JP4478210B2 - Wastewater biological treatment process simulation method and program - Google Patents

Wastewater biological treatment process simulation method and program Download PDF

Info

Publication number
JP4478210B2
JP4478210B2 JP2005041426A JP2005041426A JP4478210B2 JP 4478210 B2 JP4478210 B2 JP 4478210B2 JP 2005041426 A JP2005041426 A JP 2005041426A JP 2005041426 A JP2005041426 A JP 2005041426A JP 4478210 B2 JP4478210 B2 JP 4478210B2
Authority
JP
Japan
Prior art keywords
biological reaction
solid
water
liquid separation
calculation step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005041426A
Other languages
Japanese (ja)
Other versions
JP2006224001A (en
Inventor
孝雄 周藤
純 宮田
一聡 大橋
浩紀 糸川
敏一 橋本
孝雄 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
JFE Engineering Corp
Original Assignee
Japan Sewage Works Agency
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, JFE Engineering Corp filed Critical Japan Sewage Works Agency
Priority to JP2005041426A priority Critical patent/JP4478210B2/en
Publication of JP2006224001A publication Critical patent/JP2006224001A/en
Application granted granted Critical
Publication of JP4478210B2 publication Critical patent/JP4478210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

本発明は、排水の生物処理プロセスの設計や運転を支援するために、同プロセスを生物反応モデルを用いてシミュレーションするための方法及びプログラムに関する。 The present invention relates to a method and a program for simulating a wastewater biological treatment process using a biological reaction model in order to support the design and operation of the wastewater biological treatment process.

排水処理施設では、活性汚泥と呼ばれる微生物群を利用した生物学的処理が広く行われている。
近年、下水処理の高度処理化(有機物に加えて、栄養塩類である窒素・りんも除去対象とする処理)が進んでおり、このような高度処理化に伴ってプロセスは複雑化し、運転管理因子は増加している。排水の高度処理施設は、有機物、窒素、りん除去に関連する各種微生物の生息環境を適切に維持することによって性能が発揮されるので、その性能が最大限に発揮されるように合理的な設計及び運転がなされる必要がある。
In wastewater treatment facilities, biological treatment using a microorganism group called activated sludge is widely performed.
In recent years, advanced treatment of sewage treatment (treatment that also removes nitrogen and phosphorus, which are nutrients in addition to organic substances) has progressed, and with such advanced treatment, the process has become complicated and operation management factors Is increasing. Advanced wastewater treatment facilities are designed to optimize their performance by properly maintaining the habitat of various microorganisms related to organic matter, nitrogen, and phosphorus removal. And driving needs to be done.

地方への下水道の普及に伴い、小規模下水道処理施設が多くなっているが、その処理方法としては、オキシデーションディッチ(OD)法が採用されることが多い。このOD法は、曝気装置を備えた水深の浅い無終端水路からなる生物反応槽(OD槽)において低負荷条件で活性汚泥処理を行った後、最終沈殿池で固液分離を行うものである。
OD法は、元来、有機物除去を主たる目的としているが、高度処理化のために窒素、りん除去を行おうとする場合、OD法施設の設計及び運転は経験と勘に基づいて行われてきた。
一方、最近、OD法施設の設計や運転を支援するために、生物反応モデルを用いたシミュレーション装置が提案されている(例えば、特許文献1、2)。
特開2001−334253号公報 特開2001−334286号公報
With the widespread use of sewers in rural areas, the number of small-scale sewerage treatment facilities is increasing, but the oxidation ditch (OD) method is often adopted as the treatment method. In this OD method, activated sludge treatment is performed under low load conditions in a biological reaction tank (OD tank) consisting of a shallow endless water channel equipped with an aeration device, and then solid-liquid separation is performed in the final sedimentation tank. .
Originally, the OD method is mainly intended to remove organic matter, but when nitrogen and phosphorus removal is to be performed for advanced treatment, the design and operation of the OD method facility has been based on experience and intuition. .
On the other hand, recently, a simulation apparatus using a biological reaction model has been proposed to support the design and operation of an OD method facility (for example, Patent Documents 1 and 2).
JP 2001-334253 A JP 2001-334286 A

これら特許文献1,2をはじめとする従来技術では、最終沈殿池での現象をもモデル化して活性汚泥処理プロセスのシミュレーションを行うものであるが、用いられる最終沈殿池モデルは、最終沈殿池における固液分離現象を表現するために、固液分離プロセスをモデル化したものに過ぎない。
また、非特許文献1には生物反応モデルを用いたシミュレーションにおける最終沈殿池モデルが示されているが、この最終沈殿池モデルも最終沈殿池内での固液分離現象の表現を主眼としたものである。
「活性汚泥モデルの実務利用に関する検討報告書」(活性汚泥モデル研究会,2001.5)
In these prior arts including Patent Documents 1 and 2, the phenomenon in the final sedimentation basin is modeled to simulate the activated sludge treatment process. The final sedimentation basin model used is the final sedimentation basin model. In order to express the solid-liquid separation phenomenon, it is only a model of the solid-liquid separation process.
Non-Patent Document 1 shows a final sedimentation basin model in a simulation using a biological reaction model. This final sedimentation basin model is also mainly intended to express a solid-liquid separation phenomenon in the final sedimentation basin. is there.
"Study report on practical use of activated sludge model" (Activated Sludge Model Study Group, 2001.5)

しかし、本発明者らが検討したところによれば、最終沈殿池においても、曝気槽から持ち込まれる酸素によって活性汚泥処理プロセスの設計や運転に影響を与えるような生物反応が生じており、したがって、このような最終沈殿池における生物反応を考慮しない生物反応モデルを用いる従来技術は、最終沈殿池において生じる事象を十分に再現しておらず、結果として活性汚泥処理プロセスのシミュレーションを高精度に行うことができないことが判った。
したがって本発明の目的は、最終沈殿池において生じる事象を精度よく再現し、排水の生物処理プロセスのシミュレーションを高精度に行うことができるシミュレーション方法及びプログラムを提供することにある。
However, according to the study by the present inventors, even in the final sedimentation basin, a biological reaction that affects the design and operation of the activated sludge treatment process occurs due to oxygen brought from the aeration tank. The conventional technology using the biological reaction model that does not consider the biological reaction in the final sedimentation basin does not sufficiently reproduce the events that occur in the final sedimentation basin, and as a result, the activated sludge treatment process can be simulated with high accuracy. I found out that I could not.
Accordingly, an object of the present invention is to provide a simulation method and program capable of accurately reproducing an event occurring in a final sedimentation basin and performing a simulation of a biological treatment process of wastewater with high accuracy.

本発明は、最終沈殿池においても、曝気槽から持ち込まれる酸素によって排水の生物処理プロセスの設計や運転に影響を与えるような生物反応が生じており、このような最終沈殿池における生物反応を考慮した最終沈殿池モデルを用いることにより、排水の生物処理プロセスのシミュレーションを高精度に行うことができることを見出し、なされたものであり、以下のような特徴を有するものである。   In the present invention, even in the final sedimentation basin, the biological reaction that affects the design and operation of the wastewater biological treatment process occurs due to oxygen brought from the aeration tank. By using the final sedimentation basin model, it was found that the biological treatment process of wastewater can be simulated with high accuracy, and has the following characteristics.

[1]生物反応槽への流入水に関する情報を入力値として、生物反応タンクモデルに基づき生物反応槽に関する演算処理を実行する生物反応演算ステップと、前記生物反応槽からの流出水に関する情報を入力値として、下記(a)〜(d)の4区画から構成される最終沈殿池モデルに基づき最終沈殿池に関する演算処理を実行する最終沈殿池演算ステップとを備えた排水の生物処理プロセスシミュレーション方法であって、
(a)前記生物反応槽からの混合液(流出水)の流入部である第1生物反応部
(b)前記第1生物反応部からの混合液(流出水)の全量が流入し、固形成分と固液分離水(溶解成分を含む)とが分離される固液分離部
(c)前記固液分離部で分離された固形成分が流入する第2生物反応部
(d)前記固液分離部で分離された固液分離水(溶解成分を含む)が流入する固液分離水滞留部(固液分離水が最終沈殿池越流水として流出するまでの時間遅れを表現した区画)
前記最終沈殿池演算ステップは、
(A)前記生物反応演算ステップにおいて求められる生物反応槽からの流出水に関する情報を入力値として、生物反応モデルに基づく第1生物反応部での生物反応に関する演算処理を実行する第1生物反応演算ステップと、
(B)前記第1生物反応演算ステップにおいて求められる第1生物反応部からの流出水に関する情報を入力値とし、予め設定されている固液分離条件に基づき、固液分離部において分離されて流出する固形成分と固液分離水に関する演算処理を実行する固液分離演算ステップと、
(C)前記固液分離演算ステップにおいて求められる固液分離部から流出する固形成分に関する情報を入力値として、生物反応モデルに基づく第2生物反応部での生物反応に関する演算処理を実行する第2生物反応演算ステップと、
(D)前記固液分離演算ステップにおいて求められる固液分離部から流出する固液分離水に関する情報を入力値とし、予め設定されている固液分離水滞留部に関する情報に基づき、最終沈殿池流出水に関する演算処理を実行する最終沈殿池流出水演算ステップと、
を備えていることを特徴とする排水の生物処理プロセスシミュレーション方法。
[2]上記[1]のシミュレーション方法において、最終沈殿池演算ステップにおいて、第1生物反応演算ステップでは、生物反応モデルに基づき第1生物反応部での生物反応による処理水の水質変化を演算処理し、固液分離演算ステップでは、固液分離部で分離され、第2生物反応部と固液分離水滞留部にそれぞれ流出する固形成分と固液分離水を演算処理し、第2生物反応演算ステップでは、生物反応モデルに基づき第2生物反応部での生物反応による処理水の水質変化を演算処理し、最終沈殿池流出水演算ステップでは、最終沈殿池での処理水の滞留を演算することを特徴とする排水の生物処理プロセスシミュレーション方法。
[1] Using the information related to the water flowing into the biological reaction tank as an input value, the biological reaction calculation step for executing the calculation processing related to the biological reaction tank based on the biological reaction tank model, and the information related to the effluent from the biological reaction tank are input. As a value, a biological treatment process simulation method for wastewater, comprising a final sedimentation basin computation step for performing computation processing on the final sedimentation basin based on a final sedimentation basin model composed of the following four sections (a) to (d) There,
(A) 1st biological reaction part which is an inflow part of the liquid mixture (effluent) from the said biological reaction tank
(B) A solid-liquid separation unit in which the entire amount of the mixed liquid (outflow water) from the first biological reaction unit flows and the solid component and the solid-liquid separation water (including the dissolved component) are separated.
(C) The second biological reaction part into which the solid component separated in the solid-liquid separation part flows
(D) A solid-liquid separated water retention part (solid-liquid separated water flows out as final sedimentation basin overflow water) into which the solid-liquid separated water (including dissolved components) separated by the solid-liquid separation part flows. Expressed division)
The final sedimentation basin calculation step includes:
(A) A first biological reaction calculation for executing a calculation process related to a biological reaction in a first biological reaction unit based on a biological reaction model, using as an input value information relating to the outflow water from the biological reaction tank obtained in the biological reaction calculation step. Steps,
(B) Using the information regarding the effluent water from the first biological reaction unit obtained in the first biological reaction calculation step as an input value, the spilled water is separated in the solid-liquid separation unit based on preset solid-liquid separation conditions A solid-liquid separation calculation step for performing calculation processing on the solid component and solid-liquid separation water to be performed;
(C) Secondly, a calculation process related to a biological reaction in a second biological reaction unit based on a biological reaction model is executed using information on the solid component flowing out from the solid-liquid separation unit obtained in the solid-liquid separation calculation step as an input value. Biological reaction calculation step;
(D) Based on the information on the solid-liquid separation water retention part set in advance, the information on the solid-liquid separation water flowing out from the solid-liquid separation part obtained in the solid-liquid separation calculation step is used as the input value, and the final sedimentation tank outflow A final sedimentation basin effluent water calculation step for performing water-related calculation processing;
Biological treatment process simulation method of waste water, characterized in that it comprises a.
[2] In the simulation method of [1 ] above, in the final sedimentation basin computation step, the first biological reaction computation step computes the water quality change of the treated water due to the biological reaction in the first biological reaction unit based on the biological reaction model. In the solid-liquid separation calculation step, the solid component and the solid-liquid separation water that are separated by the solid-liquid separation unit and flow out to the second biological reaction unit and the solid-liquid separation water retention unit are calculated and processed. In the step, the water quality change due to the biological reaction in the second biological reaction section is calculated based on the biological reaction model, and in the final sedimentation basin outflow water calculation step, the retention of the treated water in the final sedimentation basin is calculated. A biological treatment process simulation method for wastewater.

[3]コンピュータに、生物反応槽への流入水に関する情報を入力値として、生物反応タンクモデルに基づき生物反応槽に関する演算処理を実行する生物反応演算ステップと、前記生物反応槽からの流出水に関する情報を入力値として、下記(a)〜(d)の4区画から構成される最終沈殿池モデルに基づき最終沈殿池に関する演算処理を実行する最終沈殿池演算ステップとを実行させる排水の生物処理プロセスシミュレーションプログラムであって、
(a)前記生物反応槽からの混合液(流出水)の流入部である第1生物反応部
(b)前記第1生物反応部からの混合液(流出水)の全量が流入し、固形成分と固液分離水(溶解成分を含む)とが分離される固液分離部
(c)前記固液分離部で分離された固形成分が流入する第2生物反応部
(d)前記固液分離部で分離された固液分離水(溶解成分を含む)が流入する固液分離水滞留部(固液分離水が最終沈殿池越流水として流出するまでの時間遅れを表現した区画)
前記最終沈殿池演算ステップは、
(A)前記生物反応演算ステップにおいて求められる生物反応槽からの流出水に関する情報を入力値として、生物反応モデルに基づく第1生物反応部での生物反応に関する演算処理を実行する第1生物反応演算ステップと、
(B)前記第1生物反応演算ステップにおいて求められる第1生物反応部からの流出水に関する情報を入力値とし、予め設定されている固液分離条件に基づき、固液分離部において分離されて流出する固形成分と固液分離水に関する演算処理を実行する固液分離演算ステップと、
(C)前記固液分離演算ステップにおいて求められる固液分離部から流出する固形成分に関する情報を入力値として、生物反応モデルに基づく第2生物反応部での生物反応に関する演算処理を実行する第2生物反応演算ステップと、
(D)前記固液分離演算ステップにおいて求められる固液分離部から流出する固液分離水に関する情報を入力値とし、予め設定されている固液分離水滞留部に関する情報に基づき、最終沈殿池流出水に関する演算処理を実行する最終沈殿池流出水演算ステップと、
を備えていることを特徴とする排水の生物処理プロセスシミュレーションプログラム。
[3] A biological reaction calculation step for executing calculation processing related to the biological reaction tank based on the biological reaction tank model using the information related to the inflow water to the biological reaction tank as an input value to the computer, and the effluent from the biological reaction tank. Biological treatment process of waste water that executes a final sedimentation basin computation step for performing computation processing related to the final sedimentation basin based on the final sedimentation basin model composed of the following four sections (a) to (d) using information as input values A simulation program,
(A) 1st biological reaction part which is an inflow part of the liquid mixture (effluent) from the said biological reaction tank
(B) A solid-liquid separation unit in which the entire amount of the mixed liquid (outflow water) from the first biological reaction unit flows and the solid component and the solid-liquid separation water (including the dissolved component) are separated.
(C) The second biological reaction part into which the solid component separated in the solid-liquid separation part flows
(D) A solid-liquid separated water retention part (solid-liquid separated water flows out as final sedimentation basin overflow water) into which the solid-liquid separated water (including dissolved components) separated by the solid-liquid separation part flows. Expressed division)
The final sedimentation basin calculation step includes:
(A) A first biological reaction calculation for executing a calculation process related to a biological reaction in a first biological reaction unit based on a biological reaction model, using as an input value information relating to the outflow water from the biological reaction tank obtained in the biological reaction calculation step. Steps,
(B) Using the information regarding the effluent water from the first biological reaction unit obtained in the first biological reaction calculation step as an input value, the spilled water is separated in the solid-liquid separation unit based on preset solid-liquid separation conditions A solid-liquid separation calculation step for performing calculation processing on the solid component and solid-liquid separation water to be performed;
(C) Secondly, a calculation process related to a biological reaction in a second biological reaction unit based on a biological reaction model is executed using information on the solid component flowing out from the solid-liquid separation unit obtained in the solid-liquid separation calculation step as an input value. Biological reaction calculation step;
(D) Based on the information on the solid-liquid separation water retention part set in advance, the information on the solid-liquid separation water flowing out from the solid-liquid separation part obtained in the solid-liquid separation calculation step is used as the input value, and the final sedimentation tank outflow A final sedimentation basin effluent water calculation step for performing water-related calculation processing;
Wastewater biological treatment process simulation program which can be characterized that has a.

[4]上記[3]のシミュレーションプログラムにおいて、最終沈殿池演算ステップにおいて、第1生物反応演算ステップでは、生物反応モデルに基づき第1生物反応部での生物反応による処理水の水質変化を演算処理し、固液分離演算ステップでは、固液分離部で分離され、第2生物反応部と固液分離水滞留部にそれぞれ流出する固形成分と固液分離水を演算処理し、第2生物反応演算ステップでは、生物反応モデルに基づき第2生物反応部での生物反応による処理水の水質変化を演算処理し、最終沈殿池流出水演算ステップでは、最終沈殿池での処理水の滞留を演算することを特徴とする排水の生物処理プロセスシミュレーションプログラム。 [4] In the simulation program of [3 ] above, in the final sedimentation basin calculation step, the first biological reaction calculation step calculates the water quality change of the treated water due to the biological reaction in the first biological reaction unit based on the biological reaction model. In the solid-liquid separation calculation step, the solid component and the solid-liquid separation water that are separated by the solid-liquid separation unit and flow out to the second biological reaction unit and the solid-liquid separation water retention unit are calculated and processed. In the step, the water quality change due to the biological reaction in the second biological reaction section is calculated based on the biological reaction model, and in the final sedimentation basin outflow water calculation step, the retention of the treated water in the final sedimentation basin is calculated. A wastewater biological treatment process simulation program.

本発明によれば、生物反応が考慮された最終沈殿池モデルを導入したシミュレーションを行うことができるため、最終沈殿池において生じる事象を精度よく再現することができ、このため従来装置に較べて排水の生物処理プロセスのシミュレーションを高精度に行うことができる。   According to the present invention, simulation can be performed with the introduction of a final sedimentation basin model in which biological reactions are taken into account, so that events occurring in the final sedimentation basin can be accurately reproduced. The biological treatment process can be simulated with high accuracy.

図1は、本発明のシミュレーションの対象となる生物処理プロセスの一例(OD槽及び最終沈殿池を用いる処理プロセス)を示している。OD槽1には、有機物、窒素、リンなどの基質を含む流入水3(汚水)と返送汚泥管5からの返送汚泥(活性汚泥)が流入し、混合撹拌が行われる。通常、OD槽1には複数台の曝気装置9が設けられ、この曝気装置9からOD槽1の生物処理に必要な酸素が供給される。また、OD槽1は、曝気装置9が活性汚泥と流入水を混合撹拌し、且つ混合液(処理水+活性汚泥)に流速を与えて無終端水路のOD槽内を循環させる機能を備える場合と、混合撹拌・循環のために別の装置10を設ける場合とがある。
OD槽1の混合液は最終沈殿池2に流入する。この最終沈殿池2では、活性汚泥が重力沈降し、上澄み液が最終沈殿池越流水として放流管8から放流される。一方、最終沈殿池2の沈降汚泥は汚泥引き抜き管11を介して引き抜かれ、その一部は返送ポンプ4によって返送汚泥管5を介してOD槽1へ送られ、残りの汚泥は余剰ポンプ6によって余剰汚泥管7を介して系外へ排出される。
FIG. 1 shows an example of a biological treatment process (a treatment process using an OD tank and a final sedimentation basin) to be simulated. Inflow water 3 (sewage) containing a substrate such as organic matter, nitrogen and phosphorus and return sludge (activated sludge) from the return sludge pipe 5 flow into the OD tank 1 and mixing and stirring are performed. Usually, the OD tank 1 is provided with a plurality of aeration apparatuses 9, and oxygen necessary for biological treatment of the OD tank 1 is supplied from the aeration apparatus 9. The OD tank 1 has a function in which the aeration apparatus 9 mixes and stirs the activated sludge and the influent water, and gives a flow rate to the mixed liquid (treated water + activated sludge) to circulate in the OD tank of the endless water channel. In some cases, another device 10 is provided for mixing and circulation.
The mixed solution in the OD tank 1 flows into the final sedimentation tank 2. In the final sedimentation basin 2, the activated sludge is gravity settled, and the supernatant liquid is discharged from the discharge pipe 8 as the final sedimentation basin overflow water. On the other hand, the settled sludge in the final sedimentation basin 2 is extracted through the sludge extraction pipe 11, a part of which is sent to the OD tank 1 by the return pump 4 through the return sludge pipe 5, and the remaining sludge is supplied by the surplus pump 6. It is discharged out of the system through the excess sludge pipe 7.

図2は本発明のシミュレーション装置のシステム構成図であり、図3はこのシミュレーション装置により実行されるシミュレーションの処理フローである。
モデル格納部18はデータベースの一部として設けられ、このモデル格納部18には、少なくとも、生物反応タンクモデルXと最終沈殿池モデルYが格納されるが、他のモデル(例えば、最初沈殿池モデル)が格納されてもよく、必要に応じてシミュレーションに利用される。
生物反応モデルとしては、例えば、下水処理場活性汚泥モデルの一種である“ASM2”(Activated Sludge Model No.2,文献名:IAWQ Task Group, Scientific and Technical Report No.3, 1995)やこれを発展させた“ASM2d”(Activated Sludge Model No.2d,文献名:Wat.Sci.Tech.vol.39,
No.1)などの水質モデルを用いることができる。
FIG. 2 is a system configuration diagram of the simulation apparatus of the present invention, and FIG. 3 is a processing flow of simulation executed by the simulation apparatus.
The model storage unit 18 is provided as a part of the database, and at least the biological reaction tank model X and the final sedimentation basin model Y are stored in the model storage unit 18. ) May be stored and used for simulation as needed.
As a biological reaction model, for example, “ASM2” (Activated Sludge Model No.2, literature name: IAWQ Task Group, Scientific and Technical Report No.3, 1995), which is a kind of sewage treatment plant activated sludge model, has been developed. “ASM2d” (Activated Sludge Model No. 2d, literature name: Wat. Sci. Tech. Vol. 39,
Water quality models such as No.1) can be used.

本発明で使用する最終沈殿池モデルYは、最終沈殿池における(a)生物反応、(b)固液分離、(c)固液分離水が最終沈殿池越流水として流出するまでの時間遅れ、を考慮したモデルである点に特徴がある。実測データによると、最終沈殿池越流水及び返送汚泥とOD槽からの流入混合液との間の水質には差異が認められ、最終沈殿池においても生物反応を生じていることが明らかとなった。そして、この最終沈殿池モデルYは、そのような生物反応を前提とし、これを含めた最終沈殿池の機能又は最終沈殿池内の現象として、上記(a)〜(c)を考慮したモデルを構成したものである。   The final sedimentation basin model Y used in the present invention includes (a) biological reaction in the final sedimentation basin, (b) solid-liquid separation, and (c) a time delay until the solid-liquid separation water flows out as final sedimentation basin overflow water, It is characterized in that it is a model that takes into account. According to the measured data, there was a difference in the water quality between the final sedimentation basin overflow and return sludge and the influent mixture from the OD tank, and it became clear that biological reactions were also occurring in the final sedimentation basin. . And this final sedimentation basin model Y presupposes such a biological reaction, and constitutes the model which considered the above-mentioned (a)-(c) as a function of the final sedimentation basin including this or the phenomenon in the final sedimentation basin. It is a thing.

また、この最終沈殿池モデルYは、通常、第1生物反応部、固液分離部、第2生物反応部、固液分離水滞留部(固液分離水が最終沈殿池越流水として流出するまでの時間遅れを表現した区画)という4つの区画から構成される。図4は、この最終沈殿池モデルYの概念図であり、最終沈殿池モデルYは下記(A)〜(D)の4つの区画から構成され、後述するように本発明では各区画毎にその機能又は現象を考慮した演算処理が行われる。
(A) OD槽からの混合液(流出水)の流入部である第1生物反応部
(B) 前記第1生物反応部からの混合液の全量が流入し、固形成分と固液分離水(溶解成分を含む)とが分離される固液分離部
(C) 前記固液分離部で分離された固形成分が流入する第2生物反応部
(D) 前記固液分離部で分離された固液分離水(溶解成分を含む)が流入する固液分離水滞留部(但し、この固液分離水滞留部は固液分離水が最終沈殿池越流水として流出するまでの時間遅れを考慮した区画である)
In addition, this final sedimentation basin model Y usually has a first biological reaction part, a solid-liquid separation part, a second biological reaction part, a solid-liquid separation water retention part (until the solid-liquid separation water flows out as final sedimentation basin overflow water) Are divided into four sections). FIG. 4 is a conceptual diagram of the final sedimentation basin model Y. The final sedimentation basin model Y is composed of the following 4 sections (A) to (D). Arithmetic processing considering functions or phenomena is performed.
(A) 1st biological reaction part which is the inflow part of the liquid mixture (effluent) from OD tank
(B) A solid-liquid separation unit in which the total amount of the mixed liquid from the first biological reaction unit flows and a solid component and solid-liquid separation water (including dissolved components) are separated.
(C) Second biological reaction part into which the solid component separated in the solid-liquid separation part flows
(D) A solid-liquid separation water retention part into which the solid-liquid separation water (including dissolved components) separated by the solid-liquid separation part flows (however, this solid-liquid separation water retention part is the final precipitation basin with the solid-liquid separation water) This is a section that takes into account the time delay until the water overflows)

この最終沈殿池モデルYの構成では、OD槽から流出した混合液(処理水+活性汚泥)の情報は、まず第1生物反応部(A)の入力情報として入力される。この第1生物反応部(A)は、実測データで見られるOD槽混合液と処理水(最終沈殿池越流水)との水質の違い、すなわち最終沈殿池内の混合液流入部での生物反応による処理水の水質変化を演算する区画である。この第1生物反応部(A)からの流出水の全情報は固液分離部(B)の入力情報として入力され、ここで難溶解性成分に関する情報と、溶解性成分を含む固液分離水の情報とが分離される。固液分離部(B)において、溶解性成分は分離されずに保存されるものとする。   In the configuration of the final sedimentation basin model Y, information on the mixed liquid (treated water + activated sludge) flowing out from the OD tank is first input as input information for the first biological reaction section (A). This first biological reaction part (A) is due to the difference in water quality between the OD tank mixed solution and treated water (final sedimentation basin overflow water) seen in the measured data, that is, due to the biological reaction in the mixed liquid inflow part in the final sedimentation basin. It is a section that calculates the water quality change of treated water. All the information on the effluent water from the first biological reaction part (A) is input as input information of the solid-liquid separation part (B). Here, information on the hardly soluble component and the solid-liquid separated water containing the soluble component Information is separated. In the solid-liquid separation part (B), the soluble component is stored without being separated.

この固液分離部(B)で分離された固形分(難溶解性成分の大半)の情報と、固液分離部(B)にて保存された溶解性成分の情報は、返送汚泥の情報を表わすものとして第2生物反応部(C)の入力情報として入力される。一方、固液分離部(B)で分離されなかった難溶解性成分(処理水のSSに相当)の情報と、保存された溶解性成分を含む固液分離水の情報は、固液分離水滞留部(D)の入力情報として入力される。なお、固液分離部(B)で分離された固形分の情報と、固液分離部(B)で分離されなかった難溶解性成分の情報は、予め設定した割合に基づいて分配されるものとする。   Information on the solid content separated by this solid-liquid separation part (B) (most of the hardly soluble components) and information on the soluble components stored in the solid-liquid separation part (B) As input, it is input as input information of the second biological reaction section (C). On the other hand, the information on the hardly soluble component (corresponding to SS of treated water) that was not separated by the solid-liquid separation part (B) and the information on the solid-liquid separated water containing the stored soluble component are the solid-liquid separated water It is input as input information for the staying part (D). The information on the solid content separated in the solid-liquid separation part (B) and the information on the hardly soluble component not separated in the solid-liquid separation part (B) are distributed based on a preset ratio. And

前記第2生物反応部(C)は、実測データで見られるOD槽混合液と返送汚泥の水質の違い、すなわち最終沈殿池内の主に汚泥沈降部での生物反応による処理水の水質変化を演算するための区画である。余剰汚泥を引抜く場合には、この第2生物反応部(C)からの流出水の情報のうちの一部が、余剰汚泥として系外に排出される分の情報として減じられ、残りが返送汚泥の情報を表わすものとして再度OD槽の入力情報として入力される。
前記固液分離水滞留部(D)は、処理水質の時間変動データを扱うことを念頭に、最終沈殿池での処理水の滞留を演算する区画であり、生物反応に基づく演算は一切行われないものとする。
上記の4つの各区画は、いずれも完全混合槽1槽または完全混合槽を複数直列に配した槽列モデルとする。各区画の容量および槽構成については、実施設の最終沈殿池を対象とした水理学的試験(例えば、トレーサー試験)、濃縮汚泥の界面高さに基づく汚泥濃縮部容積などにより決定することが望ましい。
The second biological reaction section (C) calculates the difference in water quality between the OD tank mixture and the returned sludge seen in the measured data, that is, the change in the quality of the treated water due to the biological reaction mainly in the sludge settling section in the final sedimentation basin. It is a section to do. When extracting excess sludge, a part of the information on the effluent from the second biological reaction section (C) is reduced as information that is discharged outside the system as excess sludge, and the rest is returned. It is input again as input information of the OD tank as representing sludge information.
The solid-liquid separated water retention part (D) is a section for calculating retention of treated water in the final sedimentation basin in consideration of handling time variation data of treated water quality, and all calculations based on biological reactions are performed. Make it not exist.
Each of the four sections is a tank row model in which one complete mixing tank or a plurality of complete mixing tanks are arranged in series. It is desirable to determine the capacity and tank configuration of each section based on a hydraulic test (for example, a tracer test) for the final sedimentation basin of the implementation facility, a sludge concentration part volume based on the interface height of the concentrated sludge, etc. .

また、固液分離部(B)における固液分離モデルの表現は以下の通りである。
最終沈殿池モデルYで使われる9個の溶解性成分[Si](表1参照)、10個の難溶解性成分[Xi](表2参照)の計19個の変数について、第1生物反応部(A)からの出力情報すなわち固液分離部(B)の入力情報のうちの溶解性成分の濃度をSi1、難溶解性成分の濃度をXi1、水量をQ1とし、固液分離部(B)からの出力情報の中で、第2生物反応部(C)の入力情報となるもののうちの溶解性成分の濃度をSi2、難溶解性成分の濃度をXi2、水量をQ2とし、固液分離部(B)からの出力情報の中で、固液分離水滞留部(D)の入力情報となるもののうちの溶解性成分の濃度をSi3、難溶解性成分の濃度をXi3、水量をQ3とする。
The expression of the solid-liquid separation model in the solid-liquid separation part (B) is as follows.
The first biological reaction for 19 variables including 9 soluble components [Si] (see Table 1) and 10 hardly soluble components [Xi] (see Table 2) used in the final sedimentation basin model Y Of the output information from the part (A), that is, the input information of the solid-liquid separation part (B), the concentration of the soluble component is Si1, the concentration of the hardly soluble component is Xi1, the amount of water is Q1, and the solid-liquid separation part (B Of the output information from the second biological reaction section (C), the concentration of the soluble component is Si2, the concentration of the hardly soluble component is Xi2, and the amount of water is Q2. Among the output information from the part (B), among the input information of the solid-liquid separated water retention part (D), the concentration of the soluble component is Si3, the concentration of the hardly soluble component is Xi3, and the amount of water is Q3. To do.

最終沈殿池モデルYへの入力情報のうち、難溶解性成分の情報は、便宜的に設けた微小容積の完全混合槽1槽である固液分離部(B)において瞬時に分離され、下記(1)に記載の式に基づいて算出された難溶解性成分が濃縮回収され、固液分離部(B)で分離されない溶解性成分とともに第2生物反応部(C)にて生物反応を受けた後に、OD槽へと返送されるものとして演算される。
余剰汚泥を引抜く場合には、第2生物反応部(C)からの出力情報のうちの一部が余剰汚泥として系外に排出される分の情報として減じられた上で演算される。下記(2)に記載の式に基づいて算出された難溶解性成分(処理水のSSに相当)の情報と、溶解性成分を含む固液分離水の情報は、固液分離水滞留部(D)において最終沈殿池での処理水の滞留を演算された後に、最終沈殿池越流水の情報として出力される。なお、固液分離部(B)において溶解性成分[Si]は保存され、第2生物反応部(C)および固液分離水滞留部(D)への流入水の情報として演算されるものとする。
Among the input information to the final sedimentation basin model Y, the information on the hardly soluble component is instantaneously separated in the solid-liquid separation part (B), which is a complete mixing tank of a minute volume provided for convenience, and the following ( The hardly soluble component calculated based on the formula described in 1) is concentrated and recovered, and undergoes a biological reaction in the second biological reaction unit (C) together with the soluble component that is not separated in the solid-liquid separation unit (B). Later, it is calculated as being returned to the OD tank.
When surplus sludge is pulled out, calculation is performed after a part of the output information from the second biological reaction section (C) is reduced as information that is discharged out of the system as surplus sludge. Information on the hardly soluble component (corresponding to SS of treated water) calculated based on the formula described in (2) below and information on the solid-liquid separated water containing the soluble component are the solid-liquid separated water retention part ( After the retention of treated water in the final sedimentation basin is calculated in D), it is output as information on the final sedimentation basin overflow water. In addition, the soluble component [Si] is stored in the solid-liquid separation part (B) and is calculated as information on the inflow water to the second biological reaction part (C) and the solid-liquid separation water retention part (D). To do.

(1)固液分離部(B)からの出力情報の中で第2生物反応部(C)の入力情報となるもの
Si2=Si1
Xi2=Xi1×Q1×α÷Q2
但し α:最終沈殿池における固液分離性能を示す係数
(2)固液分離部(B)からの出力情報の中で固液分離水滞留部(D)の入力情報となるもの
Si3=Si1
Xi3=Xi1×Q1×(1−α)÷Q3
但し α:最終沈殿池における固液分離性能を示す係数
なお、固液分離部(B)からの出力情報は、固液分離水滞留部(D)において或る容積の完全混合槽に所定時間滞留して最終沈殿池での処理水の滞留を演算された後に、最終沈殿池越流水の情報として出力されるものとする。これにより、OD槽で間欠的な曝気処理が行われ、或いは流入水量や流入水質が変化する等によってOD槽流出水の水質が変動した場合でも、固液分離水滞留部(D)において最終沈殿池越流水の水質の変動が緩和される効果がある。
(1) Output information from the solid-liquid separation part (B) that becomes input information of the second biological reaction part (C) Si2 = Si1
Xi2 = Xi1 × Q1 × α ÷ Q2
Where α is a coefficient indicating the solid-liquid separation performance in the final sedimentation basin (2) Among the output information from the solid-liquid separation part (B), it becomes the input information of the solid-liquid separation water retention part (D) Si3 = Si1
Xi3 = Xi1 * Q1 * (1- [alpha]) / Q3
Where α is a coefficient indicating the solid-liquid separation performance in the final sedimentation basin Note that the output information from the solid-liquid separation part (B) is retained in a complete mixing tank of a certain volume in the solid-liquid separation water retention part (D) for a predetermined time. Then, after the retention of treated water in the final sedimentation basin is calculated, it is output as information on the final sedimentation basin overflow water. As a result, even if intermittent aeration processing is performed in the OD tank, or the quality of the OD tank effluent changes due to changes in the amount of inflow water or the quality of the inflow water, final precipitation in the solid-liquid separation water retention part (D). This has the effect of mitigating fluctuations in the water quality of Ikegoe water.

本発明のシミュレーション装置では、まずキーボードなどの入力手段15で、OD槽への流入水や運転条件等に関する情報が入力される。この情報は、流入水量及び水質などに関するものであり、OD槽での生物反応をシミュレーションするのに必要な情報である。
演算処理部16では、以下のようなステップでシミュレーションが行われる(図3)。すなわち、コンピュータ上で生物処理プロセスのシミュレーションプログラムが実行される。
まず、生物処理演算ステップでは、OD槽への流入水に関する上記情報を入力値として、生物反応モデルに基づきOD槽に関する演算処理を実行する。この生物反応モデルとして用いられるASM2dのモデル式を次式(1)に、このモデル式で用いる9個の溶解物質[Si]と10個の難溶解性物質[Xi]の計19個の変数を表1及び表2に、モデル式のマトリクス表示を表3〜表6に、反応速度式を表7〜表9にそれぞれ示す。
[ASM2dのモデル式]
dCi/dt=Σ(Pij・vj) …(1)
但し Ci:水質成分(表1及び表2の変数が示す19種類)
Pij:パラメータ(表3〜表6のマトリクス内の数値および記号)
vj:反応速度式(表7〜表9)
In the simulation apparatus of the present invention, first, information relating to the inflow water to the OD tank, operating conditions, and the like is input by the input means 15 such as a keyboard. This information relates to the amount of inflow water and water quality, and is information necessary for simulating a biological reaction in the OD tank.
In the arithmetic processing unit 16, a simulation is performed in the following steps (FIG. 3). That is, a biological treatment process simulation program is executed on a computer.
First, in the biological treatment calculation step, calculation processing related to the OD tank is executed based on the biological reaction model using the above information relating to the water flowing into the OD tank as an input value. The model formula of ASM2d used as this biological reaction model is expressed by the following formula (1), and 19 variables of 9 dissolved substances [Si] and 10 hardly soluble substances [Xi] used in this model formula are represented in total. Tables 1 and 2 show matrix expressions of model formulas in Tables 3 to 6 and reaction rate formulas in Tables 7 to 9, respectively.
[ASM2d model formula]
dCi / dt = Σ (Pij · vj) (1)
Ci: Water quality component (19 types indicated by variables in Tables 1 and 2)
Pij: Parameter (numerical values and symbols in the matrix of Table 3 to Table 6)
vj: Reaction rate equation (Tables 7 to 9)

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

Figure 0004478210
Figure 0004478210

最終沈殿池演算ステップでは、上記生物処理演算ステップで得られたOD槽からの流出水に関する情報を入力値として、最終沈殿池における(a)生物反応、(b)固液分離、(c)固液分離水が最終沈殿池越流水として流出するまでの時間遅れ、を考慮した最終沈殿池モデルYに基づき最終沈殿池に関する演算処理を実行する。
この最終沈殿池演算ステップでは、最終沈殿池モデルYの4つの区画に従い、まず、第1生物反応演算ステップにおいて、上記生物処理演算ステップで得られたOD槽からの流出水に関する情報を入力値として、生物反応タンクモデルXに基づく第1生物反応部での生物反応に関する演算処理を実行する。生物反応モデルとしては、先に挙げたASM2、ASM2dなどを用いることができ、その場合には先に述べたようなモデル式で演算処理がなされる。
In the final sedimentation basin calculation step, the information on the effluent from the OD tank obtained in the biological treatment calculation step is used as an input value, and (a) biological reaction, (b) solid-liquid separation, (c) solidification in the final sedimentation basin. Based on the final sedimentation basin model Y that takes into account the time delay until the liquid separation water flows out as the final sedimentation basin overflow water, the calculation processing for the final sedimentation basin is executed.
In the final sedimentation basin calculation step, according to the four sections of the final sedimentation basin model Y, first, in the first biological reaction calculation step, information on the effluent from the OD tank obtained in the biological treatment calculation step is used as an input value. Then, a calculation process related to a biological reaction in the first biological reaction unit based on the biological reaction tank model X is executed. As the biological reaction model, ASM2, ASM2d, or the like mentioned above can be used. In this case, the arithmetic processing is performed using the model formula as described above.

固液分離演算ステップでは、前記第1生物反応演算ステップにおいて求められる第1生物反応部からの流出水に関する情報を入力値とし、先に述べたような予め設定されている固液分離条件に基づき、固液分離部において分離されて流出する固形成分と固液分離水に関する演算処理を実行する。具体的な一例を挙げると、最終沈殿池における固液分離性能を示すαを0.9995として、OD槽内MLSSを4000mg/L、汚泥返送比を100%とした時に、最終沈殿池越流水のSSは4mg/Lとなる。   In the solid-liquid separation calculation step, information on the effluent water from the first biological reaction unit obtained in the first biological reaction calculation step is used as an input value, and based on the previously set solid-liquid separation conditions as described above. Then, the calculation process relating to the solid component separated and flowing out in the solid-liquid separation unit and the solid-liquid separation water is executed. As a specific example, when α representing the solid-liquid separation performance in the final sedimentation tank is 0.9995, MLSS in the OD tank is 4000 mg / L, and the sludge return ratio is 100%, the final sedimentation tank overflow water SS is 4 mg / L.

第2生物反応演算ステップでは、前記固液分離演算ステップにおいて求められた固液分離部から流出する固形成分に関する情報を入力値として、生物反応タンクモデルXに基づく第2生物反応部での生物反応に関する演算処理を実行する。生物反応モデルとしては、先に挙げたASM2、ASM2dなどを用いることができ、その場合には先に述べたようなモデル式で演算処理がなされる。
最終沈殿池流出水演算ステップでは、前記固液分離演算ステップにおいて求められた固液分離部から流出する固液分離水に関する情報を入力値とし、先に述べたような予め設定されている固液分離水滞留部に関する情報に基づき、最終沈殿池流出水に関する演算処理を実行する。
In the second biological reaction calculation step, the biological reaction in the second biological reaction unit based on the biological reaction tank model X is input using information on the solid component flowing out from the solid-liquid separation unit obtained in the solid-liquid separation calculation step as an input value. The arithmetic processing related to is executed. As the biological reaction model, ASM2, ASM2d, or the like mentioned above can be used. In this case, the arithmetic processing is performed using the model formula as described above.
In the final sedimentation basin effluent water calculation step, information relating to the solid-liquid separation water flowing out from the solid-liquid separation part obtained in the solid-liquid separation calculation step is used as an input value, and the previously set solid-liquid as described above Based on the information regarding the separated water retention part, the calculation process regarding the final settling basin effluent is executed.

図5は、本発明のシミュレーション装置20を下水処理プラントの一つであるOD法の設計に適用した場合の一例を示す機能構成図である。データ設定装置30はシミュレーションに必要なデータをキーボード71やマウス72を用いて入力し、モニタ73に表示される。
データベース40にはモデル格納部が設けられ、このモデル格納部内に先に述べたような生物反応タンクモデルXと最終沈殿池モデルYが格納されている。
流入条件設定手段31は流入汚水量及び流入水質の濃度の設定を行う。ここで水質とは、例えば、有機物(溶解性と難溶解性)、アンモニア性窒素、全窒素、リン、浮遊物濃度、アルカリ度、溶存酸素、硝酸性窒素、水温などである。
OD槽形状設定手段32はOD法に用いられている複数のOD槽の形状からシミュレーション対象となる形状を選択する。OD槽寸法設定手段33はOD槽形状設定32で選択されたOD槽に対し、池長、ハンチ幅、水路幅及び水深の寸法データを設定する。流入・流出位置設定手段34は、流入水3がOD槽1への流入位置、返送汚泥がOD槽1への流入位置、OD槽1から最終沈殿池2への流出位置をそれぞれOD槽に設定する。
FIG. 5 is a functional configuration diagram showing an example when the simulation apparatus 20 of the present invention is applied to the design of the OD method which is one of the sewage treatment plants. The data setting device 30 inputs data necessary for the simulation using the keyboard 71 and the mouse 72 and is displayed on the monitor 73.
The database 40 is provided with a model storage unit, and the biological reaction tank model X and the final sedimentation basin model Y as described above are stored in the model storage unit.
The inflow condition setting means 31 sets the inflow sewage amount and the inflow water quality concentration. Here, the water quality is, for example, organic matter (soluble and hardly soluble), ammonia nitrogen, total nitrogen, phosphorus, suspended solid concentration, alkalinity, dissolved oxygen, nitrate nitrogen, water temperature, and the like.
The OD tank shape setting means 32 selects a shape to be simulated from the shapes of a plurality of OD tanks used in the OD method. The OD tank size setting means 33 sets the pond length, the haunch width, the channel width and the water depth dimension data for the OD tank selected in the OD tank shape setting 32. The inflow / outflow position setting means 34 sets the inflow position of the inflow water 3 to the OD tank 1, the inflow position of the return sludge to the OD tank 1, and the outflow position from the OD tank 1 to the final sedimentation tank 2 in the OD tank. To do.

曝気装置位置設定手段35は、複数台の曝気装置9についてそれぞれの配置位置をOD槽に設定する。曝気装置仕様設定手段36は、曝気装置9の酸素供給性能や撹拌性能を設定する。酸素供給性能は、例えば、総括酸素移動係数、酸素溶解効率などであり、また、撹拌性能は、例えば、速度と回転方向によってOD槽内に与える流速や水流の流れ方向などである。
運転条件設定手段37は、曝気装置9の曝気や非曝気の運転方法、最終沈殿池2からの返送汚泥量、余剰汚泥量などの運転条件設定する。
The aeration apparatus position setting means 35 sets the arrangement positions of the plurality of aeration apparatuses 9 in the OD tank. The aeration apparatus specification setting means 36 sets the oxygen supply performance and agitation performance of the aeration apparatus 9. The oxygen supply performance is, for example, an overall oxygen transfer coefficient, oxygen dissolution efficiency, and the like, and the stirring performance is, for example, a flow rate given to the OD tank depending on a speed and a rotation direction, a water flow direction, and the like.
The operation condition setting means 37 sets operation conditions such as an aeration and non-aeration operation method of the aeration apparatus 9, a return sludge amount from the final sedimentation basin 2, and an excess sludge amount.

これらデータ設定装置30から設定されたシミュレーション条件はデータベース40に格納される。また、モニタ73に設定内容を表示する。
OD槽分割手段45は、データベース40のシミュレーションデータを参照し、所定の方式でOD槽を複数の完全混合槽に分割し、さらに、流入・流出位置設定手段34にて設定した流入下水および返送汚泥の流入位置、最終沈殿池への流出位置および曝気装置9などの配置位置を分割された個々の完全混合槽に対応させて、これらのデータをデータベース40に格納する。
演算装置50はデータベース40のシミュレーション条件に基づき、先に述べた生物反応演算ステップと最終沈殿池演算ステップを用いて、分割された個々の完全混合槽および、OD槽流出、最終沈殿池、返送汚泥、余剰汚泥の水質、汚泥濃度及び流量を計算し、その結果をデータベース40に格納する。
The simulation conditions set from these data setting devices 30 are stored in the database 40. Further, the setting contents are displayed on the monitor 73.
The OD tank dividing means 45 refers to the simulation data of the database 40, divides the OD tank into a plurality of complete mixing tanks by a predetermined method, and further, the inflow sewage and return sludge set by the inflow / outflow position setting means 34 These data are stored in the database 40 so that the inflow position, the outflow position to the final settling basin, and the arrangement position of the aeration device 9 and the like correspond to the individual divided complete mixing tanks.
Based on the simulation conditions of the database 40, the computing device 50 uses the biological reaction computation step and the final sedimentation basin computation step described above to divide each complete mixing tank, OD tank outflow, final sedimentation basin, and return sludge. The surplus sludge water quality, sludge concentration and flow rate are calculated, and the results are stored in the database 40.

前記生物反応演算ステップは、データベース40のモデル格納部内に格納された生物反応タンクモデルX、最終沈殿池モデルYを用いて、先に述べたような演算を行い、主として生物反応によって変化する水質及び汚泥濃度の変化を求める。
データ編集手段60は、データベース40のデータを参照してデータ編集を行い、モニタ73に出力する。また、データベース40のデータを参照してプロファイル、トレンドグラフ、計算結果一覧表、除去率、物質収支などの形式でデータ編集を行い、編集結果を入出力手段70に送信する。
The biological reaction calculation step performs the above-described calculation using the biological reaction tank model X and the final sedimentation basin model Y stored in the model storage unit of the database 40, and the water quality that changes mainly due to the biological reaction and Find changes in sludge concentration.
The data editing means 60 performs data editing with reference to the data in the database 40 and outputs the data to the monitor 73. Further, the data in the database 40 is referred to, and the data is edited in the form of profile, trend graph, calculation result list, removal rate, material balance, etc., and the edited result is transmitted to the input / output means 70.

本発明装置を用いて、オキシデーションディッチ法による実施設の稼動状況を再現した。
1日当たりの実処理水量が約1200mの実際の処理場における最終沈殿池越流水の実測値と、本発明のシミュレーション装置を用いて計算した計算値と、他の装置による計算値を図6に示す。ここで、他の装置による計算値とは、本発明のうちの最終沈殿池における(a)生物反応、(C)固液分離水が最終沈殿池越流水として流出するまでの時間遅れ、を考慮せずに計算した計算値を示している。
図6は、有機物の指標としてD−CODcr、窒素としてNH−NおよびNOx−N、りんとしてPO−Pに着目し、朝9時を基点として翌日の9時までの24時間における最終沈殿池越流水の変動状況を示している。流入水量、流入水質、曝気装置運転状況、返送汚泥量、余剰汚泥引抜き量については、それぞれ実状の日間変動のとおりの変動を与えて計算した。本発明装置によるいずれの計算値も、最終沈殿池越流水の水質の時間変化を含めて、実測値が精度良く表現されていることが判る。
Using the apparatus of the present invention, the operation status of the implementation facility by the oxidation ditch method was reproduced.
The measured value of the final settling basin overflow water flow in the actual processing amount of water per day actual treatment plant of approximately 1200 m 3, the calculated value calculated using the simulation apparatus of the present invention, the calculated values by the other device in FIG. 6 Show. Here, the calculated values by other devices take into account (a) biological reaction in the final sedimentation basin of the present invention, and (C) time delay until solid-liquid separated water flows out as final sedimentation basin overflow water. The calculated value is shown without any calculation.
FIG. 6 focuses on D-CODcr as an indicator of organic matter, NH 4 -N and NOx-N as nitrogen, PO 4 -P as phosphorus, and final precipitation in 24 hours from 9 am to 9 am on the next day. It shows the fluctuation situation of Ikegoe water. Inflow water volume, inflow water quality, aeration equipment operation status, return sludge volume, surplus sludge extraction volume were calculated by giving fluctuations as shown in the actual daily fluctuations. It can be seen that any of the calculated values obtained by the apparatus of the present invention accurately represents the measured values including the temporal change in the water quality of the final sedimentation basin overflow water.

本発明を適用する活性汚泥プロセスの概略構成図Schematic configuration diagram of an activated sludge process to which the present invention is applied 本発明のシミュレーション装置のシステム構成図System configuration diagram of simulation apparatus of the present invention 本発明のシミュレーション装置によるシミュレーションの処理フローを示す説明図Explanatory drawing which shows the processing flow of the simulation by the simulation apparatus of this invention 本発明で用いる最終沈殿池モデルの概念図Conceptual diagram of the final sedimentation basin model used in the present invention 本発明の一実施例によるシミュレーション装置の機能構成図Functional configuration diagram of a simulation apparatus according to an embodiment of the present invention 実施例における最終沈殿池越流水の実測地、本発明装置による計算値及び他の装置による計算値を示すグラフThe graph which shows the actual measurement place of the final sedimentation basin overflow in an Example, the calculated value by this invention apparatus, and the calculated value by another apparatus.

符号の説明Explanation of symbols

1…OD槽
2…最終沈殿池
3…流入水
4…返送ポンプ
5…返送汚泥管
6…余剰ポンプ
7…余剰汚泥管
8…放流管
9…曝気装置
10…混合撹拌・循環装置
11…汚泥引抜き管
15…入力手段
16…演算処理部
17…出力手段
18…モデル格納部
20…シミュレート装置
30…データ設定装置
31…流入条件設定手段
32…OD槽形状設定手段
33…OD槽寸法設定手段
34…流入・流出位置設定手段
35…曝気装置位置設定手段
36…曝気装置仕様設定手段
37…運転条件設定手段
40…データベース
45…OD槽分割設定手段
50…演算装置
60…データ編集手段
63…プラント入力手段
70…入出力装置
71…キーボード
72…マウス
73…モニタ
DESCRIPTION OF SYMBOLS 1 ... OD tank 2 ... Final sedimentation basin 3 ... Inflow water 4 ... Return pump 5 ... Return sludge pipe 6 ... Surplus pump 7 ... Surplus sludge pipe 8 ... Discharge pipe 9 ... Aeration apparatus 10 ... Mixing stirring and circulation apparatus 11 ... Sludge extraction Pipe 15 ... Input means 16 ... Calculation processing section 17 ... Output means 18 ... Model storage section 20 ... Simulating device 30 ... Data setting device 31 ... Inflow condition setting means 32 ... OD tank shape setting means 33 ... OD tank size setting means 34 ... inflow / outflow position setting means 35 ... aeration apparatus position setting means 36 ... aeration apparatus specification setting means 37 ... operating condition setting means 40 ... database 45 ... OD tank division setting means 50 ... arithmetic apparatus 60 ... data editing means 63 ... plant input Means 70 ... Input / output device 71 ... Keyboard 72 ... Mouse 73 ... Monitor

Claims (4)

生物反応槽への流入水に関する情報を入力値として、生物反応タンクモデルに基づき生物反応槽に関する演算処理を実行する生物反応演算ステップと、前記生物反応槽からの流出水に関する情報を入力値として、下記(a)〜(d)の4区画から構成される最終沈殿池モデルに基づき最終沈殿池に関する演算処理を実行する最終沈殿池演算ステップとを備えた排水の生物処理プロセスシミュレーション方法であって、
(a)前記生物反応槽からの混合液(流出水)の流入部である第1生物反応部
(b)前記第1生物反応部からの混合液(流出水)の全量が流入し、固形成分と固液分離水(溶解成分を含む)とが分離される固液分離部
(c)前記固液分離部で分離された固形成分が流入する第2生物反応部
(d)前記固液分離部で分離された固液分離水(溶解成分を含む)が流入する固液分離水滞留部(固液分離水が最終沈殿池越流水として流出するまでの時間遅れを表現した区画)
前記最終沈殿池演算ステップは、
(A)前記生物反応演算ステップにおいて求められる生物反応槽からの流出水に関する情報を入力値として、生物反応モデルに基づく第1生物反応部での生物反応に関する演算処理を実行する第1生物反応演算ステップと、
(B)前記第1生物反応演算ステップにおいて求められる第1生物反応部からの流出水に関する情報を入力値とし、予め設定されている固液分離条件に基づき、固液分離部において分離されて流出する固形成分と固液分離水に関する演算処理を実行する固液分離演算ステップと、
(C)前記固液分離演算ステップにおいて求められる固液分離部から流出する固形成分に関する情報を入力値として、生物反応モデルに基づく第2生物反応部での生物反応に関する演算処理を実行する第2生物反応演算ステップと、
(D)前記固液分離演算ステップにおいて求められる固液分離部から流出する固液分離水に関する情報を入力値とし、予め設定されている固液分離水滞留部に関する情報に基づき、最終沈殿池流出水に関する演算処理を実行する最終沈殿池流出水演算ステップと、
を備えていることを特徴とする排水の生物処理プロセスシミュレーション方法。
As an input value, information on the inflow water to the biological reaction tank is used as an input value, a biological reaction calculation step for performing a calculation process on the biological reaction tank based on the biological reaction tank model, and information on the effluent water from the biological reaction tank as an input value, A wastewater biological treatment process simulation method comprising: a final sedimentation basin computation step for performing a computation process on the final sedimentation basin based on a final sedimentation basin model composed of the following four sections (a) to (d) :
(A) 1st biological reaction part which is an inflow part of the liquid mixture (effluent) from the said biological reaction tank
(B) A solid-liquid separation unit in which the entire amount of the mixed liquid (outflow water) from the first biological reaction unit flows and the solid component and the solid-liquid separation water (including the dissolved component) are separated.
(C) The second biological reaction part into which the solid component separated in the solid-liquid separation part flows
(D) A solid-liquid separated water retention part (solid-liquid separated water flows out as final sedimentation basin overflow water) into which the solid-liquid separated water (including dissolved components) separated by the solid-liquid separation part flows. Expressed section)
The final sedimentation basin calculation step includes:
(A) A first biological reaction calculation for executing a calculation process related to a biological reaction in a first biological reaction unit based on a biological reaction model, using as an input value information relating to the outflow water from the biological reaction tank obtained in the biological reaction calculation step. Steps,
(B) Using the information regarding the effluent water from the first biological reaction unit obtained in the first biological reaction calculation step as an input value, the spilled water is separated in the solid-liquid separation unit based on preset solid-liquid separation conditions A solid-liquid separation calculation step for performing calculation processing on the solid component and solid-liquid separation water to be performed;
(C) Secondly, a calculation process related to a biological reaction in a second biological reaction unit based on a biological reaction model is executed using information on the solid component flowing out from the solid-liquid separation unit obtained in the solid-liquid separation calculation step as an input value. Biological reaction calculation step;
(D) Based on the information on the solid-liquid separation water retention part set in advance, the information on the solid-liquid separation water flowing out from the solid-liquid separation part obtained in the solid-liquid separation calculation step is used as the input value, and the final sedimentation tank outflow A final sedimentation basin effluent water calculation step for performing water-related calculation processing;
Biological treatment process simulation method of waste water, characterized in that it comprises a.
最終沈殿池演算ステップにおいて、In the final sedimentation basin calculation step,
第1生物反応演算ステップでは、生物反応モデルに基づき第1生物反応部での生物反応による処理水の水質変化を演算処理し、In the first biological reaction calculation step, the water quality change of the treated water due to the biological reaction in the first biological reaction unit is calculated based on the biological reaction model,
固液分離演算ステップでは、固液分離部で分離され、第2生物反応部と固液分離水滞留部にそれぞれ流出する固形成分と固液分離水を演算処理し、In the solid-liquid separation calculation step, the solid component and the solid-liquid separation water that are separated by the solid-liquid separation part and flow out to the second biological reaction part and the solid-liquid separation water retention part are calculated,
第2生物反応演算ステップでは、生物反応モデルに基づき第2生物反応部での生物反応による処理水の水質変化を演算処理し、In the second biological reaction calculation step, the water quality change of the treated water due to the biological reaction in the second biological reaction unit is calculated based on the biological reaction model,
最終沈殿池流出水演算ステップでは、最終沈殿池での処理水の滞留を演算することを特徴とする請求項1に記載の排水の生物処理プロセスシミュレーション方法。The wastewater biological treatment process simulation method according to claim 1, wherein in the final sedimentation basin effluent calculation step, the retention of treated water in the final sedimentation basin is calculated.
コンピュータに、
生物反応槽への流入水に関する情報を入力値として、生物反応タンクモデルに基づき生物反応槽に関する演算処理を実行する生物反応演算ステップと、前記生物反応槽からの流出水に関する情報を入力値として、下記(a)〜(d)の4区画から構成される最終沈殿池モデルに基づき最終沈殿池に関する演算処理を実行する最終沈殿池演算ステップとを実行させる排水の生物処理プロセスシミュレーションプログラムであって、
(a)前記生物反応槽からの混合液(流出水)の流入部である第1生物反応部
(b)前記第1生物反応部からの混合液(流出水)の全量が流入し、固形成分と固液分離水(溶解成分を含む)とが分離される固液分離部
(c)前記固液分離部で分離された固形成分が流入する第2生物反応部
(d)前記固液分離部で分離された固液分離水(溶解成分を含む)が流入する固液分離水滞留部(固液分離水が最終沈殿池越流水として流出するまでの時間遅れを表現した区画)
前記最終沈殿池演算ステップは、
(A)前記生物反応演算ステップにおいて求められる生物反応槽からの流出水に関する情報を入力値として、生物反応モデルに基づく第1生物反応部での生物反応に関する演算処理を実行する第1生物反応演算ステップと、
(B)前記第1生物反応演算ステップにおいて求められる第1生物反応部からの流出水に関する情報を入力値とし、予め設定されている固液分離条件に基づき、固液分離部において分離されて流出する固形成分と固液分離水に関する演算処理を実行する固液分離演算ステップと、
(C)前記固液分離演算ステップにおいて求められる固液分離部から流出する固形成分に関する情報を入力値として、生物反応モデルに基づく第2生物反応部での生物反応に関する演算処理を実行する第2生物反応演算ステップと、
(D)前記固液分離演算ステップにおいて求められる固液分離部から流出する固液分離水に関する情報を入力値とし、予め設定されている固液分離水滞留部に関する情報に基づき、最終沈殿池流出水に関する演算処理を実行する最終沈殿池流出水演算ステップと、
を備えていることを特徴とする排水の生物処理プロセスシミュレーションプログラム。
On the computer,
As an input value, information on the inflow water to the biological reaction tank is used as an input value, a biological reaction calculation step for performing a calculation process on the biological reaction tank based on the biological reaction tank model, and information on the effluent water from the biological reaction tank as an input value, A wastewater biological treatment process simulation program for executing a final sedimentation basin computation step for performing computation processing on the final sedimentation basin based on a final sedimentation basin model composed of the following four sections (a) to (d) :
(A) 1st biological reaction part which is an inflow part of the liquid mixture (effluent) from the said biological reaction tank
(B) A solid-liquid separation unit in which the entire amount of the mixed liquid (outflow water) from the first biological reaction unit flows and the solid component and the solid-liquid separation water (including the dissolved component) are separated.
(C) The second biological reaction part into which the solid component separated in the solid-liquid separation part flows
(D) A solid-liquid separated water retention part (solid-liquid separated water flows out as final sedimentation basin overflow water) into which the solid-liquid separated water (including dissolved components) separated by the solid-liquid separation part flows. Expressed division)
The final sedimentation basin calculation step includes:
(A) A first biological reaction calculation for executing a calculation process related to a biological reaction in a first biological reaction unit based on a biological reaction model, using as an input value information relating to the outflow water from the biological reaction tank obtained in the biological reaction calculation step. Steps,
(B) Using the information regarding the effluent water from the first biological reaction unit obtained in the first biological reaction calculation step as an input value, the spilled water is separated in the solid-liquid separation unit based on preset solid-liquid separation conditions A solid-liquid separation calculation step for performing calculation processing on the solid component and solid-liquid separation water to be performed;
(C) Secondly, a calculation process related to a biological reaction in a second biological reaction unit based on a biological reaction model is executed using information on the solid component flowing out from the solid-liquid separation unit obtained in the solid-liquid separation calculation step as an input value. Biological reaction calculation step;
(D) Based on the information on the solid-liquid separation water retention part set in advance, the information on the solid-liquid separation water flowing out from the solid-liquid separation part obtained in the solid-liquid separation calculation step is used as the input value, and the final sedimentation tank outflow A final sedimentation basin effluent water calculation step for performing water-related calculation processing;
Wastewater biological treatment process simulation program which can be characterized that has a.
最終沈殿池演算ステップにおいて、In the final sedimentation basin calculation step,
第1生物反応演算ステップでは、生物反応モデルに基づき第1生物反応部での生物反応による処理水の水質変化を演算処理し、In the first biological reaction calculation step, the water quality change of the treated water due to the biological reaction in the first biological reaction unit is calculated based on the biological reaction model,
固液分離演算ステップでは、固液分離部で分離され、第2生物反応部と固液分離水滞留部にそれぞれ流出する固形成分と固液分離水を演算処理し、In the solid-liquid separation calculation step, the solid component and the solid-liquid separation water that are separated by the solid-liquid separation part and flow out to the second biological reaction part and the solid-liquid separation water retention part are calculated,
第2生物反応演算ステップでは、生物反応モデルに基づき第2生物反応部での生物反応による処理水の水質変化を演算処理し、In the second biological reaction calculation step, the water quality change of the treated water due to the biological reaction in the second biological reaction unit is calculated based on the biological reaction model,
最終沈殿池流出水演算ステップでは、最終沈殿池での処理水の滞留を演算することを特徴とする請求項3に記載の排水の生物処理プロセスシミュレーションプログラム。The wastewater biological treatment process simulation program according to claim 3, wherein in the final sedimentation basin outflow water calculation step, retention of treated water in the final sedimentation basin is calculated.
JP2005041426A 2005-02-17 2005-02-17 Wastewater biological treatment process simulation method and program Active JP4478210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041426A JP4478210B2 (en) 2005-02-17 2005-02-17 Wastewater biological treatment process simulation method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041426A JP4478210B2 (en) 2005-02-17 2005-02-17 Wastewater biological treatment process simulation method and program

Publications (2)

Publication Number Publication Date
JP2006224001A JP2006224001A (en) 2006-08-31
JP4478210B2 true JP4478210B2 (en) 2010-06-09

Family

ID=36985821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041426A Active JP4478210B2 (en) 2005-02-17 2005-02-17 Wastewater biological treatment process simulation method and program

Country Status (1)

Country Link
JP (1) JP4478210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979541B (en) * 2021-11-26 2023-11-03 昆明理工大学 A, A 2 Intelligent control method for O biological pool process
CN113955854A (en) * 2021-11-26 2022-01-21 昆明理工大学 Modeling and intelligent control method for oxidation ditch sewage treatment process

Also Published As

Publication number Publication date
JP2006224001A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
Hreiz et al. Optimal design and operation of activated sludge processes: State-of-the-art
Schütze et al. Modelling, simulation and control of urban wastewater systems
Gu et al. Optimization and control strategies of aeration in WWTPs: A review
CN101693573B (en) Optimal design method of AAO process reaction tank
Baquero-Rodríguez et al. How elevation dictates technology selection in biological wastewater treatment
JP4478210B2 (en) Wastewater biological treatment process simulation method and program
Huisman et al. Modelling wastewater transformation in sewers based on ASM3
Moragaspitiya et al. Simulation of dynamic behaviour of a biological wastewater treatment plant in South East Queensland, Australia using bio-win software
JP3823863B2 (en) Operation support system and control system for water treatment process
JP4367037B2 (en) Water quality information processing unit
Makowska et al. Organic Compounds Fractionation for Domestic Wastewater Treatment Modeling.
JP4180772B2 (en) Design support device for oxidation ditch process
JP4180773B2 (en) Design support device for sewage treatment plant that treats sewage by activated sludge process.
JP6643086B2 (en) Monitoring and control system using activated sludge method
Smith et al. Dynamic Process Modelling of Activated‐Sludge Plants
CN104649413B (en) The chemical exposure level Forecasting Methodology of anaerobic-anoxic-oxic treatment system
Gao et al. Operation and management of Liaoning waste water treatment plants by STOAT Simulation
JP4026057B2 (en) Water quality simulation equipment
JP2001198590A (en) Simulation method and device of activated-sludge water treating device
JP4376382B2 (en) Sewage treatment simulation equipment
Palogos et al. Computer simulation of a submerged membrane bioreactor treating high COD industrial wastewater
WO2024121918A1 (en) Water treatment facility operation assistance system and water treatment facility operation assistance method
Al-wardy Evaluation and modeling of the performance of wastewater treatment plant in Al-Muamirah in the province of Babylon for the removal pollutant of Municipal Wastewater
JP4432430B2 (en) Sewage treatment operation support device, plant system, program and storage medium
Furneaux Quantifying magnitude of potential phosphorus removal and recovery using plant-wide modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100313

R150 Certificate of patent or registration of utility model

Ref document number: 4478210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250