JP2003103637A - Method for connecting composite high-pressure pipe - Google Patents
Method for connecting composite high-pressure pipeInfo
- Publication number
- JP2003103637A JP2003103637A JP2001303253A JP2001303253A JP2003103637A JP 2003103637 A JP2003103637 A JP 2003103637A JP 2001303253 A JP2001303253 A JP 2001303253A JP 2001303253 A JP2001303253 A JP 2001303253A JP 2003103637 A JP2003103637 A JP 2003103637A
- Authority
- JP
- Japan
- Prior art keywords
- composite high
- pressure pipe
- pressure
- inner layer
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/723—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/18—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
- B29C65/20—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8207—Testing the joint by mechanical methods
- B29C65/8246—Pressure tests, e.g. hydrostatic pressure tests
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/114—Single butt joints
- B29C66/1142—Single butt to butt joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/13—Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
- B29C66/131—Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
- B29C66/1312—Single flange to flange joints, the parts to be joined being rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/52—Joining tubular articles, bars or profiled elements
- B29C66/522—Joining tubular articles
- B29C66/5221—Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Branch Pipes, Bends, And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種物質を流動さ
せて搬送するのに用いられる複合高圧管同士を相互に接
続する複合高圧管の接続方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of connecting composite high-pressure pipes for connecting composite high-pressure pipes used for flowing and transporting various substances.
【0002】[0002]
【従来の技術】液体、気体等の各種物質を流動させて搬
送する際に使用されるパイプ、ホース等の管体は、内部
を流動する物質の圧力によって破損しないような耐圧性
が要求される。特に、耐油配管・給水管等のように、高
圧流体を搬送する場合には、高耐圧性が必要になる。耐
圧性を有する管体として、例えば特開平8−11250
号公報に、合成樹脂等の可撓性材料にて管状に成形され
た内層と外層との間に繊維補強層及びワイヤー補強層を
設けることで、耐圧性を高めた複合高圧管が提案されて
いる。2. Description of the Related Art Pipes such as pipes and hoses used for transporting various substances such as liquids and gases by flowing are required to have pressure resistance so as not to be damaged by the pressure of the substances flowing inside. . In particular, when carrying a high-pressure fluid such as oil resistant pipes and water supply pipes, high pressure resistance is required. As a tubular body having pressure resistance, for example, Japanese Patent Application Laid-Open No. 8-11250
Japanese Patent Laid-Open Publication proposes a composite high-pressure pipe with increased pressure resistance by providing a fiber reinforced layer and a wire reinforced layer between an inner layer and an outer layer formed in a tubular shape from a flexible material such as synthetic resin. There is.
【0003】[0003]
【発明が解決しようとする課題】ところで、前記した複
合高圧管では、内層と外層との間に設ける繊維補強層
が、適当な太さを有する繊維を編組するか、あるいはス
パイラル状に巻回して配置されているため、繊維補強層
自体が厚くなるという問題がある。また、繊維を束ねた
状態で構成される繊維補強層は、各繊維の長手方向に沿
った軸方向強度が、周方向の強度に比べて大きくなると
いう問題がある。By the way, in the above-described composite high-pressure pipe, the fiber reinforcing layer provided between the inner layer and the outer layer is formed by braiding fibers having an appropriate thickness or winding the fibers in a spiral shape. Since they are arranged, there is a problem that the fiber reinforcing layer itself becomes thick. Further, the fiber-reinforced layer formed by bundling the fibers has a problem that the axial strength along the longitudinal direction of each fiber is greater than the strength in the circumferential direction.
【0004】しかも、繊維補強層にワイヤー補強層を積
層しているため、全体の肉厚が厚くなり、全体重量が重
くなってしまうので、取り扱いが難しくなり、また経済
性も悪くなるという問題がある。Moreover, since the wire reinforcing layer is laminated on the fiber reinforcing layer, the overall wall thickness becomes thicker and the total weight becomes heavier, which makes the handling difficult and the economical efficiency worse. is there.
【0005】さらに、合成樹脂で構成される内層及び外
層と、繊維補強層及びワイヤー補強層とが異なる材質で
あるため、接続を行う複合高圧管同士を直接接合するこ
とができない。このため、例えば管継手等を使用して、
複合高圧管同士を相互に接続する必要があるが、管継手
を用いた場合、管継手と複合高圧管との接続部分の強度
・シール性等が問題になる。従って耐圧性に優れた複合
高圧管を使用しているにもかかわらず、配管を行うこと
によって、複合高圧管同士の接続部において破損・漏水
等が生じるおそれがある。Furthermore, since the inner layer and the outer layer made of synthetic resin are different from the material of the fiber reinforcing layer and the wire reinforcing layer, the composite high-pressure pipes to be connected cannot be directly joined. For this reason, for example, using pipe fittings,
Although it is necessary to connect the composite high-pressure pipes to each other, when a pipe joint is used, the strength and sealing property of the connecting portion between the pipe joint and the composite high-pressure pipe become problems. Therefore, although the composite high-pressure pipe having excellent pressure resistance is used, the piping may cause damage or water leakage at the connection between the composite high-pressure pipes.
【0006】一方、管同士を突き合わせ融着により接続
する場合、内圧負荷時の突き合わせ融着部の破壊を防止
する方法として、例えば、特開平11−101383号
公報に記載されているように、融着部の外側を反応性樹
脂により固定する方法がある。この方法は、突き合わせ
融着を行った後、融着部に金型を装着し、管と金型の隙
間に反応性樹脂を流し込んで固化させることで補強する
というものである。On the other hand, when the tubes are connected by butt fusion welding, as a method for preventing the destruction of the butt fusion welding portion when an internal pressure is applied, for example, as disclosed in JP-A-11-101383, fusion is performed. There is a method of fixing the outside of the attachment part with a reactive resin. In this method, after butt fusion, a die is attached to the fusion zone, and a reactive resin is poured into a gap between the tube and the die to solidify the resin for reinforcement.
【0007】しかし、このような補強方法では、反応性
樹脂という取扱いに注意を要するものを使用するため、
樹脂が固化した後に金型を取り外さなければならない
等、施工面において容易な方法とはいえない。さらに、
固化した反応性樹脂は硬質なものであるため、複合高圧
管が偏平化した際に割れやすいという問題がある。However, in such a reinforcing method, since a reactive resin, which requires careful handling, is used,
It cannot be said that this is an easy method in terms of construction, since the mold must be removed after the resin has solidified. further,
Since the solidified reactive resin is hard, there is a problem that the composite high-pressure pipe is easily broken when flattened.
【0008】本発明はそのような実情に鑑みてなされた
もので、耐圧性に優れた複合高圧管同士を突き合わせ融
着にて接続するにあたり、簡単な作業により複合高圧管
同士を強固に接続することができ、しかも複合高圧管の
変形に追随する柔軟な接続部を形成することが可能な複
合高圧管の接続方法を提供することを目的とする。The present invention has been made in view of such an actual situation, and in connecting composite high-pressure pipes having excellent pressure resistance by butt fusion welding, the composite high-pressure pipes are firmly connected to each other by simple work. An object of the present invention is to provide a method of connecting a composite high-pressure pipe, which is capable of forming a flexible connection portion that can follow the deformation of the composite high-pressure pipe.
【0009】[0009]
【課題を解決するための手段】本発明の接続方法は、管
状に成形された合成樹脂製の内層と、この内層の外周面
に延伸ポリオレフィン系樹脂シートを螺旋状に巻回する
ことにより形成された補強層と、この補強層に積層され
た合成樹脂製の外層とを有する複合高圧管の端部同士を
突き合わせ接続する方法であって、各複合高圧管の端部
を加熱・溶融した状態で、各複合高圧管の端部同士を、
内層端部の溶融樹脂が突き合わせ部の延伸ポリオレフィ
ン系樹脂シート間を通じて外方に流動するような加圧力
で突き合わせることにより、内層の端部同士を融着する
ことによって特徴づけられる。The connection method of the present invention is formed by spirally winding an inner layer made of synthetic resin in a tubular shape and an outer peripheral surface of the inner layer with a stretched polyolefin resin sheet. A method of connecting the ends of a composite high-pressure pipe having a reinforcing layer and an outer layer made of synthetic resin laminated on the reinforcing layer by butt-joining each other, and heating and melting the end of each composite high-pressure pipe. , The ends of each composite high-pressure pipe,
It is characterized by fusing the ends of the inner layer by abutting the molten resin at the ends of the inner layer with a pressing force such that the molten resin flows outward through the stretched polyolefin-based resin sheets at the abutting portions.
【0010】この発明の接続方法において、内層が高密
度ポリエチレンにて成形された複合高圧管を接続する場
合、各複合高圧管の端部を、加熱温度:210〜260
℃、加熱時間:90〜250secの条件にて加熱・溶
融して、内層端部の溶融長さ(管端面からの溶融長さ)
を、通常の接続の場合よりも長くすることが好ましい。
この場合、内層端部の溶融長さは、接続を行う複合高圧
管の口径によって異なるが、例えば小口径(呼び径30
0Aまでの管)の場合、内層肉厚の1.0〜1.5倍程
度が好ましい。In the connection method of the present invention, when connecting the composite high-pressure pipes whose inner layer is formed of high-density polyethylene, the end of each composite high-pressure pipe is heated at a heating temperature of 210 to 260.
C., heating time: heated and melted under the conditions of 90 to 250 sec, and melted length of inner layer end (melted length from pipe end face)
Is preferably longer than in the case of normal connection.
In this case, the melting length of the inner layer end varies depending on the diameter of the composite high-pressure pipe to be connected, but for example, a small diameter (nominal diameter 30
In the case of a tube up to 0 A), it is preferably about 1.0 to 1.5 times the inner layer wall thickness.
【0011】この発明の接続方法において、複合高圧管
の端部同士を、0.1〜0.2MPaの加圧力にて突き
合わせ融着することが好ましい。In the connection method of the present invention, it is preferable that the end portions of the composite high-pressure pipe are butt-welded together with a pressure of 0.1 to 0.2 MPa.
【0012】本発明の接続方法は、管状に成形された合
成樹脂製の内層と、この内層の外周面に延伸ポリオレフ
ィン系樹脂シートを螺旋状に巻回することにより形成さ
れた補強層とを有する複合高圧管(2層構造)の端部同
士を突き合わせ接続する方法であって、各複合高圧管の
端部を加熱・溶融した状態で、各複合高圧管の端部同士
を、内層端部の溶融樹脂が突き合わせ部の延伸ポリオレ
フィン系樹脂シート間を通じて外方に流動するような加
圧力で突き合わせることにより、内層の端部同士を融着
することによって特徴づけられる。The connection method of the present invention has a synthetic resin inner layer formed in a tubular shape, and a reinforcing layer formed by spirally winding a stretched polyolefin resin sheet on the outer peripheral surface of the inner layer. A method for butt-connecting end portions of a composite high-pressure pipe (two-layer structure), wherein the end portions of each composite high-pressure pipe are heated and melted, It is characterized in that the ends of the inner layer are fused by abutting with a pressing force such that the molten resin flows outward through the stretched polyolefin-based resin sheets at the abutting portions.
【0013】この発明の接続方法において、内層が高密
度ポリエチレンにて成形された複合高圧管を接続する場
合、各複合高圧管の端部を、加熱温度:210〜260
℃、加熱時間:90〜250secの条件にて加熱・溶
融して、内層端部の溶融長さ(管端面からの溶融長さ)
を、通常の接続の場合よりも長くすることが好ましい。
この場合、内層端部の溶融長さは、接続を行う複合高圧
管の口径によって異なるが、例えば小口径(呼び径30
0Aまでの管)の場合、内層肉厚の1.0〜1.5倍程
度が好ましい。In the connecting method of the present invention, when connecting the composite high-pressure pipes whose inner layers are formed of high-density polyethylene, the end of each composite high-pressure pipe is heated at a heating temperature of 210 to 260.
C., heating time: heated and melted under the conditions of 90 to 250 sec, and melted length of inner layer end (melted length from pipe end face)
Is preferably longer than in the case of normal connection.
In this case, the melting length of the inner layer end varies depending on the diameter of the composite high-pressure pipe to be connected, but for example, a small diameter (nominal diameter 30
In the case of a tube up to 0 A), it is preferably about 1.0 to 1.5 times the inner layer wall thickness.
【0014】この発明の接続方法において、複合高圧管
の端部同士を、0.1〜0.2MPaの加圧力にて突き
合わせ融着することが好ましい。In the connection method of the present invention, it is preferable that the end portions of the composite high-pressure pipe are butt-welded together with a pressure of 0.1 to 0.2 MPa.
【0015】次に、本発明の接続方法を適用する複合高
圧管を詳細に説明する。Next, the composite high-pressure pipe to which the connecting method of the present invention is applied will be described in detail.
【0016】まず、複合高圧管の補強層を構成する延伸
ポリオレフィン系樹脂シートについて説明する。First, the stretched polyolefin resin sheet constituting the reinforcing layer of the composite high-pressure pipe will be described.
【0017】延伸ポリオレフィン系樹脂シートとは、少
なくとも長手方向に延伸されたポリオレフィン系樹脂を
主成分とする材料から構成されるシートを指す。The stretched polyolefin-based resin sheet refers to a sheet composed of a material containing a polyolefin-based resin as a main component, which is stretched in at least the longitudinal direction.
【0018】ポリオレフィン系樹脂は、特に限定される
ものではないが、例えば、低密度ポリエチレン、直鎖状
低密度ポリエチレン、高密度ポリエチレン、ホモポリプ
ロピレン、プロピレンランダム共重合体、プロピレンブ
ロック共重合体、ポリ(4−メチル−1−ペンテン)等
が挙げられる。これらのポリオレフィン系樹脂のうち、
延伸後の弾性率が高い、ポリエチレン、特に結晶性の高
い高密度ポリエチレンが好ましい。The polyolefin resin is not particularly limited, and examples thereof include low density polyethylene, linear low density polyethylene, high density polyethylene, homopolypropylene, propylene random copolymer, propylene block copolymer and poly. (4-methyl-1-pentene) and the like. Of these polyolefin resins,
Polyethylene having a high elastic modulus after stretching, particularly high-density polyethylene having high crystallinity, is preferable.
【0019】ポリオレフィン系樹脂には、必要に応じ
て、結晶核剤、架橋剤、架橋助剤、滑剤、充填剤、顔
料、異種のポリオレフィン系樹脂、低分子量ポリオレフ
ィンワックス等が配合されてもよい。If necessary, a crystal nucleating agent, a cross-linking agent, a cross-linking aid, a lubricant, a filler, a pigment, a different kind of polyolefin-based resin, a low-molecular-weight polyolefin wax or the like may be added to the polyolefin-based resin.
【0020】結晶核剤は、結晶化度を向上させる目的で
添加されるものであって、例えば、炭酸カルシウム、酸
化チタン等が挙げられる。The crystal nucleating agent is added for the purpose of improving the crystallinity, and examples thereof include calcium carbonate and titanium oxide.
【0021】架橋剤、架橋助剤は、上記ポリオレフィン
系樹脂の分子鎖を部分的に架橋し、延伸ポリオレフィン
系樹脂シートの耐熱性やクリープ性能等を向上させる目
的で添加されるものであって、架橋剤としては、例え
ば、ベンゾフェノン、チオキサントン、アセトフェノン
等の光重合開始剤が挙げられる。架橋助剤としては、例
えば、トリアリルシアヌレート、トリメチロールプロパ
ントリアクリレート、ジアリルフタレート等の多官能性
モノマーが挙げられる。The cross-linking agent and the cross-linking aid are added for the purpose of partially cross-linking the molecular chains of the above polyolefin resin to improve the heat resistance and creep performance of the stretched polyolefin resin sheet. Examples of the crosslinking agent include photopolymerization initiators such as benzophenone, thioxanthone, and acetophenone. Examples of the crosslinking aid include polyfunctional monomers such as triallyl cyanurate, trimethylolpropane triacrylate and diallyl phthalate.
【0022】上記架橋剤の使用に替えて、電子線照射や
紫外線照射による架橋手段を採用してもよい。Instead of using the above-mentioned crosslinking agent, a crosslinking means by electron beam irradiation or ultraviolet irradiation may be adopted.
【0023】電子線照射や紫外線照射による架橋手段に
は、ポリオレフィン系樹脂に上記架橋剤や架橋助剤等を
添加し、好ましくは1〜20Mrad、より好ましくは
3〜10Mradの電子線を照射するか、あるいは、好
ましくは50〜800mW/cm2、より好ましくは1
00〜500mW/cm2の紫外線を照射するという方
法が挙げられる。このような架橋工程は、後述する延伸
工程と同時に、あるいは延伸工程に引き続いて行えばよ
い。For the crosslinking means by electron beam irradiation or ultraviolet ray irradiation, is added the above-mentioned crosslinking agent or crosslinking auxiliary agent to the polyolefin resin, and is preferably irradiated with an electron beam of 1 to 20 Mrad, more preferably 3 to 10 Mrad. Alternatively, preferably 50 to 800 mW / cm 2 , more preferably 1
A method of irradiating with an ultraviolet ray of 0 to 500 mW / cm 2 can be mentioned. Such a cross-linking step may be performed at the same time as the later-described stretching step or subsequent to the stretching step.
【0024】上記方法によって架橋を行うことにより、
延伸ポリオレフィン系樹脂シートのクリープ性能が向上
し、複合高圧管を使用する際の内圧に対するクリープ性
能が向上するので、特に、内層を構成する樹脂にクリー
プ性能の低いポリオレフィン系樹脂を使用する場合に
は、延伸ポリオレフィン系樹脂シートは架橋されている
ことが好ましい。By cross-linking by the above method,
Since the creep performance of the stretched polyolefin-based resin sheet is improved and the creep performance with respect to the internal pressure when using the composite high-pressure pipe is improved, particularly when a polyolefin-based resin having low creep performance is used as the resin forming the inner layer The stretched polyolefin resin sheet is preferably crosslinked.
【0025】延伸ポリオレフィン系樹脂シートは、シー
ト状に加工されたポリオレフィン系樹脂シートを延伸し
て得られる。このポリオレフィン系樹脂シートの作製手
段は、特に限定されるものではないが、例えば、Tダイ
法による押出成形、カレンダー法によるロール成形等が
挙げられる。The stretched polyolefin resin sheet is obtained by stretching a polyolefin resin sheet processed into a sheet shape. The means for producing the polyolefin resin sheet is not particularly limited, but examples thereof include extrusion molding by the T-die method and roll molding by the calender method.
【0026】また、ポリオレフィン系樹脂シートを連続
的に延伸する手段は、特に限定されるものではないが、
例えば、加熱されたポリオレフィン系樹脂シートを、速
度の異なるロール間で延伸する方法、互いに異なる方向
に回転するロール間に加熱されたポリオレフィン系樹脂
シートを挟み込み、厚さを減少させながら管の長手方向
に伸長させる、いわゆる圧延方法等が挙げられる。The means for continuously stretching the polyolefin resin sheet is not particularly limited,
For example, a method of stretching a heated polyolefin-based resin sheet between rolls of different speeds, a heated polyolefin-based resin sheet is sandwiched between rolls that rotate in mutually different directions, and the longitudinal direction of the pipe is reduced while reducing the thickness. The so-called rolling method, etc., in which the material is stretched to
【0027】これらの方法は、1つの方法の単一回のみ
で実施されてもよいが、2回以上段階的に繰り返して実
施されてもよい。また、上記延伸工程を2回以上実施す
る場合、複数の延伸方法の組合せで実施されてもよい。
特に、比較的厚いポリオレフィン系樹脂シートを延伸す
る場合には、一旦、上記圧延を行った後、延伸を行うこ
とが好ましい。These methods may be carried out only once in one method, or may be carried out stepwise more than once. When the stretching step is performed twice or more, a combination of a plurality of stretching methods may be performed.
In particular, when a relatively thick polyolefin-based resin sheet is stretched, it is preferable to perform the above-mentioned rolling and then the stretching.
【0028】延伸前のポリオレフィン系樹脂シート(延
伸原反)の厚さは、得られる複合高圧管の用途や延伸倍
率等によって決定されるものであって、特に限定される
ものではないが、0.5〜15mm程度が好ましい。シ
ートの厚さが0.5mm未満であると、延伸ポリオレフ
ィン系樹脂シートの厚さが薄くなり過ぎるため、次工程
の積層作業などにおける取扱性が低下して作業が行い難
くなる。シートの厚さが15mmを超えると、延伸負荷
が大きくなり過ぎるため、延伸装置が不必要に大きくな
るだけでなく、延伸作業が難しくなるおそれがある。The thickness of the polyolefin-based resin sheet (stretched raw fabric) before stretching is determined according to the intended use of the resulting composite high-pressure tube and the stretching ratio, and is not particularly limited, but is 0. It is preferably about 5 to 15 mm. When the thickness of the sheet is less than 0.5 mm, the thickness of the stretched polyolefin-based resin sheet becomes too thin, so that the handleability in the laminating work in the next step is reduced and the work becomes difficult to perform. If the thickness of the sheet exceeds 15 mm, the stretching load becomes too large, which may not only unnecessarily increase the stretching apparatus but also make the stretching operation difficult.
【0029】このような延伸原反から得られる延伸ポリ
オレフィン系樹脂シートの厚さは、50〜1000μm
程度となる。The stretched polyolefin resin sheet obtained from such a stretched raw fabric has a thickness of 50 to 1000 μm.
It will be about.
【0030】延伸ポリオレフィン系樹脂シートからなる
補強層の幅は、複合高圧管の口径、シートの巻回角度、
後述する巻回方法によって適宜選択されるものであっ
て、特に限定されるものではない。比較的幅の狭い補強
層を用いる場合は、幅広のシートを所要幅にスリットし
て用いればよい。The width of the reinforcing layer made of a stretched polyolefin-based resin sheet depends on the diameter of the composite high-pressure pipe, the winding angle of the sheet,
It is appropriately selected depending on the winding method described later, and is not particularly limited. When a reinforcing layer having a relatively narrow width is used, a wide sheet may be slit and used in a required width.
【0031】延伸ポリオレフィン系樹脂シートの延伸倍
率は、用いられる結晶性ポリオレフィン系樹脂の性状に
よって必要延伸倍率が決定されるものであり、特に限定
されるものではないが、好ましくはその長手方向に10
倍以上、より好ましくは20倍以上延伸されているもの
がよい。延伸ポリオレフィン系樹脂シートの長手方向の
延伸倍率が10倍未満であると、必要強度や弾性率が得
られ難くなるおそれがある。また、幅方向の延伸を行う
と、長手方向の延伸が抑制され、長手方向に10倍以上
延伸することが難しくなるおそれがある。The stretch ratio of the stretched polyolefin resin sheet is determined according to the properties of the crystalline polyolefin resin used and is not particularly limited, but preferably 10 in the longitudinal direction.
It is preferable that the film is stretched at least twice, more preferably at least 20 times. If the stretching ratio of the stretched polyolefin-based resin sheet in the longitudinal direction is less than 10 times, it may be difficult to obtain required strength and elastic modulus. Further, when the stretching in the width direction is performed, stretching in the longitudinal direction is suppressed, and it may be difficult to stretch 10 times or more in the longitudinal direction.
【0032】延伸ポリオレフィン系樹脂シートは、必要
に応じて、その接着性を向上する目的で、物理的もしく
は化学的手段による表面処理が施されてもよい。表面処
理には、例えば、サンドブラスト等のエンボス手段や表
面部分の局所的加熱手段によって、延伸ポリオレフィン
系樹脂シート表面に微細な凹凸を形成する物理的な表面
処理法が、作業の容易性等の理由から好ましい。The stretched polyolefin-based resin sheet may be subjected to a surface treatment by a physical or chemical means, if necessary, for the purpose of improving its adhesiveness. For the surface treatment, for example, a physical surface treatment method for forming fine irregularities on the surface of the stretched polyolefin-based resin sheet by an embossing means such as sandblasting or a local heating means for the surface portion is used for the reason of workability and the like. Is preferred.
【0033】また、延伸ポリオレフィン系樹脂シート表
面に、予め接着用シートをラミネートし、接着性を向上
させる方法もある。接着用シートとしては、直鎖状低密
度ポリエチレン、変性ポリエチレン、エチレン−酢酸ビ
ニル共重合体等がある。There is also a method of improving the adhesiveness by previously laminating an adhesive sheet on the surface of the stretched polyolefin resin sheet. Examples of the adhesive sheet include linear low density polyethylene, modified polyethylene, ethylene-vinyl acetate copolymer and the like.
【0034】次に、複合高圧管の内層と外層について説
明する。Next, the inner layer and the outer layer of the composite high pressure pipe will be described.
【0035】本発明の接続方法を適用する複合高圧管に
おいて、内層は、輸送媒体を通過させるためのものであ
る。従って、内層に用いられる合成樹脂の種類は、輸送
媒体の種類によって適宜選択される。具体的には、高密
度ポリエチレンなどのポリオレフィン系樹脂、ポリ塩化
ビニル、ポリアミド、各種ゴム、ポリオレフィン系エラ
ストマーなどが挙げられるが、特に制限されるものでは
ない。In the composite high-pressure pipe to which the connection method of the present invention is applied, the inner layer is for passing the transport medium. Therefore, the type of synthetic resin used for the inner layer is appropriately selected according to the type of transport medium. Specific examples thereof include polyolefin resins such as high-density polyethylene, polyvinyl chloride, polyamide, various rubbers, and polyolefin elastomers, but are not particularly limited.
【0036】また、内層の肉厚は、輸送媒体の種類や、
使用内圧もしくは用途によって適宜選択される。なお、
製造時に発生する複合高圧管の破片や、使用済み複合高
圧管のリサイクルを考慮すると、内層を構成する合成樹
脂はポリオレフィン系樹脂であることが好ましい。The thickness of the inner layer depends on the type of transport medium,
It is appropriately selected depending on the internal pressure used or the application. In addition,
Considering the fragments of the composite high-pressure pipe generated during manufacturing and the recycling of the used composite high-pressure pipe, the synthetic resin forming the inner layer is preferably a polyolefin resin.
【0037】本発明の接続方法を適用する複合高圧管に
おいて、外層は、管表面の保護や耐候性向上等を目的と
して形成されるものである。外層を構成する樹脂には、
上記した内層と同様の合成樹脂が使用可能であり、さら
に、ポリアミド、アクリル樹脂、ポリエステル樹脂等も
使用可能である。外層に用いられる合成樹脂は、用途・
使用状況などによって適宜選択される。In the composite high-pressure pipe to which the connection method of the present invention is applied, the outer layer is formed for the purpose of protecting the pipe surface and improving weather resistance. The resin that constitutes the outer layer,
The same synthetic resin as the above-mentioned inner layer can be used, and further, polyamide, acrylic resin, polyester resin or the like can be used. The synthetic resin used for the outer layer is used for
It is appropriately selected depending on the usage situation.
【0038】また、外層の肉厚は、内層と同様に、輸送
媒体の種類や、使用内圧もしくは用途によって適宜選択
される。なお、製造時に発生する複合高圧管の破片や、
使用済み複合高圧管のリサイクルを考慮すると、外層を
構成する合成樹脂はポリオレフィン系樹脂であることが
好ましい。The wall thickness of the outer layer is appropriately selected depending on the type of the transport medium, the internal pressure used, or the application, like the inner layer. In addition, the fragments of the composite high-pressure pipe generated during manufacturing,
Considering recycling of the used composite high-pressure pipe, the synthetic resin forming the outer layer is preferably a polyolefin resin.
【0039】本発明の接続方法を適用する複合高圧管に
おいて、補強層は、内層の外周面に傾斜周方向に巻回さ
れた延伸ポリオレフィン系樹脂シートからなる第1補強
層と、管軸方向に対して第1補強層と対称角度となるよ
うに積層された延伸ポリオレフィン系樹脂シートからな
る第2補強層を設けたものを挙げることができる。この
ように複数層からなる補強層を形成しておけば、合成樹
脂管に比べて高耐圧の複合高圧管が得られる。なお、傾
斜周方向とは、シート巻回方向が管軸方向に対して所定
角度だけ傾斜していることを意味する。In the composite high-pressure pipe to which the connection method of the present invention is applied, the reinforcing layer includes a first reinforcing layer made of a stretched polyolefin resin sheet wound around the outer peripheral surface of the inner layer in an inclined circumferential direction, and in the axial direction of the tube. On the other hand, there may be mentioned one provided with a second reinforcing layer made of a stretched polyolefin resin sheet laminated so as to form a symmetric angle with the first reinforcing layer. By forming a reinforcing layer composed of a plurality of layers in this way, a composite high-pressure pipe having a higher pressure resistance than a synthetic resin pipe can be obtained. The inclined circumferential direction means that the sheet winding direction is inclined by a predetermined angle with respect to the tube axis direction.
【0040】補強層の枚数は、シートの厚みや延伸倍
率、複合高圧管に要求される性能になどによって、適宜
選択されるが、各々異なる延伸倍率や厚みの補強層を用
いてもよい。The number of reinforcing layers is appropriately selected depending on the thickness of the sheet, the draw ratio, the performance required for the composite high-pressure tube, and the like, but the reinforcing layers having different draw ratios and thicknesses may be used.
【0041】また、補強層は、隙間なく積層されている
ことが好ましい。複合高圧管の断面形状外周と同じシー
ト幅にすることにより、積層を隙間なく行うことが可能
であるが、若干の隙間がある状態で積層されていてもよ
い。Further, it is preferable that the reinforcing layers are laminated without any gap. By making the sheet width the same as the outer circumference of the cross-sectional shape of the composite high-pressure pipe, it is possible to perform lamination without any gap, but it is also possible for layers to be laminated with a slight gap.
【0042】複合高圧管の断面形状は、特に制限されな
いが、重量に対する内圧強度、外力強度の効率がよい円
形断面や、角(コーナー部)にRを設けた略正方形断面
が好ましい。複雑な断面形状では、補強層の積層が困難
となる。The cross-sectional shape of the composite high-pressure pipe is not particularly limited, but a circular cross-section with a high efficiency of internal pressure strength and external force strength against weight, or a substantially square cross-section with rounded corners (corners) is preferable. With a complicated cross-sectional shape, it becomes difficult to stack the reinforcing layers.
【0043】本発明を適用する複合高圧管の製造方法
は、特に限定されるものではないが、例えば、内層とな
る高密度ポリエチレン管などのポリオレフィン系樹脂管
を前工程で製造しておき、補強層及び外層を、その樹脂
管の表面に積層する方法が挙げられる。The method for producing the composite high-pressure pipe to which the present invention is applied is not particularly limited, but for example, a polyolefin resin pipe such as a high-density polyethylene pipe as an inner layer is produced in a previous step and reinforced. A method of laminating the layer and the outer layer on the surface of the resin pipe can be mentioned.
【0044】中空状の内層を得る方法としては、通常、
パイプやホースの製造で行われている押出成形法を採用
すればよい。外層を被覆する方法としては、押出機と被
覆金型を用いて押出被覆する方法や、予めシート状もし
くはチューブ状の外層を成形しておき、延伸ポリオレフ
ィン系樹脂シートからなる補強層の外面に積層する方法
が挙げられる。As a method for obtaining a hollow inner layer,
The extrusion molding method used in the manufacture of pipes and hoses may be adopted. As a method for coating the outer layer, a method of extrusion coating using an extruder and a coating mold, or a sheet-shaped or tube-shaped outer layer is preliminarily molded and laminated on the outer surface of the reinforcing layer made of a stretched polyolefin-based resin sheet. There is a method of doing.
【0045】<作用>本発明の接続方法によれば、各複
合高圧管の端部を加熱・溶融した状態で、各複合高圧管
の端部同士を、通常の突き合わせ融着よりも高い加圧力
(例えば0.15MPa)で突き合わせて、内層端部の
溶融樹脂が、突き合わせ部の延伸ポリオレフィン系樹脂
シート間を通じて外方に流動するようにしているので、
突き合わせ融着部の内側及び外側の双方に、内層端部の
溶融樹脂によるビードが形成される。その結果、複合高
圧管同士が強固に接続される。<Operation> According to the connection method of the present invention, the end portions of each composite high-pressure pipe are heated and melted, and the end portions of each composite high-pressure pipe are pressed against each other at a pressure higher than that of normal butt fusion. (For example, 0.15 MPa), the molten resin at the end of the inner layer is allowed to flow outward through the stretched polyolefin-based resin sheet at the butted portion.
A bead of molten resin at the inner layer end is formed on both the inside and the outside of the butt fusion-bonded portion. As a result, the composite high pressure pipes are firmly connected to each other.
【0046】従って、内部に高圧流が通過するような給
水管等の接続に本発明の接続方法を適用することで、複
合高圧管の接続部が破損したり、接続部において漏水が
発生する等のおそれがなくなる。Therefore, by applying the connecting method of the present invention to the connection of a water supply pipe or the like through which a high-pressure flow passes, the connecting portion of the composite high-pressure pipe is damaged, or water leaks at the connecting portion. There is no fear of.
【0047】本発明の接続方法において、内層が高密度
ポリエチレンにて成形された複合高圧管を接続する場
合、各複合高圧管の端部を、加熱温度:210〜260
℃、加熱時間:90〜250secの条件にて加熱・溶
融することが好ましい。このような条件で加熱・溶融を
行うと、内層(高密度ポリエチレン)の端部の溶融量
(複合高圧管の管端面からの溶融長さ)を多くすること
ができ、延伸ポリオレフィン系樹脂シート間から外部に
流動する溶融樹脂の量を多くすることができる。In the connection method of the present invention, when connecting the composite high-pressure pipes whose inner layers are formed of high-density polyethylene, the end of each composite high-pressure pipe is heated at a heating temperature of 210 to 260.
C., heating time: It is preferable to heat and melt under the conditions of 90 to 250 sec. When heating and melting are performed under such conditions, the amount of melting at the end of the inner layer (high-density polyethylene) (melting length from the end face of the composite high-pressure pipe) can be increased, and The amount of molten resin flowing from the outside to the outside can be increased.
【0048】次に、加熱・溶融時及び突き合わせ融着時
の各条件を以下に説明する。Next, each condition during heating / melting and butt fusion will be described below.
【0049】本発明の複合高圧管の接続方法において、
内層を構成する合成樹脂を高密度ポリエチレンとする場
合に、加熱・溶融時の加熱温度を210〜260℃とし
ているのは、加熱温度が210℃未満であると、目的と
する溶融樹脂量を得るのに多くの加熱時間が必要であ
り、また加熱温度が260℃よりも高くなると、突き合
わせ融着部の樹脂(高密度ポリエチレン)の劣化が著し
くなるという問題を回避するためである。加熱温度の更
に好ましい範囲は、235〜250℃である。In the method of connecting the composite high-pressure pipes of the present invention,
When the synthetic resin forming the inner layer is high-density polyethylene, the heating temperature during heating and melting is 210 to 260 ° C. When the heating temperature is less than 210 ° C, the desired amount of molten resin is obtained. This requires a long heating time, and when the heating temperature is higher than 260 ° C., the problem that the resin (high-density polyethylene) in the butt fusion portion is significantly deteriorated is avoided. A more preferable range of heating temperature is 235 to 250 ° C.
【0050】加熱・融着時の加熱時間は、加熱温度によ
って決定されるが、加熱温度が210〜260℃である
場合、90〜250secが適当である。加熱時間が9
0sec未満であると、内層端部の溶融樹脂の量が少な
すぎて目的とする融着強度を得ることができない。ま
た、加熱時間を250secよりも長くすると、突き合
わせ融着に要する時間が長くなってしまい生産性の問題
が発生する。The heating time at the time of heating and fusing is determined by the heating temperature, but when the heating temperature is 210 to 260 ° C., 90 to 250 sec is suitable. Heating time 9
If the time is less than 0 sec, the amount of the molten resin at the end of the inner layer is too small to obtain the desired fusion strength. Further, if the heating time is longer than 250 sec, the time required for butt fusion will be long, which causes a problem of productivity.
【0051】加熱時間のより具体的な範囲は、加熱温度
が210℃である場合、200〜250secの範囲、
加熱温度が235〜260℃である場合、90〜120
secの範囲であることが好ましい。More specific range of heating time is 200 to 250 sec when the heating temperature is 210 ° C.,
When the heating temperature is 235 to 260 ° C, 90 to 120
It is preferably in the range of sec.
【0052】これら加熱・溶融条件の中で、加熱温度を
235℃とし、加熱時間を90〜150secとするこ
とが特に好ましい。Among these heating / melting conditions, it is particularly preferable to set the heating temperature to 235 ° C. and the heating time to 90 to 150 sec.
【0053】本発明の複合高圧管の接続方法において、
突き合わせ融着時の加圧力は、0.1〜0.2MPaが
好ましい。突き合わせ融着時の加圧力が0.1MPa未
満であると、目的とする融着強度を得ることができな
い。また、加圧力が0.2MPaよりも大きいと、内層
端部の未溶融部分で接合する可能性があり、安定した融
着強度を得ることができない。In the method of connecting the composite high-pressure pipes of the present invention,
The pressure applied during butt fusion is preferably 0.1 to 0.2 MPa. If the pressure applied during butt fusion is less than 0.1 MPa, the desired fusion strength cannot be obtained. Further, if the applied pressure is larger than 0.2 MPa, there is a possibility of joining at the unmelted portion of the inner layer end portion, and stable fusion strength cannot be obtained.
【0054】[0054]
【発明の実施の形態】まず、本発明の接続方法を適用す
る複合高圧管の一例を、図1を参照しながら説明する。BEST MODE FOR CARRYING OUT THE INVENTION First, an example of a composite high-pressure pipe to which the connecting method of the present invention is applied will be described with reference to FIG.
【0055】図1に示す複合高圧管1は、管状に成形さ
れた高密度ポリエチレン製の内層11と、内層11の外
周面上に、延伸ポリエチレンシート12aを螺旋状に巻
回することにより形成された補強層12と、補強層12
上に積層された高密度ポリエチレン製の外層13によっ
て構成されている。The composite high-pressure pipe 1 shown in FIG. 1 is formed by spirally winding an inner layer 11 made of high-density polyethylene formed in a tubular shape, and a stretched polyethylene sheet 12a on the outer peripheral surface of the inner layer 11. Reinforcing layer 12 and the reinforcing layer 12
The outer layer 13 made of high-density polyethylene is laminated on the upper layer.
【0056】内層11に積層された補強層12は、適当
な幅寸法の帯状をした延伸ポリエチレンシート12a
を、内層11の管軸に対して30°〜90°の傾斜角度
になるように螺旋状に巻回し、さらにその上に、延伸ポ
リエチレンシート12aを傾斜角度が逆向きになるよう
に螺旋状に巻回した2層構造となっている。The reinforcing layer 12 laminated on the inner layer 11 is a stretched polyethylene sheet 12a in the form of a strip having an appropriate width dimension.
Is spirally wound at an inclination angle of 30 ° to 90 ° with respect to the tube axis of the inner layer 11, and the stretched polyethylene sheet 12a is further spirally wound thereon so that the inclination angle is opposite. It has a wound two-layer structure.
【0057】このような構成の複合高圧管1は、高密度
ポリエチレン製の内層11に対して、引っ張り強度に優
れた延伸ポリエチレンシート12aを螺旋状に巻回して
なる補強層12が積層されているので、内層11が補強
層12によって補強される。従って、複合高圧管1は、
耐圧性に優れており、内層11の内部に高圧の流体が流
れても破損するおそれがない。In the composite high-pressure pipe 1 having such a structure, a reinforcing layer 12 formed by spirally winding a stretched polyethylene sheet 12a having excellent tensile strength is laminated on an inner layer 11 made of high-density polyethylene. Therefore, the inner layer 11 is reinforced by the reinforcing layer 12. Therefore, the composite high-pressure pipe 1
It has excellent pressure resistance, and there is no risk of damage even if a high-pressure fluid flows inside the inner layer 11.
【0058】以上の構成の複合高圧管1,1同士を接続
する場合の実施例を比較例とともに説明する。An example of connecting the composite high-pressure pipes 1 and 1 having the above-described configurations will be described together with a comparative example.
【0059】<実施例1>
[加熱溶融工程]図1に示した複合高圧管つまり高密度
ポリエチレン製の内層11、延伸ポリエチレンシート1
2a製の補強層12及び高密度ポリエチレン製の外層1
3からなる複合高圧管(呼び径:100A)1を融着機
等(図示せず)に装着し、図2に示すように、複合高圧
管の1,1の各端面に、加熱状態になった加熱プレート
2をそれぞれ接触させて、各複合高圧管1,1の端部を
加熱する。Example 1 [Heating and Melting Step] The composite high-pressure pipe shown in FIG. 1, that is, the inner layer 11 made of high-density polyethylene and the stretched polyethylene sheet 1
2a reinforcement layer 12 and high-density polyethylene outer layer 1
A composite high-pressure pipe (nominal diameter: 100 A) 1 composed of 3 is mounted on a fusion machine or the like (not shown), and as shown in FIG. 2, the end faces of 1, 1 of the composite high-pressure pipe are heated. The heating plates 2 are brought into contact with each other to heat the ends of the composite high-pressure pipes 1 and 1.
【0060】このとき、各複合高圧管の1,1は、加熱
プレート2に対して、特に押し付けるということはせず
に、各複合高圧管1,1の内層11の端部が所定の長さ
にわたって溶融状態になるまで加熱する。管端部の加熱
・溶融条件は、加熱温度235℃、加熱時間120se
cとし、内層11の溶融部分の長さ(管端面からの長
さ)を6.0mm(内層11の肉厚の1.2倍)とす
る。At this time, the composite high pressure pipes 1, 1 are not particularly pressed against the heating plate 2, and the end portion of the inner layer 11 of each composite high pressure pipe 1, 1 has a predetermined length. Heat until melted. The heating and melting conditions of the tube end are as follows: heating temperature 235 ° C., heating time 120 sec
c, and the length of the melted portion of the inner layer 11 (length from the tube end face) is 6.0 mm (1.2 times the wall thickness of the inner layer 11).
【0061】[突き合わせ接合工程]各複合高圧管1,
1の端部が溶融状態に加熱された時点で、加熱プレート
2を除去し、各複合高圧管1,1の端面同士を、加圧力
0.15MPaで突き合わせる。この突き合せにより、
図3に示すように、各複合高圧管1,1の内層11,1
1端部の溶融樹脂が、順次外側に向かって押し出され、
補強層12,12間を通過して管外部に流動する。この
流動樹脂(溶融樹脂)が管外部に溶出するとともに、外
側に向かってカールした状態になって相互に圧接され
る。これにより各複合高圧管1,1の内層11,11同
士が相互に融着される。[But-joining process] Each composite high-pressure pipe 1,
When the end portion of 1 is heated to a molten state, the heating plate 2 is removed, and the end surfaces of the composite high-pressure pipes 1 and 1 are butted against each other with a pressing force of 0.15 MPa. With this match,
As shown in FIG. 3, the inner layers 11, 1 of the respective composite high-pressure pipes 1, 1
Molten resin at one end is extruded toward the outside,
It flows between the reinforcing layers 12 and 12 and flows to the outside of the pipe. The fluidized resin (molten resin) is eluted outside the pipe, and is curled toward the outside to be pressed against each other. As a result, the inner layers 11, 11 of the composite high-pressure pipes 1, 1 are fused to each other.
【0062】融着接合された接続部Jの状態を図4に示
す。複合高圧管1,1の接続部Jには、相互に融着され
た内層11,11によって、厚肉のビードBが全周にわ
たって形成されており、各複合高圧管1,1同士が強固
に接合されている。FIG. 4 shows the state of the connection portion J fusion-bonded. At the connecting portion J of the composite high-pressure pipes 1 and 1, a thick bead B is formed over the entire circumference by the inner layers 11 and 11 fused to each other, and the composite high-pressure pipes 1 and 1 are firmly connected to each other. It is joined.
【0063】従って、複合高圧管1を、内部に高圧流が
通過するような給水管等として配管する際に、本発明の
接続方法を適用して、複合高圧管1,1同士を融着接合
することにより、接合部分が全周にわたって強固に接続
されるので、接続部Jにおいて破損や漏水が生じるおそ
れがない。Therefore, when the composite high-pressure pipe 1 is installed as a water supply pipe or the like through which a high-pressure flow passes, the connecting method of the present invention is applied to fusion-bond the composite high-pressure pipes 1 and 1 together. By doing so, the joint portion is firmly connected over the entire circumference, so there is no risk of damage or water leakage at the connection portion J.
【0064】以上の実施例1では、内層11、補強層1
2及び外層13の3層からなる複合高圧管1を接続する
例を示したが、複合高圧管が内層11及び補強層12の
2層構造である場合も、上記と同様な条件の溶融・加熱
及び突き合わせ融着を行って複合高圧管同士を接続する
ようにすればよい。In Example 1 above, the inner layer 11 and the reinforcing layer 1 were used.
Although an example in which the composite high-pressure pipe 1 composed of three layers of 2 and the outer layer 13 is connected has been shown, when the composite high-pressure pipe has a two-layer structure of the inner layer 11 and the reinforcing layer 12, melting and heating under the same conditions as above. The butt fusion may be performed to connect the composite high pressure pipes.
【0065】<比較例1>複合高圧管(呼び径:100
A)の管端部の加熱・溶融条件を、通常の条件:加熱温
度250℃、加熱時間90sec、内層11の溶融部分
の長さ(管端面からの長さ)を5.5mmとし、加圧力
0.075MPaとして、実施例1と同様な方法で接続
した後、反応性樹脂で接合部を補強した。<Comparative Example 1> Composite high-pressure pipe (nominal diameter: 100)
The heating / melting conditions of the pipe end portion of A) are normal conditions: heating temperature 250 ° C., heating time 90 sec, the length of the molten portion of the inner layer 11 (length from the pipe end face) is 5.5 mm, and the pressure is applied. After connecting at a pressure of 0.075 MPa in the same manner as in Example 1, the joint was reinforced with a reactive resin.
【0066】<性能評価試験>実施例1及び比較例1に
て接続を実施した複合高圧管について、下記の項目の試
験を行って性能を評価した。<Performance Evaluation Test> The composite high-pressure pipes connected in Example 1 and Comparative Example 1 were tested for the following items to evaluate their performance.
【0067】(a)扁平水圧試験
接続を行った複合高圧管から1000mmの管体(接続
部を含む)を切り出し、図5に示すように、水圧用治具
4及び加圧ポンプ5にて2.0MPaを加圧すると同時
に、接合部を扁平用圧板3で挟んで最大50%扁平させ
た。試験結果を表1に示す。(A) A 1000 mm tube body (including the connecting portion) was cut out from the composite high-pressure pipe to which the flat water pressure test connection was performed, and as shown in FIG. At the same time as pressurizing 0.0 MPa, the joint was sandwiched between the flat pressure plates 3 and flattened by 50% at the maximum. The test results are shown in Table 1.
【0068】(b)曲げ耐水圧試験
接続を行った複合高圧管から1500mmの管体(接続
部を含む)を切り出し、図6に示すように、水圧用治具
4及び加圧ポンプ5にて2.0MPaを加圧すると同時
に、接合部に曲げ評価用治具6で曲げ荷重を負荷して最
大30°に曲げた。試験結果を表1に示す。(B) Bending Water Pressure Resistance Test A 1500 mm tube body (including the connection part) was cut out from the composite high-pressure tube to which the connection was made, and as shown in FIG. At the same time as 2.0 MPa was applied, a bending load was applied to the joint by the bending evaluation jig 6 and the joint was bent at a maximum of 30 °. The test results are shown in Table 1.
【0069】[0069]
【表1】 [Table 1]
【0070】表1の結果から明らかなように、本発明の
接続方法を実施した複合高圧管の接続部は、柔軟性に優
れ、地震等で接合部に過度の力が働いても、接合部で破
壊することがないことが確認された。これに対し、比較
例1では、反応性樹脂が硬質であるため、扁平させた場
合、反応性樹脂の補強層が破壊し、その後、接合部の破
壊が生じた。また、曲げ耐水圧試験においても、同時に
過度の曲げが作用した場合に接合部で破壊した。さらに
は、実施工において、実施例1は比較例1に比べ大幅に
時間を短縮できることが確認された。As is clear from the results shown in Table 1, the joint portion of the composite high-pressure pipe which has been subjected to the connecting method of the present invention is excellent in flexibility, and even if excessive force acts on the joint portion due to an earthquake or the like, the joint portion is It was confirmed that it would not be destroyed. On the other hand, in Comparative Example 1, since the reactive resin was hard, when it was flattened, the reinforcing layer of the reactive resin broke, and thereafter the joint portion broke. Also, in the bending water pressure resistance test, the joint was broken when excessive bending acted at the same time. Furthermore, it was confirmed that in the working process, the time required for Example 1 was significantly shorter than that for Comparative Example 1.
【0071】[0071]
【発明の効果】以上説明したように、本発明の複合高圧
管の接続方法によれば、各複合高圧管の端部を加熱・溶
融した状態で、各複合高圧管の端部同士を、通常の突き
合わせ融着よりも高い加圧力つまり内層端部の溶融樹脂
が突き合わせ部の延伸ポリオレフィン系樹脂シート間を
通じて外方に流動するような加圧力で突き合わせるの
で、溶融した内層樹脂により管全周にわたって強固に接
合され、接続部の耐圧性能が原管と同等以上となる。こ
れにより、複合高圧管同士の接続後に接続部を樹脂にて
補強するといった工程を省略することができ、施工性が
向上する。As described above, according to the method of connecting the composite high-pressure pipes of the present invention, the end portions of the composite high-pressure pipes are normally heated and melted, and the end portions of the composite high-pressure pipes are normally connected to each other. Since the molten resin at the end of the inner layer is abutted with a pressure so that the molten resin at the end of the inner layer flows outwardly through the stretched polyolefin resin sheets at the butted portion, the molten inner layer resin will spread over the entire circumference of the pipe. It is firmly joined and the pressure resistance of the connection part is equal to or higher than that of the original pipe. Thereby, the step of reinforcing the connecting portion with resin after connecting the composite high-pressure pipes can be omitted, and the workability is improved.
【図1】本発明の接続方法を適用する複合高圧管の一例
を示す斜視図である。FIG. 1 is a perspective view showing an example of a composite high-pressure pipe to which a connection method of the present invention is applied.
【図2】本発明の接続方法の実施例の説明図である。FIG. 2 is an explanatory diagram of an embodiment of a connection method of the present invention.
【図3】同じく実施例の説明図である。FIG. 3 is an explanatory diagram of the same embodiment.
【図4】本発明の実施例において接続を行った複合高圧
管の接続部の構造を示す図である。FIG. 4 is a diagram showing a structure of a connecting portion of a composite high-pressure pipe to which a connection is made in the embodiment of the present invention.
【図5】本発明の接続方法において性能評価試験に用い
る測定装置の概略構成を模式的に示す図である。FIG. 5 is a diagram schematically showing a schematic configuration of a measuring device used for a performance evaluation test in the connection method of the present invention.
【図6】本発明の接続方法において性能評価試験に用い
る測定装置の概略構成を模式的に示す図である。FIG. 6 is a diagram schematically showing a schematic configuration of a measuring device used for a performance evaluation test in the connection method of the present invention.
1 複合高圧管
11 内層(高密度ポリエチレン樹脂製)
12 補強層
12a 延伸ポリエチレンシート(延伸ポリオレフィン
系樹脂シート)
13 外層
2 加熱プレート
3 扁平用圧板
4 水圧用治具
5 加圧ポンプ
6 曲げ評価用治具DESCRIPTION OF SYMBOLS 1 Composite high-pressure pipe 11 Inner layer (made of high-density polyethylene resin) 12 Reinforcing layer 12a Stretched polyethylene sheet (stretched polyolefin-based resin sheet) 13 Outer layer 2 Heating plate 3 Flat pressure plate 4 Water pressure jig 5 Pressurizing pump 6 Bending evaluation jig Ingredient
Claims (6)
この内層の外周面に延伸ポリオレフィン系樹脂シートを
螺旋状に巻回することにより形成された補強層と、この
補強層に積層された合成樹脂製の外層とを有する複合高
圧管の端部同士を突き合わせ接続する方法であって、 各複合高圧管の端部を加熱・溶融した状態で、各複合高
圧管の端部同士を、内層端部の溶融樹脂が突き合わせ部
の延伸ポリオレフィン系樹脂シート間を通じて外方に流
動するような加圧力で突き合わせることにより、内層の
端部同士を融着することを特徴とする複合高圧管の接続
方法。1. An inner layer made of a synthetic resin formed into a tubular shape,
Ends of a composite high-pressure pipe having a reinforcing layer formed by spirally winding a stretched polyolefin-based resin sheet on the outer peripheral surface of the inner layer, and a synthetic resin outer layer laminated on the reinforcing layer. A method of butt connection, in which the end of each composite high-pressure pipe is heated and melted, the end of each composite high-pressure pipe is passed through the stretched polyolefin-based resin sheet at the abutting part A method for connecting a composite high-pressure pipe, characterized in that the ends of the inner layer are fused by abutting with a pressing force that flows outward.
おいて、内層が高密度ポリエチレンにて成形された複合
高圧管を接続するに際し、各複合高圧管の端部を、加熱
温度:210〜260℃、加熱時間:90〜250se
cの条件にて加熱・溶融することを特徴とする複合高圧
管の接続方法。2. The method for connecting a composite high-pressure pipe according to claim 1, wherein when connecting the composite high-pressure pipe whose inner layer is formed of high-density polyethylene, the end of each composite high-pressure pipe is heated at a heating temperature of 210 to 210. 260 ° C, heating time: 90 to 250se
A method for connecting a composite high-pressure pipe, which comprises heating and melting under the condition c.
続方法において、複合高圧管の端部同士を、0.1〜
0.2MPaの加圧力にて突き合わせ融着することを特
徴とす複合高圧管の接続方法。3. The method for connecting a composite high-pressure pipe according to claim 1 or 2, wherein the end portions of the composite high-pressure pipe are 0.1 to
A method for connecting a composite high-pressure pipe, which comprises butt-fusing with a pressure of 0.2 MPa.
この内層の外周面に延伸ポリオレフィン系樹脂シートを
螺旋状に巻回することにより形成された補強層とを有す
る複合高圧管の端部同士を突き合わせ接続する方法であ
って、 各複合高圧管の端部を加熱・溶融した状態で、各複合高
圧管の端部同士を、内層端部の溶融樹脂が突き合わせ部
の延伸ポリオレフィン系樹脂シート間を通じて外方に流
動するような加圧力で突き合わせることにより、内層の
端部同士を融着することを特徴とする複合高圧管の接続
方法。4. A synthetic resin inner layer formed into a tubular shape,
A method for butt-connecting the ends of a composite high-pressure pipe having a reinforcing layer formed by spirally winding an expanded polyolefin-based resin sheet on the outer peripheral surface of the inner layer, wherein the end of each composite high-pressure pipe is connected. While the parts are heated and melted, the ends of the composite high-pressure pipes are butted against each other with a pressing force such that the molten resin at the inner layer ends flows outward through the stretched polyolefin-based resin sheets at the butted parts. And a method for connecting a composite high-pressure pipe, characterized in that the ends of the inner layer are fused together.
おいて、内層が高密度ポリエチレンにて成形された複合
高圧管を接続するに際し、各複合高圧管の端部を、加熱
温度:210〜260℃、加熱時間:90〜250se
cの条件にて加熱・溶融することを特徴とする複合高圧
管の接続方法。5. The method of connecting composite high-pressure pipes according to claim 4, wherein when connecting the composite high-pressure pipes whose inner layers are formed of high-density polyethylene, the end of each composite high-pressure pipe is heated at a heating temperature of 210 to 210. 260 ° C, heating time: 90 to 250se
A method for connecting a composite high-pressure pipe, which comprises heating and melting under the condition c.
続方法において、複合高圧管の端部同士を、0.1〜
0.2MPaの加圧力にて突き合わせ融着することを特
徴とす複合高圧管の接続方法。6. The method of connecting a composite high-pressure pipe according to claim 4 or 5, wherein the end portions of the composite high-pressure pipe are connected to each other by 0.1 to
A method for connecting a composite high-pressure pipe, which comprises butt-fusing with a pressure of 0.2 MPa.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001303253A JP2003103637A (en) | 2001-09-28 | 2001-09-28 | Method for connecting composite high-pressure pipe |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001303253A JP2003103637A (en) | 2001-09-28 | 2001-09-28 | Method for connecting composite high-pressure pipe |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003103637A true JP2003103637A (en) | 2003-04-09 |
Family
ID=19123373
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001303253A Pending JP2003103637A (en) | 2001-09-28 | 2001-09-28 | Method for connecting composite high-pressure pipe |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003103637A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014510238A (en) * | 2011-01-24 | 2014-04-24 | マリカプ オサケユフティオ | Pneumatic material transfer system pipe feeding section and pipe joint forming method |
| CN113606414A (en) * | 2021-07-29 | 2021-11-05 | 山东东宏管业股份有限公司 | End connecting structure and method for steel wire mesh framework polyethylene composite pipe |
| CN115095722A (en) * | 2022-07-11 | 2022-09-23 | 山东东宏管业股份有限公司 | A connection structure and connection method of a steel mesh skeleton polyethylene composite pipe |
-
2001
- 2001-09-28 JP JP2001303253A patent/JP2003103637A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014510238A (en) * | 2011-01-24 | 2014-04-24 | マリカプ オサケユフティオ | Pneumatic material transfer system pipe feeding section and pipe joint forming method |
| CN113606414A (en) * | 2021-07-29 | 2021-11-05 | 山东东宏管业股份有限公司 | End connecting structure and method for steel wire mesh framework polyethylene composite pipe |
| CN113606414B (en) * | 2021-07-29 | 2023-02-03 | 山东东宏管业股份有限公司 | End connecting structure and method for steel wire mesh framework polyethylene composite pipe |
| CN115095722A (en) * | 2022-07-11 | 2022-09-23 | 山东东宏管业股份有限公司 | A connection structure and connection method of a steel mesh skeleton polyethylene composite pipe |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4163385B2 (en) | Composite high-pressure pipe and joining method thereof | |
| JP4076440B2 (en) | Composite high-pressure pipe and manufacturing method thereof | |
| US10113672B2 (en) | Multilayer tube having a tubular inner film, device and method for producing same, and use thereof | |
| JP2002013675A (en) | Composite high-pressure pipe | |
| JP2002333090A (en) | Connecting method of composite high-pressure pipe and reinforcement member | |
| JP2003103637A (en) | Method for connecting composite high-pressure pipe | |
| JP2002228080A (en) | Method for connecting composite pipe | |
| JP2002240153A (en) | Method for connecting composite pipes | |
| JP2003080601A (en) | Connection method for composite high pressure pipes | |
| JP2002295781A (en) | Flange joint | |
| JP2002295777A (en) | Composite tube with socket | |
| JP2000346271A (en) | Connecting method for compound pipe | |
| US10344904B2 (en) | Strengthened polyethylene tubular member | |
| JP2002317895A (en) | Connection method for composite high-pressure pipe | |
| JP2002327888A (en) | Electric fusion coupling for composite high-pressure pipe | |
| JP2002071058A (en) | Composite high-pressure pipe | |
| JP4382941B2 (en) | Compound pipe | |
| JP2001280542A (en) | Work execution method of composite high pressure pipe | |
| JP2002172692A (en) | Core for manufacturing bent pipe and method for manufacturing bent pipe | |
| JP2003145618A (en) | Method for producing bent pipe | |
| JP2002234068A (en) | Method for manufacturing bent tube | |
| US20190049056A1 (en) | Method for strengthening a polyethylene tubular member | |
| JP2002137295A (en) | Manufacturing method for synthetic resin composite pipe | |
| JP2001050439A (en) | Polyolefin fiber made pipe joint and manufacture thereof | |
| WO2019032302A1 (en) | Strengthened polyethylene tubular member |