JP4465092B2 - Composite resin pipe joint structure - Google Patents

Composite resin pipe joint structure Download PDF

Info

Publication number
JP4465092B2
JP4465092B2 JP2000271752A JP2000271752A JP4465092B2 JP 4465092 B2 JP4465092 B2 JP 4465092B2 JP 2000271752 A JP2000271752 A JP 2000271752A JP 2000271752 A JP2000271752 A JP 2000271752A JP 4465092 B2 JP4465092 B2 JP 4465092B2
Authority
JP
Japan
Prior art keywords
layer
resin
sheet
pipe
composite resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000271752A
Other languages
Japanese (ja)
Other versions
JP2002081583A (en
Inventor
雄大 山田
光秀 野上
聡 小間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000271752A priority Critical patent/JP4465092B2/en
Publication of JP2002081583A publication Critical patent/JP2002081583A/en
Application granted granted Critical
Publication of JP4465092B2 publication Critical patent/JP4465092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高耐内圧の複合樹脂管の接合構造に関するものである。
【0002】
【従来の技術】
周知の通り、厚みt、内径φDの管に内圧Pが作用すると、管壁周方向に引っ張り応力δ(δ=DP/2t)が発生して力学的に平衡する。
従来、複合樹脂管として、樹脂内層上に鋼テ−プ巻回中間層を設け、該中間層上に樹脂外層を設けたものが公知である(特開平10−19174号公報)。
しかしながら、この複合樹脂管では、鋼テ−プ巻回中間層に管内圧力に平衡する引っ張り応力を有効に発生させるように、その中間層と内・外樹脂層とを接着すると複合樹脂管の可撓性が低下し、他方、中間層と内・外樹脂層との相互間を滑り可能にして可撓性を保証すると、巻回鋼テ−プに引っ張り応力を発生させ難く、有効な耐内圧強度の向上を達成することが困難となる。
【0003】
そこで、本出願人においては、「ポリオレフィン系樹脂内層と、延伸ポリオレフィン系樹脂シ−ト巻回中間層と、ポリオレフィン系樹脂外層を有し、しかも内・外層と中間層とを接着してなる複合管」を既に提案した(特願平11−95451号)。
この複合管においては、延伸ポリオレフィン系樹脂シ−ト巻回中間層と内・外層とが接着され、かつ延伸ポリオレフィン系樹脂シ−ト中間層の弾性率が内・外層の弾性率に較べて大きいから、その中間層シ−トに充分に大きい内圧分を分担させ得てそれだり複合樹脂管の耐内圧強度を高くできる。また、中間層シ−トが内・外樹脂層と同様に樹脂からなり充分に柔軟であるから、単層樹脂管と同程度の曲げ剛性、従って可撓性を保証できる。
【0004】
【発明が解決しようとする課題】
本出願人が提案した上記複合樹脂管は、構造的に、高耐内圧性、可撓性の要件を満たしている。
しかしながら、本発明者等の鋭意検討結果によれば、実際に内圧を加えると、予想したよりも、耐内圧強度の増加率が低いことが判明した。
この原因を探求したところ、延伸ポリオレフィン系樹脂シ−ト巻回中間層内に、水侵入可能な通路が形成されることがあり、複合管端面からこの通路を伝って水が侵入することが原因であることが明らかになった。
【0005】
本発明の目的は、出願人が提案した上記複合樹脂管の本来の優れた耐内圧性を有効に発揮させることにある。 また、同複合樹脂管の製造条件の緩和を可能にすることにある。
【0006】
【課題を解決するための手段】
本発明に係る複合樹脂管の接合構造は、ポリオレフィン系樹脂内層と、延伸ポリオレフィン系樹脂シ−ト巻回中間層と、ポリオレフィン系樹脂外層を有し、しかも内・外層と中間層とが接着されてなる複合管の接合構造であって、延伸ポリオレフィン系樹脂シ−ト巻回中間層のシ−ト巻回層数が複数であり、複合管端面のシ−ト巻回層を融着することにより、複合管端面が封止処理されていることを特徴とする構成である。
【0007】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の適用対象である複合樹脂管を示している。
図1において、11はポリオレフィン系樹脂内層である。12は延伸ポリオレフィン系樹脂シ−ト巻回中間層であり、内11層と接着されている。13はポリオレフィン系樹脂外層であり、中間層12と接着されている。
この複合樹脂管の耐内圧性や耐クリ−プ性は、内層11と中間層12とによって保証され、外層13は主に中間層12の機械的保護層として用いられる。
上記延伸ポリオレフィン系樹脂シ−ト巻回中間層12は、耐内圧性及び耐クリ−プ性を高めるためのものであり、シ−トの長手方向延伸によりシ−トの弾性率及び引っ張り強度を高くして耐内圧強度を効果的に増強し、シ−トの架橋により耐クリ−プ性を効果的に高めている。
このシ−トの材質をポリオレフィン系樹脂としたのは、内外層との接着を図ることにある。また、製造時に発生する破片や使用済み複合樹脂管の材料リサイクルを可能とする有利性もある。
このポリオレフィン系樹脂としては、特に限定されないが、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ホモポリプロピレン、プロピレンランダム共重合体、プロピレンブロック共重合体、ポリ(4−メチル−1−ペンテン)等を挙げることができ、就中、延伸後の弾性率が特に高いポリエチレン、特に結晶性の高い高密度ポリエチレンを使用することが好ましい。
このポリオレフィン系樹脂には、架橋剤や架橋助剤の外、必要に応じ、結晶核剤、滑剤、充填剤、顔料、異種のポリオレフィン系樹脂、低分子量ポリオレフィンワックス等を配合することができる。
上記架橋剤及び架橋助剤の添加目的は、上記ポリオレフィン系樹脂の分子鎖を部分的に架橋し、架橋延伸ポリオレフィン系樹脂シ−トの弾性率、引っ張り強度、クリ−プ特性、耐熱性を向上させることにあり、架橋剤としては、例えば、ベンゾフェノン、チオキサントン、アセトフェノン等の光重合開始剤を挙げることができ、架橋助剤としては、トリアリルシアヌレ−ト、トリメチロ−ルプロパントリアクリレ−ト、ジアリルフタレ−ト等の多官能性モノマ−を挙げることができる。
上記結晶核酸の添加目的は、結晶化度を高めることにあり、結晶核酸としては、例えば、炭酸カルシウム、酸化チタン等を挙げることができる。
上記架橋は、電子線照射や紫外線照射による架橋の外、加熱により行うことも可能である。電子線照射や紫外線照射による架橋は、ポリオレフィン系樹脂に上記架橋剤や架橋助剤等を添加し、1〜20Mrad、好ましくは3〜10Mradの電子線、または、50〜800mW/cm2、好ましくは100〜500mW/cm2の紫外線を照射することにより行うことができる。
上記電子線照射や紫外線照射による架橋は、延伸処理工程と同じ若しくは延伸工程に引き続いて行うことができ、加熱による架橋は延伸処理前に行うことができる。
【0008】
上記ポリオレフィン系樹脂シ−トの原反は、例えば、Tダイ法による押出成形、カレンダ−法によるロ−ル成形等により得ることができる。
延伸処理には、例えば、シ−トを加熱し、速度の異なるロ−ル間に通過させる方法、加熱シ−トを異なる方向に回転するロ−ル間に挾み込み、厚さを減少させながら長さ方向に延伸する方法(圧延方法)等を使用でき、一回処理または多段処理の何れによってもよく、多段処理の場合、複数の延伸方法を使用することもでき、特に、原反が厚肉の場合、上記圧延方法で処理したうえで、後続延伸を行うことが好ましい。
延伸前の原反厚みは、最終的に得ようとするシ−ト厚みや延伸率によって設定され、特に限定されないが、通常、最終製品である延伸ポリオレフィン系樹脂シ−トの厚み50〜1000μmに対応して、0.5〜15mmとされる。
延伸ポリオレフィン系樹脂シ−トの巾は、管の口径、巻回角度、巻回方法等によって選定され、比較的狭巾の延伸ポリオレフィン系樹脂シ−トを使用する場合は、巾広のシ−トを所定巾にスリットすればよい。
延伸ポリオレフィン系樹脂シ−トの延伸率は、得ようとする弾性率や引っ張り強度等により設定され、通常、10倍以上、好ましくは20倍以上とされる。10倍未満では、所望の弾性率や引っ張り強度を得ることが難しい。また、シ−ト巾方向の延伸は、シ−ト長手方向の延伸を抑制するから、可及的に排除することが好ましい。
上記延伸ポリオレフィン系樹脂シ−トにおいては、必要に応じ、接着性を高めるために、物理的または化学的表面処理を施すこともできる。例えば、サンドブラスト等による表面荒し、微細エンポス加工、交互不均一局部加熱による表面凹凸化処理を行うことができる。延伸ポリオレフィン系樹脂シ−ト表面に接着性シ−トをラミネ−トすることもでき、接着性シ−トとしては、例えば、直鎖状低密度ポリエチレン、変性ポリエチレン、エチレン−酢酸ビニル共重合体を挙げることができる。
【0009】
上記内層のポリオレフィン系樹脂としては、上記延伸ポリオレフィン系樹脂シ−トとの接着を図るために同種の樹脂、例えば低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ホモポリプロピレン、プロピレンランダム共重合体、プロピレンブロック共重合体、ポリ(4−メチル−1−ペンテン)等を挙げることができ、特に、特に溶融点110℃〜135℃であり、メルトインデックス(JISK6760、単位g/10分)0.04〜7.0のものを使用することが好ましい。7.0を越えると、溶融樹脂の流動性が高くなり過ぎ、0.04未満では、押出圧が高くなり過ぎて、賦形が困難になるからである。
【0010】
上記外層のポリオレフィン系樹脂においても、上記延伸ポリオレフィン系樹脂シ−トとの接着を図るために同種の樹脂、例えば低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ホモポリプロピレン、プロピレンランダム共重合体、プロピレンブロック共重合体、ポリ(4−メチル−1−ペンテン)等を挙げることができ、特に、特に溶融点が110℃〜135℃であり、メルトインデックスが0.04〜10.0のものを使用することが好ましい。内層ポリオレフィン系樹脂よりも、メルトインデックスの上限を高くする理由は、延伸ポリオレフィン系樹脂シ−ト巻回中間層外面に生じる微細ギャツプまたは段を埋めるのに有利であるからである。
【0011】
上記複合樹脂管は図に示す製造装置によって製造することができる。
図2において、21は樹脂押出機を、22は押出金型を、23は外径サイジング金型を、24はシ−ト巻き付け機を、25は加熱装置を、26はクロスヘッドタイプの外層押出機を、261はヘッドを、27は冷却水槽を、28は引取り機を、29は定尺切断機をそれぞれ示している。 上記複合樹脂管を製造するには、押出機でポリオレフィン系樹脂を押し出し、サイジング金型で外径規制して内層を成形し、シ−ト巻き付け機で延伸ポリオレフィン系樹脂シ−トを通常同方向に逆向きに略同角度となるように2層巻回し、加熱装置で加熱加圧して延伸ポリオレフィン系樹脂シ−ト巻回層を内層に融着させる。
その加熱温度は、内層樹脂の軟化点以上溶融点以下の範囲であり、加圧は2kgf/cm2以上とすることが好ましい。加圧には、管外面から行う方法、管内面から行う方法、延伸ポリオレフィン系樹脂シ−トの熱収縮を利用する方法等を使用でき、管外面から加圧する方法としては、例えば、加熱ロ−ルやダイス等を使用する方法があり、管内面から加圧する方法としては、例えば、エア−加圧、マンドレルにより内層の弾性範囲内で拡径させる方法がある。
このように、中間層を内層に接着させたのち、クロツヘッド押出機のダイスに通過させてポリオレフィン系樹脂の押出被覆により外層を形成し、水槽で冷却のうえ、引取り機で引き取りつつ定尺切断していく。
上記内層には、既に別ラインで成形したポリオレフィン系樹脂管を使用することもできる。また、外層は、予め成形したポリオレフィン系樹脂シ−トを縦添え融着する方法、予め成形したポリオレフィン系樹脂チュ−ブを挿通し融着する方法によって形成することも可能である。
【0012】
上記複合樹脂管の口径は、内径10mm〜30mmの小口径から、内径300mm〜500mmといった大口径に至り、特に制限されない。前者の場合、上記定尺切断を行わずにドラム巻き運搬が可能である。
上記複合樹脂管の断面形状は、通常円形とされるが、非円形、例えばコ−ナにア−ルをつけた断面正方形とすることも可能である。
【0013】
図1に示す複合樹脂管において、内圧が実質的に内層と中間層とにより支持され、内層の厚みをt、中間層の厚みをΔt、内層の弾性率をEa、中間層12の弾性率をEb、複合樹脂管の内径をD’、管内圧をP、内層に作用する平均引っ張り応力をτとすると
【数1】
P=2τ〔(EbΔt)/Ea+t〕/D’ (1)
が成立し、樹脂内外層管の許容応力をτ0とすると、許容内圧P0
【数2】
0=2τ0〔(EbΔt)/Ea+t〕/D’ (2)
で与えられる。
而して、延伸ポリオレフィン系樹脂シ−トの弾性率Ebが内外層のポリオレフィン系樹脂の弾性率Eaより大であるために、耐内圧強度を向上できる。
【0014】
上記延伸ポリオレフィン系樹脂シ−ト巻回中間層は、通常2層とされる。各層が突合せ巻きの場合、シ−ト巾をW、内層外径をDφとすると、シ−トの巻き付け角θが、
【数3】
θ=tan-1(πD/W) (3)
で与えられる。
上記シ−ト巻き付け機によるシ−トの巻回は、通常、走行管の回りにシ−トパッドをシ−トを繰り出させつつ回転させることにより行われ、管引取り速度をV、回転速度をNとすると、これらV、Nにより制御されるシ−ト巻き付け角ψは
【数4】
ψ=2πN/V (4)
で与えられ、V、Nは
【数5】
N/V=tan-1(πD/W) (5)
を満たすように制御される。
【0015】
上記延伸ポリオレフィン系樹脂シ−トの長手方向引っ張り強度をs、シ−ト巻回層厚みをt、内層の内径をD’とすれば、シ−ト巻回中間層が支え得る最大内圧P”が
【数6】
P”=2stsinψ/πD' (6)
で与えられ、シ−ト巻回中間層が支え得る管軸方向最大引っ張り力Yは
【数7】
Y=2πsD’tcosψ (7)
で与えられる。
本発明に係る複合樹脂管では、耐内圧強度の向上を目的とするから、式(6)のP”を可及的に高くするように30°〜90°好ましくは45°〜70°とされる。
【0016】
本発明においては、かかるシ−ト巻き付け角度のもとで、式(4)を満たすように、N、Dが制御されるが、巻回機の精度や引取り速度のバラツキ等による式(3)からのずれのために、延伸ポリオレフィン系樹脂シ−トの巻き付けにギャツプやラップが生じることが避けられない。
その結果、延伸ポリオレフィン系樹脂シ−ト巻回中間層の水の侵入が可能な通路の走水性が高められるが、本発明に係る複合樹脂管の接合構造によれば、かかる条件のもとでも、浸水を防止して複合樹脂管本来の優れた耐内圧強度を有効に発揮させることができる。
【0017】
図3の(イ)〜(ホ)は本発明に係る複合樹脂管の接合構造の異なる参考例と実施例を示している。
図3において、1は上記したポリオレフィン系樹脂内層11と延伸ポリオレフィン系樹脂シ−ト巻回中間層12とポリオレフィン系樹脂外層13とからなる複合樹脂管であり、管端面の内層と外層との間を封止処理してある。3は樹脂管継手であり、継手内面と複合樹脂管外面とを融着や接着剤により接着してある。
上記樹脂管継手3には、複合樹脂管のポリオレフィン系樹脂外層と同材質の樹脂スリ−ブの内周面に電熱線を埋着したEFスリ−ブ(Electrofusionスリ−ブ)を用い、継手内面と複合樹脂管端部外面とを電熱線の通電発熱により融着することが望ましい。
本発明に係る複合樹脂管の接合構造によれば、複合樹脂管の内層と中間層との界面、中間層内のシ−ト巻回層間、中間層と外層との界面に沿い水侵入が可能な通路が形成されても、複合樹脂管の端面をその通路に対し封止してあるから、前記複合樹脂管の本来の優れた耐内圧強度を有効に発揮させることができる。
【0018】
図3の(イ)に示すように、内層樹脂11または外層樹脂12の少なくとも一方を溶融させ、その溶融樹脂で端面の内層と外層との間を覆い冷却固化して複合樹脂管端面を封止してある。この場合、内・外層樹脂11・13、更には中間層シ−ト12をも溶融させることもできる。
この内層樹脂または外層樹脂、更には中間層シ−トの溶融には、加熱面板や、図4に示すように、C型絶縁ホルダ−41に電熱線42を張設し、通電加熱した電熱線で複合樹脂管を溶断するワイヤ式カッタ−を使用できる。
また、複合樹脂管製造時の前記定尺切断機にワイヤ式カッタ−を使用し、定尺切断時に複合樹脂管端面の封止処理を行うことも可能である。
【0019】
図3の(ロ)に示すように、硬化性樹脂液a、例えば、二液反応性樹脂液を複合樹脂管端面の内層と外層との間を覆うように塗布し硬化させることにより複合樹脂管端面の封止を行っており、端面を有機溶剤、例えば、アセトン、トルエン、キシレン等で粗面化したうえで二液反応性樹脂液を塗布することが好ましい。この場合、硬化性樹脂液の硬化不良を阻害しないように、溶剤を完全に揮発飛散させてから樹脂液を塗布するように、速揮発性の溶剤の使用、充分な溶剤揮発時間を経て塗布することが有効である。
【0020】
図3の(ハ)に示すように、ホットメルト樹脂bを複合樹脂管端面の内層と外層との間を覆うように塗布し固化させることにより複合樹脂管端面を封止しており、複合樹脂管の肉厚が厚い場合は、管端部の熱容量が大きくなってホットメルト樹脂が速く固化し過ぎ接着力不足が生じ易いので、複合樹脂管端部を予熱することが有効である。
【0021】
図3の(ニ)に示すように、複合管端面に単層短管cをバット溶接等で融着することにより複合樹脂管端面の封止を行っており、単層短管には複合樹脂管の内層及び外層と同材質のポリオレフィン系樹脂を使用することが望ましい。
【0022】
図3の(ホ)に示すように、複合管端部のポリオレフィン系樹脂内層11と延伸ポリオレフィン系樹脂シ−ト巻回中間層12とポリオレフィン系樹脂外層13とを溶融一体化することにより複合樹脂管端面の封止を行っており、この溶融一体化は、複合樹脂管製造工程での定尺切断時に行うこともできる。
また、図5に示すように複合樹脂管製造工程で定尺切断箇所29よりも上流側で、一定時間ごとに管を挾持する加熱リング290で管局部のポリオレフィン系樹脂内層11と延伸ポリオレフィン系樹脂シ−ト巻回中間層12とポリオレフィン系樹脂外層13とを溶融一体化し、この箇所を定尺切断箇所とすることもできる。
【0023】
延伸ポリオレフィン系樹脂シ−ト巻回中間層が2層である場合で中間層と内層との界面及び中間層と外層との界面が確実に接着されていれば、中間層のシ−ト巻回層間のみが水侵入通路となる。
請求項1の複合樹脂管の接合構造では、延伸ポリオレフィン系樹脂シ−ト巻回中間層のシ−ト巻回層数が複数である場合、複合樹脂管端面の封止を、複合管端面のシ−ト巻回層を融着することにより行っている。
【0024】
【実施例】
〔実施例1〕
複合樹脂管の中間層に使用した延伸ポリオレフィン系樹脂シ−トは次ぎの通りである。
融点135℃,メルトインデツクス1の高密度ポリエチレンに、トリアリルシアヌレ−ト(架橋助剤)3重量%、ベンゾフェノン(光架橋開始剤)3重量%を配合した組成物を200℃で混練し、Tダイス法で成形した厚み3mmの原反シ−トを繰り出し速度1m/分、ピンチロ−ル引取り速度30m/分で120℃の加熱炉に通し、延伸倍率30倍,厚み0.15mmの延伸ポリオレフィン系樹脂シ−トを得、このシ−トに対し10秒間の高圧水銀灯照射で架橋を行い、次いで、一方の温度が200℃、他方の温度が50℃の対ピンチロ−ルを2対、上下逆にして隣接配置した粗面化ロ−ル装置に速度20m/分で通過させて中心線表面粗さRa2μmの微細凹凸を加工し、更に、片面に厚み0.025mm,融点123℃,メルトインデックス0.8の直鎖状ポリエチレン接着フィルムをラミネ−トしたものである。
複合樹脂管は、融点135℃,メルトインデツクス0.5の高密度ポリエチレンの押出内層(押出温度約200℃)に、巾90mmの上記延伸ポリオレフィン系樹脂シ−トを二層、一層目は接着フィルムを内側に向け、二層目は接着フィルムを外側に向け、しかも各層を僅かにラップさせて巻回し、巻回層表面を130℃に加熱したのち、融点125℃,メルトインデツクス0.5の直鎖状低密度ポリエチレンを押出し(押出温度約200℃)、更に冷却水槽で冷却して外層を形成したものであり、外径が63mmφ、厚さが4.0mmである。
この複合樹脂管の管端面に加熱温度200℃の板状ヒ−タを30秒間軽く押しつけて管端面を封止処理し、次いで、複合樹脂管を所定のポリエチレン製EF管継手で接合した。
【0025】
参考例2〕
複合樹脂管の管端面を、アセトンで粗面加工したのち、二液反応性エポキシ樹脂を塗布して封止処理した以外、実施例1に同じとした。
【0026】
参考例3〕
複合樹脂管の管端面を、加熱温度100℃の板状ヒ−タを10秒間当接して加熱した後、200℃に加熱したエチレン−酢酸ビニル共重合体ホットメルトを塗着して封止処理した以外、実施例1に同じとした。
【0027】
〔比較例1〕
実施例1で使用した高密度ポリエチレン内層を所定のポリエチレン製EF管継手で接合した。
【0028】
〔比較例2〕
複合樹脂管の管端面を封止処理しなかった以外、実施例1に同じとした。 これら実施例及び比較例の内圧性能評価のために、次ぎの試験を行った。
【0029】
(1)内圧破壊試験
各実施例と同じ管端面封止処理をした複合樹脂管、内層用管及び管端面封止処理をしない複合樹脂管のそれぞれにつき、管長さ1000mmにて、図6に示すように、試料管Pの両端部を測定用治具51で密閉し、管端面は治具に非接触とし、ポンプ52によって内圧を5kgf/分の速度で昇圧して破壊内圧を測定した(昇圧不可能若しくは高圧した時点の内圧を破壊内圧とした)。
(2)内圧クリ−プ破壊試験
外部温度80℃、水温度80℃にて、12kgf/cm2の内圧を連続的に課し、その内圧保持時間を測定した。
(3)管端止水性試験
(1)の内圧破壊試験に対し、管長さを200mmとし、管端面と治具端面との間にスペ−サを介在させて充分なギャップを確保し、複合樹脂管内の層間への浸水の有無を管外面の状況から判断し、管外面が正常に保持されたときを○、異常が観察されたときを×と評価した。
【0030】
これらの測定結果は表1の通りである。
【表1】
破壊内圧(kgf/cm2) 内圧保持時間(hr) 管端止水性
実施例1評価 70 200以上 ○
参考例2評価 70 200以上 ○
参考例3評価 70 200以上 ○
比較例1評価 40 25 ○
比較例2評価 60 30 ×
【0031】
表1の測定結果から、本発明に係る複合樹脂管の接合構造によれば、ポリオレフィン系樹脂内層と、延伸ポリオレフィン系樹脂シ−ト巻回中間層と、ポリオレフィン系樹脂外層を有し、しかも内・外層と中間層とを接着してなる複合樹脂管を、層間に水侵入可能な通路が形成されても、管端面での封止のために、その通路への水侵入を排除しウィ−ピング等を防止して複合樹脂管本来の優れた耐内圧性を発揮させ得ることが確認できる。
【0032】
【発明の効果】
本発明に係る複合樹脂管の接合構造によれば、ポリオレフィン系樹脂内層と、延伸ポリオレフィン系樹脂シ−ト巻回中間層と、ポリオレフィン系樹脂外層を有し、しかも内・外層と中間層とが接着されてなる複合樹脂管の本来の優れた耐内圧性を発揮させることができる。
また、複合樹脂管製造時の引取り速度やシ−ト巻回機の精度上、延伸ポリオレフィン系樹脂シ−トの巻き付け状態に多少の不備が生じて複合樹脂管内の中間層が水侵入を生じ易い状態になって、も複合樹脂管本来の優れた耐内圧性を発揮させることができるので、引取り速度やシ−ト巻回速度等の製造条件を緩和でき、引取り機やシ−ト巻回機の簡易化により複合樹脂管のコストダウンを図ることも可能である。
【図面の簡単な説明】
【図1】 本発明の接合対象である複合樹脂管を示す図面である。
【図2】 上記複合樹脂管の製造装置を示す図面である。
【図3】 本発明に係る複合樹脂管の接合構造の異なる参考例と実施例を示す図面である。
【図4】 本発明に係る複合樹脂管の接合に使用するカッタ−の一例を示す図面である。
【図5】 本発明に係る複合樹脂管の接合での管端面の封止処理方法の一例を示す図面である。
【図6】 本発明に係る複合樹脂管の接合構造の耐内圧性評価を行うための試験装置を示す図面である。
【符号の説明】
1 複合樹脂管
11 ポリオレフィン系樹脂内層
12 延伸ポリオレフィン系樹脂シ−ト巻回中間層
13 ポリオレフィン系樹脂外層
3 管継手
a 硬化性樹脂
b ホットメルト樹脂
c 単層短管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joint structure of a composite resin pipe having a high internal pressure resistance.
[0002]
[Prior art]
As is well known, when an internal pressure P acts on a pipe having a thickness t and an inner diameter φD, a tensile stress δ (δ = DP / 2t) is generated in the circumferential direction of the pipe and is mechanically balanced.
Conventionally, as a composite resin pipe, a steel tape winding intermediate layer is provided on a resin inner layer and a resin outer layer is provided on the intermediate layer (Japanese Patent Laid-Open No. 10-19174).
However, in this composite resin pipe, if the intermediate layer and the inner and outer resin layers are bonded together so that a tensile stress that balances the inner pressure of the steel tape is effectively generated in the steel tape winding intermediate layer, the composite resin pipe can be used. On the other hand, if the flexibility is ensured by allowing the intermediate layer and the inner and outer resin layers to slide between each other, it is difficult to generate tensile stress on the wound steel tape, and effective internal pressure resistance It becomes difficult to achieve an increase in strength.
[0003]
Therefore, the applicant of the present invention stated that “a composite material having a polyolefin-based resin inner layer, a stretched polyolefin-based resin sheet winding intermediate layer, and a polyolefin-based resin outer layer, and by bonding the inner and outer layers to the intermediate layer. Has already been proposed (Japanese Patent Application No. 11-95451).
In this composite pipe, the stretched polyolefin resin sheet winding intermediate layer is bonded to the inner and outer layers, and the elastic modulus of the stretched polyolefin resin sheet intermediate layer is larger than the elastic modulus of the inner and outer layers. Therefore, a sufficiently large internal pressure component can be assigned to the intermediate layer sheet, and the internal pressure resistance of the composite resin tube can be increased. Further, since the intermediate layer sheet is made of resin in the same manner as the inner and outer resin layers and is sufficiently flexible, it is possible to ensure the same bending rigidity and therefore flexibility as the single layer resin pipe.
[0004]
[Problems to be solved by the invention]
The composite resin pipe proposed by the present applicant structurally satisfies the requirements for high internal pressure resistance and flexibility.
However, according to the results of intensive studies by the present inventors, it has been found that when the internal pressure is actually applied, the rate of increase in the internal pressure strength is lower than expected.
As a result of exploring the cause, a stretchable polyolefin resin sheet winding intermediate layer may form a water intrusion path, and water may enter the composite pipe end face through this path. It became clear that.
[0005]
An object of the present invention is to effectively exhibit the inherent excellent internal pressure resistance of the composite resin pipe proposed by the applicant. Moreover, it is in enabling relaxation of the manufacturing conditions of the composite resin pipe.
[0006]
[Means for Solving the Problems]
The joint structure of the composite resin pipe according to the present invention has a polyolefin resin inner layer, a stretched polyolefin resin sheet winding intermediate layer, and a polyolefin resin outer layer, and the inner / outer layer and the intermediate layer are bonded to each other. What junction structure der composite tube comprising Te, stretched polyolefin resin sheet - a plurality bets winding layer number, shea composite tube end face - - sheet of the winding interim layer fusing preparative winding layer Thus, the composite pipe end face is sealed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a composite resin pipe to which the present invention is applied.
In FIG. 1, 11 is a polyolefin resin inner layer. Reference numeral 12 denotes a stretched polyolefin resin sheet wound intermediate layer, which is bonded to the inner 11 layers. Reference numeral 13 denotes a polyolefin-based resin outer layer, which is bonded to the intermediate layer 12.
The internal pressure resistance and creep resistance of the composite resin pipe are guaranteed by the inner layer 11 and the intermediate layer 12, and the outer layer 13 is mainly used as a mechanical protective layer for the intermediate layer 12.
The stretched polyolefin-based resin sheet winding intermediate layer 12 is for improving the internal pressure resistance and creep resistance, and the sheet is stretched in the longitudinal direction to increase the elastic modulus and tensile strength of the sheet. The internal pressure strength is effectively enhanced by increasing the resistance, and the creep resistance is effectively enhanced by the cross-linking of the sheet.
The reason why this sheet is made of polyolefin resin is to adhere to the inner and outer layers. In addition, there is an advantage that it is possible to recycle the material generated from the fragments and used composite resin pipes produced during the production.
The polyolefin-based resin is not particularly limited. For example, low-density polyethylene, linear low-density polyethylene, high-density polyethylene, homopolypropylene, propylene random copolymer, propylene block copolymer, poly (4-methyl- 1-pentene) and the like. In particular, it is preferable to use polyethylene having particularly high elastic modulus after stretching, particularly high-density polyethylene having high crystallinity.
In addition to the crosslinking agent and the crosslinking aid, the polyolefin-based resin can be blended with a crystal nucleating agent, a lubricant, a filler, a pigment, a different polyolefin-based resin, a low-molecular-weight polyolefin wax, or the like, if necessary.
The purpose of adding the crosslinking agent and crosslinking aid is to partially crosslink the molecular chain of the polyolefin resin to improve the elastic modulus, tensile strength, creep properties, and heat resistance of the crosslinked stretched polyolefin resin sheet. Examples of the crosslinking agent include photopolymerization initiators such as benzophenone, thioxanthone, and acetophenone. Examples of the crosslinking assistant include triallyl cyanurate, trimethylolpropane triacrylate. And polyfunctional monomers such as diallyl phthalate.
The purpose of adding the crystalline nucleic acid is to increase the degree of crystallinity, and examples of the crystalline nucleic acid include calcium carbonate and titanium oxide.
The crosslinking can be performed by heating in addition to crosslinking by electron beam irradiation or ultraviolet irradiation. For crosslinking by electron beam irradiation or ultraviolet irradiation, the above-mentioned crosslinking agent or crosslinking aid is added to the polyolefin resin, and the electron beam is 1 to 20 Mrad, preferably 3 to 10 Mrad, or 50 to 800 mW / cm @ 2, preferably 100. It can be performed by irradiating with ~ 500 mW / cm2.
The crosslinking by the electron beam irradiation or the ultraviolet irradiation can be performed in the same or subsequent to the stretching process, and the crosslinking by heating can be performed before the stretching process.
[0008]
The raw material of the polyolefin resin sheet can be obtained, for example, by extrusion molding by a T-die method, roll molding by a calendar method, or the like.
In the stretching process, for example, a sheet is heated and passed between rolls with different speeds, or the heated sheet is squeezed between rolls rotating in different directions to reduce the thickness. However, it is possible to use a method of stretching in the length direction (rolling method) or the like, which may be either a single treatment or a multistage treatment. In the case of a multistage treatment, a plurality of stretching methods can be used. In the case of a thick wall, it is preferable to carry out subsequent stretching after processing by the rolling method.
The thickness of the original fabric before stretching is set according to the sheet thickness and the stretching ratio to be finally obtained, and is not particularly limited. Usually, the thickness of the stretched polyolefin resin sheet as the final product is 50 to 1000 μm. Correspondingly, it is 0.5 to 15 mm.
The width of the stretched polyolefin resin sheet is selected according to the diameter of the pipe, the winding angle, the winding method, etc. When using a relatively narrow stretched polyolefin resin sheet, a wide sheet is used. The slit may be slit to a predetermined width.
The stretch ratio of the stretched polyolefin resin sheet is set according to the elastic modulus and tensile strength to be obtained, and is usually 10 times or more, preferably 20 times or more. If it is less than 10 times, it is difficult to obtain a desired elastic modulus and tensile strength. Further, the stretching in the sheet width direction is preferably eliminated as much as possible because the stretching in the sheet longitudinal direction is suppressed.
In the stretched polyolefin resin sheet, a physical or chemical surface treatment can be applied as necessary to enhance the adhesiveness. For example, surface roughening by sandblasting or the like, fine embossing, and surface unevenness treatment by alternating non-uniform local heating can be performed. An adhesive sheet can be laminated on the surface of the stretched polyolefin resin sheet. Examples of the adhesive sheet include linear low density polyethylene, modified polyethylene, and ethylene-vinyl acetate copolymer. Can be mentioned.
[0009]
As the polyolefin resin of the inner layer, the same kind of resin, for example, a low density polyethylene, a linear low density polyethylene, a high density polyethylene, a homopolypropylene, a propylene random copolymer, is used for adhesion to the stretched polyolefin resin sheet. Polymer, propylene block copolymer, poly (4-methyl-1-pentene) and the like, and in particular, the melting point is 110 ° C to 135 ° C, and the melt index (JISK6760, unit g / 10 min). It is preferable to use 0.04 to 7.0. If it exceeds 7.0, the fluidity of the molten resin becomes too high, and if it is less than 0.04, the extrusion pressure becomes too high and shaping becomes difficult.
[0010]
Also in the polyolefin resin of the outer layer, the same kind of resin, for example, low density polyethylene, linear low density polyethylene, high density polyethylene, homopolypropylene, propylene random copolymer, is used for adhesion to the stretched polyolefin resin sheet. Polymer, propylene block copolymer, poly (4-methyl-1-pentene), and the like. In particular, the melting point is 110 ° C to 135 ° C, and the melt index is 0.04 to 10.0. Are preferably used. The reason why the upper limit of the melt index is set higher than that of the inner-layer polyolefin resin is that it is advantageous for filling a fine gap or a step generated on the outer surface of the stretched polyolefin-based resin sheet winding intermediate layer.
[0011]
The composite resin tube can be manufactured by a manufacturing apparatus shown in the figure.
In FIG. 2, 21 is a resin extruder, 22 is an extrusion die, 23 is an outer diameter sizing die, 24 is a sheet winding machine, 25 is a heating device, and 26 is a crosshead type outer layer extrusion. , 261 is a head, 27 is a cooling water tank, 28 is a take-up machine, and 29 is a regular cutting machine. To manufacture the above composite resin pipe, the polyolefin resin is extruded with an extruder, the outer diameter is regulated with a sizing mold, the inner layer is formed, and the stretched polyolefin resin sheet is usually in the same direction with a sheet wrapping machine. The two layers are wound so as to have substantially the same angle in the opposite direction, and heated and pressurized with a heating device to fuse the stretched polyolefin resin sheet wound layer to the inner layer.
The heating temperature is in the range from the softening point to the melting point of the inner layer resin, and the pressurization is preferably 2 kgf / cm 2 or more. For the pressurization, a method of performing from the outer surface of the tube, a method of performing from the inner surface of the tube, a method utilizing the heat shrinkage of the stretched polyolefin resin sheet, and the like can be used. Examples of the method of applying pressure from the inner surface of the pipe include air-pressurization and a method of expanding the diameter within the elastic range of the inner layer by a mandrel.
In this way, after the intermediate layer is bonded to the inner layer, the outer layer is formed by extrusion coating of a polyolefin resin by passing it through the die of a crotch head extruder, cooled in a water tank, and then cut with a take-up machine while taking a fixed size. I will do it.
For the inner layer, a polyolefin-based resin pipe already molded in a separate line can also be used. The outer layer can also be formed by a method in which a preformed polyolefin resin sheet is longitudinally attached and a method in which a preformed polyolefin resin tube is inserted and fused.
[0012]
The diameter of the composite resin pipe is not particularly limited, from a small diameter of 10 mm to 30 mm inside diameter to a large diameter of 300 mm to 500 mm inside diameter. In the former case, the drum can be wound and transported without performing the above-described regular cutting.
The cross-sectional shape of the composite resin tube is usually circular, but it may be non-circular, for example, a square with a corner and an alarm.
[0013]
In the composite resin pipe shown in FIG. 1, the internal pressure is substantially supported by the inner layer and the intermediate layer, the inner layer thickness is t, the intermediate layer thickness is Δt, the inner layer elastic modulus is Ea, and the intermediate layer 12 elastic modulus is If Eb, the inner diameter of the composite resin pipe is D ′, the pipe internal pressure is P, and the average tensile stress acting on the inner layer is τ,
P = 2τ [(EbΔt) / Ea + t] / D ′ (1)
If the allowable stress of the resin inner / outer pipe is τ 0 , the allowable internal pressure P 0 is
P 0 = 2τ 0 [(EbΔt) / Ea + t] / D ′ (2)
Given in.
Thus, since the elastic modulus Eb of the stretched polyolefin resin sheet is larger than the elastic modulus Ea of the polyolefin resin in the inner and outer layers, the internal pressure resistance can be improved.
[0014]
The stretched polyolefin resin sheet winding intermediate layer is usually two layers. When each layer is a butt winding, if the sheet width is W and the inner layer outer diameter is Dφ, the winding angle θ of the sheet is
[Equation 3]
θ = tan -1 (πD / W) (3)
Given in.
The sheet winding by the sheet winding machine is usually performed by rotating the sheet pad around the traveling pipe while feeding the sheet, and the pipe take-up speed is V and the rotation speed is Assuming N, the sheet winding angle ψ controlled by these V and N is:
ψ = 2πN / V (4)
V and N are given by
N / V = tan -1 (πD / W) (5)
It is controlled to satisfy.
[0015]
When the tensile strength in the longitudinal direction of the stretched polyolefin resin sheet is s, the thickness of the sheet winding layer is t, and the inner diameter of the inner layer is D ', the maximum internal pressure P "that can be supported by the sheet winding intermediate layer" Is [Equation 6]
P ″ = 2stsinψ / πD ′ (6)
The maximum tensile force Y in the tube axis direction that can be supported by the sheet winding intermediate layer is given by
Y = 2πsD'tcosψ (7)
Given in.
In the composite resin pipe according to the present invention, the purpose is to improve the resistance to internal pressure, so that P ″ in the formula (6) is set as high as 30 ° to 90 °, preferably 45 ° to 70 °. The
[0016]
In the present invention, N and D are controlled so as to satisfy the equation (4) under such a sheet winding angle, but the equation (3) based on the accuracy of the winding machine, the variation in the take-up speed, etc. ), It is inevitable that gaps or wraps will occur in the winding of the stretched polyolefin resin sheet.
As a result, the water running capacity of the passage through which the water can enter the stretched polyolefin resin sheet winding intermediate layer can be increased. However, according to the joint structure of the composite resin pipe according to the present invention, even under such conditions, In addition, it is possible to prevent water from entering and effectively exhibit the excellent internal pressure resistance of the composite resin tube.
[0017]
(A) to (e) of FIG. 3 show different reference examples and examples of the joint structure of the composite resin pipe according to the present invention.
In FIG. 3, reference numeral 1 denotes a composite resin pipe composed of the polyolefin resin inner layer 11, the stretched polyolefin resin sheet winding intermediate layer 12, and the polyolefin resin outer layer 13, between the inner layer and the outer layer on the pipe end face. Is sealed. 3 is a resin pipe joint, and the inner surface of the joint and the outer surface of the composite resin pipe are bonded together by fusion or an adhesive.
The resin pipe joint 3 uses an EF sleeve (Electrofusion sleeve) in which a heating wire is embedded in the inner peripheral surface of a resin sleeve of the same material as the polyolefin resin outer layer of the composite resin pipe. It is desirable that the composite resin tube end portion outer surface is fused by heating with heating wire.
According to the joint structure of the composite resin pipe according to the present invention, water can enter along the interface between the inner layer and the intermediate layer of the composite resin pipe, the sheet winding layer in the intermediate layer, and the interface between the intermediate layer and the outer layer. Even if a simple passage is formed, the end surface of the composite resin tube is sealed with respect to the passage, so that the inherent excellent resistance to internal pressure of the composite resin tube can be effectively exhibited.
[0018]
As shown in FIG. 3A, at least one of the inner layer resin 11 or the outer layer resin 12 is melted, and the molten resin covers the space between the inner layer and the outer layer of the end surface to cool and solidify the end surface of the composite resin tube. It is. In this case, the inner / outer layer resins 11 and 13 and the intermediate layer sheet 12 can also be melted.
For melting the inner layer resin or the outer layer resin, and further the intermediate layer sheet, as shown in FIG. 4, a heating wire 42 is stretched on a C-type insulating holder 41 and heated by energization. A wire-type cutter that melts the composite resin tube can be used.
Moreover, it is also possible to use a wire cutter for the above-mentioned regular cutting machine at the time of manufacturing the composite resin pipe, and to perform the sealing process of the end face of the composite resin pipe at the time of standard cutting.
[0019]
As shown in FIG. 3 (b), a curable resin liquid a, for example, a two-component reactive resin liquid, is applied and cured so as to cover between the inner layer and the outer layer of the end face of the composite resin tube. The end surfaces are sealed, and it is preferable to apply the two-component reactive resin liquid after roughening the end surfaces with an organic solvent such as acetone, toluene, xylene or the like. In this case, use a fast volatile solvent and apply after a sufficient solvent volatilization time so that the resin liquid is applied after the solvent is completely volatilized and scattered so as not to prevent the curing failure of the curable resin liquid. It is effective.
[0020]
As shown in FIG. 3C, the composite resin pipe end face is sealed by applying and solidifying hot melt resin b so as to cover between the inner layer and the outer layer of the composite resin pipe end face. When the tube is thick, the heat capacity of the tube end is increased and the hot-melt resin is solidified too quickly and the adhesive force is likely to be insufficient, so it is effective to preheat the composite resin tube end.
[0021]
As shown in FIG. 3D, the composite resin pipe end face is sealed by fusing a single-layer short pipe c to the composite pipe end face by butt welding or the like. It is desirable to use a polyolefin resin of the same material as the inner and outer layers of the tube.
[0022]
As shown in FIG. 3E, the composite resin is obtained by melting and integrating the polyolefin resin inner layer 11 at the end of the composite tube, the stretched polyolefin resin sheet winding intermediate layer 12 and the polyolefin resin outer layer 13. The tube end face is sealed, and this fusion integration can also be performed at the time of standard cutting in the composite resin tube manufacturing process.
Further, as shown in FIG. 5, in the composite resin pipe manufacturing process, the polyolefin resin inner layer 11 and the stretched polyolefin resin at the local portion of the pipe are heated by a heating ring 290 that holds the pipe at regular intervals on the upstream side of the fixed cut portion 29. The sheet winding intermediate layer 12 and the polyolefin-based resin outer layer 13 can be melted and integrated, and this portion can be used as a fixed cut portion.
[0023]
When the stretched polyolefin resin sheet winding intermediate layer is two layers and the interface between the intermediate layer and the inner layer and the interface between the intermediate layer and the outer layer are securely bonded, the sheet winding of the intermediate layer Only the interlayer serves as a water intrusion passage.
In the joint structure of the composite resin pipe according to claim 1 , when the number of sheet winding layers of the stretched polyolefin resin sheet winding intermediate layer is plural, sealing of the composite resin pipe end face is performed on the composite pipe end face. This is done by fusing the sheet winding layer.
[0024]
【Example】
[Example 1]
The stretched polyolefin resin sheet used for the intermediate layer of the composite resin pipe is as follows.
A composition in which 3% by weight of triallyl cyanurate (crosslinking aid) and 3% by weight of benzophenone (photocrosslinking initiator) is blended with high density polyethylene having a melting point of 135 ° C and a melt index of 1 at 200 ° C. The 3 mm-thick original fabric sheet formed by the T-die method is passed through a heating furnace at 120 ° C. with a feed speed of 1 m / min and a pinch roll take-up speed of 30 m / min, and a draw ratio of 30 times and a thickness of 0.15 mm A stretched polyolefin resin sheet was obtained, and this sheet was crosslinked by irradiation with a high-pressure mercury lamp for 10 seconds. Then, two pairs of pinchrollers having one temperature of 200 ° C. and the other temperature of 50 ° C. were paired. Then, it passes through a roughening roll device arranged upside down at a speed of 20 m / min to process fine irregularities with a centerline surface roughness Ra of 2 μm, and further has a thickness of 0.025 mm, a melting point of 123 ° C. on one side, Melt inde Laminating a linear polyethylene adhesive film Box 0.8 - it is obtained by preparative.
The composite resin tube consists of an extruded inner layer of high-density polyethylene (extrusion temperature: about 200 ° C) with a melting point of 135 ° C and a melt index of 0.5, and two layers of the above-mentioned stretched polyolefin resin sheet with a width of 90mm. With the film facing inward, the second layer facing the adhesive film outward, and with each layer slightly wrapped, the surface of the wound layer was heated to 130 ° C., and then the melting point was 125 ° C. and the melt index was 0.5. A linear low-density polyethylene was extruded (extrusion temperature about 200 ° C.), and further cooled in a cooling water bath to form an outer layer. The outer diameter was 63 mmφ, and the thickness was 4.0 mm.
A plate heater having a heating temperature of 200 ° C. was lightly pressed against the tube end surface of the composite resin tube for 30 seconds to seal the tube end surface, and then the composite resin tube was joined with a predetermined polyethylene EF pipe joint.
[0025]
[ Reference Example 2]
The tube end surface of the composite resin tube was roughened with acetone, and then the same as Example 1 except that a two-component reactive epoxy resin was applied and sealed.
[0026]
[ Reference Example 3]
The tube end face of the composite resin tube is heated by contacting a plate heater having a heating temperature of 100 ° C. for 10 seconds, and then an ethylene-vinyl acetate copolymer hot melt heated to 200 ° C. is applied and sealed. The same as Example 1 except that.
[0027]
[Comparative Example 1]
The high-density polyethylene inner layer used in Example 1 was joined with a predetermined polyethylene EF pipe joint.
[0028]
[Comparative Example 2]
The same as Example 1 except that the pipe end face of the composite resin pipe was not sealed. In order to evaluate the internal pressure performance of these examples and comparative examples, the following test was performed.
[0029]
(1) Internal pressure fracture test Each of the composite resin tube subjected to the same tube end surface sealing treatment as that of each example, the inner layer tube, and the composite resin tube not subjected to the tube end surface sealing treatment is shown in FIG. Thus, both ends of the sample tube P were sealed with the measurement jig 51, the tube end surface was not in contact with the jig, and the internal pressure was increased by the pump 52 at a rate of 5 kgf / min, and the fracture internal pressure was measured (pressure increase) The internal pressure at the time when impossibility or high pressure was taken as the internal pressure at break)
(2) Internal pressure creep fracture test An internal pressure of 12 kgf / cm 2 was continuously imposed at an external temperature of 80 ° C. and a water temperature of 80 ° C., and the internal pressure holding time was measured.
(3) Pipe end water stop test Compared to the internal pressure fracture test of (1), the pipe length is 200 mm, a spacer is interposed between the pipe end surface and the jig end surface to ensure a sufficient gap, and composite resin The presence or absence of water intrusion between layers in the pipe was judged from the condition of the outer surface of the pipe.
[0030]
These measurement results are shown in Table 1.
[Table 1]
Internal pressure at break (kgf / cm 2 ) Internal pressure retention time (hr) Pipe end water blocking Example 1 evaluation 70 200 or more ○
Reference Example 2 Evaluation 70 200 or more ○
Reference Example 3 Evaluation 70 200 or more ○
Comparative Example 1 Evaluation 40 25 ○
Comparative Example 2 Evaluation 60 30 ×
[0031]
From the measurement results of Table 1, according to the joint structure of the composite resin pipe according to the present invention, it has a polyolefin-based resin inner layer, a stretched polyolefin-based resin sheet winding intermediate layer, and a polyolefin-based resin outer layer. -Even if a composite resin pipe formed by bonding the outer layer and the intermediate layer is formed with a passage that allows water to enter between the layers, water penetration into the passage is eliminated for sealing at the pipe end surface. It can be confirmed that pinging and the like can be prevented and the excellent internal pressure resistance inherent in the composite resin tube can be exhibited.
[0032]
【The invention's effect】
According to the joint structure of the composite resin pipe according to the present invention, it has a polyolefin resin inner layer, a stretched polyolefin resin sheet winding intermediate layer, a polyolefin resin outer layer, and an inner / outer layer and an intermediate layer. The inherent excellent internal pressure resistance of the bonded composite resin tube can be exhibited.
In addition, due to the take-up speed at the time of manufacturing the composite resin pipe and the accuracy of the sheet winding machine, there is some deficiency in the winding state of the stretched polyolefin resin sheet, and the intermediate layer in the composite resin pipe causes water intrusion. Even in the easy state, the excellent internal pressure resistance inherent in the composite resin pipe can be exhibited, so that the manufacturing conditions such as the take-up speed and the sheet winding speed can be relaxed, and the take-up machine and the sheet It is also possible to reduce the cost of the composite resin pipe by simplifying the winding machine.
[Brief description of the drawings]
FIG. 1 is a drawing showing a composite resin pipe to be joined according to the present invention.
FIG. 2 is a view showing an apparatus for manufacturing the composite resin pipe.
FIG. 3 is a drawing showing different reference examples and examples of the joint structure of the composite resin pipe according to the present invention.
FIG. 4 is a drawing showing an example of a cutter used for joining composite resin pipes according to the present invention.
FIG. 5 is a drawing showing an example of a tube end face sealing method in joining composite resin pipes according to the present invention.
6 is a drawing showing a test apparatus for evaluating internal pressure resistance of a joint structure of composite resin pipes according to the present invention. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Composite resin pipe 11 Polyolefin resin inner layer 12 Stretched polyolefin resin sheet winding intermediate layer 13 Polyolefin resin outer layer 3 Pipe joint a Curable resin b Hot melt resin c Single-layer short tube

Claims (1)

ポリオレフィン系樹脂内層と、延伸ポリオレフィン系樹脂シ−ト巻回中間層と、ポリオレフィン系樹脂外層を有し、しかも内・外層と中間層とが接着されてなる複合管の接合構造であって、
延伸ポリオレフィン系樹脂シ−ト巻回中間層のシ−ト巻回層数が複数であり、
複合管端面のシ−ト巻回層を融着することにより、複合管端面が封止処理されていることを特徴とする複合樹脂管の接合構造。
And a polyolefin resin inner layer, stretched polyolefin resin sheet - and the winding interim layer has a polyolefin resin outer layer, yet the inner and outer layer and the intermediate layer I junction structure der composite tube formed by bonding,
The number of sheet wound layers of the stretched polyolefin resin sheet wound intermediate layer is plural,
A composite resin pipe joining structure , wherein the composite pipe end face is sealed by fusing a sheet winding layer of the composite pipe end face.
JP2000271752A 2000-09-07 2000-09-07 Composite resin pipe joint structure Expired - Fee Related JP4465092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271752A JP4465092B2 (en) 2000-09-07 2000-09-07 Composite resin pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271752A JP4465092B2 (en) 2000-09-07 2000-09-07 Composite resin pipe joint structure

Publications (2)

Publication Number Publication Date
JP2002081583A JP2002081583A (en) 2002-03-22
JP4465092B2 true JP4465092B2 (en) 2010-05-19

Family

ID=18757991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271752A Expired - Fee Related JP4465092B2 (en) 2000-09-07 2000-09-07 Composite resin pipe joint structure

Country Status (1)

Country Link
JP (1) JP4465092B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771868A (en) * 1993-09-01 1995-03-17 Toshiba Corp Vacuum heat insulative panel
JPH07317967A (en) * 1994-05-31 1995-12-08 Sekisui Chem Co Ltd Fiber reinforced resin compound pipe
JPH0868487A (en) * 1994-08-29 1996-03-12 Sekisui Chem Co Ltd Composite pipe connecting structure and pipe end treatment method
WO2000022334A1 (en) * 1998-10-09 2000-04-20 Sekisui Chemical Co., Ltd. Composite high-pressure pipe and method of joining same

Also Published As

Publication number Publication date
JP2002081583A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP4076440B2 (en) Composite high-pressure pipe and manufacturing method thereof
RU2529517C2 (en) Shrinkable sandwiched film with micro layers and method of its production
JP4163385B2 (en) Composite high-pressure pipe and joining method thereof
TW200948604A (en) Process for producing glass/resin composite
KR100863058B1 (en) Process for the production of an oriented plastic film
CH432812A (en) Method of fixing a band around an object
RU2524964C2 (en) Method and device for soldering of tubular polymer package and package thus produced
JP2002013675A (en) Composite high-pressure pipe
JP2009101583A (en) Method for manufacturing broad shape-holding sheet
ES2256248T3 (en) PROCEDURE FOR MANUFACTURING A PRODUCT OF VARIOUS LAYERS BY CO-EXTRUSION.
JP4465092B2 (en) Composite resin pipe joint structure
JP5363280B2 (en) Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene
JPH0340694B2 (en)
JP5828879B2 (en) Packaging bag manufacturing method
JP2005518961A (en) Assembly method and plastic composite pipe
JP4909096B2 (en) Method for producing laminated molded body
JP3749593B2 (en) Method for producing polyolefin molded body
RU2031005C1 (en) Method of making package foliated material
JP2001219463A (en) Synthetic resin pipe
JPS6285930A (en) Manufacture of peeling film
JP2002071058A (en) Composite high-pressure pipe
JP2003103637A (en) Method for connecting composite high-pressure pipe
JP2002187214A (en) Method for manufacturing complex high-pressure tube having deformed cross-section
JP2002137295A (en) Manufacturing method for synthetic resin composite pipe
CN115782337A (en) CPP film for lithium battery packaging aluminum plastic film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees