JP4479921B2 - 電気自動車の制御装置 - Google Patents

電気自動車の制御装置 Download PDF

Info

Publication number
JP4479921B2
JP4479921B2 JP2006309081A JP2006309081A JP4479921B2 JP 4479921 B2 JP4479921 B2 JP 4479921B2 JP 2006309081 A JP2006309081 A JP 2006309081A JP 2006309081 A JP2006309081 A JP 2006309081A JP 4479921 B2 JP4479921 B2 JP 4479921B2
Authority
JP
Japan
Prior art keywords
control
voltage
motor
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006309081A
Other languages
English (en)
Other versions
JP2007318981A (ja
Inventor
常幸 江上
啓一 川上
崇 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006309081A priority Critical patent/JP4479921B2/ja
Publication of JP2007318981A publication Critical patent/JP2007318981A/ja
Application granted granted Critical
Publication of JP4479921B2 publication Critical patent/JP4479921B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、直流電源の電圧を変換手段で変換してシステム電圧を発生させ、このシステム電圧によってインバータを介して交流モータを駆動するシステムを搭載した電気自動車の制御装置に関するものである。
車両の動力源として交流モータを搭載した電気自動車においては、例えば特許文献1(特開2004−274945号公報)に記載されているように、車両の駆動輪を駆動するための交流モータと、内燃機関で駆動されて発電するための交流モータとを備え、直流電源(二次電池)の電圧を昇圧コンバータで昇圧した直流電圧を電源ラインに発生させ、この電源ラインに、それぞれインバータを介して各交流モータを接続し、昇圧コンバータで昇圧した直流電圧をインバータで交流電圧に変換して交流モータを駆動したり、交流モータで発電した交流電圧をインバータで直流電圧に変換して、この直流電圧を昇圧コンバータで降圧してバッテリに回収させるようにしたものがある。
このようなシステムにおいては、電源ラインの電圧を安定化させるために、昇圧コンバータで電源ラインの電圧を目標電圧に制御すると共に、電源ラインに接続された平滑コンデンサで電源ラインの電圧を平滑するようにしたものがある。
特開2004−274945号公報
しかし、車両の運転状態の変化等によって一方の交流モータの駆動電力と他方の交流モータの発電電力との関係(2つの交流モータの電力収支)が大きく変化した場合、それによって生じる電源ラインの電圧変動を昇圧コンバータや平滑コンデンサで吸収しきれずに電源ラインの電圧が過大になって、電源ラインに接続された電子機器に過電圧が印加されてしまう可能性がある。この対策として、昇圧コンバータの高性能化や平滑コンデンサの大容量化によって電源ラインの電圧安定化効果を高める方法があるが、この方法では、昇圧コンバータや平滑コンデンサの大型化、高コスト化を招いてしまい、システムの小型化、低コスト化の要求を満たすことができないという問題がある。
尚、上記特許文献1では、直流電源の故障時に直流電源と昇圧コンバータとの間をリレーで遮断する際に2つの交流モータのエネルギの総和(電力収支)を「0」にするようにインバータを制御する技術が開示されているが、この技術は、直流電源の故障時の対策であって、直流電源の正常時には電源ラインの電圧安定化効果を高めることができない。また、仮に、通常時に2つの交流モータのエネルギの総和を「0」にするようにインバータを制御しようとしても、一方の交流モータが車両の駆動軸に連結され、他方の交流モータが内燃機関の出力軸に連結されている場合(つまり2つの交流モータが挙動の異なる要素に連結されている場合)や、車両の運転状態が変化する過渡時のようにインバータ制御の演算遅れの影響が大きくなる場合には、2つの交流モータのエネルギの総和を「0」にするように制御するのは極めて困難である。更に、内燃機関に連結されている交流モータは、内燃機関のトルク変動に起因する電力変動を避けられず、これが2つの交流モータのエネルギの総和を「0」にする制御を更に困難にする。
本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、システムの小型化、低コスト化の要求を満たしながら、電源ラインの電圧安定化効果を高めることができる電気自動車の制御装置を提供することにある。
上記目的を達成するために、請求項1に係る発明は、直流電源の電圧を変換して電源ラインにシステム電圧を発生させる変換手段と、電源ラインに接続されたインバータ及び該インバータで駆動される交流モータからなる少なくとも1つのモータ駆動ユニット(以下「MGユニット」と表記する)と、車両の運転状態に応じてMGユニットを制御するメイン制御装置とを備えた電気自動車の制御装置において、メイン制御装置から出力される交流モータのトルク指令値を実現するように制御される交流モータのトルク制御用の指令電圧と、交流モータのトルク指令値とは独立にシステム電圧の変動を抑制するように制御されるMGユニットの入力電力制御用の指令電圧とに基づいて交流モータに印加する電圧の指令値であるモータ指令電圧を電流制御手段によって演算して交流モータのトルクとMGユニットの入力電力を制御し、システム電圧制御手段によって電流制御手段に入力電力制御用指令値を指令してシステム電圧の変動を抑制するようにMGユニットの入力電力を制御するシステム電圧安定化制御を実行する。また、変換手段の入力電力又は出力電力(以下「変換電力」という)を制御する変換電力制御を実行する変換電力制御手段と、変換手段の出力電圧を制御する変換電圧制御を実行する変換電圧制御手段とを備え、選択手段によって変換電力制御と変換電圧制御のうちのいずれか一方を実行するように選択すると共に変換電圧制御の実行が選択される場合にシステム電圧安定化制御の実行を禁止する。更に、トレース制御手段によってMGユニットの入力電力制御の過渡状態において交流モータのトルクが変動しないように交流モータに流れる電流を所定の目標軌跡に沿って変化させる構成としたものである。
この構成では、システム電圧制御手段によってシステム電圧安定化制御を実行することでシステム電圧の変動を抑制するようにMGユニットの入力電力を制御することが可能となるため、車両の運転状態の変化等によって交流モータの電力収支が大きく変化した場合でも、システム電圧(電源ラインの電圧)を効果的に安定化させることができる。しかも、変換手段の高性能化や平滑手段の大容量化を行うことなく、電源ラインの電圧安定化効果を高めることができ、システムの小型化、低コスト化の要求を満たすことができる。
また、メイン制御装置から出力される交流モータのトルク指令値を実現するように制御される交流モータのトルク制御用の指令電圧と、交流モータのトルク指令値とは独立にシステム電圧の変動を抑制するように制御されるMGユニットの入力電力制御用の指令電圧とに基づいて交流モータに印加する電圧の指令値であるモータ指令電圧を演算して交流モータのトルクとMGユニットの入力電力を制御することができるため、交流モータのトルク制御とMGユニットの入力電力制御が干渉することを防止して、交流モータのトルク制御とMGユニットの入力電力制御を安定化させることができる。
更に、選択手段によって変換電力制御と変換電圧制御のうちのいずれか一方を実行するように選択することができるため、車両の状態に応じて変換電力制御と変換電圧制御のいずれかに切り換えることができ、しかも、変換電圧制御の実行が選択される場合にシステム電圧安定化制御の実行を禁止するため、変換電圧制御による変換手段の出力電圧の制御がシステム電圧安定化制御によるシステム電圧の制御と干渉することを防止でき、車両の状態に左右されずにシステム電圧を効果的に安定化させることができる。
ところで、MGユニットの入力電力制御の過渡状態のときに、図7に破線で示すように、交流モータの電流ベクトルが定トルク曲線(同一トルクを発生する電流を表す曲線)から大きく外れると、不快なトルク変動が発生する可能性がある。この対策として、本発明は、トレース制御手段によってMGユニットの入力電力制御の過渡状態において交流モータのトルクが変動しないように交流モータに流れる電流を所定の目標軌跡に沿って変化させるようにしている。このようにすれば、MGユニットの入力電力制御の過渡時に、交流モータの電流ベクトルを交流モータのトルクが変動しないような目標軌跡(つまり定トルク曲線)に沿って変化させることができ、不快なトルク変動が発生することを防止できる。
この場合、請求項2のように、電流分離手段によって交流モータに流れる電流の検出値であるモータ検出電流を交流モータのトルク制御に関わるトルク制御用の検出電流とMGユニットの入力電力制御に関わる入力電力制御用の検出電流とに分離し、交流モータのトルク制御用の指令電流とトルク制御用の検出電流とに基づいてトルク制御用の指令電圧を演算すると共に、MGユニットの入力電力制御用の指令電流と入力電力制御用の検出電流とに基づいて入力電力制御用の指令電圧を演算し、これらのトルク制御用の指令電圧と入力電力制御用の指令電圧とに基づいて交流モータに印加する電圧の指令値であるモータ指令電圧を演算するようにしても良い。このようにすれば、トルク制御用の指令電流と検出電流との偏差が小さくなるようにトルク制御用の指令電圧を演算することができ、交流モータのトルクを精度良く制御することができると共に、入力電力制御用の指令電流と検出電流との偏差が小さくなるように入力電力制御用の指令電圧を演算することができ、MGユニットの入力電力を精度良く制御することができる。
また、トルク制御用の検出電流は、請求項3のように、モータ指令電圧とモータ検出電流とトルク制御用の指令電圧とに基づいてトルク制御用の検出電流を演算するようにしても良い。モータ指令電圧とモータ検出電流との間及びトルク制御用の指令電圧とトルク制御用の検出電流との間には一定の相関関係があるため、モータ指令電圧とモータ検出電流との間の関係を利用してトルク制御用の指令電圧からトルク制御用の検出電流を演算することができる。
更に、入力電力制御用の検出電流は、請求項4のように、モータ指令電圧とモータ検出電流と入力電力制御用の指令電圧とに基づいて入力電力制御用の検出電流を演算するようにしても良い。モータ指令電圧とモータ検出電流との間及び入力電力制御用の指令電圧と入力電力制御用の検出電流との間には一定の相関関係があるため、モータ指令電圧とモータ検出電流との間の関係を利用して入力電力制御用の指令電圧から入力電力制御用の検出電流を演算することができる。
また、交流モータのトルクが変動しないように交流モータに流れる電流を所定の目標軌跡に沿って変化させる際には、請求項5のように、交流モータが発生するトルクと交流モータの機器定数とに基づいて目標軌跡を設定するようにしても良い。定トルク曲線(同一トルクを発生する電流を表す曲線)は、交流モータのトルクや機器定数(鎖交磁束、インダクタンス等)によって決まるため、交流モータが発生するトルクと交流モータの機器定数とを用いて定トルク曲線を求め、この定トルク曲線を目標軌跡として設定すれば、交流モータのトルクが変動しないような目標軌跡(つまり定トルク曲線)を精度良く設定することができる。
更に、請求項6のように、交流モータの界磁方向の軸(以下「d軸」という)及び該界磁方向と直角方向の軸(以下「q軸」という)によって規定される回転座標系において、交流モータのd軸電流成分とq軸電流成分のうちの一方の電流成分と目標軌跡とに基づいて他方の電流成分の目標値を演算し、該他方の電流成分を目標値に一致させるように制御するようにしても良い。このようにすれば、交流モータのd軸電流成分を基準にしてq軸電流成分を補正して電流ベクトルを目標軌跡上に制御する(又は交流モータのq軸電流成分を基準にしてd軸電流成分を補正して電流ベクトルを目標軌跡上に制御する)ことができ、交流モータの電流ベクトルを精度良く目標軌跡に沿って変化させることができる。
また、システム電圧安定化制御の具体的な制御方法は、請求項7のように、システム電圧の目標値を目標電圧設定手段により設定すると共に、システム電圧を電圧検出手段により検出して、システム電圧の目標値と検出したシステム電圧とに基づいてMGユニットの入力電力操作量を演算し、この入力電力操作量に基づいて電流制御手段に入力電力制御用指令値を指令してシステム電圧を制御するようにしても良い。このようにすれば、システム電圧の目標値とシステム電圧の検出値との偏差を小さくするようにMGユニットの入力電力を制御することができ、システム電圧の変動を確実に抑制することができる。
この場合、請求項8のように、電圧検出手段で検出したシステム電圧のうちの所定の周波数以下の成分を通過させる第一の低域通過手段を設け、この第一の低域通過手段を通過した所定の周波数以下のシステム電圧を用いてMGユニットの入力電力操作量を演算するようにしても良い。このようにすれば、MGユニットの入力電力操作量を演算する際に、システム電圧の検出値に含まれるノイズ成分(高周波成分)を第一の低域通過手段によって除去したシステム電圧を用いることができ、MGユニットの入力電力操作量の演算精度を向上させることができる。
また、変換電力制御の具体的な制御方法は、請求項9のように、変換電力の指令値を変換電力指令値演算手段により演算すると共に、変換電力を変換電力検出手段により検出して、変換電力の指令値と検出した変換電力とに基づいて変換電力の制御量を演算し、この変換電力の制御量に基づいて変換電力を制御するようにしても良い。このようにすれば、変換電力の指令値と変換電力の検出値との偏差を小さくするように変換電力を制御することができ、変換手段により電源ラインに供給する電力を目標通りに制御できるので、準定常的にはシステム電圧の安定化を実現でき、システム電圧安定化制御(MGユニットの入力電力操作によるシステム電圧の制御)による変換電力(変換手段の入力電力又は出力電力)の負担を軽減できる。
また、変換電力の指令値は、請求項10のように、電源ラインに接続されたMGユニットを含む全ての電気負荷の入力電力(例えばMGユニットの入力電力の合計値に商用100Vの電気機器を駆動するDCACコンバータ等のMGユニット以外の電力負荷を加算した電力)に基づいて変換電力の指令値を演算するようにしても良い。MGユニットの入力電力を制御すると、MGユニットを含む全ての電気負荷の入力電力の合計値が変化するため、MGユニットを含む全ての電気負荷の入力電力の合計値に基づいて変換電力の指令値を演算すれば、MGユニットの入力電力操作の影響を精度良く反映した変換電力の指令値を演算することができる。
この場合、請求項11のように、電源ラインに接続されたMGユニットを含む全ての電気負荷の入力電力のうちの所定の周波数以下の成分を通過させる第二の低域通過手段を設け、この第二の低域通過手段を通過した所定の周波数以下の電力に基づいて変換電力の指令値を演算するようにしても良い。このようにすれば、MGユニットを含む全ての電気負荷の入力電力の合計値に含まれるノイズ成分(高周波成分)を第二の低域通過手段によって除去した電力に基づいて変換電力の指令値を精度良く演算することができると共に、帯域を制限することで変換手段の高速化を防止できるため、変換手段の性能を低減でき、小型化できるため車両搭載には有利となる。
また、変換電力の検出は、請求項12のように、システム電圧の目標値又は検出したシステム電圧と、検出した変換手段の出力電流とに基づいて変換電力を演算するようにしても良い。このようにすれば、変換電力を精度良く演算することができる。
この場合、請求項13のように、電流検出手段で検出した変換手段の出力電流のうちの所定の周波数以下の成分を通過させる第三の低域通過手段を設け、この第三の低域通過手段を通過した所定の周波数以下の出力電流を用いて変換電力を演算するようにしても良い。このようにすれば、変換電力を演算する際に、変換手段の出力電流の検出値に含まれるノイズ成分(高周波成分)を第三の低域通過手段により除去した後の出力電流を用いることができ、変換電力の演算精度を向上させることができる。
以下、本発明の一実施例を図面に基づいて説明する。
まず、図1に基づいて電気自動車の駆動システムの概略構成を説明する。内燃機関であるエンジン12と第1の交流モータ13及び第2の交流モータ14が搭載され、エンジン12と第2の交流モータ14が車輪11を駆動する動力源となる。エンジン12のクランク軸15の動力は、遊星ギヤ機構16で二系統に分割される。この遊星ギヤ機構16は、中心で回転するサンギヤ17と、このサンギヤ17の外周を自転しながら公転するプラネタリギヤ18と、このプラネタリギヤ18の外周を回転するリングギヤ19とから構成され、プラネタリギヤ18には図示しないキャリアを介してエンジン12のクランク軸15が連結され、リングギヤ19には第2の交流モータ14の回転軸が連結され、サンギヤ17には、主に発電機として使用する第1の交流モータ13が連結されている。
二次電池等からなる直流電源20には昇圧コンバータ21(変換手段)が接続され、この昇圧コンバータ21は、直流電源20の直流電圧を昇圧して電源ライン22とアースライン23との間に直流のシステム電圧を発生させたり、このシステム電圧を降圧して直流電源20に電力を戻す機能を持つ。電源ライン22とアースライン23との間には、システム電圧を平滑化する平滑コンデンサ24や、システム電圧を検出する電圧センサ25(電圧検出手段)が接続され、電流センサ26(電流検出手段)によって電源ライン22に流れる電流が検出される。
更に、電源ライン22とアースライン23との間には、電圧制御型の三相の第1のインバータ27と第2のインバータ28が接続され、第1のインバータ27で第1の交流モータ13が駆動される共に、第2のインバータ28で第2の交流モータ14が駆動される。第1のインバータ27と第1の交流モータ13で第1のモータ駆動ユニット(以下「第1のMGユニット」と表記する)29が構成され、第2のインバータ28と第2の交流モータ14で第2のモータ駆動ユニット(以下「第2のMGユニット」と表記する)30が構成されている。
メイン制御装置31は、車両全体を総合的に制御するコンピュータであり、アクセル操作量(アクセルペダルの操作量)を検出するアクセルセンサ32、車両の前進運転や後退運転やパーキング或はニュートラルなどのシフト操作を検出するシフトスイッチ33、ブレーキ操作を検出するブレーキスイッチ34、車速を検出する車速センサ35等の各種センサやスイッチの出力信号を読み込んで車両の運転状態を検出する。このメイン制御装置31は、エンジン12の運転を制御するエンジン制御装置36と、第1及び第2の交流モータ13,14の運転を制御するモータ制御装置37との間で制御信号やデータ信号を送受信し、各制御装置36,37によって車両の運転状態に応じてエンジン12と第1及び第2の交流モータ13,14の運転を制御する。
次に、図2乃至図9に基づいて第1及び第2の交流モータ13,14の制御について説明する。図2に示すように、第1及び第2の交流モータ13,14は、それぞれ三相永久磁石式同期モータで、永久磁石が内装されたものであり、それぞれロータの回転位置を検出するロータ回転位置センサ39,40が搭載されている。また、電圧制御型の三相の第1のインバータ27は、モータ制御装置37から出力される三相の電圧指令信号UU1 ,UV1 ,UW1 に基づいて、電源ライン22の直流電圧(昇圧コンバータ21によって昇圧されたシステム電圧)を三相の交流電圧U1 ,V1 ,W1 に変換して第1の交流モータ13を駆動する。第1の交流モータ13のU相電流iU1 とW相電流iW1 が、それぞれ電流センサ41,42によって検出される。
一方、電圧制御型の三相の第2のインバータ28は、モータ制御装置37から出力される三相の電圧指令信号UU2 ,UV2 ,UW2 に基づいて、電源ライン22の直流電圧を三相の交流電圧U2 ,V2 ,W2 に変換して第2の交流モータ14を駆動する。第2の交流モータ14のU相電流iU2 とW相電流iW2 が、それぞれ電流センサ43,44によって検出される。
尚、第1及び第2の交流モータ13,14は、インバータ27,28で負のトルクで駆動されるときには発電機として機能する。例えば、車両の減速時には減速エネルギにより第2の交流モータ14で発電した交流電力がインバータ28で直流電力に変換されて直流電源20に充電される。通常は、エンジン12の動力の一部がプラネタリギヤ18を介して第1の交流モータ13に伝達されて第1の交流モータ13で発電することでエンジン12の動力を引き出し、その発電電力が第2の交流モータ14に供給されて第2の交流モータ14が電動機として機能する。また、エンジン12の動力が遊星ギヤ機構16で分割されてリングギヤ19に伝達されるトルクが車両走行に要求されるトルクより大きくなる状態では、第1の交流モータ13が電動機として機能してエンジン12の動力を引き出し、この場合、第2の交流モータ14が発電機として機能して、その発電電力が第1の交流モータ13に供給される。
ところで、車両駆動システムの起動時(メイン制御装置31やモータ制御装置37の起動時)には、モータ制御システムはシャットダウンされた状態(モータ制御等が停止された状態)であり、平滑コンデンサ24には電荷がほとんど蓄積されていないため、モータ制御を開始する前に平滑コンデンサ24に電荷を蓄積するプリチャージを行ってシステム電圧を目標値まで上昇させる必要がある。
そこで、モータ制御装置37は、後述する図9のモータ制御メインプログラムを実行することで、システム起動直後で平滑コンデンサ24のプリチャージ完了前に、システム電圧を目標値に一致させるように昇圧コンバータ21の出力電圧を制御する変換電圧制御を選択して実行して、平滑コンデンサ24のプリチャージを行ってシステム電圧を速やかに目標値に制御する。この変換電圧制御の実行中は、後述するシステム電圧安定化制御のための電力指令値(入力電力操作量Pm )を入力電力制御系(入力電力制御電流演算部54)へ出力することを禁止してシステム電圧安定化制御の実行を禁止する。この後、平滑コンデンサ24のプリチャージが完了したときに、プリチャージ完了信号をメイン制御装置31へ送信する。
メイン制御装置31は、プリチャージ完了信号や他の信号等に基づいてモータ制御システムのシャットダウンを解除しても良いと判断したときに、Ready信号をモータ制御装置37へ送信する。
モータ制御装置37は、Ready信号を受信したときに、モータ制御システムのシャットダウンを解除して、モータ制御を実行すると共に、変換電圧制御を停止して、昇圧コンバータ21の出力電力を指令値に一致させるように昇圧コンバータ21の出力電力を制御する変換電力制御に切り換える。
また、モータ制御では、第1の交流モータ13のトルクを制御するトルク制御を実行すると共に、第2の交流モータ14のトルクを制御するトルク制御及びシステム電圧の変動を抑制するように第2のMGユニット30の入力電力を制御するシステム電圧安定化制御を実行する。その際、第2のMGユニット30の入力電力制御の過渡状態において、第2の交流モータ14のトルクが変動しないように該交流モータ14に流れる電流を所定の電力制御ライン(目標軌跡)に沿って変化させるトレース制御を実行する。
以下、モータ制御装置37で実行するモータ制御(トルク制御、システム電圧安定化制御)、変換電圧制御、変換電力制御について説明する。
[モータ制御]
モータ制御装置37は、システム起動後に平滑コンデンサ24のプリチャージが完了した後に、モータ制御システムのシャットダウンを解除して、モータ制御(トルク制御、システム電圧安定化制御)を実行する。
図2に示すように、モータ制御装置37は、第1の交流モータ13をトルク制御する場合には、メイン制御装置31から出力されるトルク指令値T1*と、第1の交流モータ13のU相電流iU1 とW相電流iW1 (電流センサ41,42の出力信号)と、第1の交流モータ13のロータ回転位置θ1 (ロータ回転位置センサ39の出力信号)に基づいて正弦波PWM制御方式で三相電圧指令信号UU1 ,UV1 ,UW1 を次のようにして生成する。
まず、第1の交流モータ13のロータ回転位置θ1 (ロータ回転位置センサ39の出力信号)を第1の回転速度演算部45に入力して、第1の交流モータ13の回転速度N1 を演算する。この後、第1の交流モータ13のロータの回転座標として設定したd−q座標系において、d軸電流id1とq軸電流iq1をそれぞれ独立に電流フィードバック制御するために、第1のトルク制御電流演算部46で、第1の交流モータ13のトルク指令値T1*と回転速度N1 とに応じたトルク制御用の指令電流ベクトルit1* (d軸指令電流idt1*,q軸指令電流iqt1*)をマップ又は数式等により演算する。
この後、第1の電流制御部47で、第1の交流モータ13のU相,W相の電流iU1 ,iW1 (電流センサ41,42の出力信号)と第1の交流モータ13のロータ回転位置θ1 (ロータ回転位置センサ39の出力信号)に基づいて第1の交流モータ13に実際に流れる電流の検出値であるモータ検出電流ベクトルi1 (d軸モータ検出電流id1,q軸モータ検出電流iq1)を演算し、トルク制御用のd軸指令電流idt1*とd軸モータ検出電流id1との偏差Δid1が小さくなるようにPI制御等によりd軸モータ指令電圧Vd1* を演算すると共に、トルク制御用のq軸指令電流iqt1*とq軸モータ検出電流iq1との偏差Δiq1が小さくなるようにPI制御等によりq軸モータ指令電圧Vq1* を演算する。そして、d軸モータ指令電圧Vd1* とq軸モータ指令電圧Vq1* を三相電圧指令信号UU1 ,UV1 ,UW1 に変換し、これらの三相電圧指令信号UU1 ,UV1 ,UW1 を第1のインバータ27に出力する。
このようにして、メイン制御装置31から出力されるトルク指令値T1*を実現するように第1の交流モータ13のトルクを制御するトルク制御を実行する。
一方、モータ制御装置37は、第2の交流モータ14をトルク制御する場合には、メイン制御装置31から出力されるトルク指令値T2*と、第2の交流モータ14のU相電流iU2 とW相電流iW2 (電流センサ43,44の出力信号)と、第2の交流モータ14のロータ回転位置θ2 (ロータ回転位置センサ40の出力信号)に基づいて正弦波PWM制御方式で三相電圧指令信号UU2 ,UV2 ,UW2 を生成する。
その際、第2の交流モータ14のトルク発生に必要な電力とは異なる入力電力(つまり無効電力)のみを変化させるように電流ベクトルを制御することで、第2の交流モータ14のトルクをほぼ一定(トルク指令値T2*)に保持したまま第2のMGユニット30(第2の交流モータ14)の入力電力を制御してシステム電圧の変動を抑制するシステム電圧安定化制御を実行する。
まず、第2の交流モータ14のロータ回転位置θ2 (ロータ回転位置センサ40の出力信号)を第2の回転速度演算部48に入力して、第2の交流モータ14の回転速度N2 を演算する。この後、第2の交流モータ14のロータの回転座標として設定したd−q座標系において、d軸電流id2とq軸電流iq2をそれぞれ独立に電流フィードバック制御する
ために、第2のトルク制御電流演算部49で、第2の交流モータ14のトルク指令値T2*と回転速度N2 とに応じたトルク制御用の指令電流ベクトルit2* (d軸指令電流idt2*,q軸指令電流iqt2*)をマップ又は数式等により演算する。
更に、システム電圧目標値演算部50(目標電圧設定手段)で、システム電圧の目標値Vs*を演算し、電圧センサ25で検出したシステム電圧の検出値Vs を第1のローパスフィルタ51(第一の低域通過手段)に入力してシステム電圧の検出値Vs のうちの低周波域の成分のみを通過させるローパスフィルタ処理を施す。この後、偏差器52でシステム電圧の目標値Vs*とローパスフィルタ処理後のシステム電圧の検出値Vsfとの偏差ΔVs を求め、この偏差ΔVs をPI制御器53に入力して、システム電圧の目標値Vs*とローパスフィルタ処理後のシステム電圧の検出値Vsfとの偏差ΔVs が小さくなるようにPI制御等により第2の交流モータ14の入力電力操作量Pm を演算する。
この入力電力操作量Pm は禁止/許可ゲート72に入力され、メイン制御装置31からのReady信号を受信した後は、入力電力操作量Pm の入力電力制御電流演算部54への出力が許可される。この入力電力操作量Pm を入力電力制御電流演算部54に入力して、図4に示すように、第2の交流モータ14のトルク発生に寄与しない無効電力を入力電力操作量Pm だけ変化させる入力電力制御用の指令電流ベクトルip2* (d軸指令電流idp2*,q軸指令電流iqp2*)を次のようにして求める。
まず、入力電力操作量Pm とトルク制御用の指令電流ベクトルit2* (d軸指令電流idt2*,q軸指令電流iqt2*)とに応じた入力電力制御用のd軸指令電流idp2*をマップ又は数式等により演算し、この入力電力制御用のd軸指令電流idp2*を用いて次式により入力電力制御用のq軸指令電流iqp2*を演算する。
Figure 0004479921
ここで、φは鎖交磁束、Ld はd軸インダクタンス、Lq はq軸インダクタンスであり、それぞれ交流モータ14の機器定数である。
これにより、第2の交流モータ14のトルクを一定(トルク指令値T2*)に保持したままで第2の交流モータ14の入力電力(無効電力)を入力電力操作量Pm だけ変化させる入力電力制御用の指令電流ベクトルip2* (d軸指令電流idp2*,q軸指令電流iqp2*)を求める。
この後、トルク制御用の指令電流ベクトルit2* (d軸指令電流idt2*,q軸指令電流iqt2*)と入力電力制御用の指令電流ベクトルip2* (d軸指令電流idp2*,q軸指令電流iqp2*)を第2の電流制御部55(電流制御手段)に入力する。この第2の電流制御部55は、図5に示すように、座標変換部73で第2の交流モータ14のU相,W相の電流iU2 ,iW2 (電流センサ43,44の出力信号)と第2の交流モータ14のロータ回転位置θ2 (ロータ回転位置センサ40の出力信号)に基づいて第2の交流モータ14に実際に流れる電流の検出値であるモータ検出電流ベクトルi2 (d軸モータ検出電流id2,q軸モータ検出電流iq2)を演算する。
この後、第2の交流モータ14のトルク制御と第2の交流モータ14の入力電力制御とを行うために、電流分離部74(電流分離手段)で、モータ検出電流ベクトルi2 (d軸モータ検出電流id2,q軸モータ検出電流iq2)をトルク制御に関わるトルク制御用の検出電流ベクトルit2(d軸検出電流idt2 ,q軸検出電流iqt2 )と入力電力制御に関わる入力電力制御用の検出電流ベクトルip2(d軸検出電流idp2 ,q軸検出電流iqp2 )とに分離する。
ここで、図6を用いてモータ検出電流ベクトルi2 をトルク制御用の検出電流ベクトルit2と入力電力制御用の検出電流ベクトルip2とに分離する方法を説明する。尚、ωは電気角速度、Lはインダクタンス、Rは電機子巻線抵抗、φは鎖交磁束である。また、モータ指令電圧ベクトルV2*は、トルク制御用の指令電圧ベクトルVt2* に入力電力制御用の指令電圧ベクトルVp2* を加算した電圧ベクトルであり、電圧ベクトルV0 は、電気角速度ωに鎖交磁束φを乗算して求めた電圧ベクトルである。
電圧ベクトル(V2*−V0 )と電流ベクトルi2 との位相差がαでRとωLがほとんど変化しない瞬時において、3つの電流ベクトルi2 ,it2,ip2によって形成される三角形Aは、3つの電圧ベクトル(V2*−V0 ),(Vt2* −V0 ),Vp2* によって形成される三角形Bと相似であり、電圧ベクトルの三角形Bに対する電流ベクトルの三角形Aの相似比Rは、電流ベクトルi2 の長さを電圧ベクトル(V2*−V0 )の長さで除算した値となる。
R=|i2 |/|V2*−V0 |
つまり、3つの電流ベクトルi2 ,it2,ip2によって形成される三角形Aは、3つの電圧ベクトル(V2*−V0 ),(Vt2* −V0 ),Vp2* によって形成される三角形Bの各辺の方向をαだけ進角させると共に各辺の長さをR倍した三角形である。
従って、電圧ベクトル(Vt2* −V0 )の方向をαだけ進角させると共にその長さをR倍したベクトルを求めることで、トルク制御用の検出電流ベクトルit2(d軸検出電流idt2 ,q軸検出電流iqt2 )を求めることができる。また、電圧ベクトルVp2* の方向をαだけ進角させると共にその長さをR倍したベクトルを求めることで、入力電力制御用の検出電流ベクトルip2(d軸検出電流idp2 ,q軸検出電流iqp2 )を求めることができる。
このようにして、モータ検出電流ベクトルi2 をトルク制御用の検出電流ベクトルit2と入力電力制御用の検出電流ベクトルip2とに分離した後、図5に示すように、偏差器75でトルク制御用のd軸指令電流idt2*とd軸検出電流idt2 との偏差Δidt2 を求め、この偏差Δidt2 をPI制御器76に入力して偏差Δidt2 が小さくなるようにPI制御等によりトルク制御用のd軸指令電圧Vdt2*を演算する。更に、偏差器77でトルク制御用のq軸指令電流iqt2*とq軸検出電流iqt2 との偏差Δiqt2 を求め、この偏差Δiqt2 をPI制御器78に入力して偏差Δiqt2 が小さくなるようにPI制御等によりトルク制御用のq軸指令電圧Vqt2*を演算する。これにより、トルク制御用の指令電流ベクトルit2* と検出電流ベクトルit2との偏差が小さくなるようにトルク制御用の指令電圧ベクトルVt2* (d軸指令電圧Vdt2*,q軸指令電圧Vqt2*)を求める。
また、偏差器79で入力電力制御用のd軸指令電流idp2*とd軸検出電流idp2 との偏差Δidp2 を求め、この偏差Δidp2 をPI制御器80に入力して偏差Δidp2 が小さくなるようにPI制御等により入力電力制御用のd軸指令電圧Vdp0*を演算する。更に、偏差器81で入力電力制御用のq軸指令電流iqp2*とq軸検出電流iqp2 との偏差Δiqp2 を求め、この偏差Δiqp2 をPI制御器82に入力して偏差Δiqp2 が小さくなるようにPI制御等により入力電力制御用のq軸指令電圧Vqp0*を演算する。これにより、入力電力制御用の指令電流ベクトルip2* と検出電流ベクトルip2との偏差が小さくなるように入力電力制御用の指令電圧ベクトルVp0* (d軸指令電圧Vdp0*,q軸指令電圧Vqp0*)を求めた後、後述するトレース制御部86で、最終的な入力電力制御用の指令電圧ベクトルVp2* (d軸指令電圧Vdp2*,q軸指令電圧Vqp2*)を求める。
このようにして、トルク制御用の指令電圧ベクトルVt2* (d軸指令電圧Vdt2*,q軸指令電圧Vqt2*)と入力電力制御用の指令電圧ベクトルVp2* (d軸指令電圧Vdp2*,q軸指令電圧Vqp2*)とを独立して演算した後、加算器83でトルク制御用のd軸指令電圧Vdt2*に入力電力制御用のd軸指令電圧Vdp2*を加算して最終的なd軸モータ指令電圧Vd2* を求めると共に、加算器84でトルク制御用のq軸指令電圧Vqt2*に入力電力制御用のq軸指令電圧Vqp2*を加算して最終的なq軸モータ指令電圧Vq2* を求める。これにより、最終的なモータ指令電圧ベクトルV2*(d軸モータ指令電圧Vd2,q軸モータ指令電圧Vq2* )を求める。このモータ指令電圧ベクトルV2*(d軸モータ指令電圧Vd2,q軸モータ指令電圧Vq2* )を座標変換部85で三相電圧指令信号UU2 ,UV2 ,UW2 に変換し、これらの三相電圧指令信号UU2 ,UV2 ,UW2 を第2のインバータ28に出力する。
以上のようにして、メイン制御装置31から出力されるトルク指令値T2*を実現するように第2の交流モータ14のトルクを制御するトルク制御を実行すると共に、第2の交流モータ14のトルクをほぼ一定(トルク指令値T2*)に保持したままシステム電圧の目標値Vs*と検出値Vsfとの偏差ΔVs が小さくなるように第2のMGユニット30(第2の交流モータ14)の入力電力(無効電力)を制御してシステム電圧の変動を抑制するシステム電圧安定化制御を実行する。この場合、PI制御器53、入力電力制御電流演算部54等がシステム電圧制御手段としての役割を果たす。
ところで、第2のMGユニット30の入力電力制御の過渡状態において、図7に破線で示すように、第2の交流モータ14の電流ベクトルi2 が定トルク曲線(同一トルクを発生する電流ベクトルを表す曲線)から大きく外れると、不快なトルク変動が発生する可能性がある。
この対策として、本実施例では、トレース制御部86(トレース制御手段)で、図7に示すように、第2のMGユニット30の入力電力制御の過渡状態において、第2の交流モータ14のトルクが変動しないように第2の交流モータ14に流れる電流ベクトルi2 を所定の電力制御ライン(目標軌跡)に沿って変化させるトレース制御を実行する。その際、第2の交流モータ14のトルクや機器定数(鎖交磁束φ、d軸インダクタンスLd 、q軸インダクタンスLq )によって定トルク曲線が決まるため、第2の交流モータ14が発生するトルクT2 と該交流モータ14の機器定数とを用いて定トルク曲線を求め、この定トルク曲線を電力制御ラインとして設定することで、第2の交流モータ14のトルクが変動しないような電力制御ライン(つまり定トルク曲線)を精度良く設定する。
具体的には、図8に示すように、まず、トルク推定値演算部87で、トルク制御用の検出電流ベクトルit2(d軸検出電流idt2 ,q軸検出電流iqt2 )に基づいて第2の交流モータ14が発生するトルクの推定値T2 を演算する。
この後、q軸電流目標値演算部88で、入力電力制御用のd軸検出電流idp2 と第2の交流モータ14が発生するトルクの推定値T2 と該交流モータ14の機器定数(鎖交磁束φ、d軸インダクタンスLd 、q軸インダクタンスLq )とを用いて次式により入力電力制御用の過渡時のq軸電流目標値iqp22* を演算する。
Figure 0004479921
これにより、第2のMGユニット30の入力電力制御の過渡時に、第2の交流モータ14の電流ベクトルi2 が電力制御ライン上になるように、入力電力制御用のd軸検出電流idp2 を基準にした入力電力制御用の過渡時のq軸電流目標値iqp22* を求める。
この後、偏差器89で、入力電力制御用の過渡時のq軸電流目標値iqp22* とq軸検出電流iqp2 との偏差Δiqp22を求め、この偏差Δiqp22をPI制御器90に入力して偏差Δiqp22が小さくなるようにPI制御等により入力電力制御用のq軸指令電圧補正値Vqp22* を演算する。
この後、加算器91で、入力電力制御用のq軸指令電圧Vqp0*にq軸指令電圧補正値Vqp22* を加算して最終的な入力電力制御用のq軸指令電圧Vqp2*を求める。一方、入力電力制御用のd軸指令電圧Vdp0*は、そのまま最終的な入力電力制御用のd軸指令電圧Vdp2*とする。これにより、最終的な入力電力制御用の指令電圧ベクトルVp2* (d軸指令電圧Vdp2*,q軸指令電圧Vqp2*)を求める。
このようなトレース制御部86の処理により、第2のMGユニット30の入力電力制御の過渡時に、第2の交流モータ14の入力電力制御用のd軸電流idp2 を基準にしてq軸電流iqp2 を補正して電流ベクトルi2 を電力制御ライン上に制御することで、第2の交流モータ14の電流ベクトルi2 を該交流モータ14のトルクが変動しないような電力制御ライン(つまり定トルク曲線)に沿って変化させる。
尚、本実施例では、d軸電流idp2 を基準にしてq軸電流iqp2 を補正して電流ベクトルi2 を電力制御ライン上に制御するトレース制御を実行するようにしたが、これとは逆に、q軸電流iqp2 を基準にしてd軸電流idp2 を補正して電流ベクトルi2 を電力制御ライン上に制御するトレース制御を実行するようにしても良い。また、第2のMGユニット30の入力電力制御を行う際の条件(例えば、電流ベクトルi2 の大きさ、向き、制御方向等)に応じて、d軸電流idp2 を基準にしたトレース制御とq軸電流iqp2 を基準にしたトレース制御とを切り換えるようにしても良い。
[変換電圧制御]
モータ制御装置37は、システム起動直後で平滑コンデンサ24のプリチャージ完了前に、システム電圧の目標値Vs*と検出値Vsfとの偏差ΔVs が小さくなるように昇圧コンバータ21の出力電圧を制御する変換電圧制御を実行する。
具体的には、図3に示すように、システム電圧目標値演算部50で、システム電圧の目標値Vs*を演算し、電圧センサ25で検出したシステム電圧の検出値Vs を第1のローパスフィルタ51に入力してシステム電圧の検出値Vs のうちの低周波域の成分のみを通過させるローパスフィルタ処理を施す。この後、偏差器68でシステム電圧の目標値Vs*とローパスフィルタ処理後のシステム電圧の検出値Vsfとの偏差ΔVs を求め、この偏差ΔVs をPI制御器69に入力して、システム電圧の目標値Vs*とローパスフィルタ処理後のシステム電圧の検出値Vsfとの偏差ΔVs が小さくなるようにPI制御等により昇圧コンバータ21の図示しないスイッチング素子の通電デューティ比Dvcを演算する。
この電圧制御用の通電デューティ比Dvcと後述する電力制御用の通電デューティ比Dpcは昇圧駆動選択演算部70(選択手段)に入力される。この昇圧駆動選択演算部70は、システム起動後にメイン制御装置31からのReady信号を受信したか否かを判定し、まだReady信号を受信していないと判定した場合には、平滑コンデンサ24のプリチャージ完了前であると判断して、昇圧コンバータ21で変換電圧制御を実行するように、昇圧コンバータ21のスイッチング素子の通電デューティ比Dc として、電圧制御用の通電デューティ比Dvcを選択する。
Dc =Dvc
この後、昇圧駆動信号演算部71で、電圧制御用の通電デューティ比Dc (=Dvc)に基づいて昇圧駆動信号UCU,UCLを演算し、この昇圧駆動信号UCU,UCLを昇圧コンバータ21に出力する。
このようにして、システム起動直後で平滑コンデンサ24のプリチャージ完了前に、システム電圧の目標値Vs*と検出値Vsfとの偏差ΔVs が小さくなるように昇圧コンバータ21の出力電圧を制御する変換電圧制御を実行することで、平滑コンデンサ24のプリチャージを行ってシステム電圧を速やかに目標値に制御する。この変換電圧制御の実行中は、第2のMGユニット30の入力電力操作によるシステム電圧の制御(システム電圧安定化制御)を禁止することで、第2のMGユニット30の入力電力操作によるシステム電圧の制御(システム電圧安定化制御)と、昇圧コンバータ21によるシステム電圧の制御(変換電圧制御)との干渉を防止する。この場合、PI制御器69、昇圧駆動選択演算部70、昇圧駆動信号演算部71等が変換電圧制御手段としての役割を果たす。
[変換電力制御]
モータ制御装置37は、システム起動後に平滑コンデンサ24のプリチャージが完了した後に、前述した変換電圧制御を停止し、昇圧コンバータ21の出力電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるように昇圧コンバータ21の出力電力を制御する変換電力制御に切り換える。
具体的には、図3に示すように、昇圧コンバータ21の出力電力の指令値Pif* を演算する場合には、まず、第1の交流モータ13のトルク指令値T1*と回転速度N1 を第1の軸出力演算部56に入力して第1の交流モータ13の軸出力PD1 を演算すると共に、第1の交流モータ13のトルク指令値T1*と回転速度N1 を第1の出力損失演算部57に入力して第1の交流モータ13の出力損失PL1 を演算した後、加算器58で第1の交流モータ13の軸出力PD1 に出力損失PL1 を加算して第1の交流モータ13の入力電力Pi1を求める。この際、第1の交流モータ13が発電機として機能している場合には、第1の交流モータ13の入力電力Pi1の演算結果が負の値となる。
更に、第2の交流モータ14のトルク指令値T2*と回転速度N2 を第2の軸出力演算部59に入力して第2の交流モータ14の軸出力PD2 を演算すると共に、第2の交流モータ14のトルク指令値T2*と回転速度N2 を第2の出力損失演算部60に入力して第2の交流モータ14の出力損失PL2 を演算した後、加算器61で第2の交流モータ14の軸出力PD2 に出力損失PL2 を加算して第2の交流モータ14の入力電力Pi2を求める。この際、第2の交流モータ14が発電機として機能している場合には、第2の交流モータ14の入力電力Pi2の演算結果が負の値となる。
この後、合計器62で第1の交流モータ13の入力電力Pi1と第2の交流モータの入力電力Pi2とを合計して合計電力Pi*を求め、この合計電力Pi*を第2のローパスフィルタ63(第二の低域通過手段)に入力して合計電力Pi*のうちの低周波域の成分のみを通過させるローパスフィルタ処理を施し、このローパスフィルタ処理後の合計電力Pif* を変換電力の指令値Pif* とする。これら合計器62と第2のローパスフィルタ63等が変換電力指令値演算手段としての役割を果たす。
一方、昇圧コンバータ21の出力電力の検出値Pi を演算する場合は、電流センサ26で検出した昇圧コンバータ21の出力電流の検出値ic を第3のローパスフィルタ64(第三の低域通過手段)に入力して昇圧コンバータ21の出力電流の検出値ic のうちの低周波域の成分のみを通過させるローパスフィルタ処理を施し、変換電力検出部65(変換電力検出手段)でシステム電圧の目標値Vs*とローパスフィルタ処理後の昇圧コンバータ21の出力電流の検出値icfとを乗算して変換電力の検出値Pi を求める。尚、システム電圧の検出値Vsfと出力電流の検出値icfとを乗算して出力電力の検出値Pi を求めるようにしても良い。
この後、偏差器66で昇圧コンバータ21の出力電力の指令値Pif* と検出値Pi との偏差ΔPi を求め、この偏差ΔPi をPI制御器67に入力して、昇圧コンバータ21の出力電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるようにPI制御等により昇圧コンバータ21のスイッチング素子の通電デューティ比Dpcを演算する。
この電力制御用の通電デューティ比Dpcと前述した電圧制御用の通電デューティ比Dvcは、昇圧駆動選択演算部70(選択手段)に入力される。この昇圧駆動選択演算部70は、システム起動後にメイン制御装置31からのReady信号を受信したか否かを判定し、既にReady信号を受信したと判定した場合には、平滑コンデンサ24のプリチャージ完了後であると判断して、昇圧コンバータ21で変換電力制御を実行するように、昇圧コンバータ21のスイッチング素子の通電デューティ比Dc として、電力制御用の通電デューティ比Dpcを選択する。
Dc =Dpc
この後、昇圧駆動信号演算部71で、電力制御用の通電デューティ比Dc (=Dpc)に基づいて昇圧駆動信号UCU,UCLを演算し、この昇圧駆動信号UCU,UCLを昇圧コンバータ21に出力する。
このようにして、平滑コンデンサ24のプリチャージ完了後に、昇圧コンバータ21の出力電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるように昇圧コンバータ21の出力電力を制御する変換電力制御を実行することで、昇圧コンバータ21により電源ライン22に供給する電力を目標通りに制御できるようにする。この場合、PI制御器67、昇圧駆動選択演算部70、昇圧駆動信号演算部71等が変換電力制御手段としての役割を果たす。
以上説明したモータ制御(トルク制御、システム電圧安定化制御)、変換電圧制御、変換電力制御は、図9に示すモータ制御メインプログラムに従って実行される。本プログラムは、システム起動後に所定周期で繰り返し実行される。本プログラムが起動されると、まず、ステップ101で、メイン制御装置31からのReady信号を受信したか否かを判定する。まだReady信号を受信していないと判定された場合には、平滑コンデンサ24のプリチャージ完了前であると判断して、ステップ102に進み、変換電圧制御を実行して、システム電圧の目標値Vs*と検出値Vsfとの偏差ΔVs が小さくなるように昇圧コンバータ21の出力電圧を制御することで、平滑コンデンサ24のプリチャージを行ってシステム電圧を速やかに目標値に制御する。この変換電圧制御の実行中は、第2のMGユニット30の入力電力操作によるシステム電圧の制御(システム電圧安定化制御)を禁止する。
この後、ステップ103に進み、平滑コンデンサ24のプリチャージが完了したか否かを判定し、平滑コンデンサ24のプリチャージが完了したと判定されたときに、ステップ104に進み、プリチャージ完了信号をメイン制御装置31へ送信する。
メイン制御装置31は、プリチャージ完了信号や他の信号等に基づいてモータ制御システムのシャットダウンを解除しても良いと判断したときに、Ready信号をモータ制御装置37へ送信する。
その後、上記ステップ101で、メイン制御装置31からのReady信号を受信したと判定されたときに、平滑コンデンサ24のプリチャージ完了後であると判断して、ステップ105に進み、モータ制御システムのシャットダウンを解除して、モータ制御(トルク制御、システム電圧安定化制御)を実行する。更に、ステップ106に進み、変換電圧制御から変換電力制御に切り換えて、昇圧コンバータ21の出力電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるように昇圧コンバータ21の出力電力を制御する。
以上説明した本実施例では、システム電圧の目標値Vs*と検出値Vsfとの偏差ΔVs が小さくなるように第2のMGユニット30(第2の交流モータ14)の入力電力を制御してシステム電圧(電源ライン22の電圧)の変動を抑制するシステム電圧安定化制御を実行するようにしたので、車両の運転状態の変化等によって2つの交流モータ13,14の電力収支が大きく変化した場合でも、システム電圧を効果的に安定化させることができる。しかも、昇圧コンバータ21の高性能化や平滑コンデンサ24の大容量化を行うことなく、電源ライン22の電圧安定化効果を高めることができ、システムの小型化、低コスト化の要求を満たすことができる。
更に、本実施例では、モータ検出電流ベクトルi2 をトルク制御用の検出電流ベクトルit2と入力電力制御用の検出電流ベクトルip2とに分離し、トルク制御用の指令電流ベクトルit2* と検出電流ベクトルit2との偏差が小さくなるようにトルク制御用の指令電圧ベクトルVt2* を演算すると共に、入力電力制御用の指令電流ベクトルip2* と検出電流ベクトルip2との偏差が小さくなるように入力電力制御用の指令電圧ベクトルVp2* を演算することで、トルク制御用の指令電圧ベクトルVt2* と入力電力制御用の指令電圧ベクトルVp2* とを独立して演算し、これらのトルク制御用の指令電圧ベクトルVt2* と入力電力制御用の指令電圧ベクトルVp2* とに基づいて最終的なモータ指令電圧を演算して、第2の交流モータ14のトルク制御と第2のMGユニット30の入力電力制御とを行うようにしたので、第2の交流モータ14のトルク制御と第2のMGユニット30の入力電力制御が干渉することを防止して、第2の交流モータ14のトルク制御と第2のMGユニット30の入力電力制御を安定化させることができる。
また、本実施例では、システム起動直後で平滑コンデンサ24のプリチャージ完了前に、変換電圧制御を実行して、システム電圧の目標値Vs*と検出値Vsfとの偏差ΔVs が小さくなるように昇圧コンバータ21の出力電圧を制御することで、平滑コンデンサ24のプリチャージを行ってシステム電圧を速やかに目標値に制御すると共に、この変換電圧制御の実行中は、システム電圧安定化制御の実行を禁止する。その後、平滑コンデンサ24のプリチャージ完了後に、モータ制御システムのシャットダウンを解除してモータ制御(トルク制御、システム電圧安定化制御)を開始すると共に、変換電圧制御から変換電力制御に切り換えて、昇圧コンバータ21の出力電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるように昇圧コンバータ21の出力電力を制御する。このようにして、車両の状態に応じて変換電圧制御と変換電力制御とを切り換えると共に、変換電圧制御の実行中はシステム電圧安定化制御の実行を禁止するため、変換電圧制御による昇圧コンバータ21の出力電圧の制御がシステム電圧安定化制御によるシステム電圧の制御と干渉することを防止できて、車両の状態に左右されずにシステム電圧を効果的に安定化させることができる。
また、本実施例では、システム電圧安定化制御の際に、第2の交流モータ14のトルク発生に寄与しない無効電力のみを変化させるように電流ベクトルを制御することで、第2の交流モータ14のトルクをほぼ一定(トルク指令値T2*)に保持したまま第2のMGユニット30(第2の交流モータ14)の入力電力を制御してシステム電圧を制御するようにしたので、車両の運転状態に悪影響を及ぼすことなくシステム電圧の変動を抑制することができる。
更に、本実施例では、第2のMGユニット30の入力電力制御の過渡状態のときに、第2の交流モータ14が発生するトルクT2 と該交流モータ14の機器定数とに基づいた定トルク曲線を電力制御ライン(目標軌跡)として設定し、第2の交流モータ14に流れる電流ベクトルi2 を電力制御ライン(つまり定トルク曲線)に沿って変化させるようにしたので、第2のMGユニット30の入力電力制御の過渡時に、第2の交流モータ14の電流ベクトルi2 を該交流モータ14のトルクが変動しないような電力制御ライン(つまり定トルク曲線)に沿って変化させることができ、不快なトルク変動が発生することを防止できる。
また、本実施例では、ローパスフィルタ処理後のシステム電圧の検出値Vsfを用いて第2の交流モータ14の入力電力操作量Pm を演算するようにしたので、入力電力操作量Pm を演算する際に、システム電圧の検出値Vs に含まれるノイズ成分(高周波成分)をローパスフィルタ処理で除去した後のシステム電圧の検出値Vsfを用いることができ、入力電力操作量Pm の演算精度を向上させることができる。
更に、本実施例では、第1の交流モータ13の入力電力Pi1と第2の交流モータの入力電力Pi2とを合計した合計電力Pi*から変換電力の指令値Pif* を求めると共に、システム電圧の目標値Vs*(又は検出値Vsf)と昇圧コンバータ21の出力電流の検出値icfとを乗算して変換電力の検出値Pi を求め、これらの変換電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるように昇圧コンバータ21の出力電力を制御する変換電力制御を実行するようにしたので、昇圧コンバータ21により電源ライン22に供給する電力を目標通りに制御できて、準定常的にはシステム電圧の安定化を実現でき、第2のMGユニット30の入力電力操作によるシステム電圧の制御(システム電圧安定化制御)による変換電力の負担を軽減できる。
また、本実施例では、第1の交流モータ13の入力電力Pi1と第2の交流モータの入力電力Pi2との合計電力Pi*をローパスフィルタ処理した後の合計電力Pif* を変換電力の指令値Pif* とするようにしたので、ノイズ成分(高周波成分)をローパスフィルタ処理で除去した後の合計電力Pif* を変換電力の指令値Pif* とすることができ、変換電力の指令値Pif* を精度良く設定することができる。しかも、帯域を制限することで、昇圧コンバータ21の高速化を防止できるため、昇圧コンバータ21の要求性能を低減できて、小型化でき、車両搭載には有利となる。
更に、本実施例では、ローパスフィルタ処理後の昇圧コンバータ21の出力電流の検出値icfを用いて変換電力の検出値Pi を演算するようにしたので、変換電力の検出値Pi を演算する際に、出力電流の検出値ic に含まれるノイズ成分(高周波成分)をローパスフィルタ処理で除去した後の出力電流の検出値icfを用いることができ、変換電力の検出値Pi の演算精度を向上させることができる。
また、電気自動車が起動されるときは一般的にはシステム電圧がゼロから始まる。そして、起動完了とするために所定の目標電圧にする必要がある。この場合、起動の初期はMGユニット30はシャットダウンされており、MGユニット30を用いたシステム電圧安定化は実行できない。この対策として、電気自動車の起動時には、本実施例のように、変換電力制御を実行させずに変換電圧制御を実行するように選択するとともに、MGユニット30の入力電力操作によるシステム電圧の制御(システム電圧安定化制御)を禁止するようにすれば、MGユニット30の入力電力操作によるシステム電圧の制御(システム電圧安定化制御)と昇圧コンバータ21によるシステム電圧の制御(変換電力制御)との干渉を防止することができ、システム電圧を効果的に安定化でき、電気自動車の起動をスムーズに行うことができる。
また、電気自動車が起動された後に、例えば、電気自動車の走行中に冷却系の異常などによりMGユニット30の過熱が発生する場合がある。この場合に、MGユニット30を保護するためにMGユニット30がシャットダウンされる場合がある。この場合は、MGユニット30を用いたシステム電圧安定化は実行できない。
この対策として、電気自動車の走行中に冷却系の異常などによりMGユニット30の過熱が発生する場合は、本実施例のように、変換電力制御を実行させずに変換電圧制御を実行するように選択するとともに、MGユニット30の入力電力操作によるシステム電圧の制御(システム電圧安定化制御)を禁止するようにすれば、昇圧コンバータ21による電圧制御によりシステム電圧を制御できるため、システム電圧を効果的に安定化でき、システム電圧の過電圧を防止できるため、MGユニット30などを確実に保護できる。
尚、上記実施例では、交流モータを正弦波PWM制御方式で制御するようにしたが、交流モータを他の制御方式(例えば、矩形波制御方式等)で制御するシステムに本発明を適用しても良い。
また、上記実施例では、変換電力制御の際に、昇圧コンバータ21の出力電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるように昇圧コンバータ21の出力電力を制御するようにしたが、昇圧コンバータ21の入力電力の指令値Pif* と検出値Pi との偏差ΔPi が小さくなるように昇圧コンバータ21の入力電力を制御するようにしても良い。
また、上記実施例では、システム電圧安定化制御の際に、第2のMGユニット30(第2の交流モータ14)の入力電力を制御してシステム電圧の変動を抑制するようにしたが、第1のMGユニット29(第1の交流モータ13)の入力電力を制御してシステム電圧の変動を抑制するようにしても良い。或は、図示しないが、例えば従動輪に第3のMGユニットを搭載した全輪駆動構成の車両においては、この第3のMGユニットの入力電力を制御してシステム電圧の変動を抑制するようにしても良い。
また、上記実施例では、エンジンの動力を遊星ギヤ機構で分割する所謂スプリットタイプのハイブリッド電気自動車に本発明を適用したが、このスプリットタイプのハイブリッド電気自動車に限定されず、他の方式であるパラレルタイプやシリーズタイプのハイブリッド電気自動車に本発明を適用しても良い。更に、上記実施例では、交流モータとエンジンを動力源とする車両に本発明を適用したが、交流モータのみを動力源とする車両に本発明を適用しても良い。また、インバータと交流モータとからなるMGユニットを1つだけ搭載した車両やMGユニットを3つ以上搭載した車両に本発明を適用しても良い。
本発明の一実施例における電気自動車の駆動システムの概略構成図である。 本発明の一実施例におけるモータ制御系及びその周辺部の構成を示すブロック図である。 本発明の一実施例における昇圧コンバータ制御系及びその周辺部の構成を示すブロック図である。 本発明の一実施例における入力電力制御用の指令電流ベクトルip2* の演算方法を説明するための図である。 本発明の一実施例における第2の電流制御部の構成を示すブロック図である。 本発明の一実施例におけるトルク制御用の検出電流ベクトルit2と入力電力制御用の検出電流ベクトルip2の演算方法を説明するための図である。 本発明の一実施例におけるトレース制御を説明するための図である。 本発明の一実施例におけるトレース制御部の構成を示すブロック図である。 本発明の一実施例におけるモータ制御メインプログラムの処理の流れを示すフローチャートである。
符号の説明
13,14…交流モータ、20…直流電源、21…昇圧コンバータ(変換手段)、22…電源ライン、24…平滑コンデンサ、25…電圧センサ(電圧検出手段)、26…電流センサ(電流検出手段)、27,28…インバータ、29,30…MGユニット、37…モータ制御装置、49…第2のトルク制御電流演算部、50…システム電圧目標値演算部(目標電圧設定手段)、51…第1のローパスフィルタ(第一の低域通過手段)、53…PI制御器(システム電圧制御手段)、54…入力電力制御電流演算部(システム電圧制御手段)、55…第2の電流制御部(電流制御手段)、62…合計器(変換電力指令値演算手段)、63…第2のローパスフィルタ(第二の低域通過手段)、64…第3のローパスフィルタ(第三の低域通過手段)、65…変換電力検出部(変換電力検出手段)、67…PI制御器(変換電力制御手段)、69…PI制御器(変換電圧制御手段)、70…昇圧駆動選択演算部(選択手段,変換電圧制御手段,変換電力制御手段)、71…昇圧駆動信号演算部(変換電圧制御手段,変換電力制御手段)、74…電流分離部(電流分離手段)、86…トレース制御部(トレース制御手段)

Claims (13)

  1. 直流電源の電圧を変換して電源ラインにシステム電圧を発生させる変換手段と、前記電源ラインに接続されたインバータ及び該インバータで駆動される交流モータからなる少なくとも1つのモータ駆動ユニット(以下「MGユニット」と表記する)と、車両の運転状態に応じて前記MGユニットを制御するメイン制御装置とを備えた電気自動車の制御装置において、
    前記メイン制御装置から出力される前記交流モータのトルク指令値を実現するように制御される前記交流モータのトルク制御用の指令電圧と、前記交流モータのトルク指令値とは独立に前記システム電圧の変動を抑制するように制御される前記MGユニットの入力電力制御用の指令電圧とに基づいて前記交流モータに印加する電圧の指令値であるモータ指令電圧を演算して前記交流モータのトルクと前記MGユニットの入力電力を制御する電流制御手段と、
    前記電流制御手段に入力電力制御用指令値を指令して前記システム電圧の変動を抑制するように前記MGユニットの入力電力を制御するシステム電圧安定化制御を実行するシステム電圧制御手段と、
    前記変換手段の入力電力又は出力電力(以下「変換電力」という)を制御する変換電力制御を実行する変換電力制御手段と、
    前記変換手段の出力電圧を制御する変換電圧制御を実行する変換電圧制御手段と、
    前記変換電力制御と前記変換電圧制御のうちのいずれか一方を実行するように選択すると共に前記変換電圧制御の実行が選択される場合に前記システム電圧安定化制御の実行を禁止する選択手段とを備え、
    前記電流制御手段は、前記MGユニットの入力電力制御の過渡状態において前記交流モータのトルクが変動しないように前記交流モータに流れる電流を所定の目標軌跡に沿って変化させるトレース制御手段を備えていることを特徴とする電気自動車の制御装置。
  2. 前記電流制御手段は、前記交流モータに流れる電流の検出値であるモータ検出電流を前記交流モータのトルク制御に関わるトルク制御用の検出電流と前記MGユニットの入力電力制御に関わる入力電力制御用の検出電流とに分離する電流分離手段を備え、
    前記交流モータのトルク制御用の指令電流と前記トルク制御用の検出電流とに基づいてトルク制御用の指令電圧を演算すると共に、前記MGユニットの入力電力制御用の指令電流と前記入力電力制御用の検出電流とに基づいて入力電力制御用の指令電圧を演算し、前記トルク制御用の指令電圧と前記入力電力制御用の指令電圧とに基づいて前記交流モータに印加する電圧の指令値であるモータ指令電圧を演算することを特徴とする請求項1に記載の電気自動車の制御装置。
  3. 前記電流分離手段は、前記モータ指令電圧と前記モータ検出電流と前記トルク制御用の指令電圧とに基づいて前記トルク制御用の検出電流を演算することを特徴とする請求項2に記載の電気自動車の制御装置。
  4. 前記電流分離手段は、前記モータ指令電圧と前記モータ検出電流と前記入力電力制御用の指令電圧とに基づいて前記入力電力制御用の検出電流を演算することを特徴とする請求項2又は3に記載の電気自動車の制御装置。
  5. 前記トレース制御手段は、前記交流モータが発生するトルクと前記交流モータの機器定数とに基づいて前記目標軌跡を設定することを特徴とする請求項1乃至4のいずれかに記載の電気自動車の制御装置。
  6. 前記トレース制御手段は、前記交流モータの界磁方向の軸(以下「d軸」という)及び該界磁方向と直角方向の軸(以下「q軸」という)によって規定される回転座標系において、前記交流モータのd軸電流成分とq軸電流成分のうちの一方の電流成分と前記目標軌跡とに基づいて他方の電流成分の目標値を演算し、該他方の電流成分を目標値に一致させるように制御することを特徴とする請求項1乃至5のいずれかに記載の電気自動車の制御装置。
  7. 前記システム電圧の目標値を設定する目標電圧設定手段と、
    前記システム電圧を検出する電圧検出手段とを備え、
    前記システム電圧制御手段は、前記目標電圧設定手段で設定したシステム電圧の目標値と前記電圧検出手段で検出したシステム電圧とに基づいて前記MGユニットの入力電力操作量を演算し、該入力電力操作量に基づいて前記電流制御手段に入力電力制御用指令値を指令して前記システム電圧を制御することを特徴とする請求項1乃至6のいずれかに記載の電気自動車の制御装置。
  8. 前記電圧検出手段で検出したシステム電圧のうちの所定の周波数以下の成分を通過させる第一の低域通過手段を備え、
    前記システム電圧制御手段は、前記第一の低域通過手段を通過した所定の周波数以下のシステム電圧を用いて前記MGユニットの入力電力操作量を演算することを特徴とする請求項7に記載の電気自動車の制御装置。
  9. 前記変換電力の指令値を演算する変換電力指令値演算手段と、
    前記変換電力を検出する変換電力検出手段とを備え、
    前記変換電力制御手段は、前記変換電力指令値演算手段で演算した変換電力の指令値と前記変換電力検出手段で検出した変換電力とに基づいて前記変換電力の制御量を演算し、該変換電力の制御量に基づいて前記変換電力を制御することを特徴とする請求項1乃至8のいずれかに記載の電気自動車の制御装置。
  10. 前記変換電力指令値演算手段は、前記電源ラインに接続された前記MGユニットを含む全ての電気負荷の入力電力に基づいて前記変換電力の指令値を演算することを特徴とする請求項9に記載の電気自動車の制御装置。
  11. 前記電源ラインに接続された前記MGユニットを含む全ての電気負荷の入力電力のうちの所定の周波数以下の成分を通過させる第二の低域通過手段を備え、
    前記変換電力指令値演算手段は、前記第二の低域通過手段を通過した所定の周波数以下の電力に基づいて前記変換電力の指令値を演算することを特徴とする請求項10に記載の電気自動車の制御装置。
  12. 前記システム電圧の目標値を設定する目標電圧設定手段と前記システム電圧を検出する電圧検出手段のうちの少なくとも一方と、
    前記変換手段の出力電流を検出する電流検出手段とを備え、
    前記変換電力検出手段は、前記目標電圧設定手段で設定したシステム電圧の目標値又は前記電圧検出手段で検出したシステム電圧と、前記電流検出手段で検出した変換手段の出力電流とに基づいて前記変換電力を演算することを特徴とする請求項9乃至11のいずれかに記載の電気自動車の制御装置。
  13. 前記電流検出手段で検出した変換手段の出力電流のうちの所定の周波数以下の成分を通過させる第三の低域通過手段を備え、
    前記変換電力検出手段は、前記第三の低域通過手段を通過した所定の周波数以下の出力電流を用いて前記変換電力を演算することを特徴とする請求項12に記載の電気自動車の制御装置。
JP2006309081A 2006-04-25 2006-11-15 電気自動車の制御装置 Active JP4479921B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309081A JP4479921B2 (ja) 2006-04-25 2006-11-15 電気自動車の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006121178 2006-04-25
JP2006309081A JP4479921B2 (ja) 2006-04-25 2006-11-15 電気自動車の制御装置

Publications (2)

Publication Number Publication Date
JP2007318981A JP2007318981A (ja) 2007-12-06
JP4479921B2 true JP4479921B2 (ja) 2010-06-09

Family

ID=38852304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309081A Active JP4479921B2 (ja) 2006-04-25 2006-11-15 電気自動車の制御装置

Country Status (1)

Country Link
JP (1) JP4479921B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844753B2 (ja) * 2007-05-09 2011-12-28 株式会社デンソー 電気自動車の制御装置
EP3516761B1 (de) 2016-09-22 2021-09-15 SEW-Eurodrive GmbH & Co System, umfassend einen ersten wechselrichter und einen zweiten wechselrichter, und ein verfahren zum betreiben des systems
JP7257784B2 (ja) * 2018-12-21 2023-04-14 オークマ株式会社 電力算出装置

Also Published As

Publication number Publication date
JP2007318981A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4479919B2 (ja) 電気自動車の制御装置
JP4479922B2 (ja) 電気自動車の制御装置
JP4381408B2 (ja) 電気自動車の制御装置
JP4479920B2 (ja) 電気自動車の制御装置
JP4844753B2 (ja) 電気自動車の制御装置
JP4984236B2 (ja) 電気自動車の制御装置
JP4538850B2 (ja) 電気自動車の制御装置
JP4697603B2 (ja) 電気自動車の制御装置
JP4697602B2 (ja) 電気自動車の制御装置
JP4479921B2 (ja) 電気自動車の制御装置
JP4827017B2 (ja) 電気自動車の制御装置
JP4683303B2 (ja) 電気自動車の制御装置
JP4636443B2 (ja) 電気自動車の制御装置
JP5067604B2 (ja) 電気自動車の制御装置
JP5099579B2 (ja) 電気自動車の制御装置
JP4827018B2 (ja) 電気自動車の制御装置
JP4655026B2 (ja) 電気自動車の制御装置
JP4683382B2 (ja) 電気自動車の制御装置
JP4775656B2 (ja) 電気自動車の制御装置
JP5067603B2 (ja) 電気自動車の制御装置
JP4683302B2 (ja) 電気自動車の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250