JP4480261B2 - Mirror cooling structure and cooling method - Google Patents

Mirror cooling structure and cooling method Download PDF

Info

Publication number
JP4480261B2
JP4480261B2 JP2000371428A JP2000371428A JP4480261B2 JP 4480261 B2 JP4480261 B2 JP 4480261B2 JP 2000371428 A JP2000371428 A JP 2000371428A JP 2000371428 A JP2000371428 A JP 2000371428A JP 4480261 B2 JP4480261 B2 JP 4480261B2
Authority
JP
Japan
Prior art keywords
mirror
cooling
laser beam
block
passage hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000371428A
Other languages
Japanese (ja)
Other versions
JP2002176212A (en
Inventor
正弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP2000371428A priority Critical patent/JP4480261B2/en
Publication of JP2002176212A publication Critical patent/JP2002176212A/en
Application granted granted Critical
Publication of JP4480261B2 publication Critical patent/JP4480261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、レーザ発振器の出力ミラーやリアミラー等の冷却効果を向上してミラーの熱レンズ効果を低減して熱歪を抑制し、ビームモード及びレーザ出力の安定化を図るミラーの冷却構造及び冷却方法に関する。
【0002】
【従来の技術】
レーザ発振器の出力ミラー、リアミラー等は、部分透過型ミラーを使用しているが、レーザ出力が大きくなるほどミラー自体がレーザ光からの熱吸収の影響を受け、所謂「熱レンズ効果」を起こし、ミラー自体に悪影響が生ずる為にミラーを取り付ける基体側のブロック1に、図2に示すように、冷却水を用いた冷却部1bを設け、ミラーMi面を前記ブロック1に接触させて間接的に冷却を行っているのが通例である。
【0003】
【発明が解決しようとする課題】
然しながら上述の従来例では、図3に示すように、ミラーMiの周縁部のエッジEdを拡大して見ると通常のミラーMiの曲率半径Rは略30mに近い値を持っており、前記周縁部のエッジEdは図示するように、冷却部1bを有するブロック1と線接触した状態で冷却することとなり、冷却効果の低下を来たし熱レンズ効果が起こりやすくなったり、また、片当たりの状態になった時には、熱による歪を発生させ、ビーム径やビームモード及びレーザ出力の変化等の悪影響が生ずる。
【0004】
上述の状態が誘起されると、結果的にレーザ加工操作が不安定となり品質に悪影響を及ぼすこととなる。
【0005】
上述の問題は、近年の大出力化、高精度加工化の状況下においては、重要な技術的課題である。
【0006】
この発明は、上述の状況に鑑みて成されたもので、冷却機能を付加し冷却効果の向上と冷却均一性を可能とするミラーの冷却構造及び冷却方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明は、下記構成を備えることにより上記課題を解決できるものである。
【0008】
(1)レーザ発振器に使用されるミラーの冷却構造であって、中心部にレーザ光通過穴を有し、且つ該レーザ光通過穴の周囲に冷却部を有するブロックに対し、ミラーを嵌着したミラー押え部材を前記ミラーを介してレーザ光が通過可能に、且つ前記ブロックに前記ミラーの周縁部が当接密着するように装着した状態において、前記ミラー押え部材の前記レーザ光通過穴の内周、且つミラーの周縁側部に斜向巻きコイルスプリングを複数個配設し、前記冷却部を有するブロック側へ前記斜向巻きコイルスプリングを介して熱を逃がす構成としたことを特徴とするミラーの冷却構造。
【0009】
(2)レーザ発振器に使用されるミラーの冷却方法であって、中心部にレーザ光通過穴を有し、且つ該レーザ光通過穴の周囲に冷却部を有するブロックに対し、ミラーを嵌着したミラー押え部材を前記ミラーを介してレーザ光が通過可能に、且つ前記ブロックに前記ミラーの周縁部が当接密着するように装着した状態において、前記ミラー押え部材の前記レーザ光通過穴の内周、且つミラーの周縁側部に斜向巻きコイルスプリングを複数個配設し、前記冷却部を有するブロック側へ前記斜向巻きコイルスプリングを介して熱を逃がす構成としたことを特徴とするミラーの冷却方法。
【0012】
【発明の実施の形態】
以下にこの発明の一実施の形態を説明する。
【0013】
図1(a)は、本発明に係る実施例1におけるミラーの冷却構造断面説明図、(b)は、本発明に係る実施例2におけるミラーの冷却構造断面説明図、図2は、従来の冷却構造断面説明図、図3は、ミラー湾曲状況断面部分拡大説明図、図4は、スプリングガスケットの状態説明図である。
【0014】
以下、図面を参照して説明する。
【0015】
(実施例1)
レーザ発振器に使用されるミラー3の側面に斜向巻きコイルスプリング(または、スプリングガスケット)4を適宜配設し、熱接触させて冷却効果を上げる冷却構造であって、中心部にレーザ光Le通過穴1aを有し、且つ該レーザ光Le通過穴1aの周囲に冷却部1bを有するブロック1に対し、ミラー3を嵌着したミラー押え部材2を前記ミラー3を介してレーザ光Leが通過可能に、且つ前記ブロック1に前記ミラー3の周縁部3aが当接密着するように装着した状態において、前記ミラー押え部材2の前記レーザ光Le通過穴2aの内周、且つミラー3の周縁側部に斜向巻きコイルスプリング4を、例えば複数等配し、前記冷却部1bを有するブロック1側へ前記斜向巻きコイルスプリング4を介して熱を逃がす構成としたことを特徴とする。
【0016】
尚、図4に示すように、スプリングガスケットを形成する斜向巻きコイルスプリング4は、ミラー3を挿着していない場合では、(a)に示すように無負荷時の非接触状態であり、ミラー3を挿着した場合では、(c)に示すようにセットした時の最大負荷状態での接触面積は隣り合う斜向巻きコイルが最大傾斜し、相互に当接接触して極大となり、このように接触面積が大きくなることによって、冷却の為の熱伝導率は大きくなる。
【0017】
また、このスプリングガスケットを形成する斜向巻きコイルスプリング4の場合、構造上からも明白なように、弾力性を有する為ミラー3に大きな力が加わらず、従って、ミラー変形等の懸念が生ずること無く、然も図1(a)に示す矢印Aに沿って熱流が生じ、冷却効果を上げることが出来る。
【0018】
(実施例2)
実施例2においては、ミラー7の形状を変えて、冷却部1bを有するブロック1に接する前記ミラー7の周縁部7aが当接密着するように装着した状態において、前記ミラーの周縁部が前記ブロックに面接触するように周縁部に沿った接触面を平坦度を上げた平坦面とするミラー形状とし、熱を逃がす為のミラーの接触伝熱面積を拡大したことを特徴とする。
【0019】
他の符合について、5,6はO―リング状のガスケット等を示す。
【0020】
その他の符号については、前述と同様であるので省略する。
【0021】
以上説明したように、▲1▼斜向巻きコイルスプリング(スプリングガスケット)4をミラー3側面に当接密着した状態で用いることにより、ミラー3に余分な力を加えずに均一に熱接触性を向上させてミラー3の冷却能力、冷却効果を向上させることが出来る。
【0022】
また、▲2▼冷却部1bを有するブロック1に接触するミラー7の当接面周縁部7aを平坦度の高い平坦面状とし、接触面積を拡大し、熱接触性の均一化を図ることにより、▲1▼と同様にミラー7の冷却能力、冷却効果を向上させることが出来る。
【0023】
尚、本実施例では、ミラーにおける熱レンズ効果防止対策としてその応用を説明したが、その他の集光レンズ等、レンズ類への応用も可能である。
【0024】
【発明の効果】
この発明によれば、冷却機能を付加し冷却効果の向上と冷却均一性を可能としたことにより、ミラーの熱レンズ効果を低減し、従ってミラーの熱歪を低減し、ビーム径、ビームモード、レーザ出力を安定させ、結果としてレーザ加工操作を安定させ、加工機の信頼性を向上させることが出来る。
【0025】
尚また、この発明における熱レンズ効果防止機能は、集光レンズ等のその他のレンズ類にも広く応用可能である。
【図面の簡単な説明】
【図1】 (a)本発明に係る実施例1におけるミラーの冷却構造断面説明図、(b)は、本発明に係る実施例2におけるミラーの冷却構造断面説明図
【図2】 従来の冷却構造断面説明図
【図3】 ミラー湾曲状況断面部分拡大説明図
【図4】 スプリングガスケットの状態説明図
【符号の説明】
1 ブロック
1a、2a レーザ光通過穴
1b 冷却部
2 ミラー押え部材
3 ミラー
3a 周縁部
4 斜向巻きコイルスプリング(スプリングガスケット)
5,6 O―リング状ガスケット
7 ミラー
7a 周縁部
Ed エッジ
Mi ミラー
Le レーザ光
[0001]
BACKGROUND OF THE INVENTION
The present invention improves the cooling effect of the output mirror and rear mirror of a laser oscillator, reduces the thermal lens effect of the mirror, suppresses thermal distortion, and stabilizes the beam mode and the laser output. Regarding the method.
[0002]
[Prior art]
The output mirror, rear mirror, etc. of the laser oscillator use partially transmissive mirrors. However, as the laser output increases, the mirror itself is affected by the heat absorption from the laser light, causing the so-called “thermal lens effect”. As shown in FIG. 2, a cooling unit 1b using cooling water is provided in the block 1 on the substrate side to which the mirror is attached because the mirror is adversely affected, and the mirror Mi surface is brought into contact with the block 1 and indirectly cooled. This is usually done.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional example, as shown in FIG. 3, when the edge Ed of the peripheral portion of the mirror Mi is enlarged, the radius of curvature R of the normal mirror Mi has a value close to about 30 m. As shown in the figure, the edge Ed is cooled while being in line contact with the block 1 having the cooling portion 1b, and the cooling effect is lowered and the thermal lens effect is likely to occur. When this occurs, distortion due to heat is generated, and adverse effects such as changes in beam diameter, beam mode, and laser output occur.
[0004]
When the above-described state is induced, as a result, the laser processing operation becomes unstable and the quality is adversely affected.
[0005]
The above-mentioned problem is an important technical problem in the recent situation of high output and high precision machining.
[0006]
The present invention has been made in view of the above situation, and an object of the present invention is to provide a mirror cooling structure and a cooling method that add a cooling function to enable improvement in cooling effect and cooling uniformity.
[0007]
[Means for Solving the Problems]
The present invention can solve the above problems by providing the following configuration.
[0008]
(1) A mirror cooling structure used in a laser oscillator, in which a mirror is fitted to a block having a laser beam passage hole at the center and a cooling portion around the laser beam passage hole. An inner periphery of the laser beam passage hole of the mirror pressing member in a state where the mirror pressing member is mounted so that the laser beam can pass through the mirror and the peripheral edge portion of the mirror is in contact with the block. And a plurality of oblique winding coil springs disposed on the peripheral edge of the mirror, and heat is released to the block side having the cooling portion via the oblique winding coil springs. Cooling structure.
[0009]
(2) A method for cooling a mirror used in a laser oscillator, in which a mirror is fitted to a block having a laser beam passage hole at the center and a cooling portion around the laser beam passage hole. An inner periphery of the laser beam passage hole of the mirror pressing member in a state where the mirror pressing member is mounted so that the laser beam can pass through the mirror and the peripheral edge portion of the mirror is in contact with the block. And a plurality of oblique winding coil springs disposed on the peripheral edge of the mirror, and heat is released to the block side having the cooling portion via the oblique winding coil springs. Cooling method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
[0013]
FIG. 1A is a cross-sectional explanatory view of a mirror cooling structure in Embodiment 1 according to the present invention, FIG. 1B is a cross-sectional explanatory view of a mirror cooling structure in Embodiment 2 according to the present invention, and FIG. FIG. 3 is a sectional view of the cooling structure, FIG. 3 is a partially enlarged sectional view of the mirror bending state, and FIG. 4 is a state explanatory view of the spring gasket.
[0014]
Hereinafter, description will be given with reference to the drawings.
[0015]
Example 1
An obliquely wound coil spring (or spring gasket) 4 is appropriately disposed on the side surface of a mirror 3 used in a laser oscillator, and has a cooling structure that enhances the cooling effect through thermal contact with the laser beam Le at the center. The laser beam Le can pass through the mirror 3 through the mirror pressing member 2 fitted with the mirror 3 to the block 1 having the hole 1a and the cooling portion 1b around the laser beam Le passing hole 1a. In addition, in a state in which the peripheral edge 3a of the mirror 3 is mounted in close contact with the block 1, the inner periphery of the laser light Le passage hole 2a of the mirror pressing member 2 and the peripheral edge of the mirror 3 For example, a plurality of oblique winding coil springs 4 are equally arranged, and heat is released through the oblique winding coil springs 4 to the block 1 side having the cooling portion 1b. To.
[0016]
In addition, as shown in FIG. 4, when the mirror 3 is not inserted, the obliquely wound coil spring 4 forming the spring gasket is in a non-contact state when there is no load as shown in FIG. When the mirror 3 is inserted, the contact area in the maximum load state when the mirror 3 is set as shown in (c) is maximized by the adjacent inclined winding coils being in contact with each other and in contact with each other. As the contact area increases, the thermal conductivity for cooling increases.
[0017]
In addition, in the case of the obliquely wound coil spring 4 forming this spring gasket, as is apparent from the structure, since it has elasticity, a large force is not applied to the mirror 3, and therefore, there is a concern about mirror deformation and the like. Nonetheless, a heat flow is generated along the arrow A shown in FIG. 1A, and the cooling effect can be improved.
[0018]
(Example 2)
In the second embodiment, in the state where the shape of the mirror 7 is changed so that the peripheral portion 7a of the mirror 7 in contact with the block 1 having the cooling portion 1b is in close contact with the block 7, the peripheral portion of the mirror is the block. The contact surface along the peripheral edge is made into a mirror shape having a flat surface with increased flatness so as to make surface contact with the surface, and the contact heat transfer area of the mirror for releasing heat is enlarged.
[0019]
For other symbols, 5 and 6 indicate an O-ring gasket or the like.
[0020]
The other symbols are the same as described above, and will be omitted.
[0021]
As described above, (1) By using the obliquely wound coil spring (spring gasket) 4 in contact with and in close contact with the side surface of the mirror 3, uniform thermal contact can be achieved without applying excessive force to the mirror 3. It is possible to improve the cooling capacity and cooling effect of the mirror 3 by improving.
[0022]
(2) By making the contact surface peripheral portion 7a of the mirror 7 in contact with the block 1 having the cooling portion 1b into a flat surface with high flatness, the contact area is enlarged, and the thermal contact property is made uniform. As in (1), the cooling capacity and cooling effect of the mirror 7 can be improved.
[0023]
In the present embodiment, the application has been described as a measure for preventing the thermal lens effect in the mirror, but application to lenses such as other condensing lenses is also possible.
[0024]
【The invention's effect】
According to the present invention, by adding a cooling function and improving the cooling effect and enabling cooling uniformity, the thermal lens effect of the mirror is reduced, thus reducing the thermal distortion of the mirror, the beam diameter, the beam mode, The laser output can be stabilized, and as a result, the laser processing operation can be stabilized and the reliability of the processing machine can be improved.
[0025]
In addition, the thermal lens effect preventing function in the present invention can be widely applied to other lenses such as a condenser lens.
[Brief description of the drawings]
1A is a cross-sectional view of a mirror cooling structure in Embodiment 1 according to the present invention, and FIG. 1B is a cross-sectional view of a cooling structure of a mirror in Embodiment 2 according to the present invention. Structural cross-sectional explanatory diagram [Fig. 3] Mirror bending situation cross-sectional partial enlarged explanatory diagram [Fig. 4] Spring gasket state explanatory diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Block 1a, 2a Laser beam passage hole 1b Cooling part 2 Mirror pressing member 3 Mirror 3a Peripheral part 4 Inclined winding coil spring (spring gasket)
5, 6 O-ring gasket 7 Mirror 7a Peripheral edge Ed Edge Mi Mirror Le Laser light

Claims (2)

レーザ発振器に使用されるミラーの冷却構造であって、中心部にレーザ光通過穴を有し、且つ該レーザ光通過穴の周囲に冷却部を有するブロックに対し、ミラーを嵌着したミラー押え部材を前記ミラーを介してレーザ光が通過可能に、且つ前記ブロックに前記ミラーの周縁部が当接密着するように装着した状態において、前記ミラー押え部材の前記レーザ光通過穴の内周、且つミラーの周縁側部に斜向巻きコイルスプリングを複数個配設し、前記冷却部を有するブロック側へ前記斜向巻きコイルスプリングを介して熱を逃がす構成としたことを特徴とするミラーの冷却構造。  Mirror cooling structure used in a laser oscillator, having a laser beam passage hole at the center, and a mirror holding member in which a mirror is fitted to a block having a cooling portion around the laser beam passage hole Is mounted so that the laser beam can pass through the mirror and the peripheral edge of the mirror is in close contact with the block, the inner periphery of the laser beam passage hole of the mirror pressing member, and a mirror A mirror cooling structure characterized in that a plurality of obliquely wound coil springs are disposed on the peripheral side of the mirror, and heat is released to the block side having the cooling part via the obliquely wound coil springs. レーザ発振器に使用されるミラーの冷却方法であって、中心部にレーザ光通過穴を有し、且つ該レーザ光通過穴の周囲に冷却部を有するブロックに対し、ミラーを嵌着したミラー押え部材を前記ミラーを介してレーザ光が通過可能に、且つ前記ブロックに前記ミラーの周縁部が当接密着するように装着した状態において、前記ミラー押え部材の前記レーザ光通過穴の内周、且つミラーの周縁側部に斜向巻きコイルスプリングを複数個配設し、前記冷却部を有するブロック側へ前記斜向巻きコイルスプリングを介して熱を逃がす構成としたことを特徴とするミラーの冷却方法。  A method of cooling a mirror used in a laser oscillator, comprising a laser beam passage hole in a central portion and a mirror holding member in which a mirror is fitted to a block having a cooling portion around the laser beam passage hole. Is mounted so that the laser beam can pass through the mirror and the peripheral edge of the mirror is in close contact with the block, the inner periphery of the laser beam passage hole of the mirror pressing member, and a mirror A cooling method for a mirror, wherein a plurality of obliquely wound coil springs are disposed on the peripheral side of the mirror, and heat is released to the block side having the cooling part via the obliquely wound coil springs.
JP2000371428A 2000-12-06 2000-12-06 Mirror cooling structure and cooling method Expired - Fee Related JP4480261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371428A JP4480261B2 (en) 2000-12-06 2000-12-06 Mirror cooling structure and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371428A JP4480261B2 (en) 2000-12-06 2000-12-06 Mirror cooling structure and cooling method

Publications (2)

Publication Number Publication Date
JP2002176212A JP2002176212A (en) 2002-06-21
JP4480261B2 true JP4480261B2 (en) 2010-06-16

Family

ID=18841150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371428A Expired - Fee Related JP4480261B2 (en) 2000-12-06 2000-12-06 Mirror cooling structure and cooling method

Country Status (1)

Country Link
JP (1) JP4480261B2 (en)

Also Published As

Publication number Publication date
JP2002176212A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
US20050046815A1 (en) Supporting structure of optical element, exposure apparatus having the same, and manufacturing method of semiconductor device
US8425060B2 (en) Self-correcting optical elements for high-thermal-load optical systems
JP4231477B2 (en) Laser beam source
JP2006179932A (en) Laser amplifier with multiple laser-active media and laser resonator
US20090122428A1 (en) Reflective optical elements exhibiting multimetallic-like self-correction of distortions caused by heating
JP2005527849A (en) lens
JP2003222990A (en) Loading structure of photomask with pellicle
JP4480261B2 (en) Mirror cooling structure and cooling method
JP2658961B2 (en) Solid-state laser device
JP2755060B2 (en) Cold shield for detector
JP2920168B2 (en) Cooling device for reflection mirror for high power laser
JP3707920B2 (en) Optical member fixing structure
US20040136431A1 (en) DPSS laser
JP3840090B2 (en) Cylindrical seal structure and apparatus including the same, optical element holding structure, and exposure apparatus
JPS58179813A (en) Optical beam scanner
JP2887090B2 (en) Parallel light illumination optical system
JPH10284775A (en) Solid-state laser
JP3241707B2 (en) Laser processing equipment
US11899352B2 (en) Wavelength conversion element and projector
JPS63205976A (en) Laser oscillator
JPS58111006A (en) Fixing device for reflecting mirror
JP2005024615A (en) Reflecting member with curvature, and optical system using the same
KR100660352B1 (en) Spherical aberration improving structure in the optical system of manufacturing charge coupled device
WO2021019785A1 (en) Method for packaging optical element
JP2658505B2 (en) Laser oscillation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees