本発明の網目構造では、ポリプロピレン系樹脂の結晶部分が主としてフィブリルを形成する。ポリプロピレンの非晶部分と柔軟剤、水添テルペン樹脂、常温で液体の脂肪族炭化水素が主としてマトリックスを形成する。上記のように特定の大きさのフィブリルの網目構造をとることにより、マトリックス部分の密着性に大きく影響する柔軟な成分がフィブリルに保持され、かつ密着発現に必要最低量だけ表面に存在し、良好な密着性と引出性を発現することが可能となる。
網目構造を形成しないフィルム表面上に、柔軟化された成分が部分的に存在する場合や、柔軟化された成分が本発明で特定された網目構造の孔のサイズよりも大きい形態で海島構造として存在している場合は、密着成分が表面には均一に存在せず、密着性と引出性のバランスは低下する。
本発明のフィルムは特定の柔軟性を有することが好ましく、具体的には引張弾性率が、200〜1000MPaであることが好ましい。引っ張り弾性率は、ASTM−D−882記載の方法に準拠して引張試験機(新興通信工業社製、万能引張圧縮試験機)を用いフィルムの縦方向(MD−引取方向)及び横方向(TD−引取方向に垂直な方向)の2%歪み時の引張弾性率の平均値を測定することにより得られる。この値は、フィルムの柔軟性、コシ感、使い勝手の観点から200MPa以上が好ましく、柔軟性、密着性、使い勝手の観点から1000MPa以下であることが好ましい。より好ましくは400MPa以上700MPa未満である。
本発明のフィルムの厚みは、包装用フィルムとしての強度、コシ感、包装する際の使い勝手の観点から3μm以上が好ましく、包装する際の物品に対する密着性、フィルムの使い勝手、家庭用食品ラップとした場合の製品の質量、巻径、使用時の取り扱いの容易さ等の観点から25μm以下が好ましい。特に密着性と引出性の使い勝手などが要求される家庭用食品包装ラップとしては、6μmから15μmがより好ましい。
当該フィルムを製造する方法としては、公知のフィルム成形方法を用いることが可能である。表層(A)のポリプロピレン系樹脂組成物の調製は、押出機などによる溶融混練によって行われる。柔軟剤、水添テルペン樹脂は常温で固体なので、市販のポリプロピレン系樹脂ペレットとともに、所定量をブレンダーなどに投入し、充分均一に混合する。これを表層用押出機に投入する。表層(A)および芯層(B)の脂肪族炭化水素は、常温で液体なので、表層および芯層用押出機途中にそれぞれ液体注入設備を設置して、スクリュー途中から溶融可塑化した樹脂に添加する。適切な押出条件で混練することにより均一な組成物とし、多層ダイなどにより表層、芯層、および必要に応じてリワーク層などとともに多層フィルムとなるように押出する。また、あらかじめ、表層(A)および芯層(B)の組成を、途中液体添加可能な二軸押出機など公知の装置を用いて充分融混練したのち、ペレットを作成してから、表層および芯層の押出機にそれぞれ投入することもできる。
多層構成フィルムとするためには、例えば3層構成とする場合は、前述した表層用押出機と芯層用の押出機を並列に配置し、これらにそれぞれ、所定の樹脂を投入して充分溶融、混練し、その下流側でこれらの押出機からの樹脂を3層の層状に合流させ、例えば円環状ダイまたはスリット状の吐出口部をもつTダイなどを用いてシート状に成形して押出する。押出した樹脂は、冷水槽中を通過させたり、冷風や冷却ロールへ接触させるなど、公知の方法で冷却固化する。このときの押出シート表面の冷却温度は、表面の平滑性、外観の観点から10℃以上が好ましく、表層(A)に配合している密着剤の表面へのブリード性、密着性の観点から50℃以下が好ましい。
好ましくは、ロール法、テンター法による1軸延伸や2軸延伸、チューブラー法による多軸延伸などの通常の公知の方法で縦方向及び/または横方向に、フィルムとしての強度、食品包装用ラップとして用いた場合のフィルムのカット性の観点から2倍以上延伸する。逐次二軸延伸法の場合、縦、横方向の延伸順序は特に指定はない。また、縦、横方向の倍率は同一でなくともよい。さらに好ましくは、チューブラー法による多軸延伸にて、縦横各々を2倍以上延伸することが望ましい。延伸が終了したフィルムは、フィルム端部のトリミングや所望のサイズへのカット、あるいは紙管などへの巻き付けなど、目的とする製品の形態に応じた工程を経て製品とする。
また、チューブラーにて多軸延伸した場合は、フィルムの熱収縮率を調整する目的で、延伸したフィルムを公知の方法で熱固定処理しても構わない。ロールにてMD方向を拘束してロールからの接触加熱や赤外線等による間接加熱による方法、テンターによる横方向を拘束して熱風や輻射熱による加熱する方法、もしくは再度バブルを形成した状態で熱風や輻射熱により加熱する方法を用いることができる。
当該フィルムはラップフィルムの性能として要求される密着性と引出性のバランスだけでなく、透明性、耐熱性、適度な柔軟性、良好な手触り感、カット性、安全性に優れており、家庭用の食品包装用ラップフィルムとして好適に使用できるものである。
The present invention will be specifically described below.
The polypropylene resin used in the present invention has a propylene unit in a polymer molecular chain, and may be a homopolymer consisting only of a propylene unit, or a binary or ternary copolymer with ethylene or butene-1. There may be. Among the copolymers, random copolymerization is preferable from the viewpoint of transparency. As the stereoregularity, either an isotactic structure, a syndiotactic structure, or a mixture thereof may be used. Although there is no other restriction | limiting in particular, Considering using for the film for food packaging, for example, what passed the standard standard regarding food packaging from a viewpoint of safety is preferable. In addition, the melt flow rate is more preferably in the range of 1 to 20 g / 10 min with a load of 230 ° C. and 2.16 kg applied in accordance with ASTM D1238.
The component used as a softening agent contained in the surface layer (A) is selected from an amorphous or low crystalline propylene-α-olefin copolymer and a butene-1 polymer. From the viewpoint of safety, those that pass the standards for food packaging are preferred.
Here, the amorphous or low crystalline propylene-α-olefin copolymer is a copolymer of propylene and an α-olefin having 4 or more carbon atoms such as butene-1 or pentene-1. The propylene ratio is preferably 65% by mass to 85% by mass. In addition, the melt flow rate is preferably in the range of 1 to 10 g / 10 min with a load of 230 ° C. and 2.16 kg applied in accordance with ASTM D1238. The density in ASTM D1505 is preferably 0.85 to 0.89 g / cm 3 . It itself is rich in flexibility, and when mixed with a crystalline polypropylene resin, it has the performance of being mixed without impairing transparency and providing a softening effect. In addition, examples of the polypropylene-α olefin copolymer having amorphous or low crystallinity include, for example, Mitsui Chemicals' Toughmer XR.
The butene-1 polymer is a homopolymer obtained by catalytic polymerization of liquid butene-1 monomer. The melt flow rate is preferably in the range of 0.1 to 5 g / 10 min with a load of 190 ° C. and 2.16 kg applied in accordance with ASTM D1238. Further, the density in ASTM D1505 is preferably 0.904 to 0.920 g / cm 3 .
The softening agent has good compatibility with the crystalline polypropylene resin, and by blending an appropriate amount, the elastic modulus, moisture resistance and heat resistance of the crystalline polypropylene resin are not greatly impaired, There is an effect of reducing the flexural modulus, that is, an effect of imparting flexibility.
When the blending amount of these softeners is 100% by mass of the crystalline polypropylene resin and the softener, the softener is from the viewpoint of the flexibility of the film obtained, the feel of the hand, and the shape followability to the package. The amount is 20% by mass or more, and is 50% by mass or less from the viewpoint of stable film formability, workability, appearance and quality of the product, feeling of stiffness, and ease of use of the packaging film. More preferably, it is 20-40 mass%, More preferably, it is 20-30 mass%.
The hydrogenated terpene resin further contained in the surface layer (A) is used as an adhesive.
The hydrogenated terpene resin is a homopolymer made from α-pinene, β-pinene, limonene, dipentene or the like obtained from pine bark or citrus fruit skin, or a hydrogenated product of these copolymers. is there. The softening point of the hydrogenated terpene resin is preferably 120 ° C. or higher from the viewpoint of stickiness of the film, etc., and 135 ° C. or lower is preferable from the viewpoint of the flexibility and adhesion of the surface layer (A) portion in which the hydrogenated terpene resin is blended. When hydrogenated terpene resin is 100 parts by mass of the composition comprising the above crystalline polypropylene resin and softening agent, 5 parts by mass or more from the viewpoint of adhesion performance, the blocking between films is reduced, and the pulling force is reduced. Therefore, the amount is 15 parts by mass or less. Preferably it is 5-10 mass parts, More preferably, it is 5-8 mass parts.
Aliphatic hydrocarbons which are liquid at normal temperature contained in the surface layer (A) are used as adhesion assistants. The adhesion aid is at least one of saturated hydrocarbons refined from crude oil such as liquid paraffin, mineral oil, white mineral oil, polyisobutylene obtained by homopolymerizing isobutene or polybutene obtained by copolymerizing isobutene and normal butene. Add type. Most preferred is mineral oil. Further, the addition amount is 10 parts by mass or more and 20 parts by mass from the viewpoint of the feel of touch and stable adhesion when the composition comprising the crystalline polypropylene resin and the softening agent is 100 parts by mass. Or less. Moreover, Preferably it is 15 mass parts or more.
The combined use of the hydrogenated terpene resin as the adhesion agent and the aliphatic hydrocarbon that is liquid at normal temperature as the adhesion aid makes the wrap film of the present invention high in adhesion and excellent in drawability. On the other hand, as in the prior art, a composition having an excessive amount of hydrogenated terpene resin provides adhesion by strongly pressing the films together, but is inferior in adhesion and drawability when pressed with a low load. On the other hand, a composition having an excess of liquid aliphatic hydrocarbons at room temperature does not provide the required high adhesion because the film surface is excessively plasticized.
In the above composition range, when the addition amount of the hydrogenated terpene resin of the surface layer (A) is c parts by mass, and the addition amount of the aliphatic hydrocarbon that is liquid at room temperature of the surface layer (A) is d parts by mass,
d ≧ 0.75 × c + 3.8
If the addition amount satisfies the above formula, it is possible to achieve both better adhesion and drawability. That is, by mixing the hydrogenated terpene resin (S3) and the aliphatic hydrocarbon (S4) that is liquid at room temperature in a specific ratio, the surface is appropriately plasticized, and further exhibits good adhesion and drawability. be able to.
In addition, it is also possible to mix well-known additives, such as antioxidant, in the surface layer (A) which consists of a polypropylene resin composition in the range which does not deviate from the objective of this invention. However, it is preferable not to contain an aliphatic ester of an aliphatic polyhydric alcohol such as glycerin fatty acid ester. These are generally added for the purpose of anti-fogging, plasticization, processability improvement and antistatic, but when the food containing a lot of moisture is packaged and heated in a microwave oven as described above, Bubbles may be generated and may cause discomfort to the user.
In the film of the present invention, the core layer (B) is arranged so as to be adjacent to the surface layer (A). As a result, the aliphatic hydrocarbon which is liquid at room temperature in the surface layer (A) is prevented from causing a concentration gradient due to migration to the core layer (B) due to the bleeding phenomenon, and only an appropriate amount of aliphatic hydrocarbon is obtained. It can be held in the surface layer. The crystalline polypropylene resin forming the core layer (B) may be the same as that used in the core layer (A). Similar to the core layer (A), those that conform to standards or standards for food packaging are preferred.
The aliphatic hydrocarbon (C2) that is liquid at room temperature and used in the core layer (B) of the present invention is a saturated hydrocarbon such as liquid paraffin, mineral oil, white mineral oil and the like. Although these physical properties are not particularly limited, usually, the kinematic viscosity at 40 ° C. is preferably 10 to 80 cSt, more preferably 10 to 40 cSt.
When the crystalline polypropylene resin (C1) and the aliphatic hydrocarbon (C2) that is liquid at room temperature are combined to be 100% by mass, the amount of the aliphatic hydrocarbon (C2) is added to suppress the bleed-in phenomenon. In order to maintain the adhesion and the drawability due to the progress of the above, it is blended in the range of 2% by mass or more, 20% by mass or less from the viewpoint of stiffness and stable film formability. Preferably, it is 2-15 mass%, More preferably, it is 2-12 mass%.
The aliphatic hydrocarbon which is liquid at normal temperature in the surface layer (A) shifts from the surface layer (A) to the core layer (B) due to the decrease in bleed-in, and thus the aliphatic group for the hydrogenated terpene resin in the surface layer (A). The hydrocarbon ratio decreases. Accordingly, the adhesiveness and the drawability obtained in the initial stage change. As a countermeasure, it can be easily considered to increase the layer composition ratio of the surface layer (A) to prevent the bleed-in phenomenon, but the surface layer (A) composition is a flexible composition in order to exhibit high adhesion. For this reason, the elastic modulus of the entire film is lowered, and the stiffness is remarkably lowered. Therefore, in the present invention, by adding a specific amount of low-viscosity aliphatic hydrocarbons to the core layer (B) adjacent to the surface layer (A), the bleed-in phenomenon is suppressed and the elastic modulus of the entire film is greatly reduced. In addition, adhesion and drawability can be maintained.
Furthermore, in order to control the bleed-in of the aliphatic hydrocarbon of the surface layer (A) satisfactorily, the amount of the aliphatic hydrocarbon that is liquid at room temperature of the surface layer (A) is set to d parts by mass and the room temperature of the core layer (B). The addition amount of the liquid aliphatic hydrocarbon was set to e mass%, and the volume ratio of the surface layer (A) to the core layer (B) (or the total when provided on both surfaces of the core layer (B)) was set to f. Sometimes,
0.13 × d / (3√f) ≦ e ≦ 0.66 × d
By making the addition amount satisfying the above formula, it is possible to satisfy the firmness of the film while maintaining good adhesion and drawability.
The core layer (B) preferably does not contain a resin having a melting peak temperature of 200 ° C. or higher. By adding a resin having a high melting peak temperature such as poly (4-methylpentene-1) resin, a high heat resistance of 170 ° C. or higher is exhibited, but at the same time, the elastic modulus of the film is increased and the target adhesion is increased. Cannot be obtained, and the usability represented by the feeling of stiffness is inferior.
In addition, in the composition of these core layers (B), it is possible to mix known additives such as antioxidants within the range not departing from the object of the present invention in order to ensure molding processability. is there.
The overall layer composition ratio is preferably in the range of 0.2 to 2.7, where f is the volume ratio of the surface layer (A) to the core layer (B). If the volume ratio of the surface layer (A) is smaller than 0.2, adhesion may not be exhibited over the entire film surface. When the volume ratio of the surface layer (A) is larger than 2.7, the whole film becomes soft, the feeling of stiffness is lowered, and the usability is deteriorated.
Further, the ratio of the front and back surfaces of the surface layer (A) is not particularly limited, but considering the ratio that does not require the distinction between the front and back surfaces of the film, it is preferably approximately equal.
In addition to the surface layer (A) and the core layer (B), a rework layer composed of, for example, trim edges at the time of manufacture is arranged in addition to the surface layer (A) and the core layer (B). May be. From the balance between adhesion and drawability, the other layers are preferably 5% by mass or less of the total layer and 5% or less of the volume ratio of the total layer. However, it is necessary to laminate other layers so as not to lose the state in which the surface layer (A) and the core layer (B) are adjacent to each other.
For the wrap film of the present invention, the work of adhesion is used as an index for adhesion. The adhesion work is an index for evaluating adhesion between films and containers when a container or food is covered with a wrap film. As described above, this adhesion is an important characteristic in the wrap film together with the drawability. The adhesion work is determined by the work when the films that are brought into close contact with each other are peeled off. The detailed measurement method is based on the method described later. This adhesion work is preferably 1.0 to 3.0 mJ, more preferably 1.5 to 2.5 mJ from the viewpoint of moderate adhesion.
The pulling power of the wrap film referred to in the present invention is an important characteristic together with the adhesiveness, and evaluates ease of pulling out the film from the wound film stored in the storage box. The measurement method is performed by the method described later. The pulling power is preferably 200 to 1000 mN, more preferably 200 to 800 mN, and still more preferably 200 to 600 mN, from the viewpoint of good drawability.
In addition, the wrap film may be stored under high temperature and high humidity, for example, in an ordinary household kitchen or a commercial kitchen, and it is desirable that the work of adhesion and the pulling force do not change significantly during that time. As an index of this change, the work amount of contact and the change rate of the pulling force before and after the wrap film wound in a paper tube is left at 40 ° C. and 20% relative humidity for 3 weeks are used. The change rate of the work of adhesion is preferably in the range of -20 to + 50%, and the change rate of the pulling force is preferably in the range of -50 to + 20%. If it is within this range, it is considered that the balance of adhesion or drawability is not lost during the period until the product is distributed and consumed.
Next, when the observation of the film surface in the present invention is performed by imaging phase information with respect to stimulation of an atomic force microscope (hereinafter AFM) cantilever, it is preferable to have a specific structure. When observing the phase information for cantilever stimulation at 40,000 times in the image, a portion with a small delay, that is, a hard portion is displayed bright in the phase image, and a portion with a large phase delay, that is, a soft portion is displayed dark in the phase image. The When the preferable film surface among the wrap films of the present invention is observed by this method, it consists of a fibril-like network structure and a matrix existing therebetween. The image example observed in this way is the image of FIG. The network structure refers to a portion that appears continuously bright on the image, and the matrix refers to a portion that is formed by discontinuously dark portions surrounded by the network structure. The continuously observed fibrous bright portion is a fibril network structure, and the discontinuous black portion is a matrix. In this observation, 50 images of 2 microns x 2 microns were randomly observed from a range of 10 mm x 10 mm, and among these images, the fibril width was the most uniform, and the distance between each fibril was also the most uniform. The part which is is extracted. 100 points of the fibril width and the distance between the fibrils are selected for the extracted image, and an average value is obtained for the remaining 80 points excluding the upper and lower 20 points, and set as the fibril width and matrix size described later.
The average width of the fibril is preferably 1 nm or more and 100 nm or less. When the average fibril width is within this range, the smoothness of the film surface is maintained, and the adhesion is further improved. More preferably, it is 10 nm or more and 50 nm or less.
As for the size of the matrix (that is, the average value of the interval between fibrils), the average width is preferably 3 nm or more and 1 μm or less. When the average size of the matrix is within this range, the adhesion component constituting the matrix is held in the network structure of the film surface, and is not exposed to the surface more than necessary, and the balance between adhesion and drawability is maintained. More preferably, it is the range of 10 nm or more and 50 nm or less.
In the network structure of the present invention, the crystalline portion of the polypropylene resin mainly forms fibrils. The amorphous part of polypropylene, softener, hydrogenated terpene resin, and aliphatic hydrocarbon that is liquid at room temperature mainly form a matrix. By adopting a network structure of fibrils of a specific size as described above, flexible components that greatly affect the adhesion of the matrix part are held in the fibrils, and only the minimum amount necessary for the expression of adhesion is present on the surface, which is good It becomes possible to express a good adhesion and drawability.
When the softened component is partially present on the surface of the film that does not form a network structure, or the softened component is larger than the size of the pores of the network structure specified in the present invention as a sea-island structure. When it exists, the adhesion component does not exist uniformly on the surface, and the balance between adhesion and drawability decreases.
The film of the present invention preferably has specific flexibility, and specifically, the tensile elastic modulus is preferably 200 to 1000 MPa. The tensile elastic modulus is determined in accordance with the method described in ASTM-D-882 using a tensile tester (manufactured by Shinsei Tsushin Kogyo Co., Ltd., universal tensile / compression tester) in the machine direction (MD-take-up direction) and transverse direction (TD It is obtained by measuring the average value of the tensile modulus at 2% strain in the direction perpendicular to the take-off direction. This value is preferably 200 MPa or more from the viewpoint of film flexibility, stiffness, and usability, and is preferably 1000 MPa or less from the viewpoint of flexibility, adhesion, and usability. More preferably, it is 400 MPa or more and less than 700 MPa.
The thickness of the film of the present invention is preferably 3 μm or more from the viewpoint of strength as a packaging film, stiffness, and ease of use in packaging. Adhesion to articles during packaging, ease of use of film, and household food wrap In view of the mass of the product, the winding diameter, ease of handling at the time of use, etc., 25 μm or less is preferable. In particular, 6 μm to 15 μm is more preferable as a food packaging wrap for home use that requires usability of adhesion and drawability.
As a method for producing the film, a known film forming method can be used. The polypropylene resin composition for the surface layer (A) is prepared by melt kneading using an extruder or the like. Since the softening agent and hydrogenated terpene resin are solid at room temperature, a predetermined amount is put into a blender or the like together with commercially available polypropylene resin pellets and mixed sufficiently uniformly. This is put into a surface layer extruder. Since the aliphatic hydrocarbons in the surface layer (A) and the core layer (B) are liquid at room temperature, a liquid injection facility is installed in the middle of the extruder for the surface layer and the core layer, and added to the resin melt-plasticized in the middle of the screw. To do. A uniform composition is obtained by kneading under an appropriate extrusion condition, and extrusion is performed with a multilayer die or the like so as to form a multilayer film together with a surface layer, a core layer, and a rework layer as necessary. In addition, the composition of the surface layer (A) and the core layer (B) is sufficiently melt-kneaded using a known apparatus such as a twin screw extruder capable of adding liquid in the middle, and then pellets are formed, and then the surface layer and the core are formed. Each can also be fed into a layer extruder.
In order to make a multilayer film, for example, in the case of a three-layer structure, the above-described surface layer extruder and the core layer extruder are arranged in parallel, and a predetermined resin is introduced into each of these to sufficiently melt. And kneading, and the resin from these extruders is merged into three layers on the downstream side, and formed into a sheet using, for example, an annular die or a T-die having a slit-like discharge port, and extruded. To do. The extruded resin is cooled and solidified by a known method such as passing through a cold water tank or contacting with cold air or a cooling roll. The cooling temperature of the extruded sheet surface at this time is preferably 10 ° C. or more from the viewpoint of surface smoothness and appearance, and from the viewpoint of bleeding to the surface of the adhesive agent blended in the surface layer (A) and adhesion. C. or lower is preferable.
Preferably, film strength, food packaging wrap, in the longitudinal and / or transverse direction by a commonly known method such as uniaxial stretching or biaxial stretching by a roll method, a tenter method, or multiaxial stretching by a tubular method. When used as a film, the film is stretched twice or more from the viewpoint of the cut property of the film. In the case of the sequential biaxial stretching method, the stretching order in the longitudinal and lateral directions is not particularly specified. Further, the magnifications in the vertical and horizontal directions need not be the same. More preferably, it is desirable to stretch each of the longitudinal and transverse directions twice or more by multiaxial stretching by a tubular method. The film that has been stretched is made into a product through processes according to the form of the target product, such as trimming of the film end, cutting to a desired size, or winding around a paper tube.
Moreover, when carrying out multiaxial stretching with a tubular, you may heat-process the stretched film by a well-known method in order to adjust the heat shrinkage rate of a film. Constraining the MD direction with a roll, contact heating from the roll or indirect heating with infrared rays, etc., constraining the transverse direction with a tenter and heating with hot air or radiant heat, or hot air or radiant heat with bubbles formed again The heating method can be used.
The film has not only the balance between adhesion and drawability required for the performance of wrap film, but also transparency, heat resistance, moderate flexibility, good touch feeling, cutability, and safety, It can be suitably used as a food packaging wrap film.

次に、本発明の実施形態について例示する。何れも本発明の一形態であり、これらの実施例に何ら限定されるものではない。なお、本発明および比較例によって得られるフィルムの性能評価方法は以下の通りである。
(密着仕事量)
食器などの容器や食品にラップフィルムを被せたときのフィルム同士の密着性を評価したものであり、以下の通り測定した。
底面積が25cmで質量が400gの2本の円柱のそれぞれの底面に同じ底面積の濾紙をあらかじめ貼り付けた。この濾紙を貼り付けた2つの円柱の底面に、ラップフィルムを皺が入らないように緊張させて固定した。そして、これらのフィルム面の相互がぴったり重なり合うように前記2本の円柱を合わせて、23℃、相対湿度50%の条件下に、荷重500gで1分間圧着した。次いで、重なり合わせたフィルム相互を引張試験機(新興通信工業社製、万能引張圧縮試験機)にて5mm/分の速度で面に垂直な方向に引き離し、この時に生じたエネルギー(mJ)を密着仕事量とした。
(密着仕事量の変化)
相着仕事量が時間の経過によりどの程度安定であるかを評価したものである。成膜後23℃、相対湿度50%で24時間以上経過した密着仕事量および、さらにこのラップフィルムを40℃相対湿度20%の雰囲気下で、21日間保管した後の密着仕事量を前記の測定方法により測定した。
保管前の密着仕事量の評価は下記の基準で示した。
◎:1.5mJ以上2.5mJ未満
○:0.5mJ以上1.5mJ未満と2.5mJ以上3.5mJ未満
△:3.5mJ以上4.0mJ未満
×:0.5mJ未満と4.0mJ以上
また、温度40℃相対湿度20%の雰囲気下にて21日間保管した試料の密着仕事量の保管前の密着仕事量に対する変化は、下記の基準で評価した。
◎:−20%≦(変化)<+50%
○:−50%≦(変化)<−20%、又は+50%≦(変化)<+75%
△:(変化)<−50%、又は+75%≦(変化)
×:引き出せないため測定不能
(引出力)
引出力は、巻回フィルムからフィルムを引き出した時の引出性を評価したものであり、以下のようにして測定した。
300mm幅にスリットされたフィルムを、外径41mm、内径38mm、幅308mmの紙管に20Nの張力にて、100m/分の速度にて20mずつ巻き、巻回フィルムを作成した。
前記巻回フィルムの紙管の両端を、軽負荷で回転する回転部を有した専用のつかみ具ではさんで固定し、このつかみ具を引張試験機(新興通信工業社製、万能引張圧縮試験機)の下部に固定した。次に、フィルム先端を巾330mmの上部固定具に貼り付けて固定し、1000mm/分の速度でフィルムを巻解きながら得られる力を測定し、この時に得られた最大荷重を引出力とした。
この引出力の時間の経過による変化を見るため、成膜後24時間以上経過した試料の引出力および、40℃相対湿度20%の雰囲気下で、21日間保管した試料の引出力を測定した。
保管前の引出力は下記の基準で評価した。
◎:50mN以上600mN未満
○:600mN以上1200mN未満
△:1200mN以上1500mN未満
×:50mN未満と1500mN以上
また、温度40℃相対湿度20%の雰囲気下にて21日間保管した試料の引出力の保管前の引出力を下記の基準で評価した。
◎:−50%≦(変化)<+20%
○:−80%≦(変化)<−50%、又は+20%≦(変化)<+50%
△:(変化)<−80%、又は+50%≦(変化)
×:引き出せないため測定不能
(透明性)
透明性はASTM−D−103記載の方法に準拠してNDH−300A(日本電色製)を用いて得られたフィルムの曇り度を測定し、次の基準で評価した。
◎:1.0未満
○:1.0以上2.0未満
△:2.0以上3.0未満
×:3.0以上
(耐熱性)
耐熱性は東京都消費生活条例第11条に基づき耐熱温度を測定した。耐熱温度が140℃以上のフィルムを◎、130℃および135℃のものを○、125℃以下のものについては×とした。
(柔軟性)
柔軟性はASTM D882記載の方法に準拠して引張試験機(新興通信工業社製、万能引張圧縮試験機)を用いフィルムの縦方向(MD)及び横方向(TD)の2%歪み時の引張弾性率を測定した。以下の基準で評価した。
◎:縦横双方の平均値が400MPa以上700MPa未満
○:200MPa以上400MPa未満及び700MPa以上1000MPa未満
△:100MPa以上200MPa未満
×:100MPaに満たないかもしくは1000MPa以上のもの
(手触り性)
手触り性は、無作為に選出した所定人数の主婦50人に手触りの良さを良い、悪いで官能評価して貰うことにより評価した。評価は以下の基準により行った。
◎:手触りが良いとした人数が45人以上
○:手触りが良いとした人数が40人以上45人未満
△:手触りが良いとした人数が30人以上40人未満
×:手触りが良いとした人数が30人未満
(カット性)
フィルムのカット性は、得られたフィルムを紙管に300mm幅、巻長20mで巻き付け、次いでこれを旭化成(株)製サランラップ用化粧箱に収納し、付属の鋸刃にて切断した。その時の切断の状態から、下記の基準により評価した。
◎:軽い力できれいに切断可能
○:多少の力が必要なもののきれいに切断可能
△:切断可能であるが切断しにくいもの
×:うまく切断できずフィルムが伸びたり、斜めに破れたり、力が掛かりすぎて化粧箱がつぶれた。
(フィルムの表面観察)
原子間力顕微鏡の位相像でのフィルム表面の観察は下記の方法で行った。フィルムをガラスに貼付け固定し、表面をデジタルインスツルメント社製NanoScopeIIIaにてTappingモードで位相像を観察した。測定にはSi単結晶のカンチレバー(ばね定数=0.07−0.58N/m)を用い、Scan rateが0.5−1Hz、Scan sizeが2μmで、Z limitが440V、サンプリング点数512512の条件で実施した。フィルムによってカンチレバーの触圧をコントロールしたところ、target amplitudeが2Vの場合はSet Pointが0.8−1.4V、target amplitudeが4Vの場合はSet Pointが2.0−3.5Vの範囲であった。サンプルの10mm x 10mmの範囲から無作為に2ミクロン x 2ミクロンの画像を50個観察し、それらの画像のうち、フィブリルの幅が最も均一であり、各フィブリル間の距離も最も均一である部分を抽出する。その抽出した2μm×2μmの視野を40,000倍に拡大した80mm×80mmの画像の中から、均等に、フィブリルの幅とフィブリル間の距離をそれぞれ100点抽出する。その数値の中の最も大きいもの10点と最も小さいもの10点を除いた80点の平均値を採用した。平均幅により表面構造を下記の基準で評価した。
◎:フィブリルの平均幅が、1nm以上50nm未満
○:50nm以上100nm未満
×:100nm以上
また、フィブリル間の平均距離は次の基準で評価した。
◎:10nm以上50nm未満
○:3nm以上10nm未満または、50nm以上1000nm未満
×:3nm未満または1000nm以上
上記の評価をまとめて総合評価を行った。何れの評価項目においても◎と判断されたものが最も優れており、◎もしくは○の評価のみである場合を実用上可能な程度とし、△及び×と判断された項目があるものについては実用上問題があると判定した。
Next, embodiments of the present invention will be illustrated. Each of them is a form of the present invention and is not limited to these examples. In addition, the performance evaluation method of the film obtained by this invention and a comparative example is as follows.
(Close contact work)
The adhesion between films when a wrap film was put on a container such as tableware or food was evaluated and measured as follows.
A filter paper having the same bottom area was attached in advance to the bottom surfaces of two cylinders having a bottom area of 25 cm 2 and a mass of 400 g. The wrap film was tensioned and fixed so that no wrinkles would enter the bottom surfaces of the two cylinders to which the filter paper was attached. Then, the two cylinders were put together so that the film surfaces were exactly overlapped with each other, and pressed under a condition of 23 ° C. and a relative humidity of 50% under a load of 500 g for 1 minute. Next, the overlapped films are separated from each other in a direction perpendicular to the surface at a speed of 5 mm / min with a tensile tester (manufactured by Shinsei Tsushin Kogyo Co., Ltd., a universal tensile / compression tester), and the energy (mJ) generated at this time is adhered. The amount of work.
(Change in close contact work)
This is an evaluation of how stable the work of cohesion is over time. The above-mentioned measurement of the work of adhesion after film formation at 23 ° C. and 50% relative humidity for 24 hours or more, and the storage work after storing this wrap film in an atmosphere of 40 ° C. and 20% relative humidity for 21 days Measured by the method.
Evaluation of the adhesion work before storage was shown by the following criteria.
◎: 1.5 mJ or more and less than 2.5 mJ ○: 0.5 mJ or more and less than 1.5 mJ and 2.5 mJ or more and less than 3.5 mJ Δ: 3.5 mJ or more and less than 4.0 mJ ×: Less than 0.5 mJ and 4.0 mJ or more Moreover, the change with respect to the contact work before storage of the sample which was stored for 21 days in an atmosphere of a temperature of 40 ° C. and a relative humidity of 20% was evaluated according to the following criteria.
A: −20% ≦ (change) <+ 50%
○: −50% ≦ (change) <− 20%, or + 50% ≦ (change) <+ 75%
Δ: (Change) <− 50% or + 75% ≦ (Change)
×: Cannot be pulled out and cannot be measured (drawing output)
The pulling power is an evaluation of the pulling property when the film is pulled out from the wound film, and was measured as follows.
A film slit to a width of 300 mm was wound around a paper tube having an outer diameter of 41 mm, an inner diameter of 38 mm, and a width of 308 mm at a speed of 100 m / min.
Both ends of the paper tube of the wound film are fixed with a special gripping tool having a rotating part that rotates at a light load, and this gripping tool is fixed to a tensile testing machine (manufactured by Shinsei Tsushin Kogyo Co., Ltd., universal tensile compression testing machine). ) Fixed at the bottom. Next, the tip of the film was affixed and fixed to an upper fixture having a width of 330 mm, the force obtained while unwinding the film at a speed of 1000 mm / min was measured, and the maximum load obtained at this time was used as the drag output.
In order to see the change of the pulling power with the passage of time, the pulling power of a sample that had passed for 24 hours or more after film formation and the pulling power of a sample stored for 21 days in an atmosphere of 40 ° C. and 20% relative humidity were measured.
The pulling power before storage was evaluated according to the following criteria.
◎: 50 mN or more and less than 600 mN ○: 600 mN or more and less than 1200 mN Δ: 1200 mN or more and less than 1500 mN ×: Less than 50 mN and 1500 mN or more Before storage of the sample output stored for 21 days in an atmosphere at a temperature of 40 ° C. and a relative humidity of 20% The pulling power was evaluated according to the following criteria.
A: −50% ≦ (change) <+ 20%
○: −80% ≦ (change) <− 50%, or + 20% ≦ (change) <+ 50%
Δ: (change) <− 80% or + 50% ≦ (change)
×: Cannot be pulled out and cannot be measured (transparency)
Transparency measured the haze of the film obtained using NDH-300A (made by Nippon Denshoku) based on the method of ASTM-D-103, and evaluated it on the following reference | standard.
◎: Less than 1.0 ○: 1.0 or more and less than 2.0 Δ: 2.0 or more and less than 3.0 ×: 3.0 or more (heat resistance)
The heat resistance was measured based on Article 11 of the Tokyo Consumer Life Ordinance. A film having a heat resistant temperature of 140 ° C. or higher was rated as “◎”, 130 ° C. and 135 ° C. as “◯”, and 125 ° C. or lower as “X”.
(Flexibility)
Flexibility is based on the method described in ASTM D882, using a tensile tester (manufactured by Shinsei Tsushin Kogyo Co., Ltd., universal tensile / compression tester), tensile at 2% strain in the machine direction (MD) and transverse direction (TD) of the film. The elastic modulus was measured. Evaluation was made according to the following criteria.
A: The average value of both vertical and horizontal is 400 MPa or more and less than 700 MPa ○: 200 MPa or more and less than 400 MPa and 700 MPa or more and less than 1000 MPa Δ: 100 MPa or more and less than 200 MPa ×: Less than 100 MPa or 1000 MPa or more (hand feeling)
The hand touch was evaluated by sensually evaluating 50 good housewives with good and bad touches to a predetermined number of housewives selected at random. Evaluation was performed according to the following criteria.
◎: 45 or more people who feel good ○: 40 or more people less than 45 people who feel good △: 30 or more people less than 40 people who feel good ×: Number of people who feel good Is less than 30 (cutability)
The cut property of the film was obtained by winding the obtained film around a paper tube with a width of 300 mm and a winding length of 20 m, and then storing this in a cosmetic box for saran wrap manufactured by Asahi Kasei Co., Ltd. and cutting with an attached saw blade. From the state of cutting at that time, the following criteria were evaluated.
◎: Can be cut cleanly with light force ○: Can be cut cleanly even though some force is required △: Can be cut but difficult to cut ×: Cannot cut well, film stretches, tears diagonally, force is applied The dressing box was crushed too much.
(Film surface observation)
Observation of the film surface with a phase image of an atomic force microscope was performed by the following method. The film was affixed to glass and fixed, and the phase image was observed in the Tapping mode with NanoScope IIIa manufactured by Digital Instruments. For the measurement, a Si single crystal cantilever (spring constant = 0.07-0.58 N / m) was used. Scan rate was 0.5-1 Hz, Scan size was 2 μm, Z limit was 440 V, and sampling point was 51512. It carried out in. When the contact pressure of the cantilever was controlled by the film, when the target amplitude was 2V, the set point was 0.8-1.4V, and when the target amplitude was 4V, the set point was within the range of 2.0-3.5V. It was. Observe 50 images of 2 microns x 2 microns randomly from the 10mm x 10mm range of the sample. Of those images, the part with the most uniform fibril width and the most uniform distance between each fibril To extract. From the 80 mm × 80 mm image obtained by enlarging the extracted 2 μm × 2 μm field of view by 40,000 times, 100 points of fibril width and fibril distance are each extracted. The average value of 80 points excluding 10 points of the largest and 10 points of the smallest was adopted. The surface structure was evaluated according to the following criteria based on the average width.
A: The average width of fibrils is 1 nm or more and less than 50 nm. O: 50 nm or more and less than 100 nm. X: 100 nm or more The average distance between fibrils was evaluated according to the following criteria.
A: 10 nm or more and less than 50 nm B: 3 nm or more and less than 10 nm or 50 nm or more and less than 1000 nm X: less than 3 nm or 1000 nm or more The above evaluations were collectively performed for comprehensive evaluation. In any evaluation item, the item judged as ◎ is the best, and the case where only ◎ or ○ is evaluated is considered to be practically possible, and those having items judged as △ and × are practical. Judged that there was a problem.

結晶性ポリプロピレン系樹脂(株式会社グランドポリマー製、グランドポリプロF327、プロピレン−エチレン−ブテン−1の三元共重合体)と柔軟剤として、低結晶性プロピレン−αオレフィン共重合体樹脂(三井化学(株)製、タフマーXR110T)75:25を質量比で混合した。これを100質量部としたものに対し、水添テルペン樹脂(ヤスハラケミカル株式会社 クリアロンP125)5質量部をブレンダーに投入し、5分間常温でよく混合した。次に、スクリュー径 37mm、L/D 42の同方向回転型二軸押出機(東芝機械株式会社製 TEM−35BS)にて溶融混錬してペレットを作成した。さらに、常温で液体の脂肪族炭化水素として、ミネラルオイル(松村石油研究所 モレスコホワイトP70/(40℃での動粘度9.6cSt))を、バレルの途中から注入ポンプを用いて添加した。添加量は、前記結晶性ポリプロピレン系樹脂と柔軟剤の混合量を100質量部に対して15質量部添加した。これを表層用樹脂とした。
また、上記と同一の結晶性ポリプロピレン系樹脂をスクリュー径 37mm、L/D 30の同方向回転型二軸押出機(東芝機械株式会社製 TEM−35BS)にて溶融し、さらに押出機途中から注入ポンプを用いて、ミネラルオイル(松村石油研究所 モレスコホワイトP70)を20重量部加えた。添加量は、前記結晶性ポリプロピレン系樹脂とミネラルオイルが質量比で90:10となるようにした。この組成物を均一に混合し、得られたペレットを芯層用樹脂として作成した。各層の体積比率関係などについて表1に示す。
上記の樹脂を用いて多層延伸フィルムを作成した。まず、対称2種3層の対称な樹脂層構成が押出し可能な多層押出装置の表層用押出機、芯層用押出機各々に、上記で得られた樹脂混合物を投入した。各押出機にて充分に溶融した後、多層円環状ダイで220℃にてフィルム原反を押出し後、水冷冷却した。
得られたフィルム原反をインフレーションバブル式延伸装置にて延伸温度120℃で縦に5倍、横に4倍に延伸した。その後、筒状のフィルムの端部をトリミングし、1枚ずつに巻き取った。その後、横方向に拘束するクリップ幅を一定に設定したテンターにて、熱風温度130℃にて滞留時間20秒にて熱固定処理を行った。結果、各層厚み比が表層、芯層、表層の順に0.25、0.50、0.25のほぼ均質な厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表2に示すように良好な性能を示すものであった。また、ここで得られたフィルムを原子間力顕微鏡の位相像にて40、000倍で観察したところ、網目状になったフィブリルとその間に存在するマトリックスからなる構造をみることができた。
As a crystalline polypropylene resin (Grand Polymer Co., Ltd., Grand Polypro F327, propylene-ethylene-butene-1 terpolymer) and a softening agent, a low crystalline propylene-α-olefin copolymer resin (Mitsui Chemicals ( Co., Ltd., Tuffmer XR110T) 75:25 was mixed at a mass ratio. To 100 parts by mass of this, 5 parts by mass of hydrogenated terpene resin (Yasuhara Chemical Co., Ltd. Clearon P125) was put into a blender and mixed well at room temperature for 5 minutes. Next, pellets were prepared by melt-kneading with a twin screw extruder (TEM-35BS manufactured by Toshiba Machine Co., Ltd.) having a screw diameter of 37 mm and L / D 42. Further, mineral oil (Matsumura Petroleum Institute Moresco White P70 / (Kinematic viscosity at 40 ° C. 9.6 cSt)) as an aliphatic hydrocarbon which is liquid at normal temperature was added from the middle of the barrel using an injection pump. The addition amount was 15 parts by mass with respect to 100 parts by mass of the mixed amount of the crystalline polypropylene resin and the softening agent. This was used as a resin for the surface layer.
In addition, the same crystalline polypropylene resin as described above was melted in a co-rotating twin screw extruder (TEM-35BS manufactured by Toshiba Machine Co., Ltd.) with a screw diameter of 37 mm and L / D 30 and further injected from the middle of the extruder. 20 parts by weight of mineral oil (Matsumura Oil Research Institute Moresco White P70) was added using a pump. The addition amount was such that the crystalline polypropylene resin and mineral oil were 90:10 in mass ratio. This composition was uniformly mixed, and the resulting pellet was prepared as a core layer resin. Table 1 shows the volume ratio relationship of each layer.
A multilayer stretched film was prepared using the above resin. First, the resin mixture obtained above was charged into each of a surface layer extruder and a core layer extruder of a multilayer extruder capable of extruding a symmetrical two-kind three-layer symmetrical resin layer configuration. After being sufficiently melted in each extruder, the original film was extruded at 220 ° C. with a multilayer annular die, and then cooled with water.
The obtained film original was stretched 5 times longitudinally and 4 times laterally at a stretching temperature of 120 ° C. by an inflation bubble stretching apparatus. Then, the edge part of the cylindrical film was trimmed and wound up one by one. Thereafter, heat setting was performed with a tenter having a fixed clip width in the lateral direction at a hot air temperature of 130 ° C. and a residence time of 20 seconds. As a result, a film having a substantially uniform thickness of 10 μm was obtained with each layer thickness ratio of 0.25, 0.50, 0.25 in the order of the surface layer, the core layer, and the surface layer. When the physical properties of this film were measured, it showed good performance as shown in Table 2. Moreover, when the film obtained here was observed 40,000 times in the phase image of the atomic force microscope, the structure which consists of the network-like fibril and the matrix which exists among them was able to be seen.

結晶性ポリプロピレン系樹脂と、低結晶性プロピレン−αオレフィン共重合体樹脂を質量比で65:35の割合としたものを表層樹脂とし、且つ、芯層のミネラルオイルの添加量を7質量%とし、さらに各層厚み比を表層、芯層、表層の順に0.20、0.60、0.20とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  A crystalline polypropylene resin and a low crystalline propylene-α olefin copolymer resin in a mass ratio of 65:35 are used as the surface layer resin, and the amount of mineral oil added to the core layer is 7% by mass. Further, a film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the thickness ratio of each layer was 0.20, 0.60, and 0.20 in the order of the surface layer, the core layer, and the surface layer. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

表層の樹脂組成を、結晶性ポリプロピレン系樹脂と、低結晶性プロピレン−αオレフィン共重合体樹脂を質量比で55:45の割合とし、且つ、各層厚み比を表層、芯層、表層の順に0.15、0.70、0.15とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  The resin composition of the surface layer is a ratio of 55:45 in terms of mass ratio of the crystalline polypropylene resin and the low crystalline propylene-α olefin copolymer resin, and the thickness ratio of each layer is 0 in the order of the surface layer, the core layer, and the surface layer. A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the thickness was 0.15, 0.70, and 0.15. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

実施例1の表層の結晶性ポリプロピレン系樹脂と低結晶性プロピレン−αオレフィン共重合体樹脂の樹脂組成物100重量部に対し、水添テルペン樹脂の添加量を15重量部とし、且つ、ミネラルオイルを、前記結晶性ポリプロピレン系樹脂と低結晶性プロピレン−αオレフィン共重合体樹脂の樹脂組成物100質量部に対して10質量部添加した樹脂を表層用樹脂とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  The amount of hydrogenated terpene resin added is 15 parts by weight with respect to 100 parts by weight of the resin composition of the crystalline polypropylene resin and the low crystalline propylene-α-olefin copolymer resin in the surface layer of Example 1, and mineral oil Except that a resin for which 10 parts by mass of the crystalline polypropylene resin and the low crystalline propylene-α-olefin copolymer resin was added in an amount of 10 parts by mass was used as a surface layer resin. Thus, a film having a thickness of 10 μm was obtained. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

結晶性ポリプロピレン系樹脂と、低結晶性プロピレン−αオレフィン共重合体樹脂を質量比で55:45の割合とし、且つ、水添テルペン樹脂、及びミネラルオイルを、前記結晶性ポリプロピレン系樹脂と低結晶性プロピレン−αオレフィン共重合体樹脂の和100重量部に対して各々10重量部および20質量部添加し、さらに、芯層ポリプロピレン樹脂とミネラルオイル樹脂組成を組成比で97:3とし、加えて各層厚み比を表層、芯層、表層の順に0.15、0.70、0.15とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  The crystalline polypropylene resin and the low crystalline propylene-α olefin copolymer resin are in a mass ratio of 55:45, and the hydrogenated terpene resin and mineral oil are mixed with the crystalline polypropylene resin and the low crystalline. 10 parts by weight and 20 parts by weight, respectively, with respect to 100 parts by weight of the total propylene-α-olefin copolymer resin, and the composition of the core layer polypropylene resin and the mineral oil resin is 97: 3. A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the thickness ratio of each layer was 0.15, 0.70, and 0.15 in the order of the surface layer, the core layer, and the surface layer. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

表層の樹脂組成中のミネラルオイルを松村石油研究所製モレスコホワイトP40(40℃での動粘度4.4cSt)15質量部とし、芯層の樹脂組成中のミネラルオイルも前記同様、松村石油研究所 モレスコホワイトP40とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表2に示すように良好な性能を示すものであった。  The mineral oil in the resin composition of the surface layer is 15 parts by mass of Moresco White P40 (Kinematic viscosity at 40 ° C) made by Matsumura Oil Research Institute, and the mineral oil in the resin composition of the core layer is the same as above. A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that Moresco White P40 was used. When the physical properties of this film were measured, it showed good performance as shown in Table 2.

表層の樹脂組成中にミネラルオイルの代わりとして、常温で液体の脂肪族炭化水素として、ポリブテン(日本油脂株式会社 ニッサンポリブテン06SH(40℃での動粘度95cSt))を15質量部添加した他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  Instead of mineral oil in the resin composition of the surface layer, 15 parts by weight of polybutene (Nippon Yushi Co., Ltd. Nissan Polybutene 06SH (kinematic viscosity 95 cSt at 40 ° C.)) was added as a liquid aliphatic hydrocarbon at room temperature, A film having a thickness of 10 μm was obtained in the same manner as in Example 1. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

実施例1の表層の樹脂組成に、柔軟剤として、ブテン−1ポリマー(三井化学(株)製、タフマーBL4000)30質量%用いた他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  A film having a thickness of 10 μm was formed in the same manner as in Example 1, except that 30% by mass of butene-1 polymer (Mitsui Chemicals, Tuffmer BL4000) was used as the softening agent in the resin composition of the surface layer of Example 1. Obtained. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

表層の樹脂組成に結晶性ポリプロピレン系樹脂として、エチレンプロピレンランダム共重合体(サンアロマー株式会社製、PC630A)を70質量%用いた他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that 70% by mass of an ethylene propylene random copolymer (manufactured by Sun Allomer Co., Ltd., PC630A) was used as the crystalline polypropylene resin for the surface layer. . When the physical properties of this film were measured, good performance was shown as shown in Table 2.

表層の樹脂組成の結晶性ポリプロピレン系樹脂として、エチレンプロピレンブロック共重合体(株式会社製、株式会社グランドポリマー製、グランドポリプロJ705)を75質量%用いた他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  The same method as in Example 1 except that 75% by mass of an ethylene propylene block copolymer (manufactured by Co., Ltd., manufactured by Grand Polymer Co., Ltd., Grand Polypro J705) was used as the crystalline polypropylene resin of the surface layer resin composition. A film having a thickness of 10 μm was obtained. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

実施例1において、押し出されたフィルム原反を縦2.5倍、横2.5倍に延伸した他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。  In Example 1, a film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the extruded film original was stretched 2.5 times in length and 2.5 times in width. When the physical properties of this film were measured, good performance was shown as shown in Table 2.

実施例1において、フィルム原反を延伸温度を60℃し、延伸倍率を縦4倍、横3倍とし、且つ、延伸後の熱固定処理は行わなかった他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表2に示すように良好な性能を示すものであった。
[比較例1]
結晶性ポリプロピレン系樹脂と、低結晶性プロピレン−αオレフィン共重合体樹脂を質量比で40:60で混合した樹脂組成を表層用樹脂とし、且つ、各層の厚み比を表層、芯層、表層の順に0.15、0.70、0.15とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。各層間の体積比率などについて表3に示す。このフィルムの物性を測定したところ、表4に示すように初期の密着力および引出力が過剰となった。
[比較例2]
表層の樹脂組成を、結晶性ポリプロピレン系樹脂と、低結晶性プロピレン−αオレフィン共重合体樹脂を質量比で85:15の割合とした樹脂組成物とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表4に示すように初期の密着力が不足した。
[比較例3]
表層の樹脂組成を、結晶性ポリプロピレン系樹脂と低結晶性プロピレン−αオレフィン共重合体樹脂の和100重量部に対する水添テルペン樹脂の添加量を20重量部とした樹脂組成物とした他は、実施例1と同様の方法で、厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表4に示すように初期の密着力が低いものであった。
[比較例4]
表層の樹脂組成を、結晶性ポリプロピレン系樹脂と低結晶性プロピレン−αオレフィン共重合体樹脂の和100重量部に対する水添テルペン樹脂の添加量を2重量部とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表4に示すように、初期の密着力が低いものであった。
[比較例5]
表層の樹脂組成を、結晶性ポリプロピレン系樹脂と低結晶性プロピレン−αオレフィン共重合体樹脂の和100重量部に対し、水添テルペン樹脂を10重量部、ミネラルオイルを5質量部添加した樹脂組成物とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表4に示すように密着力が低く、且つ、引出力が高いものであった。
[比較例6]
表層の樹脂組成を、結晶性ポリプロピレン系樹脂と低結晶性プロピレン−αオレフィン共重合体樹脂の和100重量部に対する水添テルペン樹脂の添加量を10重量部とし、ミネラルオイルの添加量を25質量部とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ表4に示すように、過度に柔軟なため、コシ感に劣り、かつ手触り感の劣る劣悪な性能を示すものであった。
[比較例7]
芯層の結晶性ポリプロピレン系樹脂とミネラルオイルの質量比を99:1とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表4に示すように、初期においては良好な密着力・引出力を発現するが、40℃21日間の放置により、密着力・引出力が増大した。
[比較例8]
芯層の結晶性ポリプロピレン系樹脂と、常温で液体の脂肪族炭化水素として、ミネラルオイル(松村石油研究所 モレスコホワイトP70)を質量比で60:40とした他は、実施例1と同様の方法で成膜を試みたが、成膜性が悪く、フィルムは得られなかった。
[比較例9]
芯層の樹脂組成を、結晶性ポリプロピレン系樹脂と、低結晶性プロピレン−αオレフィン共重合体樹脂(三井化学(株)製、タフマーXR110T)を質量比で75:25の樹脂組成物とした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表4に示すように柔軟性、および初期の密着力・引出力は実施例1と同程度であったが40℃21日間の放置後の密着力・引出力が増大した。
[比較例10]
実施例1の表層の組成を有する単層のフィルムとした他は、実施例1と同様の方法で厚み10μmのフィルムを得た。このフィルムの物性を測定したところ、表4に示すように密着性引出性は安定していたが、過度に柔軟なため、コシ感に劣るものであった。

Figure 0004480578
Figure 0004480578
Figure 0004480578
Figure 0004480578
なお、表中の略語は下記を意味する。
実:実施例、比:比較例
F327:(株)グランドポリマー製結晶性ポリプロピレン系樹脂
(グランドポリプロF327、MFR=7.0g/10min)
PC630:サンアロマー(株)製結晶性ホモポリプロピレン樹脂
(PC630A、MFR=7.5g/10min)
J705:(株)グランドポリマー製結晶性ブロックポリプロピレン樹脂
(グランドポリプロJ705、MFR=10g/10min)
110T:三井化学(株)製低結晶性プロピレン−αオレフィン共重合体樹脂
(タフマーXR110T、MFI=6.0g/10min(230℃)、密度0.890g/cc)
BL4000:ブテン−1共重合体
(三井化学(株)製 タフマーBL4000、MFR=1.8g/10min、密度0.915g/cc)
P125:水添テルペン樹脂
(ヤスハラケミカル(株)製 クリアロンP125)
P70:松村石油研究所製ミネラルオイル
(スモイルP70、動粘度12.35(40℃ cSt))
P40:松村石油研究所製ミネラルオイル
(モレスコホワイトP−40、動粘度4.3(40℃ cSt))
06SH:日本油脂(株)製常温液体の脂肪族炭化水素
(ニッサンポリブテン06SH、動粘度95(40℃ cSt))
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2002年8月29日出願の日本特許出願(特願2002−250192)に基づくものであり、その内容はここに参照として取り込まれる。In Example 1, the same method as in Example 1 except that the film original fabric was stretched at a temperature of 60 ° C., the stretching ratio was 4 times in length and 3 times in width, and the heat setting after stretching was not performed. A film having a thickness of 10 μm was obtained. When the physical properties of this film were measured, good performance was shown as shown in Table 2.
[Comparative Example 1]
A resin composition in which a crystalline polypropylene resin and a low crystalline propylene-α-olefin copolymer resin are mixed at a mass ratio of 40:60 is used as a surface layer resin, and the thickness ratio of each layer is defined as the surface layer, the core layer, and the surface layer. A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the thickness was 0.15, 0.70, and 0.15 in this order. Table 3 shows the volume ratio between the layers. When the physical properties of this film were measured, as shown in Table 4, the initial adhesion and pulling force were excessive.
[Comparative Example 2]
The same method as in Example 1 except that the resin composition of the surface layer was a resin composition in which a crystalline polypropylene resin and a low crystalline propylene-α-olefin copolymer resin were in a mass ratio of 85:15. A film having a thickness of 10 μm was obtained. When the physical properties of this film were measured, the initial adhesion was insufficient as shown in Table 4.
[Comparative Example 3]
The resin composition of the surface layer was a resin composition in which the amount of hydrogenated terpene resin added was 20 parts by weight with respect to 100 parts by weight of the sum of the crystalline polypropylene resin and the low crystalline propylene-α-olefin copolymer resin, A film having a thickness of 10 μm was obtained in the same manner as in Example 1. When the physical properties of the film were measured, the initial adhesion was low as shown in Table 4.
[Comparative Example 4]
The resin composition of the surface layer was the same as in Example 1 except that the amount of hydrogenated terpene resin added was 2 parts by weight with respect to 100 parts by weight of the sum of the crystalline polypropylene resin and the low crystalline propylene-α-olefin copolymer resin. Thus, a film having a thickness of 10 μm was obtained. When the physical properties of this film were measured, as shown in Table 4, the initial adhesion was low.
[Comparative Example 5]
Resin composition in which 10 parts by weight of hydrogenated terpene resin and 5 parts by weight of mineral oil are added to 100 parts by weight of the sum of the crystalline polypropylene resin and the low crystalline propylene-α-olefin copolymer resin. A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the product was used. When the physical properties of this film were measured, as shown in Table 4, the adhesion was low and the pulling power was high.
[Comparative Example 6]
The resin composition of the surface layer is 10 parts by weight of the hydrogenated terpene resin with respect to 100 parts by weight of the sum of the crystalline polypropylene resin and the low crystalline propylene-α-olefin copolymer resin, and the amount of mineral oil added is 25 masses. A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the part was used. When the physical properties of this film were measured, as shown in Table 4, since it was excessively flexible, it showed inferior performance with inferior stiffness and inferior touch.
[Comparative Example 7]
A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that the mass ratio of the crystalline polypropylene resin and the mineral oil in the core layer was 99: 1. When the physical properties of this film were measured, as shown in Table 4, good adhesion strength / pulling force was expressed in the initial stage, but the adhesion strength / pulling force increased when left at 40 ° C. for 21 days.
[Comparative Example 8]
The same as in Example 1 except that the crystalline polypropylene resin of the core layer and the aliphatic hydrocarbon which is liquid at normal temperature and the mineral oil (Matsumura Petroleum Institute Moresco White P70) at a mass ratio of 60:40 Film formation was attempted by this method, but film formation was poor and no film was obtained.
[Comparative Example 9]
Other than the resin composition of the core layer, a crystalline polypropylene resin and a low crystalline propylene-α-olefin copolymer resin (Tafmer XR110T, manufactured by Mitsui Chemicals, Inc.) were used in a mass ratio of 75:25. Obtained a 10 μm thick film in the same manner as in Example 1. When the physical properties of this film were measured, as shown in Table 4, the flexibility and the initial adhesion strength / pulling force were the same as those in Example 1, but the adhesion strength / pulling force after standing at 40 ° C. for 21 days. Increased.
[Comparative Example 10]
A film having a thickness of 10 μm was obtained in the same manner as in Example 1 except that a single layer film having the composition of the surface layer of Example 1 was used. When the physical properties of this film were measured, as shown in Table 4, the adhesion pulling out property was stable, but it was inferior in the feeling of firmness because it was excessively flexible.
Figure 0004480578
Figure 0004480578
Figure 0004480578
Figure 0004480578
In addition, the abbreviation in a table | surface means the following.
Fact: Example, ratio: Comparative example F327: Crystalline polypropylene resin made by Grand Polymer Co., Ltd.
(Grand Polypro F327, MFR = 7.0g / 10min)
PC630: Crystalline homopolypropylene resin manufactured by Sun Allomer Co., Ltd.
(PC630A, MFR = 7.5g / 10min)
J705: Crystalline block polypropylene resin made by Grand Polymer Co., Ltd.
(Grand Polypro J705, MFR = 10g / 10min)
110T: Low crystalline propylene-α-olefin copolymer resin manufactured by Mitsui Chemicals, Inc.
(Toughmer XR110T, MFI = 6.0 g / 10 min (230 ° C.), density 0.890 g / cc)
BL4000: Butene-1 copolymer
(Tafmer BL4000 manufactured by Mitsui Chemicals, MFR = 1.8 g / 10 min, density 0.915 g / cc)
P125: Hydrogenated terpene resin
(Clearon P125, manufactured by Yashara Chemical Co., Ltd.)
P70: Mineral oil made by Matsumura Oil Research Institute
(Smoyl P70, Kinematic viscosity 12.35 (40 ° C. cSt))
P40: Mineral oil made by Matsumura Oil Research Institute
(Molesco White P-40, Kinematic viscosity 4.3 (40 ° C cSt))
06SH: A normal temperature liquid aliphatic hydrocarbon manufactured by Nippon Oil & Fats Co., Ltd.
(Nissan polybutene 06SH, kinematic viscosity 95 (40 ° C. cSt))
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on August 29, 2002 (Japanese Patent Application No. 2002-250192), the contents of which are incorporated herein by reference.

本発明により、以上の説明のように密着性と引出性のバランスに優れ、且つ、その性能が時間の経過による変化が少なく、且つ、透明性、耐熱性、柔軟性、手触り性、カット性に優れたポリプロピレン系多層フィルムを提供することができる。該フィルムは、食品包装用ラップフィルムに好適に使用することができる。  According to the present invention, as described above, the balance between adhesion and drawability is excellent, and the performance is less changed with the passage of time, and the transparency, heat resistance, flexibility, touch, and cutability are improved. An excellent polypropylene multilayer film can be provided. The film can be suitably used for a food packaging wrap film.

Claims (6)

結晶性ポリプロピレン系樹脂(S1)50〜80質量%、非晶性又は低結晶性プロピレン−αオレフィン共重合体、ブテン−1重合体から選ばれる少なくとも1種の柔軟剤(S2)20〜50質量%からなる第1組成物と、第1組成物の合計100質量部に対し、水添テルペン樹脂(S3)および常温で液体の脂肪族炭化水素(S4)を各々5〜15質量部、10〜20質量部含有する表層(A)と、
結晶性ポリプロピレン系樹脂(C1)80〜98質量%と、常温で液体の脂肪族炭化水素(C2)2〜20質量%を含有する、上記表層と隣接する芯層(B)、を有するポリプロピレン系多層ラップフィルム。
Crystalline polypropylene resin (S1) 50 to 80% by mass, at least one softener (S2) 20 to 50% by mass selected from amorphous or low crystalline propylene-α-olefin copolymer and butene-1 polymer % Hydrogenated terpene resin (S3) and liquid aliphatic hydrocarbon (S4) at room temperature, 5 to 15 parts by mass, A surface layer (A) containing 20 parts by mass;
Polypropylene system having 80 to 98% by mass of crystalline polypropylene resin (C1) and 2 to 20% by mass of aliphatic hydrocarbon (C2) that is liquid at room temperature and a core layer (B) adjacent to the surface layer. Multi-layer wrap film.
23℃、相対湿度50%での密着仕事量が1.0〜3.0mJ、引出力が200〜1000mNである請求項1に記載のポリプロピレン系多層ラップフィルム。2. The polypropylene-based multilayer wrap film according to claim 1, wherein the work of adhesion at 23 ° C. and a relative humidity of 50% is 1.0 to 3.0 mJ and the pulling force is 200 to 1000 mN. 紙管に巻かれた状態のラップフィルムを40℃相対湿度20%にて3週間放置した際の密着仕事量が、放置前の値に対して−20〜+50%以内の変化であり、且つ、引出力が、放置前の値に対して−50〜+20%以内の変化である請求項1または2に記載のポリプロピレン系多層ラップフィルム。The adhesion work when the wrap film wound in a paper tube is left to stand for 3 weeks at 40 ° C. and 20% relative humidity is a change within −20 to + 50% with respect to the value before leaving, and The polypropylene multilayer wrap film according to claim 1 or 2, wherein the pulling force is a change within -50 to + 20% with respect to a value before being left standing. フィルム表面を原子間力顕微鏡の位相像にて40,000倍で観察した場合、網目状のフィブリルとその間に存在するマトリックスからなる構造を有し、かつこのフィブリルの平均幅は1nm以上100nm以下であり、かつフィブリル間の平均距離が3nm以上1μm以下の構造である請求項3に記載のポリプロピレン系多層ラップフィルム。When the film surface is observed with a phase image of an atomic force microscope at a magnification of 40,000, it has a structure composed of a network of fibrils and a matrix existing therebetween, and the average width of the fibrils is 1 nm or more and 100 nm or less. The polypropylene-based multilayer wrap film according to claim 3, which has a structure in which the average distance between fibrils is 3 nm or more and 1 µm or less. 縦方向及び又は横方向に2倍以上延伸された請求項1または2に記載のポリプロピレン系多層ラップフィルム。The polypropylene multilayer wrap film according to claim 1 or 2, which has been stretched twice or more in the machine direction and / or the transverse direction. フィルム全体の厚みが3〜25μmである請求項1又は2に記載のポリプロピレン系多層ラップフィルム。The polypropylene multilayer wrap film according to claim 1 or 2, wherein the entire film has a thickness of 3 to 25 µm.
JP2004532714A 2002-08-29 2003-08-26 Polypropylene wrap film Expired - Fee Related JP4480578B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002250192 2002-08-29
JP2002250192 2002-08-29
PCT/JP2003/010797 WO2004020195A1 (en) 2002-08-29 2003-08-26 Polypropylene wrap film

Publications (2)

Publication Number Publication Date
JPWO2004020195A1 JPWO2004020195A1 (en) 2005-12-15
JP4480578B2 true JP4480578B2 (en) 2010-06-16

Family

ID=31972615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004532714A Expired - Fee Related JP4480578B2 (en) 2002-08-29 2003-08-26 Polypropylene wrap film

Country Status (8)

Country Link
JP (1) JP4480578B2 (en)
KR (1) KR100681364B1 (en)
CN (1) CN100377872C (en)
AU (1) AU2003261731A1 (en)
CA (1) CA2496926C (en)
MY (1) MY127301A (en)
TW (1) TWI228129B (en)
WO (1) WO2004020195A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
KR100852552B1 (en) * 2004-07-23 2008-08-18 아사히 가세이 라이프 앤드 리빙 가부시키가이샤 Propylene-based multilayered wrapping film
WO2018042670A1 (en) * 2016-09-05 2018-03-08 日立化成株式会社 Food sorting method, film for food packaging, and small roll of food packaging film with decorative box
JP7173794B2 (en) * 2017-09-06 2022-11-16 旭化成株式会社 Wrap film and wrap film roll
JP7173793B2 (en) * 2017-09-06 2022-11-16 旭化成株式会社 Wrap film and wrap film roll
KR102487898B1 (en) 2020-11-30 2023-01-11 에이치디씨현대이피 주식회사 Composition for Wrap film and Wrap film using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202806A (en) * 1997-01-20 1998-08-04 Itochu San Plus Kk Pressure-sensitive packaging film
JPH11286087A (en) * 1998-02-03 1999-10-19 Asahi Chem Ind Co Ltd Crosslinked laminated film for packaging
JP2000026623A (en) * 1998-07-13 2000-01-25 Asahi Chem Ind Co Ltd Adhering heat-resistant wrapping film
JP2001198937A (en) * 2000-01-21 2001-07-24 Mitsui Chemicals Inc Method for manufacturing high-molecular weight polyolefin laminated film excellent in transparency
JP2002046238A (en) * 2000-05-26 2002-02-12 Asahi Kasei Corp Polypropylene multilayered film
JP2002210854A (en) * 2001-01-17 2002-07-31 Daicel Chem Ind Ltd Composite film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387529B1 (en) * 1997-12-24 2002-05-14 Exxon Mobil Oil Corporation Biaxially oriented HDPE multilayer film
DE19836657A1 (en) * 1998-08-13 2000-02-17 Hoechst Trespaphan Gmbh Multilayer biaxially oriented polypropylene film for cigarette packaging consists of intermediate layer containing wax
JP2001328223A (en) * 2000-05-23 2001-11-27 Oji Paper Co Ltd Polypropylene biaxially stretched multilayered film
JP2003019778A (en) * 2001-07-09 2003-01-21 Asahi Kasei Corp Polypropylene multilayer lap film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202806A (en) * 1997-01-20 1998-08-04 Itochu San Plus Kk Pressure-sensitive packaging film
JPH11286087A (en) * 1998-02-03 1999-10-19 Asahi Chem Ind Co Ltd Crosslinked laminated film for packaging
JP2000026623A (en) * 1998-07-13 2000-01-25 Asahi Chem Ind Co Ltd Adhering heat-resistant wrapping film
JP2001198937A (en) * 2000-01-21 2001-07-24 Mitsui Chemicals Inc Method for manufacturing high-molecular weight polyolefin laminated film excellent in transparency
JP2002046238A (en) * 2000-05-26 2002-02-12 Asahi Kasei Corp Polypropylene multilayered film
JP2002210854A (en) * 2001-01-17 2002-07-31 Daicel Chem Ind Ltd Composite film

Also Published As

Publication number Publication date
WO2004020195A1 (en) 2004-03-11
TW200406423A (en) 2004-05-01
MY127301A (en) 2006-11-30
AU2003261731A1 (en) 2004-03-19
CN1678456A (en) 2005-10-05
TWI228129B (en) 2005-02-21
CN100377872C (en) 2008-04-02
KR100681364B1 (en) 2007-02-12
CA2496926C (en) 2008-10-21
CA2496926A1 (en) 2004-03-11
KR20050059107A (en) 2005-06-17
JPWO2004020195A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP3122855B2 (en) Multilayer film and method of manufacturing multilayer film
US6905760B1 (en) Polypropylene-based wrap film
JP2023121783A (en) Packaging film for food and packaging body for food
JP4480578B2 (en) Polypropylene wrap film
WO1999045064A1 (en) Polypropylene resin compositions and packaging stretched film made thereof
JP5826035B2 (en) Film for stretch wrapping
JP2020007443A (en) Packaging film for food product, and package for food product
JP2004209696A (en) Stretched film for packaging food
JP4780842B2 (en) Polypropylene multilayer film
JP5730745B2 (en) Film for stretch wrapping
JP5545627B2 (en) Polyolefin thin film multilayer shrink film
JP7251153B2 (en) Stretch wrapping film
JP2003019778A (en) Polypropylene multilayer lap film
JP4832301B2 (en) Propylene-based multilayer wrap film
EP2918409B1 (en) Stretch wrapping film
JP2014076543A (en) Film for stretch packaging
JP2022063198A (en) Film for stretch packaging
JP3295337B2 (en) Laminated film
JP2004291609A (en) Stretched polyolefinic film
JP5660980B2 (en) Film for stretch wrapping
JPH02199144A (en) Polyolefin resin composition
JPH1128791A (en) Laminated film
JP2004267326A (en) Film for hair treatment
JP2013095075A (en) Stretch packaging film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4480578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees