JP4476039B2 - データ受渡回路 - Google Patents

データ受渡回路 Download PDF

Info

Publication number
JP4476039B2
JP4476039B2 JP2004182565A JP2004182565A JP4476039B2 JP 4476039 B2 JP4476039 B2 JP 4476039B2 JP 2004182565 A JP2004182565 A JP 2004182565A JP 2004182565 A JP2004182565 A JP 2004182565A JP 4476039 B2 JP4476039 B2 JP 4476039B2
Authority
JP
Japan
Prior art keywords
clock
data
synchronization signal
circuit
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004182565A
Other languages
English (en)
Other versions
JP2006004352A (ja
Inventor
亮二 藤原
英和 加藤
好将 新井
義利 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004182565A priority Critical patent/JP4476039B2/ja
Publication of JP2006004352A publication Critical patent/JP2006004352A/ja
Application granted granted Critical
Publication of JP4476039B2 publication Critical patent/JP4476039B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Information Transfer Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、前段のデータ保持回路から後段のデータ保持回路へデータを効率よく受け渡すためのデータ受渡回路に関する。
クロックに同期して所定のデータ処理を実行するデータ処理回路(例えばマイクロコンピュータ)には、高速クロックに従ってデータ処理を実行するデータ高速処理部や、低速クロックに従ってデータ処理を実行するデータ低速処理部を有するものがある。このようなデータ高速処理部とデータ低速処理部を有する回路では、データ高速処理部からデータ低速処理部へデータを受け渡す場合がある。図4にその一例のブロック図を示す。
図4において、D型フリップフロップ2(「第1データ保持回路」であり、以下DFF2と称する)とD型フリップフロップ4(「第2データ保持回路」であり、以下DFF4と称する)とは、前段のDFF2から後段のDFF4へデータを受け渡すためにカスケード接続されている。DFF2のD(データ)端子には、データ高速処理部から得られるデータが入力される。DFF2のC(クロック)端子には、高速クロック(基準クロック)が入力される。DFF2は、高速クロックの例えば立ち上がりの変化で、入力データを取り込んで保持するとともに、Q(出力)端子から出力する。DFF2のQ端子からの出力データは、後段のDFF4のD端子に入力される。DFF4のC端子には低速クロックが入力される。尚、低速クロックは、高速クロックを所定分周したものである。DFF4は、低速クロックの例えば立ち上がりの変化で、DFF2の出力データを取り込んで保持するとともに、Q(出力)端子から出力する。これにより、DFF2からDFF4へのデータの受け渡しが行われたこととなる。
ここで、低速クロックは、高速クロックを所定分周して得られるものである。つまり、データ低速処理部からすれば、低速クロックは高速クロックに同期していることを判別することが可能である。一方、高速クロックで動作するデータ高速処理部では、当該高速クロックがデータ低速処理部において低速クロックを発生させるために分周されていることを判別することができない。よって、データの受け渡しを行う後段のDFF4を有するデータ低速処理部側では、高速クロックと低速クロックが同期していることを判別できるものの、データの受け渡しを行う前段のDFF2を有するデータ高速処理部側では、高速クロックと低速クロックが同期していることを判別できず、すなわち一方側のみでの同期判別しかできない。そこで、データ高速処理部とデータ低速処理部との間でデータの受け渡しを行うシステムにおいては、高速クロックと低速クロックを各々非同期として扱わざるを得なかった。
特開2004−72511号公報
しかしながら、高速クロックと低速クロックを非同期で扱うことから、図4においては、DFF4が低速クロックの立ち上がりで確実にDFF2からの出力データを取り込むことができるように、DFF2は低速クロックの1周期と同一期間、同一データを継続して出力しなければならなかった。低速クロックの1周期は、高速クロックの分周数倍の周期であるため、DFF2は、高速クロックの前記分周数倍の周期だけ同一の入力データを取り込む必要がある。これにより、データ高速処理部におけるデータ処理効率が低下し、更には、DFF2からDFF4へのデータを受け渡す効率も低下する問題があった。
この問題は、低速クロックとして複数の分周クロックを用意し、データ低速処理部の処理モードに応じて低速クロックを切り替える場合に顕著となる。以下、図5および図6を用いて、この問題を明確にする。
図5は、図4のDFF4に対して、分周数が異なる分周クロックを切り替えて供給するためのクロック供給回路を示すブロック図である。また、図6は、図5の動作波形を示すタイムチャートである。尚、図5は、図4の構成を有するデータ受渡回路に用いるものである。
図5において、CLK0(基準クロック)は図4のDFF2に使用するクロックであり、CLK1(分周クロック)、CLK2(分周クロック)は図4のDFF4で切り替えて使用するクロックである。尚、CLK0は、例えば、データ処理回路で使用する自励または他励の発振回路から得られる源クロック(システムクロック)であることとする。1/2分周回路102は、CLK0を1/2分周したCLK1を出力する。1/4分周回路104は、CLK0を1/4分周したCLK2を出力する。
クロック切替信号SEL0、SEL1、SEL2は、DFF4のC端子に入力されるクロックとして、それぞれCLK0、CLK1、CLK2を選択することを指示する信号である(但し、本説明においてDFF4にはCLK0は直接使用しない)。クロック切替信号SEL0、SEL1、SEL2は、それぞれCLK0、CLK1、CLK2を選択するときに、例えば“L”(ローレベル)から“H”(ハイレベル)に変化することとする。このクロック切替信号SEL0、SEL1、SEL2は、データ処理回路の外部から供給されてもよいし、データ処理回路の内部で発生してもよい。例えば、DFF4のC端子に入力されるクロックをCLK1からCLK2へ切り替える場合、クロック切替信号SEL0は“L”のままで、クロック切替信号SEL1が“H”から“L”へ立ち下がるとともに、クロック切替信号SEL2が“L”から“H”へ立ち上がる。
クロック切替要求検出回路106は、クロック切替信号SEL0、SEL1、SEL2が入力され、各クロック切替信号SEL0、SEL1、SEL2のレベル変化を検出する。例えば、クロック切替信号SEL1が“H”から“L”へ立ち下がるとともに、クロック切替信号SEL2が“L”から“H”へ立ち上がった場合、DFF4のC端子に入力すべきクロックを、CLK1からCLK2へ切り替える要求があったことを示すクロック切替検出信号SELDETを出力する。また、クロック切替要求検出回路106は、クロック切替信号SEL0、SEL1、SEL2の何れかが変化したタイミングで、CLK0、CLK1、CLK2の何れかを一定期間マスクするための契機となるトリガ信号を出力する。
切替タイミング検出回路108は、CLK0、CLK1、CLK2とトリガ信号が入力され、CLK0、CLK1、CLK2の何れかを一定期間マスクする開始タイミングを検出し、タイミング検出信号CHANGEを出力するものである。
マスク信号生成回路110は、切替タイミング検出回路108からのタイミング検出信号が入力され、CLK0、CLK1、CLK2の何れかを一定期間マスクすることを指示するマスク指示信号MASKを生成し、出力するものである。
マスク回路112は、CLK0、CLK1、CLK2、クロック切替検出信号SELDET、およびマスク指示信号MASKが入力される。マスク回路112は、クロック切替検出信号SELDETが入力されることによって、DFF4のC端子に入力されるクロックとして、切替前に入力されているクロックと、切替後に入力されるべきクロックとを特定する。更に、マスク回路112は、特定された切替前および切替後のクロックに対して、マスク指示信号MASKが入力されたタイミングからCLK0の例えば4周期だけマスクを行う。こうして、マスク回路112からはCLK0、CLK1、CLK2に対してマスク処理が施されたCLK0MASK、CLK1MASK、CLK2MASKが出力される。クロックセレクタ114は、マスク回路112からのCLK0MASK、CLK1MASK、CLK2MASKと、クロック切替信号SEL0、SEL1、SEL2と、切替タイミング検出回路108からのタイミング検出信号とが入力される。クロックセレクタ114は、切替タイミング検出回路108からのタイミング検出信号が入力されたタイミングから、即ちマスク指示信号MASKが発生したタイミングから、CLK0MASKの2周期(マスクする一定期間の半分の期間)をカウントする。また、クロックセレクタ114は、クロック切替信号SEL0、SEL1、SEL2が入力されることによって、切替前および切替後のクロックを特定する。つまり、クロックセレクタ114は、CLK0MASKの2周期をカウントするまでは切替前のクロックを出力し、CLK0MASKの2周期をカウントした時点からは切替後のクロックを出力する。
以下、図6のタイムチャートを用いて、図5の一動作例を説明しつつ、問題となるところを説明する。
先ず、時刻T0において、クロック切替信号SEL1が“H”から“L”へ立ち下がるとともに、クロック切替信号SEL2が“L”から“H”へ立ち上がった場合、即ち、DFF4のC端子に入力される低速クロックを、CLK1からCLK2へ切り替える要求が発生した場合を考える。この場合、切替タイミング検出回路108では、クロック切替要求検出回路106からのトリガ信号が入力されることによって、CLK0、CLK1、CLK2が“L”から“H”へ同時に立ち上がる最も早いタイミングを検出する。このタイミングは時刻T1であるため、切替タイミング検出回路108は、時刻T1において、タイミング検出信号を出力する。マスク信号生成回路110は、このタイミング切替信号が入力されたタイミングからCLK0が4周期経過するタイミング(時刻T2)まで“H”となるマスク指示信号MASKを出力する。
マスク回路112では、クロック切替検出信号SELDETが入力されることから、DFF4のC端子に入力されるクロックをCLK1からCLK2へ切り替えることは特定できている。そこで、マスク回路112は、CLK0をそのままCLK0MASKとして出力し、CLK1およびCLK2を時刻T1乃至T2の期間“H”に固定したCLK1MASKおよびCLK2MASKを出力する。
クロックセレクタ114は、クロック切替信号SEL0、SEL1、SEL2が入力されることによって、切替前および切替後のクロックを特定できている。そこで、クロックセレクタ114は、時刻T1からCLK0の2周期分を経過する時刻T3までは、CLK1MASKを低速クロックとして切替出力し、時刻T3以降はCLK2MASKを低速クロックとして切替出力する。これにより、CLK1MASK、CLK2MASKともに“H”に固定されている期間内でCLK1MASKおよびCLK2MASKが切り替えられるため、DFF4はクロックの切り替えに起因して誤動作することはない。
しかしながら、先に述べたように、DFF2からDFF4へのデータの受け渡しに際して、高速クロックと低速クロックを非同期として取り扱うため、DFF2は低速クロックの1周期分のデータを継続して出力する必要がある。例えば、DFF4がCLK1MASKで動作する場合、DFF2はCLK0の2周期だけ同一データを出力する必要がある。更に、DFF4がCLK2MASKで動作する場合には、DFF2はCLK0の4周期にも亘って同一データを出力する必要がある。これでは、DFF2を有するデータ高速処理部側におけるデータ処理効率が低下してしまう。
更に、時刻T0において、低速クロックをCLK1MASKからCLK2MASKへ切り替えることとなっているため、時刻T0以前においては、DFF2は、CLK1MASKの1周期だけデータD0(DATA)を出力している。ところが、時刻T0以降では、データ高速処理部側からすれば、低速クロックがどのタイミングでCLK1MASKからCLK2MASKへ切り替わるかを判別できない。そこで、DFF2は、マスク指示信号MASKが発生開始する時刻T1より前のタイミングから、DFF4がCLK2MASKを用いて取り込むべきデータD1(DATA)を継続して出力する必要がある。そして、このデータD1は、低速クロックをCLK1MASKからCLK2MASKへ切り替えた後の時刻T4においてDFF4に取り込まれ、DFF4は図6に示すデータD0、D1(DATA−lowsp)を出力する。
ここで、低速クロックを切り替える場合、CLK1MASKおよびCLK2MASKのマスクされている一定期間(時刻T1乃至T2)を含む前後に亘って、DFF2は同一データを出力し続けなければならないため、データ高速処理部からデータ低速処理部へのデータの受け渡しは、更に低下する問題があった。
そこで、本発明は、前段のデータ保持回路から後段のデータ保持回路へデータを効率よく受け渡すことができるデータ受渡回路を、提供することを目的とする。
前記課題を解決するための主たる発明は、基準クロックの変化に応じて入力データを保持するとともに出力する第1データ保持回路と、前記基準クロックを所定分周した分周クロックの変化に応じて、前記第1データ保持回路からの出力データを保持するとともに出力する第2データ保持回路との間の、データの受け渡しに用いるデータ受渡回路であって、前記基準クロックと前記分周クロックが一方のレベルから他方のレベルへ同時変化するタイミングを含む、前記分周クロックの1周期より短い期間、何れか一方のレベルとなる同期信号を発生する同期信号発生部と、前記基準クロックが前記一方のレベルから前記他方のレベルへ変化するタイミングで、前記同期信号が前記何れか一方のレベルとなっている場合、前記分周クロックが前記基準クロックとともに前記一方のレベルから前記他方のレベルへ変化したものと判別する判別部と、を備え、前記判別部の判別結果に基づいて、前記第1データ保持回路から前記第2データ保持回路へのデータの受け渡しが行われること、を特徴とする。
本発明によれば、前段のデータ保持回路から後段のデータ保持回路へデータを効率よく受け渡すことが可能となる。
本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
===データ受渡回路の全体構成===
図1、図2、および図3を参照しつつ、本発明のデータ受渡回路について説明する。図1は、本発明のデータ受渡回路を示すブロック図である。図2は、図1における同期信号生成回路の一例を示すブロック図である。図3は、図1及び図2の動作波形を示すタイムチャートである。尚、図1は、図4のDFF2、4間でのデータの受け渡しに使用するものである。
図1において、CLK0(基準クロック)は図4のDFF2に使用するクロックであり、CLK1(分周クロック)、CLK2(分周クロック)は図4のDFF4で切り替えて使用するクロックである。尚、CLK0は、例えば、データ処理回路で使用する自励または他励の発振回路から得られる源クロック(システムクロック)であることとする。1/2分周回路202は、CLK0を1/2分周したCLK1を出力する。1/4分周回路204は、CLK0を1/4分周したCLK2を出力する。
クロック切替信号SEL0、SEL1、SEL2は、DFF4のC端子に入力されるクロックとして、それぞれCLK0、CLK1、CLK2を選択することを指示する信号である(但し、本説明においてDFF4にはCLK0は直接使用しない)。クロック切替信号SEL0、SEL1、SEL2は、それぞれCLK0、CLK1、CLK2を選択するときに、例えば“L”から“H”に変化することとする。このクロック切替信号SEL0、SEL1、SEL2は、データ処理回路の外部から供給されてもよいし、データ処理回路の内部で発生してもよい。例えば、DFF4のC端子に入力されるクロックをCLK1からCLK2へ切り替える場合、クロック切替信号SEL0は“L”のままで、クロック切替信号SEL1が“H”から“L”へ立ち下がるとともに、クロック切替信号SEL2が“L”から“H”へ立ち上がる。
クロック切替要求検出回路206は、クロック切替信号SEL0、SEL1、SEL2が入力され、各クロック切替信号SEL0、SEL1、SEL2のレベル変化を検出する。例えば、クロック切替信号SEL1が“H”から“L”へ立ち下がるとともに、クロック切替信号SEL2が“L”から“H”へ立ち上がった場合、DFF4のC端子に入力すべきクロックを、CLK1からCLK2へ切り替える要求があったことを示すクロック切替検出信号SELDETを出力する。また、クロック切替要求検出回路206は、クロック切替信号SEL0、SEL1、SEL2の何れかが変化したタイミングで、CLK0、CLK1、CLK2の何れかを一定期間マスクするための契機となるトリガ信号を出力する。
切替タイミング検出回路208は、CLK0、CLK1、CLK2とトリガ信号が入力され、CLK0、CLK1、CLK2の何れかを一定期間マスクする開始タイミングを検出し、タイミング検出信号CHANGEを出力するものである。
マスク信号生成回路210は、切替タイミング検出回路208からのタイミング検出信号が入力され、CLK0、CLK1、CLK2の何れかを一定期間マスクすることを指示するマスク指示信号MASKを生成し、出力するものである。
マスク回路212は、CLK0、CLK1、CLK2、クロック切替検出信号SELDET、およびマスク指示信号MASKが入力される。マスク回路212は、クロック切替検出信号SELDETが入力されることによって、DFF4のC端子に入力されるクロックとして、切替前に入力されているクロックと、切替後に入力されるべきクロックとを特定する。更に、マスク回路212は、特定された切替前および切替後のクロックに対して、マスク指示信号MASKが入力されたタイミングからCLK0の例えば4周期だけマスクを行う。こうして、マスク回路212からはCLK0、CLK1、CLK2に対してマスク処理が施されたCLK0MASK、CLK1MASK、CLK2MASKが出力される。クロックセレクタ214は、マスク回路212からのCLK0MASK、CLK1MASK、CLK2MASKと、クロック切替信号SEL0、SEL1、SEL2と、切替タイミング検出回路208からのタイミング検出信号とが入力される。クロックセレクタ214は、切替タイミング検出回路208からのタイミング検出信号が入力されたタイミングから、即ちマスク指示信号MASKが発生したタイミングから、CLK0MASKの2周期(マスクする一定期間の半分の期間)をカウントする。また、クロックセレクタ214は、クロック切替信号SEL0、SEL1、SEL2が入力されることによって、切替前および切替後のクロックを特定する。つまり、クロックセレクタ214は、CLK0MASKの2周期をカウントするまでは切替前のクロックを出力し、CLK0MASKの2周期をカウントした時点からは切替後のクロックを出力する。
尚、クロックセレクタ214が低速クロックとしてCLK1MASKおよびCLK2MASKを切替出力する際の動作波形は、DATA,DATA−lowspを除き、図6に示す通りであるので、その説明を省略する。
同期信号生成回路216(同期信号発生部)は、CLK0、CLK1、CLK2と、クロック切替検出信号SELDETと、マスク指示信号MASKと、クロック切替信号SEL0、SEL1、SEL2と、タイミング検出信号CHANGEとが入力される。そして、同期信号生成回路216は、高速クロックであるCLK0の一方のレベルから他方のレベルへの変化(例えば立ち上がり変化)に基づいて、低速クロックとなるCLK1、CLK2の一方のレベルから他方のレベルへの変化(例えば立ち上がり変化)を特定するために用いる同期信号を出力するものである。
クロック判別回路218(判別部)は、高速クロックであるCLK0、低速クロックとなるCLK1またはCLK2、および同期信号が入力される。そして、クロック判別回路218は、CLK0の一方のレベルから他方のレベルへの変化(例えば立ち上がり)と同期信号のレベルとの関係から、CLK0の立ち上がりに対してCLK1またはCLK2が立ち上がっているか否かを判別し、DFF2からDFF4へのデータの受け渡しを制御するものである。
===同期信号生成回路の構成例===
以下、図2を参照しつつ、本発明にかかるデータ受渡回路を構成する同期信号生成回路について説明する。
図2において、CLK0用同期信号生成回路302は、“H”に固定された信号CLK0syncを出力する。また、CLK1用同期信号生成回路304は、CLK0およびCLK1が入力される。そして、CLK1用同期信号生成回路304は、CLK1が“L”から“H”へ立ち上がるタイミングの直前において、CLK0の1周期だけ“H”となる信号CLK1syncを出力する。換言すれば、CLK1用同期信号生成回路304は、CLK1を反転した信号CLK1syncを出力することとなる。また、CLK2用同期信号生成回路306は、CLK0、CLK1、CLK2が入力される。そして、CLK2用同期信号生成回路306は、CLK2が“L”から“H”へ立ち上がるタイミングの直前において、CLK0の1周期だけ“H”となる信号CLK2syncを出力する。
同期信号マスク回路308は、クロック切替検出信号SELDETと、マスク指示信号MASKとが入力される。同期信号マスク回路308は、クロック切替検出信号SELDETが入力されることによって、DFF4のC端子に入力されるクロックを、どのクロックからどのクロックに切り替えるのかを特定できる。そこで、同期信号マスク回路308は、切替前と切替後のクロックに対応するCLK0用同期信号生成回路302、CLK1用同期信号生成回路304、CLK2用同期信号生成回路306の何れかからの2つの出力信号(例えば、信号CLK1syncと信号CLK2sync)を、マスク指示信号MASKが発生している期間だけ“L”に固定する。これにより、同期信号マスク回路308は、この処理を施した信号CLK0syncmask、CLK1syncmask、CLK2syncmaskが出力される。
同期信号セレクタ310は、信号CLK0syncmask、CLK1syncmask、CLK2syncmaskと、クロック切替信号SEL0、SEL1、SEL2と、タイミング検出信号CHANGEとが入力される。そして、同期信号セレクタ310は、タイミング検出信号CHANGEが入力されたタイミングから、即ちマスク指示信号MASKが発生したタイミングから、CLK0の2周期(マスクする一定期間の半分の期間)をカウントする。また、同期信号セレクタ310は、クロック切替信号SEL0、SEL1、SEL2が入力されることによって、切替前および切替後のクロックを特定する。つまり、同期信号セレクタ310は、CLK0の2周期をカウントするまでは切替前のクロックを出力し、CLK0の2周期をカウントした時点からは切替後のクロックを出力する。
以下、図3のタイムチャートを用いて、図1および図2の動作を説明する。尚、図3のタイムチャートは図6のタイムチャートに関連している。つまり、クロック切替信号SFL1は時刻T0において“H”から“L”へ立ち下がり、クロック切替信号SEL2は時刻T0において“L”から“H”へ立ち上がる。また、マスク指示信号MASKは、時刻T1乃至T2の間で“H”となる。
同期信号マスク回路308では、信号CLK0syncを“H”のまま信号CLK0syncmaskとして出力する。また、同期信号マスク回路308は、信号CLK1syncを、時刻T1乃至T2の期間“L”に固定した信号CLK1syncmaskを出力する。同様に、同期信号マスク回路308は、信号CLK2syncを、時刻T1乃至T2の期間“L”に固定した信号CLK2syncmaskを出力する。
そして、同期信号セレクタ310からは、時刻T3以前において信号CLK1syncmaskが同期信号として切替出力され、時刻T3以後においては信号CLK2syncmaskが同期信号として切替出力されることとなる。
===クロック判別回路の動作===
クロック判別回路218では、CLK0と同期信号生成回路216から出力される同期信号との関係から、図6に示す低速クロックの変化の状態を判別することとなる。クロック判別回路218では、CLK0を取り込むことによって、CLK0の立ち上がりタイミングを検出する。クロック判別回路218は、CLK0が立ち上がるタイミングで、同期信号生成回路216から出力される同期信号のレベルを検出する。時刻T3以前においては、同期信号は信号CLK1syncmaskであり、この信号CLK1syncmaskは、CLK0、CLK1を基に作成したものである。よって、CLK1syncmaskはCLK0、CLK1から作成される遅延時間を有するため、時刻T3以前において、CLK0が立ち上がったときの同期信号は“L”へ立ち下がる直前の“H”となっている。つまり、CLK1syncmaskの基となるCLK1は、“L”から“H”へ立ち上がることとなる。このようにして、クロック判別回路218は、時刻T3以前において、CLK0が立ち上がったときに同期信号が“H”である場合、CLK1も立ち上がったものと判別するように、判別ロジックが構成される。
一方、時刻T3以後においては、同期信号は信号CLK2syncmaskであり、この信号CLK2syncmaskは、CLK0、CLK1、CLK2を基に作成したものである。よって、CLK2syncmaskはCLK0、CLK1、CLK2から作成される遅延時間を有するため、時刻T3以後において、CLK0が立ち上がったときの同期信号は“L”へ立ち下がる直前の“H”となっている。つまり、CLK2syncmaskの基となるCLK2は、“L”から“H”へ立ち上がることとなる。このようにして、クロック判別回路218は、時刻T3以後において、CLK0が立ち上がったときに同期信号が“H”である場合、CLK2も立ち上がったものと判別するように、判別ロジックが構成される。
これにより、図4のDFF2からDFF4へデータを受け渡す際、CLK0とCLK1、CLK2とを同期したこととして取り扱うことが可能となる。従って、DFF2にデータを入力させるデータ出力回路(例えばマイクロコンピュータ:不図示)に対して、クロック判別回路218によるCLK1、CLK2の立ち上がりの判別出力を供給するようにすれば、データを効率よくDFF2に入力させることが可能となる。
例えば、図3の時刻T5において、CLK0、CLK1の立ち上がりを示すクロック判別回路218の判別出力が前記データ出力回路に供給されれば、DFF2は時刻T6のタイミングでCLK1の1/2周期だけDATA(D1)を出力するだけで済み、DFF4が時刻T1でDATA−lowsp(D1)を取り込むことができ、これにより、データ高速処理部側におけるデータ処理効率を向上させることが可能となる。
また、時刻T1乃至T2のマスク期間を設ける場合であっても、マスク期間の前後に亘ってDFF2がDATA(D2)を出力する必要がなくなるため、DFF4における低速クロックを切り替えるべく上記のマスク期間を設ける場合であっても、データの受け渡し効率を向上させることが可能となる。
以上説明したように、基準となるクロックCLK0の立ち上がり変化に応じて入力データを保持するとともに出力するDFF2と、CLK0を所定分周した分周クロックCLK1(CLK2)の立ち上がり変化に応じて、DFF2からの出力データDATAを保持するとともに出力するDFF4との間の、データの受け渡しに用いるデータ受渡回路であって、CLK0とCLK1(CLK2)とが“L”から“H”へ同時変化するタイミングを含む、CLK0の1周期の期間、“H”となる同期信号を発生する同期信号生成回路216と、CLK0が“L”から“H”へ立ち上がるタイミングで、同期信号が“H”となっている場合、CLK1(CLK2)がCLK0とともに“L”から“H”へ立ち上がったものと判別するクロック判別回路218と、を備え、クロック判別回路218の判別結果に基づいて、DFF2からDFF4へのデータの受け渡しが行われるものである。これにより、DFF2を含むデータ高速処理部側におけるデータの処理効率が向上し、更に、DFF2からDFF4へのデータ受渡効率が向上することとなる。
また、分周クロックは、DFF4に切り替えられて供給される、分周数が異なるCLK1およびCLK2であり、同期信号生成回路216は、CLK0とCLK1が“L”から“H”へ同時変化するタイミングを含む、CLK0の1周期の期間“H”となる、同期信号としてのCLK1sync(CLK1syncmask)を発生し、CLK0とCLK2が“L”から“H”へ同時変化するタイミングを含む、CLK0の1周期の期間“H”となる、同期信号としてのCLK2sync(CLK2syncmask)を発生し、クロック判別回路218は、CLK0が“L”から“H”へ立ち上がり変化するタイミングで、同期信号としてのCLK1sync(CLK1syncmask)が“H”となっている場合、CLK1がCLK0とともに“L”から“H”へ変化したものと判別し、CLK0が“L”から“H”へ立ち上がり変化するタイミングで、同期信号としてのCLK2sync(CLK2syncmask)が“H”となっている場合、CLK2がCLK0とともに“L”から“H”へ変化したものと判別する。これにより、DFF4に入力される低速クロックを切り替える場合であっても、DFF2からDFF4へのデータの受渡効率を向上させることが可能となる。
また、DFF4に供給されるクロックを、CLK1およびCLK2の一方から他方へ切り替えるためのクロック切替信号が発生した場合、CLK1およびCLK2を切り替えてDFF4に供給するクロックセレクタ214、を備えている。これにより、DFF4に対するクロックの切り替えを確実に行うことができ、DFF2からDFF4へのデータの受渡効率を向上させることが可能となる。
また、前記クロック切替信号が発生した場合、CLK1およびCLK2を一定期間マスクするクロックマスク部(マスク信号生成回路210、マスク回路212)、を備え、前記クロックセレクタ214は、時刻T1乃至T2の一定期間内における時刻T3において、CLK1およびCLK2を切り替えてDFF4に供給する。これにより、DFF4に入力されるクロックを切り替える際に、CLK1およびCLK2ともに“H”に固定されているため、DFF4がクロックの切換動作によって誤動作することを防止できる。
また、同期信号としてのCLK1syncおよびCLK2syncを前記一定期間マスクする同期信号マスク回路308、を備えている。これにより、CLK1MASK、CLK2MASKと同一のタイミングで、同期信号に対してマスク処理を行うため、DFF4に対するクロックの切り替えを確実に行うことができ、DFF2からDFF4へのデータの受渡効率を向上させることが可能となる。
更に、クロック切替信号が発生した場合、前記一定期間内において、同期信号マスク回路308から出力されるCLK1syncmaskおよびCLK2syncmaskを切替出力する同期信号セレクタ310、を備えている。これにより、DFF4に対するクロックの切り替えを確実に行うことができ、DFF2からDFF4へのデータの受渡効率を向上させることが可能となる。
尚、DFF4のC端子に実際に入力されるクロックは、CLK1MASKおよびCLK2MASKをクロックセレクタ214で切り替えた低速クロックであるが、時刻T3以前の低速クロックの立ち上がりタイミングはCLK1と同じであり、時刻T3以後における低速クロックの立ち上がりタイミングはCLK2と同じである。
以上、本発明にかかるデータ受渡回路について説明したが、上記の説明は、本発明の理解を容易とするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることは勿論である。
本発明にかかるデータ受渡回路を示すブロック図である。 図1に用いる同期信号生成回路の一例を示すブロック図である。 図1、図2の動作波形を示すタイムチャートである。 データを受け渡す一般的な回路を示す図である。 データの受け渡しに使用する従来のクロック供給回路を示すブロック図である。 図5の動作波形を示すタイムチャートである。
符号の説明
2、4 DFF
202 1/2分周回路
204 1/4分周回路
206 クロック切替要求検出回路
208 切替タイミング検出回路
210 マスク信号生成回路
212 マスク回路
214 クロックセレクタ
216 同期信号生成回路
218 クロック判別回路
304 CLK1用同期信号生成回路
306 CLK2用同期信号生成回路
308 同期信号マスク回路
310 同期信号セレクタ

Claims (1)

  1. 基準クロックの変化に応じて入力データを保持するとともに出力する第1データ保持回路と、前記基準クロックを所定分周した分周クロックの変化に応じて、前記第1データ保持回路からの出力データを保持するとともに出力する第2データ保持回路との間の、データの受け渡しに用いるデータ受渡回路であって、
    前記分周クロックは、前記第2データ保持回路に切り替えられて供給される、分周数が異なる第1分周クロックおよび第2分周クロックであり、前記第2データ保持回路に供給されるクロックを、前記第1分周クロックおよび前記第2分周クロックの一方から他方へ切り替えるためのクロック切替信号が発生した場合、前記第1分周クロックおよび前記第2分周クロックを一定期間マスクするクロックマスク部と、
    前記基準クロックと前記第1分周クロックが前記一方のレベルから前記他方のレベルへ同時変化するタイミングを含む、前記第1分周クロックの1周期より短い期間、何れか一方のレベルとなる第1同期信号を発生し、前記基準クロックと前記第2分周クロックが前記一方のレベルから前記他方のレベルへ同時変化するタイミングを含む、前記第2分周クロックの1周期より短い期間、何れか一方のレベルとなる第2同期信号を発生する同期信号発生部と、
    前記第1同期信号および前記第2同期信号を前記一定期間マスクする同期信号マスク部と、
    前記クロック切替信号が発生した場合、前記一定期間内において、前記第1同期信号および前記第2同期信号を切替出力する同期信号切換部と、
    前記クロック切替信号が発生した場合、前記一定期間内において、前記第1分周クロックおよび前記第2分周クロックを切り替えて前記第2データ保持回路に供給するクロック切替部と、
    前記基準クロックが前記一方のレベルから前記他方のレベルへ変化するタイミングで、前記第1同期信号が前記何れか一方のレベルとなっている場合、前記第1分周クロックが前記基準クロックとともに前記一方のレベルから前記他方のレベルへ変化したものと判別し、前記基準クロックが前記一方のレベルから前記他方のレベルへ変化するタイミングで、前記第2同期信号が前記何れか一方のレベルとなっている場合、前記第2分周クロックが前記基準クロックとともに前記一方のレベルから前記他方のレベルへ変化したものと判別する判別部と、を備え、
    前記判別部の判別結果に基づいて、前記第1データ保持回路から前記第2データ保持回路へのデータの受け渡しが行われること、を特徴とするデータ受渡回路。
JP2004182565A 2004-06-21 2004-06-21 データ受渡回路 Expired - Lifetime JP4476039B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182565A JP4476039B2 (ja) 2004-06-21 2004-06-21 データ受渡回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182565A JP4476039B2 (ja) 2004-06-21 2004-06-21 データ受渡回路

Publications (2)

Publication Number Publication Date
JP2006004352A JP2006004352A (ja) 2006-01-05
JP4476039B2 true JP4476039B2 (ja) 2010-06-09

Family

ID=35772676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182565A Expired - Lifetime JP4476039B2 (ja) 2004-06-21 2004-06-21 データ受渡回路

Country Status (1)

Country Link
JP (1) JP4476039B2 (ja)

Also Published As

Publication number Publication date
JP2006004352A (ja) 2006-01-05

Similar Documents

Publication Publication Date Title
US8375239B2 (en) Clock control signal generation circuit, clock selector, and data processing device
US6563349B2 (en) Multiplexor generating a glitch free output when selecting from multiple clock signals
JP5401180B2 (ja) ディジタルノイズフィルタ回路
KR20060082196A (ko) 단일 라인을 이용한 직렬 데이터 통신 방법 및 그 장치
JP2009147869A (ja) 同期化回路
US7490257B2 (en) Clock distributor for use in semiconductor logics for generating clock signals when enabled and a method therefor
US6675249B2 (en) Information processing equipment and information processing system
US6021504A (en) High-speed internal clock synchronizing method and circuit
JP4476039B2 (ja) データ受渡回路
JP2003158512A (ja) デジタル信号処理方式及びデータ処理装置
US6577649B1 (en) Multiplexer for asynchronous data
JP2000099188A (ja) クロック切替回路
US6715017B2 (en) Interruption signal generating apparatus
JP3132657B2 (ja) クロック切替回路
JP3039441B2 (ja) 異クロック間同期エッジ検出方法および異クロック間同期エッジ検出方式
US6825705B2 (en) Clock signal generation circuit and audio data processing apparatus
JP2003241847A (ja) 同期回路
US6867631B1 (en) Synchronous frequency convertor for timebase signal generation
KR101006843B1 (ko) 출력신호를 안정적으로 생성하는 동기화 회로
JP2003016026A (ja) シリアル通信回路
JPH1146482A (ja) Pwm出力制御回路
US20120235978A1 (en) Display device and driving method applicable thereto
JP4490337B2 (ja) 再同期可能な割込発生回路
CN118672347A (zh) 管理异步时钟域的时钟触发信号
JP2002192765A (ja) 印字ヘッド制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3