JP4465084B2 - Copper foil manufacturing method and manufacturing apparatus - Google Patents

Copper foil manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4465084B2
JP4465084B2 JP2000162426A JP2000162426A JP4465084B2 JP 4465084 B2 JP4465084 B2 JP 4465084B2 JP 2000162426 A JP2000162426 A JP 2000162426A JP 2000162426 A JP2000162426 A JP 2000162426A JP 4465084 B2 JP4465084 B2 JP 4465084B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic
cathode body
electrolytic treatment
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000162426A
Other languages
Japanese (ja)
Other versions
JP2001342589A (en
Inventor
拓也 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP2000162426A priority Critical patent/JP4465084B2/en
Publication of JP2001342589A publication Critical patent/JP2001342589A/en
Application granted granted Critical
Publication of JP4465084B2 publication Critical patent/JP4465084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、電解銅箔を製造する際に、銅箔の外観と機械特性を安定かつ良好にすることが可能な銅箔の製造方法及び製造装置に関する。
【0002】
【従来の技術】
銅箔は、一般的に電着ドラムと称されるドラム状の不溶性のカソード体とこれに対向する半円弧状のアノード体を有する電解槽を用い、カソード体とアノード体の間隙に、銅イオンを含む電解液を供給して電解反応を行うことによって、カソード体表面に銅を電析して製造されている。カソード体には、チタンやステンレス又はクロム等を被覆したステンレス鋼から成るドラム状のカソード体が用いられる。これらカソード体は、時間の経過と共にカソード体表面に有機物やごみ等の異物が付着したり、アノード体から発生する酸素ガスや電解液の飛散した雰囲気中にさらされることで表面に酸化被膜が形成する。この酸化被膜は耐食性を有する一方、酸化被膜が厚くなると、通電を阻害する。これらカソード体表面の付着物や酸化被膜は銅の析出を阻害する虞れがあり、電析した銅箔の変色や表面ムラといった外観不良やピンホールを発生するばかりでなく、電析する銅の結晶成長を阻害することから、得られる銅箔の引張強さや伸び率の低下といった機械特性にも悪影響を及ぼすという問題があった。
【0003】
従来は、これらカソード体表面の有機物やごみや酸化被膜を取り除く目的でカソード体表面を研磨バフを用いて物理的にバフ研磨することが行われていた。このバフ研磨は、付着物や酸化被膜を除去し、活性なカソード体表面を露出させる目的の他に、カソード体表面の粗さを調整する目的がある。表面が必要以上に粗いと電析時の結晶成長に影響を及ぼし機械特性の悪化や薄箔でのピンホールの原因となり、また細かいとカソード体表面との密着性が悪化し、めっき途中で剥離してしまうことがある。しかしながら、この物理的なバフ研磨は、作業性が悪く時間がかかるため、生産効率が低下するという問題があった。
【0004】
一方、特開平7−228996号公報には、電解銅箔の製造に用いるカソード体を陽極酸化し、予めカソード体表面に1.4〜140Åの酸化被膜を形成して電着ドラムの長寿命化を図る方法が開示されている。
【0005】
しかしながら、この方法では、酸化被膜の厚み制御が困難なため、部分的に酸化被膜の厚みが不均一になることがある。酸化被膜が部分的に厚くなると、電気を通電し難くなる為、電流密度の分布に影響を及ぼし、結晶成長の阻害や異常析出が懸念される。また、物理的なバフ研磨とは目的が異なり、活性なカソード表面を露出することができない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、従来のカソード体の物理的なバフ研磨法に代わり、作業性が良好な電解処理を用いた銅箔の製造方法とその製造装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、銅箔を製造する工程において、前述した問題を解決するため鋭意検討した結果、カソード体表面に形成された酸化被膜を銅箔を剥離した後に電解処理することにより、従来の様なバフ研磨を行うことなく、外観、機械特性ともに安定な銅箔が得られることを見出し、この知見に基づいて本発明を完成するに至った。
【0008】
すなわち、本発明は、電解液に浸漬したカソード体とアノード体の間に通電して電解反応により前記カソード体表面に銅箔を析出させ、カソード体表面から銅箔を剥離して銅箔を製造する方法において、銅箔を剥離した後に露出したカソード体表面を連続的又は間欠的に電解処理することを特徴とする銅箔の製造方法を提供するものである。
本発明は、また、電解液に浸漬したカソード体とアノード体との間に通電して電解反応により前記カソード体表面に銅箔を析出させ、カソード体表面から銅箔を剥離するようになした銅箔製造装置において、カソード体表面との間に電解処理液溜りを生成させる液溜めロールと、この電解液溜り生成部に設置した電解処理用アノード体とからなる電解処理装置をカソード体表面から銅箔を剥離する位置より後方に設けたことを特徴とする電解銅箔の製造装置を提供するものである。
【0009】
【発明の実施の形態】
本発明は、カソード体表面に生成した酸化被膜を連続的又は間欠的に電解処理して、電析に有効な活性なカソード体表面を得ることにより、機械特性が安定した銅箔を製造することを可能とした。また、銅箔の連続生産にも対応することができる。
【0010】
本発明の方法によれば、酸化被膜を電解処理することで酸化皮膜の厚さを容易制御できることから、カソード体表面に薄い酸化被膜として保つことも可能であり、必ずしも酸化被膜を完全に除去する必要はない。酸化皮膜は、カソード体表面に形成される銅箔との剥離性が良好であり、カソード体の使用期間の延長も可能となった。
【0011】
ここで、本発明の電解銅箔の製造装置の1例を図1に示す。まず、電解槽1の中には、例えば鉛又は不溶性極板の半円弧状のアノード体2と、例えばチタン、ステンレス又はクロム等を被覆したステンレス鋼から成るドラム状のカソード体3が所定の間隔で対向配置している。電解槽内のアノード体2とカソード体3の間隙には、銅イオンを含有した電解液4が満たされている。カソード体3の表面に生成した銅箔9は巻き取りロール8に巻き取られる。
【0012】
電解処理装置は、カソード体3表面との間に電解処理液溜り5を生成させる液溜めロール6と、この電解処理液溜り生成部に設置した電解処理用アノード体7とからなっており、カソード体3表面から銅箔9を剥離する位置より後方に設けられている。この電解処理装置は、電解処理液をカソード体表面の酸化被膜に効率良く供給することができ、銅箔の剥離後、好ましくはカソード体3が回転運動を伴い再び電解液4に入る直前にカソード体3表面と絶縁体の液溜めロール6面の間に供給されるようになっている。電解処理液溜り5には電解処理用アノード体7が設置されている。電解処理液は、必要に応じ濃度管理が可能な水溶液貯蔵タンクから、ポンプで供給される。電解処理液の濃度は期待する効果に合わせて調整する。
本発明の方法において、電解処理は必ずしも連続生産工程において行う必要はなく、連続生産を中断し、カソード体を別に設けられ専用設備で行うことも可能である。
【0013】
本発明の電解処理は、カソード体と電解処理用アノードの間に満たされた電解処理液から電気分解によってカソード体表面で水素を発生し、この水素がカソード体表面の酸化被膜を還元することによって行われる。よって、供給される電解処理液は特に限定されるものではないが、例えば、硫酸水溶液、リン酸水溶液、塩酸水溶液のような酸性水溶液、硫酸ナトリウム、塩化カリウムのような中性水溶液を用いることができるが、銅箔製造の連続生産工程に用いるには電解液に混入した場合、電析する銅箔の外観や機械特性など銅箔に一切の害を与えるものであってはならない。よって、銅箔製造に用いる電解液、あるいはその電解液の成分比が異なるものから、銅イオンを除外した水溶液を用いることが好ましい。
【0014】
前記電解処理液としては、一般に、銅箔の製造には硫酸銅水溶液が用いられることから、銅箔の製造には硫酸水溶液を電解処理液として用いることが好ましい。硫酸水溶液を用いる場合、その電解処理液の濃度は、硫酸濃度が5〜200g/lの水溶液であることが好ましい。硫酸濃度が5g/l未満の場合は、効果が期待できず、また200g/lを超える場合は、カソード体を腐食することが起こり得るからである。また、電解処理液は、水中の含有イオンの影響が懸念されることから純水で調製することが好ましい。
【0015】
電解処理用アノード体としては、横幅がカソード体と同程度で、縦幅が5〜50mmの酸化イリジウム/チタン製の電極が好ましく用いられる。また、電流密度は10〜100A/dmとすることが好ましい。
【0016】
電解処理は、連続的又は間欠的に行うことが可能である。また、電解処理装置は図1に示すような銅箔の製造を行いつつ電解処理を行う連続運転ばかりでなく、電解処理用アノード体と電解処理液槽及び電源から成る専用の処理槽を用いて行うことも可能である。この場合は、銅箔の製造に用いる電解液中に還元処理液が混入することがないため、還元処理液の選択幅が広がり、例えば硫酸ナトリウムのような中性の水溶液を用いることが可能となる。
【0017】
上記のように銅箔を製造する工程において、カソード体表面に形成された酸化被膜を電解処理することにより、従来の様なバフ研磨を行うことなく外観、機械特性とも安定な金属を製造することが可能となる。
【0018】
【実施例】
以下、実施例によって本発明を説明するが、本発明は実施例に限定されるものではない
【0019】
実施例1
図1で示した電解処理設備付き銅箔連続生産設備において、ドラム状のカソード体3を直径2000mm、幅1500mmのチタン製ドラムとし、このドラム表面をバフ研磨し、表面の粗さを調整した。
電解液4として、CuSO・5HO 280g/l、HSO 90g/lからなる水溶液を調整し、電解液温度40℃、流速0.3m/secの条件下で電流密度50A/dmで通電した電解反応により厚さ15μmの銅箔を製造した。
得られた銅箔の常温の引張強さをJIS C 6515に基づいて測定したところ、580N/mmであった。また、銅箔マット面の表面粗さをJIS B0601に基づいて測定したところ、Raは0.28μmであった。銅箔外観の変色は確認されなかった。
ついで、電解処理液供給口から、純水を使用した硫酸濃度10g/lの電解処理液をドラム状のカソード体3と液溜めロール6の間に供給し、電解処理用アノード体7と円筒型カソード回転体3とで電流密度50A/dmで連続電解処理を行い14日後の引張強さを同様にして測定したところ、570N/mmであった。表面粗さRaは0.29μmであった。銅箔外観の変色は確認されなかった。
【0020】
比較例1
電解銅箔の製造においてカソード3の電解処理をおこなわなかったこと以外は実施例1と同様にして14日後の引張強さを測定したところ、430N/mmであった。表面粗さRaは0.32μmであった。銅箔外観は変色が発生した。
【0021】
実施例2
電解銅箔の製造において、電解処理液の濃度を純水に対して硫酸濃度を50g/lとし、電流密度を15A/dmで連続電解処理を行ったこと以外は、実施例1と同様にして電解銅箔を連続生産した。結果を表1に示す。
【0022】
実施例3
電解銅箔の製造において、電解処理液の濃度を純水に対して硫酸濃度を150g/lとし、電流密度を30A/dmで電解処理を行った。電解処理は、間欠的に12時間毎にそれぞれ1時間電解処理を行ったこと以外は、実施例1と同様にして電解銅箔を連続生産した。結果を表1に示す。
【0023】
比較例2
電解銅箔の製造において、電解処理液の濃度を純水に対して硫酸濃度を1g/lとし、電流密度を5A/dmで連続電解処理をおこなったこと以外は、実施例1と同様にして電解銅箔を連続生産した。結果を表1に示す。
【0024】
比較例3
電解銅箔の製造において、電解処理液の濃度を純水に対して硫酸濃度を300g/lとし、電流密度を5A/dmで連続電解処理を行ったこと以外は、実施例1と同様にして電解銅箔を連続生産した。結果を表1に示す。
【0025】
【表1】

Figure 0004465084
【0026】
なお、外観は銅箔を目視により観察し、変色・ムラ発生無しを○、部分的に変色・ムラ発生有りを△、変色・発生有りを×と評価した。
【0027】
本発明の電解処理を行った実施例1〜3は、14日連続生産後の引張強さが初期値と同様で劣化が認められない。銅箔外観も変色やムラの発生が見られず良好であった。一方、電解処理を行わない比較例1は、引張強さが低下し、銅箔外観も変色が発生した。また、電解処理液の濃度が低い比較例2では、効果が充分でなく、電解処理濃度が高い比較例3では、表面粗さが大きく、銅箔外観のムラが発生した。
【0028】
【発明の効果】
本発明の方法によれば、カソード体表面の酸化被膜を必要に応じて連続的に又は間欠的に電解処理することにより、酸化被膜の厚みを均一に保つことが可能となる。よって、外観、機械特性とも安定な銅箔を生産することが可能となる。電解処理を連続的に行えば、このような銅箔の連続生産も可能となる。
【図面の簡単な説明】
【図1】本発明の電解銅箔製造に用いられる装置の断面説明図。
【符号の説明】
1 電解槽
2 アノード体
3 カソード体
4 電解液
5 電解処理液溜り
6 液溜めロール
7 電解処理用アノード体[0001]
[Technical field to which the invention belongs]
TECHNICAL FIELD The present invention relates to a copper foil manufacturing method and manufacturing apparatus capable of stabilizing and improving the appearance and mechanical properties of a copper foil when manufacturing an electrolytic copper foil.
[0002]
[Prior art]
The copper foil uses an electrolyzer having a drum-like insoluble cathode body generally called an electrodeposition drum and a semicircular arc-shaped anode body facing the insoluble cathode body, and a copper ion is provided in the gap between the cathode body and the anode body. It is manufactured by depositing copper on the surface of the cathode body by supplying an electrolytic solution containing selenium and conducting an electrolytic reaction. As the cathode body, a drum-like cathode body made of stainless steel coated with titanium, stainless steel, chromium, or the like is used. These cathode bodies are exposed to an atmosphere in which foreign matter such as organic matter or dust adheres to the cathode body over time, or oxygen gas generated from the anode body or an electrolyte is scattered to form an oxide film on the surface. To do. While this oxide film has corrosion resistance, energization is inhibited when the oxide film becomes thick. These deposits and oxide film on the surface of the cathode body may hinder the deposition of copper, which not only causes appearance defects and pinholes such as discoloration and surface unevenness of the electrodeposited copper foil, but also the electrodeposited copper. Since it hinders crystal growth, there is a problem that it adversely affects mechanical properties such as a decrease in tensile strength and elongation of the obtained copper foil.
[0003]
Conventionally, the surface of the cathode body has been physically buffed with a polishing buff for the purpose of removing organic substances, dust and oxide film on the surface of the cathode body. This buffing has the purpose of adjusting the roughness of the surface of the cathode body in addition to the purpose of removing deposits and oxide films and exposing the surface of the active cathode body. If the surface is rougher than necessary, it will affect the crystal growth during electrodeposition, leading to deterioration of mechanical properties and pinholes in the thin foil. If it is fine, adhesion to the cathode body surface will deteriorate, and peeling will occur during plating. May end up. However, this physical buffing has a problem in that the work efficiency is low and the production efficiency is lowered due to poor workability.
[0004]
On the other hand, in JP-A-7-228996, the cathode body used for the production of electrolytic copper foil is anodized, and an oxide film of 1.4 to 140 mm is formed on the surface of the cathode body in advance to extend the life of the electrodeposition drum. A method for achieving this is disclosed.
[0005]
However, in this method, since it is difficult to control the thickness of the oxide film, the thickness of the oxide film may be partially uneven. If the oxide film is partially thick, it becomes difficult to pass electricity, which affects the current density distribution, and there is concern about inhibition of crystal growth and abnormal precipitation. Also, the purpose is different from physical buffing, and the active cathode surface cannot be exposed.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a copper foil manufacturing method and an apparatus for manufacturing the same using an electrolytic treatment with good workability, instead of the conventional physical buffing method of the cathode body.
[0007]
[Means for Solving the Problems]
As a result of diligent research in order to solve the above-described problems in the process of manufacturing a copper foil, the present inventor has electrolyzed the oxide film formed on the surface of the cathode body after peeling the copper foil. The present inventors have found that a copper foil that is stable in appearance and mechanical properties can be obtained without performing appropriate buffing, and based on this finding, the present invention has been completed.
[0008]
That is, the present invention produces a copper foil by energizing a cathode body immersed in an electrolytic solution and an anode body to deposit copper foil on the surface of the cathode body by an electrolytic reaction, and peeling the copper foil from the cathode body surface. In this method, a method for producing a copper foil is provided, in which the surface of the cathode body exposed after peeling the copper foil is subjected to electrolytic treatment continuously or intermittently.
In the present invention, a copper foil is deposited on the surface of the cathode body by an electrolysis reaction by energizing between the cathode body and the anode body immersed in the electrolytic solution, and the copper foil is peeled off from the surface of the cathode body. In a copper foil manufacturing apparatus, an electrolytic treatment apparatus comprising a liquid storage roll for generating an electrolytic treatment liquid reservoir between the cathode body surface and an electrolytic treatment anode body installed in the electrolytic solution reservoir generation section is provided from the cathode body surface. An apparatus for producing an electrolytic copper foil is provided, which is provided behind a position where the copper foil is peeled off.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a copper foil having stable mechanical properties by continuously or intermittently electrolytically treating an oxide film formed on the surface of a cathode body to obtain an active cathode body surface effective for electrodeposition. Made possible. Moreover, it can respond also to the continuous production of copper foil.
[0010]
According to the method of the present invention, since the thickness of the oxide film can be easily controlled by electrolytically treating the oxide film, it is possible to keep a thin oxide film on the surface of the cathode body, and the oxide film is not necessarily completely removed. There is no need. The oxide film had good peelability from the copper foil formed on the surface of the cathode body, and the use period of the cathode body could be extended.
[0011]
Here, one example of the electrolytic copper foil manufacturing apparatus of the present invention is shown in FIG. First, in the electrolytic cell 1, a semicircular arc-shaped anode body 2 made of, for example, lead or an insoluble electrode plate, and a drum-shaped cathode body 3 made of stainless steel coated with, for example, titanium, stainless steel, chromium, or the like are provided at predetermined intervals. Are arranged opposite each other. A gap between the anode body 2 and the cathode body 3 in the electrolytic cell is filled with an electrolytic solution 4 containing copper ions. The copper foil 9 produced on the surface of the cathode body 3 is taken up by a take-up roll 8.
[0012]
The electrolytic processing apparatus includes a liquid storage roll 6 for generating an electrolytic processing liquid pool 5 between the surface of the cathode body 3 and an electrolytic processing anode body 7 installed in the electrolytic processing liquid pool generating section. It is provided behind the position where the copper foil 9 is peeled from the surface of the body 3. This electrolytic treatment apparatus can efficiently supply the electrolytic treatment liquid to the oxide film on the surface of the cathode body. Preferably, after the copper foil is peeled off, the cathode body 3 preferably has a rotational movement and immediately before entering the electrolytic solution 4 again. It is supplied between the surface of the body 3 and the surface of the insulating liquid reservoir roll 6. An electrolytic treatment anode body 7 is installed in the electrolytic treatment liquid reservoir 5. The electrolytic treatment solution is supplied by a pump from an aqueous solution storage tank capable of managing the concentration as necessary. The concentration of the electrolytic treatment solution is adjusted according to the expected effect.
In the method of the present invention, it is not always necessary to perform the electrolytic treatment in the continuous production process. It is also possible to interrupt the continuous production and perform the cathode body separately by using dedicated equipment.
[0013]
In the electrolytic treatment of the present invention, hydrogen is generated on the surface of the cathode body by electrolysis from the electrolytic treatment solution filled between the cathode body and the anode for electrolytic treatment, and this hydrogen reduces the oxide film on the surface of the cathode body. Done. Therefore, the electrolytic treatment solution to be supplied is not particularly limited. For example, an acidic aqueous solution such as a sulfuric acid aqueous solution, a phosphoric acid aqueous solution, or a hydrochloric acid aqueous solution, or a neutral aqueous solution such as sodium sulfate or potassium chloride is used. However, in order to use it in the continuous production process of copper foil production, it must not cause any harm to the copper foil such as the appearance and mechanical properties of the electrodeposited copper foil when it is mixed in the electrolyte. Therefore, it is preferable to use an aqueous solution in which copper ions are excluded from the electrolytic solution used for copper foil production, or those having different component ratios.
[0014]
As the electrolytic treatment solution, since an aqueous copper sulfate solution is generally used for the production of copper foil, an aqueous sulfuric acid solution is preferably used as the electrolytic treatment solution for the production of copper foil. When using a sulfuric acid aqueous solution, the concentration of the electrolytic treatment solution is preferably an aqueous solution having a sulfuric acid concentration of 5 to 200 g / l. This is because when the sulfuric acid concentration is less than 5 g / l, the effect cannot be expected, and when it exceeds 200 g / l, the cathode body can be corroded. In addition, the electrolytic treatment solution is preferably prepared with pure water because there is a concern about the influence of ions contained in the water.
[0015]
As the anode for electrolytic treatment, an electrode made of iridium oxide / titanium having a horizontal width similar to that of the cathode body and a vertical width of 5 to 50 mm is preferably used. The current density is preferably set to 10 to 100 A / dm 2.
[0016]
The electrolytic treatment can be performed continuously or intermittently. Moreover, the electrolytic treatment apparatus uses not only a continuous operation in which the electrolytic treatment is performed while producing the copper foil as shown in FIG. 1, but also a dedicated treatment tank comprising an electrolytic treatment anode body, an electrolytic treatment liquid tank, and a power source. It is also possible to do this. In this case, since the reduction treatment liquid is not mixed in the electrolytic solution used for producing the copper foil, the selection range of the reduction treatment solution is widened, and for example, a neutral aqueous solution such as sodium sulfate can be used. Become.
[0017]
In the process of manufacturing a copper foil as described above, an oxide film formed on the surface of the cathode body is subjected to electrolytic treatment, thereby producing a metal that is stable in appearance and mechanical properties without performing buffing as in the prior art. Is possible.
[0018]
【Example】
EXAMPLES Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples.
Example 1
In the copper foil continuous production facility with electrolytic treatment equipment shown in FIG. 1, the drum-like cathode body 3 was a titanium drum having a diameter of 2000 mm and a width of 1500 mm, and the surface of the drum was buffed to adjust the surface roughness.
As an electrolytic solution 4, an aqueous solution composed of CuSO 4 · 5H 2 O 280 g / l and H 2 SO 4 90 g / l was prepared, and the current density was 50 A / dm under the conditions of an electrolytic solution temperature of 40 ° C. and a flow rate of 0.3 m / sec. A copper foil having a thickness of 15 μm was produced by the electrolytic reaction conducted at 2 .
It was 580 N / mm < 2 > when the tensile strength at normal temperature of the obtained copper foil was measured based on JISC6515. Moreover, when the surface roughness of the copper foil mat surface was measured based on JIS B0601, Ra was 0.28 μm. No discoloration of the copper foil appearance was confirmed.
Next, an electrolytic treatment liquid having a sulfuric acid concentration of 10 g / l using pure water is supplied between the drum-shaped cathode body 3 and the liquid storage roll 6 from the electrolytic treatment liquid supply port, and the electrolytic treatment anode body 7 and the cylindrical type are supplied. A continuous electrolytic treatment was performed with the cathode rotating body 3 at a current density of 50 A / dm 2 , and the tensile strength after 14 days was measured in the same manner. As a result, it was 570 N / mm 2 . The surface roughness Ra was 0.29 μm. No discoloration of the copper foil appearance was confirmed.
[0020]
Comparative Example 1
When the tensile strength after 14 days was measured in the same manner as in Example 1 except that the electrolytic treatment of the cathode 3 was not performed in the production of the electrolytic copper foil, it was 430 N / mm 2 . The surface roughness Ra was 0.32 μm. Discoloration of the copper foil appearance occurred.
[0021]
Example 2
In the production of the electrolytic copper foil, the same procedure as in Example 1 was performed except that the electrolytic treatment solution was subjected to a continuous electrolytic treatment at a current density of 15 A / dm 2 with a sulfuric acid concentration of 50 g / l with respect to pure water. Electrolytic copper foil was continuously produced. The results are shown in Table 1.
[0022]
Example 3
In the production of the electrolytic copper foil, the electrolytic treatment solution was subjected to electrolytic treatment at a sulfuric acid concentration of 150 g / l with respect to pure water and a current density of 30 A / dm 2 . The electrolytic copper foil was continuously produced in the same manner as in Example 1 except that the electrolytic treatment was intermittently performed every 12 hours for 1 hour. The results are shown in Table 1.
[0023]
Comparative Example 2
In the production of the electrolytic copper foil, the same procedure as in Example 1 was performed, except that the electrolytic treatment solution concentration was 1 g / l of sulfuric acid with respect to pure water, and the continuous electrolytic treatment was performed at a current density of 5 A / dm 2. Electrolytic copper foil was continuously produced. The results are shown in Table 1.
[0024]
Comparative Example 3
In the production of the electrolytic copper foil, the same procedure as in Example 1 was performed except that the electrolytic treatment solution was subjected to continuous electrolytic treatment with pure acid at a sulfuric acid concentration of 300 g / l and a current density of 5 A / dm 2. Electrolytic copper foil was continuously produced. The results are shown in Table 1.
[0025]
[Table 1]
Figure 0004465084
[0026]
The appearance was evaluated by visually observing the copper foil and evaluated as ○ for discoloration / non-uniformity occurrence, Δ for partial discoloration / uniformity occurrence, and × for discoloration / occurrence occurrence.
[0027]
In Examples 1 to 3 subjected to the electrolytic treatment of the present invention, the tensile strength after 14 days of continuous production is the same as the initial value, and no deterioration is observed. The appearance of the copper foil was good with no discoloration or unevenness. On the other hand, in Comparative Example 1 in which no electrolytic treatment was performed, the tensile strength decreased, and the appearance of the copper foil was also discolored. In Comparative Example 2 where the concentration of the electrolytic treatment solution was low, the effect was not sufficient, and in Comparative Example 3 where the electrolytic treatment concentration was high, the surface roughness was large and unevenness in the appearance of the copper foil occurred.
[0028]
【The invention's effect】
According to the method of the present invention, it is possible to keep the thickness of the oxide film uniform by electrolytically treating the oxide film on the surface of the cathode body continuously or intermittently as necessary. Therefore, it is possible to produce a copper foil that is stable in appearance and mechanical properties. If the electrolytic treatment is continuously performed, it is possible to continuously produce such a copper foil.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of an apparatus used for producing an electrolytic copper foil of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Anode body 3 Cathode body 4 Electrolyte 5 Electrolysis process liquid reservoir 6 Liquid storage roll 7 Electrode process anode body

Claims (3)

電解液に浸漬したカソード体とアノード体の間に通電して電解反応により前記カソード体表面に銅箔を析出させ、カソード体表面から銅箔を剥離して銅箔を製造する方法において、銅箔を剥離した後に露出したカソード体表面を連続的又は間欠的に電解還元処理することを特徴とする銅箔の製造方法。In a method for producing a copper foil by energizing between a cathode body and an anode body immersed in an electrolytic solution to deposit a copper foil on the surface of the cathode body by an electrolytic reaction and peeling the copper foil from the surface of the cathode body, A method for producing a copper foil, comprising subjecting a cathode body surface exposed after peeling off to electrolytic reduction treatment continuously or intermittently. 電解還元処理を硫酸を5〜200g/l含む水溶液で行う請求項1記載の銅箔の製造方法。The method for producing a copper foil according to claim 1, wherein the electrolytic reduction treatment is performed with an aqueous solution containing 5 to 200 g / l of sulfuric acid. 電解液に浸漬したカソード体とアノード体との間に通電して電解反応により前記カソード体表面に銅箔を析出させ、カソード体表面から銅箔を剥離するようになした銅箔製造装置において、カソード体表面との間に電解処理液溜りを生成させる液溜めロールと、この電解液溜り生成部に設置した電解還元処理用アノード体とからなる電解還元処理装置をカソード体表面から銅箔を剥離する位置より後方に設けたことを特徴とする電解銅箔の製造装置。In a copper foil manufacturing apparatus in which a copper foil is deposited on the surface of the cathode body by an electrolytic reaction by energizing between the cathode body and the anode body immersed in an electrolytic solution, and the copper foil is peeled off from the cathode body surface, A copper foil is peeled from the surface of the cathode body of an electrolytic reduction processing apparatus comprising a liquid storage roll for generating an electrolytic processing liquid reservoir between the cathode body surface and an electrolytic reduction processing anode body installed in the electrolytic solution reservoir generation section. An apparatus for producing an electrolytic copper foil, characterized in that the apparatus is provided behind a position where the copper foil is placed.
JP2000162426A 2000-05-31 2000-05-31 Copper foil manufacturing method and manufacturing apparatus Expired - Lifetime JP4465084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162426A JP4465084B2 (en) 2000-05-31 2000-05-31 Copper foil manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162426A JP4465084B2 (en) 2000-05-31 2000-05-31 Copper foil manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2001342589A JP2001342589A (en) 2001-12-14
JP4465084B2 true JP4465084B2 (en) 2010-05-19

Family

ID=18666324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162426A Expired - Lifetime JP4465084B2 (en) 2000-05-31 2000-05-31 Copper foil manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4465084B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806092B2 (en) * 2011-11-25 2015-11-10 国際技術開発株式会社 Foil roller inspection system
JP6067910B1 (en) * 2015-11-04 2017-01-25 古河電気工業株式会社 Electrolytic copper foil and lithium ion secondary battery using the electrolytic copper foil
WO2018138989A1 (en) 2017-01-25 2018-08-02 日立金属株式会社 Metallic foil manufacturing method and cathode for manufacturing metallic foil
JP7247015B2 (en) * 2019-05-08 2023-03-28 古河電気工業株式会社 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, and copper-clad laminate and printed wiring board using the surface-treated copper foil
CN114871175B (en) * 2022-04-06 2023-03-24 山东嘉元新能源材料有限公司 Processing device based on electrolytic copper foil before slitting

Also Published As

Publication number Publication date
JP2001342589A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
US8394245B2 (en) Production apparatus for electro-deposited metal foil, production method of thin plate insoluble metal electrode used in production apparatus for electro-deposited metal foil, and electro-deposited metal foil produced by using production apparatus for electro-deposited metal foil
US20050284769A1 (en) Chromium plating method
EP3309278A1 (en) Method for manufacturing electrolytic aluminum foil
JPH05202498A (en) Insoluble electrode structural body
JP4465084B2 (en) Copper foil manufacturing method and manufacturing apparatus
US3463707A (en) Electrodeposition of lead dioxide
WO2015008564A1 (en) Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
US6432293B1 (en) Process for copper-plating a wafer using an anode having an iridium oxide coating
JPH10130878A (en) Electrolytic nickel plating method
JP2659911B2 (en) Manufacturing method of metal foil
JP3224329B2 (en) Insoluble metal anode
JP3081567B2 (en) Insoluble electrode for chrome plating
JP2002004095A (en) Insoluble anode and power feeding method for the same
JP6990130B2 (en) Electrolytic aluminum foil manufacturing method and manufacturing equipment
JP3458781B2 (en) Manufacturing method of metal foil
JP2943484B2 (en) Method and apparatus for hot-dip plating of aluminum
JPH07316874A (en) Chromium plating method
JPS62139900A (en) Electrolytic plating device
JPH05148687A (en) Device for continuously forming electrolytic metallic foil
JP2908540B2 (en) Chrome plating method
Mikhailova et al. Manufacturing corrosion-resistant electrode materials on the Basis of Ti, Ta, Nb, and W covered with thin electrodeposited platinum layers
JP2567537B2 (en) Metal foil electrolytic production equipment
JPH04191394A (en) Production of copper coated steel wire
JP3529075B2 (en) Electrodeposition method
JPS63310991A (en) Chromium plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4465084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350