JP4376382B2 - Sewage treatment simulation equipment - Google Patents

Sewage treatment simulation equipment Download PDF

Info

Publication number
JP4376382B2
JP4376382B2 JP31960999A JP31960999A JP4376382B2 JP 4376382 B2 JP4376382 B2 JP 4376382B2 JP 31960999 A JP31960999 A JP 31960999A JP 31960999 A JP31960999 A JP 31960999A JP 4376382 B2 JP4376382 B2 JP 4376382B2
Authority
JP
Japan
Prior art keywords
tank
anaerobic
sludge
aerobic
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31960999A
Other languages
Japanese (ja)
Other versions
JP2001137881A (en
Inventor
文智 木村
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31960999A priority Critical patent/JP4376382B2/en
Publication of JP2001137881A publication Critical patent/JP2001137881A/en
Application granted granted Critical
Publication of JP4376382B2 publication Critical patent/JP4376382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、活性汚泥プロセスの設計や運転を支援するために水質のシミュレーションを行う下水処理シミュレーション装置に関する。
【0002】
【従来の技術】
下水処理場は活性汚泥と呼ばれる微生物群によって汚水を浄化しており、この処理を活性汚泥プロセスと称している。現在、稼動している下水処理場の大半は活性汚泥プロセスで、有機物の除去を主目的とした標準活性汚泥法を採用している。標準活性汚泥法は、流入下水中の有機物を生物反応槽で活性汚泥に摂取あるいは酸化分解させた後に最終沈殿池で活性汚泥を沈降させて上澄み液を放流する。
【0003】
近年、富栄養化防止に向けて、リン・窒素の規制強化が進められているが、従来の標準活性汚泥法で設計された現有施設ではリン・窒素の規制値をクリアすることが困難である。
【0004】
下水中からの窒素やリンを除去可能な方法は下水高度処理法と呼称され、大別して物理化学的方法と生物学的方法がある。生物学的方法は既存施設である標準活性汚泥法を改造して構築可能であることから、下水処理場に導入されつつある。
【0005】
標準活性汚泥法は生物反応槽全体に空気を供給しているので、生物反応槽は常に溶存酸素が存在する好気状態になっている。これに対して、生物学的なリン・窒素除去機構を利用した下水高度処理は、生物反応槽に溶存酸素の存在しない嫌気状態を作り出し、好気状態と組合せてリン除去、窒素を除去する。
【0006】
代表的なリン除去プロセスである「嫌気―好気活性汚泥法」は、生物反応槽の前段を嫌気槽に、後段を好気槽にして、微生物によるリン放出とリン過剰摂取現象を利用して下水中のリンを除去する処理方法である。また、生物学的窒素除去プロセスである「循環式硝化脱窒法」は、生物反応槽の前段を嫌気槽、後段を好気槽とし、好気槽で生成された硝酸性窒素を嫌気槽に循環することによって硝酸性窒素を窒素ガスとして除去する方法である。
【0007】
リン・窒素同時除去プロセスは上記2つのプロセスを組み合わせた「嫌気―無酸素―好気法」が代表的な処理法である。ここで無酸素状態とは、溶存酸素は存在しないが、硝酸性窒素(NO3)のように窒素酸化物が存在する状態である。このような下水高度処理は、有機物、リン、窒素除去に関連する各種微生物の生息環境を適切に維持することによって性能が発揮される。したがって、嫌気槽や好気槽など生物反応槽の容積や組合せを最適に構築し、さらに適切な運転を実施しなければならない。
【0008】
しかし、これまで有機物、リン、窒素の複雑な反応過程を算出し提示できる方法がなく、下水高度処理の設計や運転は経験と勘に依存している。そのため、経験していない流入下水水質と量、生物反応槽構成、運転条件に対しては予測できない事態が発生し、その都度対策を講じなければならない。
【0009】
例えば、下水高度処理施設設計マニュアルなどの設計指針によれば、稼動している一部の処理場の実績値を用いて各種高度処理方法に必要な嫌気槽、無酸素槽および好気槽の容積の設計法を提供しているが、流入水条件の異なる他の処理場への適用には課題があった。また、既存の標準活性汚泥法への改造については何ら記載されていない。
【0010】
一方、生物反応をモデル化し、数値シミュレーションによって活性汚泥プロセスの特性を評価する方法が提案されている。生物反応のモデルの例として、1995年に国際水環境協会(IAWQ)が発表した「活性汚泥モデルNO2」(IAWQ:IAWQ Scientific and Technical Report No.3,Activated Sludge Model No.2,1995)が提案されている。また、特開平10−235333号公報のように、下水処理プロセスシミュレーターによって水質を計算する方法が提案されている。
【0011】
【発明が解決しようとする課題】
従来技術のなかで国際水環境協会(IAWQ)が発表した「活性汚泥モデル NO2」は、活性汚泥中の微生物(菌体)の種類を定義し、関連する生物反応をモデル化しているのみで、このモデルを用いたシミュレータを提示しているわけではない。実際に活性汚泥プロセスのシミュレータを作成するには提示された生物反応モデルの他に最低でも、生物反応槽の流体モデル、最終沈殿池の流体モデルが必要で、さらに、流入下水の質と量、生物反応槽の容積と構成、送気条件、運転条件などを組合せて数値計算しないと実現できない。従って、「活性汚泥モデルNO2」のみでは下水高度処理の設計に適用できず、ましてや適切な運転条件を決定することはできない。
【0012】
一方、特開平10−235333号公報に記載の下水処理シミュレータは、生物反応モデルに流体や反応条件を組み合わせて活性汚泥プロセスをシミュレーションする方法である。しかし、特開平10−235333号公報にはソフトウエアの概念は記載されいるが、生物反応槽の容積、構成、組み合わせについてはなんら記載されていない。
【0013】
理論的には嫌気・好気環境の異なる2つ以上の生物反応槽の組み合わせによって生物学的なリン・窒素除去を実現できる。窒素除去については、嫌気槽(無酸素槽)での脱窒反応と好気槽での硝化反応の2つ工程をバランスよく行わないと高い窒素除去率が得られない。同様にリン除去性能は嫌気槽でのリン放出と、好気槽でのリン摂取の2つ工程に依存しているので、嫌気槽と好気槽の容積や、槽の組合せは非常に重要である。
【0014】
また、生物反応槽内の溶存酸素の流動も十分考慮せねばならない。例えば、循環式硝化脱窒法のように好気槽の混合液を嫌気槽に循環した場合は、混合液中の溶存酸素によって嫌気状態が崩れ、脱窒反応が阻害され、窒素除去率を低下させる。このような溶存酸素による反応阻害の対策には、嫌気槽の容積を増やす、又は嫌気槽に隔壁を入れて溶存酸素の拡散を防止するなど、土木構造を生物反応に関わる種々の条件から検討しなければならない。
【0015】
下水高度処理においては、生物反応槽の構成や循環液の循環位置などの土木構造によって、嫌気槽や好気槽の生物反応が大きな影響を受けるため、リンや窒素の除去性能の限界が決まってしまう。従って、高度下水処理の設計や運転には、生物反応に基づいた数値シミュレーションによって土木構造を決め、次に適切な運転条件を検討しなければならない。
【0016】
最適な下水高度処理は、この手順を繰り返し試行することによって初めて決定できる。従って、設計や運転支援を目的としたシミュレータには生物反応槽の構成を容易に変更できる手段が不可欠であるが、特開平10−235333号公報の下水処理シミュレータにはなんら考慮されていない。
【0017】
また、新設処理場の場合は、更地に施設を建造するため、生物反応槽の面積も余裕を持って設計できるが、ほとんどの処理場は現在運用中の土木施設をベースに下水高度処理を組み入れていくことになり、そのために既存施設上の制限、処理地区や放流先の環境基準などの処理場の実状に合わせた改良が不可欠となる。
【0018】
既設の標準活性汚泥プロセスを高度処理に改造する場合の手順としては、生物反応槽全体容積はそのまま流用する方法が最も望ましく、ここに循環ポンプなどを追加して循環ルートを決定する。既存の処理場の改造には、既存の生物反応槽を流用した構造の検討と運転条件の検討を行なわねばならないが、特開平10−235333号公報の下水処理シミュレータにはこの点が配慮されておらず、既存処理場の下水高度処理化に際して、設計及び運転への適用には課題がある。
【0019】
本発明は上記点に対処して成されたもので、その目的とするところは目標処理水条件を満たす適切な生物反応槽の組み合わせや容積などの土木構造や運転条件の設計を支援できる下水シミュレーション装置を提供することにある。
【0020】
【課題を解決するための手段】
上記の目的を達成するため、本発明は生物反応槽の全長と幅と水深を設定する手段と,該生物反応槽の分割数を設定する手段と,該分割されたそれぞれの分割生物反応槽の長さを設定する手段と,前記分割されたそれぞれの分割生物反応槽への嫌気・好気条件を設定する手段を設けるようにしたことを特徴とする。
【0021】
また、本発明は、分割された個々の分割生物反応槽の長さを設定する手段に分割されたそれぞれの分割生物反応槽の長さを流下方向順に表示する表示手段を設け、生物反応槽の分割と容量を的確に把握できるようにする。
【0022】
また、本発明は、分割されたそれぞれの分割生物反応槽間の循環ルートを設定する手段を設け、生物反応槽の分割と、嫌気・好気槽の組み合わせと、反応槽内での汚泥循環ルートを自由に設定することによって、高度下水処理の最適化の検討を可能にする。
【0023】
【発明の実施の形態】
図1は本発明を活性汚泥プロセスのシミュレーションに適用した一実施例である。
【0024】
図1において、嫌気槽1a,無酸素槽1b,好気槽1cの3槽の生物反応槽1と、好気槽1cから無酸素槽1bに循環する嫌気―無酸素―好気法を説明する。
【0025】
流入汚水は沈砂池(図示せず)にて土砂、ゴミなど大きな固形物を沈降除去したのち、最初沈殿池(図示せず)に流入する。最初沈殿池では固形物を沈降除去し、有機物、アンモニア性窒素、リンなどを含む上澄み液は生物反応槽1への流入水3として送られる。生物反応槽1には最初沈殿池からの流入水3と返送汚泥管5からの返送汚泥(活性汚泥)が流入し、撹拌混合が行われる。
【0026】
一方、生物反応槽1には、送気管12、送気装置13を介してブロワ11から空気が送気される。さらに、生物反応槽1では、循環ポンプ8によって循環汚泥管9を介して好気槽1cから無酸素槽1bへ汚泥を循環する。嫌気槽1aは溶存酸素(DO)と硝酸性窒素(NO3)がともに存在しない状態であり、主にリンの放出反応が進行する。無酸素槽1bでは好気槽1cから硝酸性窒素(NO3)が循環され、かつ溶存酸素の存在しない環境になり、硝酸性窒素は還元されて窒素ガス(N2)として大気中に放出される。これを脱窒反応と呼んでいる。
【0027】
好気槽1cは、送気装置13からの空気によって溶存酸素が供給され、アンモニア性窒素が硝酸性窒素(NO3)に酸化される。これを硝化反応と呼んでいる。また、有機物は酸化分解や活性汚泥の増殖によって減少し、リンは過剰摂取により嫌気槽1aで放出された以上に活性汚泥によって摂取されて減少する。このような生物反応後の処理水は最終沈殿池2に導かれる。
【0028】
最終沈殿池2では、活性汚泥を重力沈降させ、上澄み液を塩素消毒した後、放流管10によって放流する。最終沈殿池2の沈降汚泥の一部は返送ポンプ4によって返送汚泥管5を介して生物反応槽1へ送られ、残りの汚泥は余剰ポンプ6によって余剰汚泥管7を介して系外へ排出される。
【0029】
返送ポンプ4は、返送汚泥量の制御や、返送汚泥量と流入下水量の比率の制御によって運転される。循環ポンプ8は、循環液量の制御や、循環液量と流入下水量の比率の制御によって運転される。余剰ポンプ6は、余剰汚泥量の制御や、余剰泥量と流入下水量の比率の制御によって運転される。ブロワ11は、ブロワ風量の制御、好気槽1cの溶存酸素の制御によって運転される。
【0030】
以上説明した嫌気―無酸素―好気法を対象としたシミュレータ20の構成について、引き続き図1にて説明する。
【0031】
シミュレータ20はデータ設定装置30、演算装置50、データ編集手段60、入出力装置70から構成される。ここでは、プラントの設計に適用した例について説明する。データ設定装置30はシミュレーションに必要なデータをキーボード71、またはマウス72を用いて入力し、モニタ73に表示される。
【0032】
流入条件設定手段31は流入汚水量および流入水質の濃度の設定を行う。水質とは例えば、有機物(易分解性と難分解性)、アンモニア性窒素、全窒素、リン、浮遊物濃度、アルカリ度、溶存酸素、硝酸性窒素、水温などである。データは24時間変動パターンでもよいし、24時間を通して一定値としてもよい。
【0033】
反応槽寸法設定手段32は生物反応槽の有効幅、有効長さおよび有効水深の寸法データを設定する。反応槽分割数設定手段33は生物反応槽の分割数および分割された各反応槽の長さを設定する。嫌気・好気設定手段34は、分割した各反応槽に空気を供給するか否かを設定する。本実施例では嫌気槽1a、無酸素槽1bには空気を供給しない設定とし、好気槽1cには供給するように設定している。
【0034】
循環ルート設定手段35は生物反応槽1内での循環ルートを、また循環汚泥量設定手段36は反応槽1内での汚泥循環量を設定する。運転条件設定手段37はブロワ11から生物反応槽1への送風量、沈殿池2から嫌気槽1aへの返送汚泥量、余剰汚泥量などの運転条件を設定する。
【0035】
このようなデータ設定装置30から設定されたシミュレーション条件はデータベース40に格納される。また、モニタ73に設定内容をグラフィックなどにより表示する。演算装置50はデータベース40のシミュレーション条件に基づき、生物モデル演算手段51と、輸送モデル演算手段52と、風量モデル演算手段53を用いて、生物反応槽、最終沈殿池、返送汚泥、及び余剰汚泥の水質、汚泥濃度及び流量を計算し、その結果をデータベース40に格納する。
【0036】
生物モデル演算手段51は、生物反応によって変化する水質、及び汚泥濃度の変化を計算する。これらのモデルには国際水環境協会(IAWQ)が発表した「活性汚泥モデルNO2」などの公知のモデルを適用してもよいし、化学反応式から作成したモデルや実験的に求めたモデルを適用してもよい。
【0037】
輸送モデル演算手段52は、流入汚水量、返送汚泥量、余剰汚泥量、及び循環汚泥量に基づいてプロセス全体の流量の変化を計算する。風量モデル演算手段53は送風量から好気槽1cに供給される溶存酸素を計算する。これら演算装置30の計算結果はデータベース40に格納される。
【0038】
データ編集出力装置60は、データベース40のデータを参照し、データ編集を行い、モニタ73に出力する。データ編集手段61はデータベース40のデータを参照してプロフィール、トレンドグラフ、計算結果一覧表、除去率、物質収支などの形式でデータ編集を行い、編集結果を入出力手段70に送信する。
【0039】
以上は、シミュレーション条件を手入力し机上による計算例の説明である。シミュレーション装置20は、プラント入力手段63によって流入水量や水質を自動計測し、これらを除去可能な目標水質を維持できる風量、返送汚泥量、循環量をシミュレーション計算し、プラント出力手段61を経由して、ポンプの制御目標値などを出力した構成として、実際のプロセス運転制御に用いることもできる。
【0040】
図2に反応槽寸法設定手段32と反応槽分割設定手段33の設定画面例を示す。図2は反応槽寸法設定手段32と反応槽分割設定手段33の設定をモニタ73に表示したときの一例である。
【0041】
生物反応槽1の有効幅、有効長さおよび有効水深の寸法および、生物反応槽1の槽分割数と各槽の長さを自由に設定することができる。通常、生物反応槽1の断面は長方形で、生物反応槽1の有効水深と有効幅は一定である。生物反応槽1の槽分割数と各槽長さを設定することによって、生物反応槽全体の総容積、及び分割された各反応槽の容積を定義することができる。
【0042】
図3に嫌気・好気槽設定手段34の設定画面例を示す。図3は生物反応槽1を5つに分割した場合のモニタ73への表示例である。
【0043】
モニタ73には分割された反応槽(No1〜5)、ブロワ11、送気管12、送気装置13、及び調整弁14のシンボルを表示する。調整弁14のシンボルをマウスクリックすることによって送気の有無、並びに送気量の割合を設定する。例えば、調整弁14の開度範囲を0〜100%のとき、開度0%の場合は嫌気槽、それ以外は好気槽になり、調節弁開度が大きければ、それだけ送気量の割合も多くなる。嫌気槽と好気槽は、槽の色、調整弁の色、あるいは泡のシンボルの有無などで区別する。
【0044】
図4には循環ルート設定手段35と循環汚泥量設定手段36の設定画面例を示す。 図4は循環ルート設定手段35と循環汚泥量設定手段36の設定をモニタ73に表示したときの一例で、循環率(循環液量/流入水量)100%で、反応槽1の5槽目から2槽目に循環する例を示している。なお、循環ルートを0槽目→0槽目、または、循環率を0%にすれば生物反応槽1の各槽間での循環がないように設定できる。
【0045】
図5に設定手段30で設定した後にモニタ73に表示される画面表示例を示す。 モニタ73には条件を設定した結果が表示される。例えば、反応槽寸法設定手段32と反応槽分割設定手段33による生物反応槽1の槽分割数および各槽の長さ比率に基づきプラントの構成図を描画し、嫌気・好気槽設定手段34によって反応槽のNo4,5の槽は好気槽であることを表示し、調整弁開度のシンボルに目盛で開度を示している。
【0046】
循環ルート設定手段35と循環汚泥量設定手段36で設定された循環ルートと循環量も描画される。また、ブロワの総送気量、返送汚泥量と流入下水量との比率(返送率)、余剰汚泥量などについても表示している。
【0047】
図6に本発明のシミュレーション装置によるシミュレーション結果の画面表示例を示す。沈殿池出口の有機物(T-BOD)、全窒素(T-N)、リン(PO4-P)の時間毎の計算結果をトレンドグラフで表示している例を示している。
【0048】
図7に本発明によるシミュレーション手順のフロー図を示す。
【0049】
図7において、ステップS1では反応槽寸法設定手段32によって生物反応槽1の幅、水深、長さを設定し、ステップS2に移行して反応槽分割設定手段33によって生物反応槽1の分割数と各槽の長さを設定する。ステップS3では、嫌気・好気槽設定手段34によって各反応槽の送気有無を設定し、ステップS4において循環液がある場合には循環ルートと循環量を設定する。以上の設定によって生物反応槽1の構造が定義される。
【0050】
ステップS5では、流入条件設定手段31が流入水量および流入水質(有機物、アンモニア性窒素、リン、SS、アルカリ度、水温など)の濃度などの流入水質条件を設定する。ステップS6においては、運転条件設定手段37が返送ポンプ4の制御条件(返送汚泥量または返送率の目標値)、余剰ポンプ6の制御条件(余剰汚泥量または余剰汚泥率目標値)及びブロワ11の制御条件(送気量または溶存酸素濃度目標値)を設定し、また、循環汚泥量設定手段36が循環ポンプ8の制御条件(循環液量または循環率目標値)を設定する。
【0051】
ステップS6からステップS7に移行し、これまでの設定条件に基づいてシミュレーションを実行し、生物反応槽1や沈殿池2出口の水質、生物反応槽1内の汚泥濃度、返送汚泥濃度、余剰汚泥濃度などを計算してモニタ73に表示する。ステップS8では、沈殿池2出口の放流水の有機物、窒素、リンの除去率が目標値以上かを判定する。
【0052】
ステップS8で除去率が目標値以上と判定するとステップS9に進み、目標値以下であればステップS6に戻り運転条件を変更して再度ステップS6,S7,S8の処理を繰返し実行する。
【0053】
ステップS8では除去率を式1で計算する。
【0054】
【数1】
除去率(%)=((流入水濃度―放流水濃度)/流入水濃度)×100…(式1)
ステップS8において、ステップS6で設定する各運転条件の上限から下限の全てにおいて除去率が目標値に達しない場合は、土木構造上の限界と判断し次のステップS9に移行する。
【0055】
ステップS9では沈殿池2出口の放流水の有機物、リン、窒素が目標値以下かを判定し、目標値未満であれば適切な下水高度処理が決定できたのでシミュレーションを終了する。ステップS9で放流水質が目標値以上と判定した場合はステップS1に戻り、土木構造から再設定する。
【0056】
放流水質の目標値は下水処理場によって項目と値も異なるが、例えば全窒素10mg/L、リン0.5mg/L、有機物(BOD)10mg/L程度が目安とされている。
【0057】
なお、ステップS8の判定を除去率としたが水質値としてもよく、また運転時の使用電力量から判定することもできる。ステップS9の判定においても運転時の使用電力量から判定してもよく、また、ステップS8とS9の判定は、人間が実行してもよく、ソフトウエアによって自動的に実行することもできる。
【0058】
このようにして活性汚泥プロセスのシミュレーションを行うのであるが、生物反応槽の分割、嫌気・好気槽の組み合わせ、及び運転条件を色々と変えて試行可能なため、既存の標準活性汚泥法を改造して、有機物、リン、窒素を除去可能な高度下水処理流入負荷と処理水質条件を満たす反応槽の組み合わせや容積などの決定、適切な運転条件の検討を支援することができる。
【0059】
また、生物反応槽を分割した各反応槽における有機物、リン、窒素の挙動から、異常原因の究明や対策の選定には有用な情報を提供することもできる。
【0060】
【発明の効果】
本発明によれば、反応槽の分割、嫌気・好気槽の組み合わせ、及び運転条件をさまざまに変えて試行可能なため、既存の標準活性汚泥法を改造して、有機物、りん、窒素を除去可能な高度下水処理流入負荷と処理水質条件を満たす反応槽の組み合わせや容積などの決定、適切な運転条件の検討を支援することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す構成図である。
【図2】本発明による反応槽寸法と分割設定を示す画面表示例である。
【図3】本発明による嫌気・好気槽の設定を示す画面表示例である。
【図4】本発明による汚泥の循環ルートと循環率を示す画面表示例である。
【図5】本発明によるシミュレーション条件を示す画面表示例である。
【図6】本発明によるシミュレーション結果を示す画面表示例である。
【図7】本発明によるシミュレーション手順を示すフロー図である。
【符号の説明】
1…生物反応槽、2…最終沈殿池、3…流入水、4…返送ポンプ、5…返送汚泥管、6…余剰ポンプ、7…余剰汚泥管、8…循環ポンプ、9…循環汚泥管、10…放流管、11…ブロワ、12…送気管、13…送気装置、14…調整弁20…シミュレータ、30…データ設定装置、31…流入条件設定手段、32…反応槽寸法設定手段、33…反応槽分割設定手段、34…嫌気・好気槽設定手段、35…循環ルート設定手段、36…循環汚泥量設定手段、37…運転条件設定手段、40…データベース、50…演算装置、51…生物モデル演算手段、52…輸送モデル演算手段、53…風量モデル演算手段、60…データ編集手段、61…プラント出力手段、63…プラント入力手段、70…入出力装置、71…キーボード、72…マウス、73…モニタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sewage treatment simulation apparatus that performs water quality simulation to support design and operation of an activated sludge process.
[0002]
[Prior art]
A sewage treatment plant purifies sewage with a group of microorganisms called activated sludge, and this treatment is called an activated sludge process. Currently, most of the sewage treatment plants that are in operation are activated sludge processes, which use the standard activated sludge method, which mainly aims to remove organic substances. In the standard activated sludge method, the organic matter in the inflowing sewage is ingested or oxidized and decomposed in the biological reaction tank, and then the activated sludge is settled in the final sedimentation basin and the supernatant liquid is discharged.
[0003]
In recent years, regulations on phosphorus and nitrogen have been strengthened to prevent eutrophication, but it is difficult to clear the limits of phosphorus and nitrogen at existing facilities designed with the conventional standard activated sludge method. .
[0004]
Methods that can remove nitrogen and phosphorus from sewage are called advanced sewage treatment methods, and can be broadly classified into physicochemical methods and biological methods. Biological methods are being introduced into sewage treatment plants because they can be constructed by modifying the standard activated sludge method, which is an existing facility.
[0005]
Since the standard activated sludge method supplies air to the entire biological reaction tank, the biological reaction tank is always in an aerobic state in which dissolved oxygen is present. In contrast, advanced sewage treatment using a biological phosphorus / nitrogen removal mechanism creates an anaerobic state in which no dissolved oxygen is present in the biological reaction tank, and removes phosphorus and nitrogen in combination with the aerobic state.
[0006]
The typical anaerobic-aerobic activated sludge process, which is a typical phosphorus removal process, uses an anaerobic tank at the front of the biological reaction tank and an aerobic tank at the back to utilize the phenomenon of phosphorus release by microorganisms and the phenomenon of excessive phosphorus intake. This is a treatment method for removing phosphorus in sewage. In addition, the “circulation nitrification denitrification method”, which is a biological nitrogen removal process, uses an anaerobic tank at the front of the biological reaction tank and an aerobic tank at the rear, and circulates nitrate nitrogen generated in the aerobic tank to the anaerobic tank. In this way, nitrate nitrogen is removed as nitrogen gas.
[0007]
A typical treatment method for the simultaneous removal process of phosphorus and nitrogen is the “anaerobic-anoxic-aerobic method” that combines the above two processes. Here, the oxygen-free state is a state in which dissolved oxygen does not exist, but nitrogen oxides such as nitrate nitrogen (NO3) exist. Such advanced sewage treatment exhibits its performance by appropriately maintaining the habitat of various microorganisms related to organic matter, phosphorus, and nitrogen removal. Therefore, the volume and combination of biological reaction tanks such as anaerobic tanks and aerobic tanks must be optimally constructed and further appropriate operation must be performed.
[0008]
However, there is no method for calculating and presenting complex reaction processes of organic matter, phosphorus and nitrogen, and the design and operation of advanced sewage treatment depends on experience and intuition. For this reason, unforeseen situations arise with respect to the quality and quantity of influent sewage that has not been experienced, biological reactor configuration, and operating conditions, and countermeasures must be taken each time.
[0009]
For example, according to design guidelines such as the design manual for advanced sewage treatment facilities, the volume of anaerobic tanks, anoxic tanks and aerobic tanks required for various advanced treatment methods using the actual values of some operating treatment plants. However, there was a problem in applying it to other treatment plants with different inflow water conditions. In addition, there is no description about the modification to the existing standard activated sludge method.
[0010]
On the other hand, methods for modeling biological reactions and evaluating the characteristics of activated sludge processes by numerical simulation have been proposed. An example of a biological reaction model proposed by the International Water Environment Association (IAWQ) in 1995, “Activated Sludge Model NO2” (IAWQ: IAWQ Scientific and Technical Report No.3, Activated Sludge Model No.2,1995) Has been. Moreover, a method for calculating water quality by a sewage treatment process simulator has been proposed as disclosed in JP-A-10-235333.
[0011]
[Problems to be solved by the invention]
“Activated sludge model NO2” published by the International Water Environment Association (IAWQ) among the conventional technologies only defines the types of microorganisms (fungal bodies) in activated sludge and models related biological reactions. We do not present a simulator using this model. In order to actually create an activated sludge process simulator, in addition to the proposed biological reaction model, at least the fluid model of the biological reaction tank and the fluid model of the final sedimentation basin are required. This cannot be realized without numerical calculation combining the volume and configuration of the biological reaction tank, air supply conditions, operating conditions, and the like. Therefore, “activated sludge model NO2” alone cannot be applied to the design of advanced sewage treatment, and even more appropriate operating conditions cannot be determined.
[0012]
On the other hand, the sewage treatment simulator described in JP-A-10-235333 is a method for simulating an activated sludge process by combining a biological reaction model with a fluid and reaction conditions. However, Japanese Patent Application Laid-Open No. 10-235333 describes the concept of software, but does not describe the volume, configuration, and combination of the biological reaction tank.
[0013]
Theoretically, biological phosphorus and nitrogen removal can be realized by combining two or more biological reaction tanks with different anaerobic and aerobic environments. As for nitrogen removal, a high nitrogen removal rate cannot be obtained unless the two steps of denitrification reaction in an anaerobic tank (anoxic tank) and nitrification reaction in an aerobic tank are not performed in a well-balanced manner. Similarly, the phosphorus removal performance depends on two processes: phosphorus release in the anaerobic tank and phosphorus intake in the aerobic tank, so the volume of the anaerobic tank and the aerobic tank and the combination of the tanks are very important. is there.
[0014]
In addition, the flow of dissolved oxygen in the biological reaction tank must be fully considered. For example, when the mixed solution in the aerobic tank is circulated to the anaerobic tank as in the circulatory nitrification denitrification method, the anaerobic state collapses due to dissolved oxygen in the mixed liquid, the denitrification reaction is inhibited, and the nitrogen removal rate is reduced. . In order to prevent reaction by such dissolved oxygen, the civil engineering structure is examined from various conditions related to biological reactions, such as increasing the volume of the anaerobic tank, or preventing the diffusion of dissolved oxygen by inserting a partition wall in the anaerobic tank. There must be.
[0015]
In advanced sewage treatment, the biological reaction in the anaerobic tank and aerobic tank is greatly affected by the structure of the biological reaction tank and the civil engineering structure such as the circulation position of the circulating fluid. End up. Therefore, in designing and operating advanced sewage treatment, it is necessary to determine the civil structure by numerical simulation based on biological reactions, and then to examine appropriate operating conditions.
[0016]
The optimal sewage altitude treatment can only be determined by repeatedly trying this procedure. Therefore, a means for easily changing the configuration of the biological reaction tank is indispensable for a simulator for the purpose of design and operation support, but no consideration is given to the sewage treatment simulator of JP-A-10-235333.
[0017]
In the case of new treatment plants, the area of the bioreactor tank can be designed with sufficient margin because the facilities are constructed on the clearing ground, but most of the treatment plants perform advanced sewerage treatment based on the civil engineering facilities currently in operation. In order to do so, it is essential to make improvements in accordance with the actual conditions of the treatment plant, such as restrictions on existing facilities, environmental standards for treatment areas and discharge destinations.
[0018]
As a procedure for remodeling an existing standard activated sludge process to advanced treatment, it is most desirable to divert the entire volume of the biological reaction tank as it is, and a circulation route is determined by adding a circulation pump or the like. To modify the existing treatment plant, it is necessary to examine the structure using the existing biological reaction tank and the operation conditions. However, this point is taken into consideration in the sewage treatment simulator of JP-A-10-235333. However, there is a problem in application to design and operation when upgrading the existing sewage treatment plant to advanced sewage.
[0019]
The present invention has been made in response to the above points, and its purpose is sewage simulation capable of supporting the design of civil engineering structures and operating conditions such as appropriate combinations and volumes of biological reaction tanks that satisfy the target treated water conditions. To provide an apparatus.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides means for setting the total length, width, and water depth of a biological reaction tank, means for setting the number of divisions of the biological reaction tank, and the divided biological reaction tanks. Means for setting the length and means for setting anaerobic / aerobic conditions for each of the divided biological reaction tanks are provided.
[0021]
Further, the present invention is provided with a display means for displaying the length of each divided biological reaction tank in order of the flow direction in the means for setting the length of each divided biological reaction tank. Make sure that you know exactly what is split and capacity.
[0022]
In addition, the present invention provides means for setting a circulation route between each divided biological reaction tank, and a division of the biological reaction tank, a combination of an anaerobic / aerobic tank, and a sludge circulation route in the reaction tank. It is possible to study the optimization of advanced sewage treatment by freely setting.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment in which the present invention is applied to a simulation of an activated sludge process.
[0024]
In FIG. 1, three biological reaction tanks 1 of an anaerobic tank 1a, an anaerobic tank 1b, and an aerobic tank 1c and an anaerobic-anoxic-aerobic method that circulates from the aerobic tank 1c to the anaerobic tank 1b will be described. .
[0025]
The inflowing sewage flows into the sedimentation basin (not shown) after removing large solids such as earth and sand in the sedimentation basin (not shown). In the first sedimentation basin, solids are settled and removed, and the supernatant liquid containing organic matter, ammoniacal nitrogen, phosphorus and the like is sent as inflow water 3 to the biological reaction tank 1. First, inflow water 3 from the settling basin and return sludge (activated sludge) from the return sludge pipe 5 flow into the biological reaction tank 1, and stirring and mixing are performed.
[0026]
On the other hand, air is supplied from the blower 11 to the biological reaction tank 1 via the air supply pipe 12 and the air supply device 13. Further, in the biological reaction tank 1, the sludge is circulated from the aerobic tank 1 c to the anoxic tank 1 b via the circulating sludge pipe 9 by the circulation pump 8. The anaerobic tank 1a is in a state where both dissolved oxygen (DO) and nitrate nitrogen (NO3) are not present, and phosphorus release reaction proceeds mainly. In the anaerobic tank 1b, nitrate nitrogen (NO3) is circulated from the aerobic tank 1c, and an environment in which dissolved oxygen does not exist is formed. The nitrate nitrogen is reduced and released into the atmosphere as nitrogen gas (N2). This is called denitrification reaction.
[0027]
The aerobic tank 1c is supplied with dissolved oxygen by the air from the air supply device 13, and ammonia nitrogen is oxidized to nitrate nitrogen (NO3). This is called a nitrification reaction. In addition, organic matter is reduced by oxidative decomposition and proliferation of activated sludge, and phosphorus is ingested by activated sludge more than it is released in the anaerobic tank 1a due to excessive intake. The treated water after such a biological reaction is guided to the final sedimentation basin 2.
[0028]
In the final sedimentation basin 2, the activated sludge is gravity settled and the supernatant liquid is sterilized with chlorine, and then discharged through the discharge pipe 10. Part of the settled sludge in the final sedimentation basin 2 is sent to the biological reaction tank 1 via the return sludge pipe 5 by the return pump 4, and the remaining sludge is discharged out of the system via the surplus sludge pipe 7 by the surplus pump 6. The
[0029]
The return pump 4 is operated by controlling the amount of returned sludge and controlling the ratio between the amount of returned sludge and the inflow sewage amount. The circulation pump 8 is operated by controlling the amount of circulating fluid and controlling the ratio between the amount of circulating fluid and the inflow sewage amount. The surplus pump 6 is operated by controlling the surplus sludge amount or controlling the ratio between the surplus sludge amount and the inflow sewage amount. The blower 11 is operated by controlling the blower air volume and controlling the dissolved oxygen in the aerobic tank 1c.
[0030]
The configuration of the simulator 20 for the anaerobic-anoxic-aerobic method described above will be described with reference to FIG.
[0031]
The simulator 20 includes a data setting device 30, an arithmetic device 50, data editing means 60, and an input / output device 70. Here, an example applied to plant design will be described. The data setting device 30 inputs data necessary for the simulation using the keyboard 71 or the mouse 72 and is displayed on the monitor 73.
[0032]
The inflow condition setting means 31 sets the inflow sewage amount and the inflow water quality concentration. Examples of the water quality include organic substances (easy degradable and hardly degradable), ammonia nitrogen, total nitrogen, phosphorus, suspended solids concentration, alkalinity, dissolved oxygen, nitrate nitrogen, water temperature, and the like. The data may be a 24-hour variation pattern or a constant value throughout the 24-hour period.
[0033]
The reaction tank dimension setting means 32 sets the dimension data of the effective width, effective length and effective water depth of the biological reaction tank. The reaction tank division number setting means 33 sets the division number of the biological reaction tank and the length of each divided reaction tank. Anaerobic / aerobic setting means 34 sets whether to supply air to each divided reaction tank. In this embodiment, air is not supplied to the anaerobic tank 1a and the anaerobic tank 1b, and is set to be supplied to the aerobic tank 1c.
[0034]
The circulation route setting means 35 sets the circulation route in the biological reaction tank 1, and the circulating sludge amount setting means 36 sets the sludge circulation amount in the reaction tank 1. The operating condition setting means 37 sets operating conditions such as the amount of air blown from the blower 11 to the biological reaction tank 1, the amount of sludge returned from the sedimentation tank 2 to the anaerobic tank 1a, and the amount of excess sludge.
[0035]
Simulation conditions set from such a data setting device 30 are stored in the database 40. Further, the setting contents are displayed on the monitor 73 by graphics or the like. Based on the simulation conditions of the database 40, the computing device 50 uses the biological model computing means 51, the transport model computing means 52, and the air volume model computing means 53, so that the biological reaction tank, final sedimentation tank, return sludge, and excess sludge are The water quality, sludge concentration and flow rate are calculated, and the results are stored in the database 40.
[0036]
The biological model calculation means 51 calculates the water quality that changes due to the biological reaction and the change in the sludge concentration. For these models, known models such as “activated sludge model NO2” published by the International Water Environment Association (IAWQ) may be applied, or models created from chemical reaction formulas or experimentally obtained models may be applied. May be.
[0037]
The transport model calculation means 52 calculates the change in the flow rate of the entire process based on the inflow sewage amount, the return sludge amount, the surplus sludge amount, and the circulating sludge amount. The air volume model calculating means 53 calculates dissolved oxygen supplied to the aerobic tank 1c from the blown air volume. The calculation results of these arithmetic devices 30 are stored in the database 40.
[0038]
The data editing / output device 60 refers to the data in the database 40, performs data editing, and outputs the data to the monitor 73. The data editing unit 61 refers to the data in the database 40 to perform data editing in a format such as a profile, a trend graph, a calculation result list, a removal rate, a substance balance, and transmits the editing result to the input / output unit 70.
[0039]
The above is an explanation of an example of calculation on a desk by manually inputting simulation conditions. The simulation apparatus 20 automatically measures the inflow water amount and the water quality by the plant input means 63, performs a simulation calculation of the air volume, the return sludge quantity, and the circulation quantity that can maintain the target water quality from which these can be removed, and passes through the plant output means 61. Further, the configuration in which the control target value of the pump is output can be used for actual process operation control.
[0040]
FIG. 2 shows a setting screen example of the reaction vessel dimension setting means 32 and the reaction vessel division setting means 33. FIG. 2 shows an example when the settings of the reaction vessel dimension setting means 32 and the reaction vessel division setting means 33 are displayed on the monitor 73.
[0041]
The dimensions of the effective width, effective length, and effective water depth of the biological reaction tank 1, the number of divisions of the biological reaction tank 1, and the length of each tank can be freely set. Usually, the cross section of the biological reaction tank 1 is rectangular, and the effective water depth and effective width of the biological reaction tank 1 are constant. By setting the number of divisions of the biological reaction tank 1 and the length of each tank, the total volume of the entire biological reaction tank and the volume of each divided reaction tank can be defined.
[0042]
FIG. 3 shows a setting screen example of the anaerobic / aerobic tank setting means 34. FIG. 3 is a display example on the monitor 73 when the biological reaction tank 1 is divided into five.
[0043]
On the monitor 73, symbols of the divided reaction tanks (No 1 to No. 5), the blower 11, the air feeding pipe 12, the air feeding device 13, and the regulating valve 14 are displayed. The presence / absence of air supply and the ratio of the air supply amount are set by clicking the symbol of the regulating valve 14 with a mouse. For example, when the opening range of the regulating valve 14 is 0 to 100%, when the opening is 0%, it becomes an anaerobic tank, otherwise it becomes an aerobic tank. Will also increase. An anaerobic tank and an aerobic tank are distinguished by the color of the tank, the color of the regulating valve, or the presence or absence of a bubble symbol.
[0044]
FIG. 4 shows a setting screen example of the circulation route setting means 35 and the circulation sludge amount setting means 36. FIG. 4 shows an example when the settings of the circulation route setting means 35 and the circulation sludge amount setting means 36 are displayed on the monitor 73. The circulation rate (circulation fluid amount / inflow water amount) is 100%, and from the fifth tank of the reaction tank 1. An example of circulation in the second tank is shown. In addition, if the circulation route is 0th tank → 0th tank, or the circulation rate is 0%, it can be set so that there is no circulation between each tank of the biological reaction tank 1.
[0045]
FIG. 5 shows a screen display example displayed on the monitor 73 after setting by the setting means 30. The monitor 73 displays the result of setting the conditions. For example, a configuration diagram of the plant is drawn based on the number of divisions of the biological reaction tank 1 by the reaction tank size setting means 32 and the reaction tank division setting means 33 and the length ratio of each tank, and the anaerobic / aerobic tank setting means 34 The tanks No. 4 and 5 of the reaction tank are displayed as being aerobic tanks, and the opening degree is indicated by a scale on the symbol of the adjustment valve opening degree.
[0046]
The circulation route and the circulation amount set by the circulation route setting means 35 and the circulation sludge amount setting means 36 are also drawn. In addition, the total air volume of the blower, the ratio of the amount of returned sludge and the amount of inflow sewage (return rate), the amount of excess sludge, etc. are also displayed.
[0047]
FIG. 6 shows a screen display example of a simulation result by the simulation apparatus of the present invention. An example is shown in which the calculation results for each hour of organic matter (T-BOD), total nitrogen (TN), and phosphorus (PO4-P) at the outlet of the sedimentation basin are displayed in a trend graph.
[0048]
FIG. 7 shows a flowchart of the simulation procedure according to the present invention.
[0049]
In FIG. 7, in step S1, the width, depth, and length of the biological reaction tank 1 are set by the reaction tank dimension setting means 32, and the process proceeds to step S2 and the number of divisions of the biological reaction tank 1 is determined by the reaction tank division setting means 33. Set the length of each tank. In step S3, the presence / absence of air in each reaction tank is set by the anaerobic / aerobic tank setting means 34. If there is a circulating liquid in step S4, the circulation route and the circulation amount are set. The structure of the biological reaction tank 1 is defined by the above settings.
[0050]
In step S5, the inflow condition setting means 31 sets inflow water quality conditions such as the concentration of the inflow water amount and the inflow water quality (organic matter, ammoniacal nitrogen, phosphorus, SS, alkalinity, water temperature, etc.). In step S <b> 6, the operation condition setting unit 37 controls the return pump 4 control conditions (return sludge amount or return rate target value), surplus pump 6 control conditions (remaining sludge amount or surplus sludge rate target value), and the blower 11. The control condition (air supply amount or dissolved oxygen concentration target value) is set, and the circulating sludge amount setting means 36 sets the control condition (circulating fluid amount or circulation rate target value) of the circulation pump 8.
[0051]
The process proceeds from step S6 to step S7, and a simulation is executed based on the setting conditions so far. The water quality at the outlet of the biological reaction tank 1 and the sedimentation basin 2, the sludge concentration in the biological reaction tank 1, the return sludge concentration, the excess sludge concentration. Are calculated and displayed on the monitor 73. In step S8, it is determined whether the organic, nitrogen, and phosphorus removal rates of the discharged water at the outlet of the settling basin 2 are equal to or higher than the target values.
[0052]
If it is determined in step S8 that the removal rate is equal to or higher than the target value, the process proceeds to step S9, and if it is equal to or lower than the target value, the process returns to step S6 to change the operation condition and repeat the processes of steps S6, S7, and S8.
[0053]
In step S8, the removal rate is calculated by Equation 1.
[0054]
[Expression 1]
Removal rate (%) = ((Influent concentration-Effluent concentration) / Influent concentration) x 100 (Equation 1)
In step S8, when the removal rate does not reach the target value in all of the upper limit to the lower limit of each operation condition set in step S6, it is determined that the limit is on the civil engineering structure, and the process proceeds to the next step S9.
[0055]
In step S9, it is determined whether the organic matter, phosphorus, and nitrogen of the discharged water at the outlet of the settling basin 2 are less than the target values. When it determines with discharge | emission water quality being more than target value in step S9, it returns to step S1 and resets from a civil engineering structure.
[0056]
The target value of the discharged water quality varies depending on the sewage treatment plant. For example, the total nitrogen is 10 mg / L, phosphorus is 0.5 mg / L, and organic matter (BOD) is about 10 mg / L.
[0057]
In addition, although the determination of step S8 was made into the removal rate, it is good also as a water quality value, and can also be determined from the electric energy used at the time of operation. The determination in step S9 may also be determined from the amount of power used during operation, and the determinations in steps S8 and S9 may be performed by a person or automatically by software.
[0058]
The activated sludge process is simulated in this way, but the existing standard activated sludge method can be modified because it is possible to experiment with different biological reaction tanks, combinations of anaerobic and aerobic tanks, and various operating conditions. Thus, it is possible to support the determination of the combination and volume of the reaction tank satisfying the treatment water quality condition and the advanced sewage treatment inflow load capable of removing organic substances, phosphorus and nitrogen, and examination of appropriate operation conditions.
[0059]
Moreover, useful information can be provided for investigating the cause of abnormality and selecting countermeasures from the behavior of organic matter, phosphorus, and nitrogen in each reaction tank obtained by dividing the biological reaction tank.
[0060]
【The invention's effect】
According to the present invention, it is possible to experiment by changing the division of reaction tank, combination of anaerobic / aerobic tank, and operation conditions, so the existing standard activated sludge method is modified to remove organic matter, phosphorus and nitrogen. It is possible to support the determination of the combination and volume of reaction tanks that satisfy the possible advanced sewage treatment inflow load and treatment water quality conditions, and the examination of appropriate operating conditions.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a screen display example showing reaction vessel dimensions and division settings according to the present invention.
FIG. 3 is a screen display example showing an anaerobic / aerobic tank setting according to the present invention.
FIG. 4 is a screen display example showing a sludge circulation route and a circulation rate according to the present invention.
FIG. 5 is a screen display example showing simulation conditions according to the present invention.
FIG. 6 is a screen display example showing a simulation result according to the present invention.
FIG. 7 is a flowchart showing a simulation procedure according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Biological reaction tank, 2 ... Final sedimentation tank, 3 ... Influent water, 4 ... Return pump, 5 ... Return sludge pipe, 6 ... Surplus pump, 7 ... Surplus sludge pipe, 8 ... Circulation pump, 9 ... Circulation sludge pipe, DESCRIPTION OF SYMBOLS 10 ... Release pipe, 11 ... Blower, 12 ... Air supply pipe, 13 ... Air supply apparatus, 14 ... Control valve 20 ... Simulator, 30 ... Data setting apparatus, 31 ... Inflow condition setting means, 32 ... Reaction tank dimension setting means, 33 ... reaction tank division setting means, 34 ... anaerobic / aerobic tank setting means, 35 ... circulation route setting means, 36 ... circulating sludge amount setting means, 37 ... operating condition setting means, 40 ... database, 50 ... arithmetic device, 51 ... Biological model calculation means, 52 ... Transport model calculation means, 53 ... Air volume model calculation means, 60 ... Data editing means, 61 ... Plant output means, 63 ... Plant input means, 70 ... Input / output device, 71 ... Keyboard, 72 ... Mouse , 3 ... Monitor

Claims (2)

生物反応槽の処理水を最終沈殿池に導き活性汚泥を沈降させて上澄み液を放流水として放流し下水を活性汚泥法により処理する既設の活性汚泥処理プロセスを高度汚泥処理プロセスに改造するためにシミュレーションするものであって、シミュレーション装置は、前記既設の活性汚泥処理プロセスにおける生物反応槽の全長と幅と水深を設定する反応槽寸法設定手段と,前記反応槽寸法設定手段で設定された反応槽寸法を取り込み、前記生物反応槽を嫌気槽、無酸素槽および好気槽に分割する分割数と分割されたそれぞれの分割生物反応槽の長さを設定する反応槽分割設定手段と、前記分割されたそれぞれの嫌気槽、無酸素槽および好気槽の嫌気・好気条件を設定する嫌気・好気条件設定手段と、前記生物反応槽に流入する流入汚水量と流入水質濃度の流入水質条件を設定する流入条件設定手段と、前記生物反応槽への送風量、前記最終沈殿池から前記嫌気槽への返送汚泥量および余剰汚泥量を含む運転条件を設定する運転条件設定手段を具備し、前記反応槽分割設定手段で嫌気槽、無酸素槽および好気槽に分割する分割数と分割されたそれぞれの分割生物反応槽の長さを設定し、前記嫌気・好気条件、前記流入水質条件および前記運転条件の設定値を変えて前記放流水の有機物、リン、窒素が目標値以下になるまでシミュレーションを行い、前記放流水の有機物、リン、窒素が目標値以下になる前記生物反応槽を嫌気槽、無酸素槽および好気槽に分割する分割数と分割された各槽の長さを決定することを特徴とする下水処理シミュレーション装置。 In order to convert the existing activated sludge treatment process, in which the treated water from the biological reaction tank is guided to the final sedimentation basin, the activated sludge is settled, the supernatant liquid is discharged as discharged water, and the sewage is treated by the activated sludge method, to the advanced sludge treatment process. been made to the simulation, the simulation apparatus comprises a reaction vessel sized setting means for setting the total length and width and depth of the biological reactor in the existing activated sludge treatment process, the reaction vessel was set in the reactor dimensioned means Reaction vessel division setting means for taking in dimensions and setting the number of divisions for dividing the biological reaction tank into an anaerobic tank, an anaerobic tank and an aerobic tank and the length of each divided biological reaction tank; respectively of the anaerobic tank, the anaerobic-aerobic condition setting means for setting the anaerobic-aerobic conditions anoxic and aerobic tank, an inflow sewage quantity flowing to the bioreactor inlet Inflow condition setting means for setting the influent water quality condition of the quality concentration, and the operating conditions for setting the operating conditions including the amount of air blown to the biological reaction tank, the amount of sludge returned from the final sedimentation tank to the anaerobic tank and the amount of excess sludge Setting means , setting the number of divisions divided into anaerobic tank, anoxic tank and aerobic tank by the reaction tank division setting means and the length of each divided biological reaction tank, and the anaerobic / aerobic The simulation is performed until the organic matter, phosphorus, and nitrogen of the discharged water are below the target values by changing the setting values of the conditions, the influent water quality conditions, and the operating conditions, and the organic matter, phosphorus, and nitrogen of the discharged water are below the target values. A sewage treatment simulation apparatus characterized by determining the number of divisions for dividing the biological reaction tank into an anaerobic tank, an anaerobic tank, and an aerobic tank and the length of each divided tank . 請求項1において、分割された前記好気槽から前記無酸素槽への循環ルートを設定する循環ルート設定手段と、前記循環ルートでの汚泥循環量を設定する循環汚泥量設定手段を設け、汚泥循環量を前記運転条件の設定値として変えるようにしたことを特徴とする下水処理シミュレーション装置。
以 上
In Claim 1, the circulation route setting means which sets the circulation route from the said aerobic tank divided | segmented into the said anaerobic tank, and the circulating sludge amount setting means which sets the sludge circulation amount in the said circulation route are provided, and sludge A sewage treatment simulation apparatus characterized in that a circulation amount is changed as a set value of the operating condition .
more than
JP31960999A 1999-11-10 1999-11-10 Sewage treatment simulation equipment Expired - Fee Related JP4376382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31960999A JP4376382B2 (en) 1999-11-10 1999-11-10 Sewage treatment simulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31960999A JP4376382B2 (en) 1999-11-10 1999-11-10 Sewage treatment simulation equipment

Publications (2)

Publication Number Publication Date
JP2001137881A JP2001137881A (en) 2001-05-22
JP4376382B2 true JP4376382B2 (en) 2009-12-02

Family

ID=18112196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31960999A Expired - Fee Related JP4376382B2 (en) 1999-11-10 1999-11-10 Sewage treatment simulation equipment

Country Status (1)

Country Link
JP (1) JP4376382B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716684B2 (en) * 2004-07-09 2011-07-06 三菱レイヨン株式会社 Wastewater treatment simulation system
JP4938582B2 (en) * 2007-07-31 2012-05-23 メタウォーター株式会社 Reaction tank for sewage treatment
JP7410751B2 (en) * 2020-03-02 2024-01-10 住友重機械エンバイロメント株式会社 How to rebuild an oxidation ditch tank

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268925A (en) * 1988-04-20 1989-10-26 Mitsubishi Electric Corp Simulator system for water treatment
JP2868826B2 (en) * 1990-02-28 1999-03-10 株式会社日立製作所 Support system and construction method thereof
JP3123167B2 (en) * 1991-12-18 2001-01-09 株式会社明電舎 Nitrification and denitrification process simulator
JPH07185589A (en) * 1993-12-28 1995-07-25 Chiyoda Corp Waste water treatment method for removal of nitrogen and device therefor
JPH08117792A (en) * 1994-10-19 1996-05-14 Meidensha Corp Nitration liquid circulation volume control and denitrifiable circulation ratio-setting in activated sludge circulation variation method
JPH08323393A (en) * 1995-05-31 1996-12-10 Meidensha Corp Water quality simulator for circulation type nitrification and denitirification method
JP3608256B2 (en) * 1995-06-30 2005-01-05 株式会社明電舎 Operation control method for circulating nitrification denitrification
JPH0947780A (en) * 1995-08-10 1997-02-18 Meidensha Corp Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP2000107796A (en) * 1998-09-30 2000-04-18 Toshiba Corp Sewage water treatment process simulator system
JP2001047080A (en) * 1999-08-10 2001-02-20 Yaskawa Electric Corp Sewage treatment control device

Also Published As

Publication number Publication date
JP2001137881A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
Arif et al. Cost analysis of activated sludge and membrane bioreactor WWTPs using CapdetWorks simulation program: Case study of Tikrit WWTP (middle Iraq)
Hreiz et al. Optimal design and operation of activated sludge processes: State-of-the-art
JP2001252691A (en) Water quality controlling device for sewage treatment plant
Sklarz et al. Mathematical model for analysis of recirculating vertical flow constructed wetlands
Gu et al. Optimization and control strategies of aeration in WWTPs: A review
JP3823863B2 (en) Operation support system and control system for water treatment process
Nelson et al. Performance analysis of the activated sludge model (number 1)
Chen et al. Optimal strategies evaluated by multi-objective optimization method for improving the performance of a novel cycle operating activated sludge process
JP4367037B2 (en) Water quality information processing unit
Huisman et al. Modelling wastewater transformation in sewers based on ASM3
JP4647250B2 (en) Water treatment operation support device, water treatment operation support software, water treatment plant
JP4376382B2 (en) Sewage treatment simulation equipment
JP4180773B2 (en) Design support device for sewage treatment plant that treats sewage by activated sludge process.
JP4180772B2 (en) Design support device for oxidation ditch process
Lee et al. Dynamic modelling and simulation of activated sludge process using orthogonal collocation approach
JP2004267865A (en) Support system of water treatment process
JPH1043788A (en) Control method for biological water treating device
JP2001198590A (en) Simulation method and device of activated-sludge water treating device
JPH1043787A (en) Device for simulating amount of nitrous oxide of activated sludge method
CN104649413B (en) The chemical exposure level Forecasting Methodology of anaerobic-anoxic-oxic treatment system
Hvala et al. Design of a sequencing batch reactor sequence with an input load partition in a simulation‐based experimental environment
Gabaldón et al. A software for the integrated design of wastewater treatment plants
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP4478210B2 (en) Wastewater biological treatment process simulation method and program
JP4026057B2 (en) Water quality simulation equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees