JPS63310991A - Chromium plating method - Google Patents

Chromium plating method

Info

Publication number
JPS63310991A
JPS63310991A JP14712087A JP14712087A JPS63310991A JP S63310991 A JPS63310991 A JP S63310991A JP 14712087 A JP14712087 A JP 14712087A JP 14712087 A JP14712087 A JP 14712087A JP S63310991 A JPS63310991 A JP S63310991A
Authority
JP
Japan
Prior art keywords
plating
anode
current
electrode
lead dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14712087A
Other languages
Japanese (ja)
Other versions
JPH0477078B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Masao Sekimoto
正生 関本
Kyohei Kuroda
恭平 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP14712087A priority Critical patent/JPS63310991A/en
Publication of JPS63310991A publication Critical patent/JPS63310991A/en
Publication of JPH0477078B2 publication Critical patent/JPH0477078B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To enable stable Cr plating with a lead dioxide electrode as the anode over a long period without requiring troublesome operation by continuously supplying protective electric current to the anode with an auxiliary cathode placed in a plating tank even after the supply of electric current for plating is stopped. CONSTITUTION:When Cr plating is carried out with a lead dioxide electrode as the anode, an auxiliary cathode is placed in a plating tank and protective electric current is continuously supplied to the anode even after the supply of electric current for plating is stopped. At this time, cathode current density is regulated to <=about 10A/dm<2> and the quantity of the protective electric current supplied to the anode to about 0.01-1A/dm<2>. Thus, the lead dioxide electrode is surely protected during a cessation of electrolysis, so subsequent plating work is successively carried out without drawing out an electrolytic soln. or pulling up the electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二酸化鉛電極を陽極として用いるクロムメッ
キ法に関するものであり、特にメッキ通電停止時におけ
る該陽極の保護を図るクロムメッキ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a chromium plating method using a lead dioxide electrode as an anode, and particularly to a chromium plating method for protecting the anode when plating current is stopped.

〔従来の技術と問題点〕[Conventional technology and problems]

クロムメッキは、表面の美観のみでなく、硬さ、良好な
耐食性等を有するため、広範囲な用途に使用されている
。例えば、自動車等のエンジン部品、各種シリンダー、
グラビア印刷のロール類、或いは食器や缶詰用缶等、工
業用及び装飾用として一般に利用されている。
Chrome plating is used in a wide range of applications because it not only has a beautiful surface, but also has hardness, good corrosion resistance, etc. For example, engine parts for automobiles, various cylinders,
It is generally used for industrial and decorative purposes, such as rolls for gravure printing, tableware, and cans for canning.

クロムメッキを行うには、従来から種々のメッキ浴が使
用されているが、代表的なものは、ケイフッ化物浴によ
る方法とサージェント浴による方法である。
Various plating baths have been used to perform chromium plating, but typical ones include a method using a silicofluoride bath and a method using a Sargent bath.

前者は、仕上がりが良好で電流効率が比較的高いという
特長がある反面、液管理が難しく、且つメッキ浴にフッ
化物イオンを含むので、その腐食性により、メッキ装置
の保守や保安上の困難がある。
The former has the advantage of a good finish and relatively high current efficiency, but on the other hand, it is difficult to manage the liquid, and the plating bath contains fluoride ions, which is corrosive and makes maintenance and safety of the plating equipment difficult. be.

一方、後者のサージェント浴による方法は一般に電流効
率がやや低い問題があるものの、取り扱いが容易であり
、広く行われている。
On the other hand, although the latter method using a Sargent bath generally has a problem of somewhat low current efficiency, it is easy to handle and is widely used.

一般にサージェント浴(Crys +)lzsO4)に
よるクロム電気メツキ法においては、陽極として鉛又は
鉛合金が従来使用されている。鉛や鉛合金陽極は、3価
クロムイオンCr”の濃度を適度に保つ反面、使用中に
鉛又は鉛合金成分の溶出があり、その速度は数mg〜数
10mg/AHと極めて大きい。そのため、溶出した鉛
又は鉛合金成分によるクロムメッキへの悪影響や、浴中
にクロム酸鉛の沈澱を形成するという欠点がある。この
ように、クロム酸鉛の析出が生じる場合にはその悪影響
を避けるため、電解槽を深くしたり定期的に沈澱物の除
去や液の交換を行う必要がある等の問題もある。
Generally, in the chromium electroplating method using a Sargent bath (Crys+)lzsO4), lead or a lead alloy is conventionally used as an anode. Although lead or lead alloy anodes maintain a moderate concentration of trivalent chromium ions Cr, lead or lead alloy components elute during use, and the rate of elution is extremely high, ranging from several mg to several tens of mg/AH. Disadvantages include the adverse effect of leached lead or lead alloy components on chromium plating and the formation of lead chromate precipitates in the bath.In this way, in order to avoid the adverse effects when lead chromate precipitation occurs, There are also other problems, such as the need to make the electrolytic cell deeper and to periodically remove precipitates and replace the liquid.

このような鉛の影響を少なくするために、フェライトや
マグネタイト電極、或いは白金メッキチタン電極等を使
用する方法が知られているが、前者の電極は極めてもろ
く、機械強度が不足するため、取り扱いに細心の注意を
要すること、又、電極物質の導電度が小さいため大電流
密度では使用できないこと、更に後者の電極はメッキ浴
中のCr”の濃度が上昇してしまい、電流効率の低下並
びにメッキ品質を低下させること等の欠点を有している
In order to reduce the effects of lead, methods of using ferrite, magnetite electrodes, or platinum-plated titanium electrodes are known, but the former electrodes are extremely brittle and lack mechanical strength, making them difficult to handle. In addition, due to the low conductivity of the electrode material, it cannot be used at high current densities; furthermore, the latter electrode increases the concentration of Cr in the plating bath, resulting in a decrease in current efficiency and poor plating performance. It has drawbacks such as deterioration of quality.

そして、現在、最も適したクロムメッキ用電極として二
酸化鉛被覆電極が注目されている。二酸化鉛被覆電極は
、鉛や鉛合金電極と異なり、陽極として使用中、電解液
への溶出も0.1〜1mg/A)l又はそれ以下と極め
て小さく、液の汚染や沈澱物の生成は殆どない。ところ
が、この種の電極は上記したようにメッキ電解中は極め
て安定で卓越した性能を示すが、メッキ通電停止時、或
いは非電解時には電解浴と反応してクロム酸鉛を形成し
てしまい、短期間に使用不能になるという欠点を有して
いる。これを防止するため、メッキ通電終了後、直ちに
電極をメッキ浴から抜き出して洗浄したり、メッキ浴を
抜いてしまうことが考えられるが、実際上、このような
作業を1日数回〜数10回繰り返すことになり、操作が
非常に繁雑、困難で、能率が極めて低下する問題があっ
た。
Currently, lead dioxide-coated electrodes are attracting attention as the most suitable electrodes for chromium plating. Unlike lead or lead alloy electrodes, lead dioxide-coated electrodes elute into the electrolyte during use as an anode, which is extremely small at 0.1 to 1 mg/A)l or less, preventing contamination of the solution and formation of precipitates. There aren't many. However, as mentioned above, this type of electrode is extremely stable and exhibits excellent performance during plating electrolysis, but when the plating current is stopped or when no electrolysis is applied, it reacts with the electrolytic bath to form lead chromate, resulting in short-term damage. It has the disadvantage that it becomes unusable over time. In order to prevent this, it is conceivable to immediately remove the electrode from the plating bath and wash it after the plating energization ends, or to remove the plating bath from the plating bath, but in reality, such operations are performed several to several dozen times a day. There was a problem that the process was repeated, the operation was very complicated and difficult, and the efficiency was extremely reduced.

〔発明の目的〕[Purpose of the invention]

本発明は、畝上の問題を解決するためになされたもので
、二酸化鉛電極を陽極として使用して、繁雑な操作を必
要とせず、長期間安定して操業することが出来るクロム
メッキ方法を提供することを目的とする。
The present invention was made to solve the problem of ridges, and it is a chrome plating method that uses a lead dioxide electrode as an anode, does not require complicated operations, and can be operated stably for a long period of time. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、陽極として二酸化鉛電極を使用するクロムメ
ッキ方法において、メッキ槽内に設置した補助陰極を用
いてメッキ通電停止時にも該陽極に保護電流を流し続け
ることを特徴とするクロムメッキ方法である。かくする
ことにより、前記の種々の困難が解消され、陽極をメッ
キ槽内に浸漬したままでも長期間、困難なく安定してク
ロムメッキ操業を行うことができる。
The present invention is a chromium plating method that uses a lead dioxide electrode as an anode, and is characterized in that a protective current is continued to flow through the anode even when the plating current is stopped using an auxiliary cathode installed in the plating tank. be. By doing so, the various difficulties described above are solved, and chrome plating operations can be carried out stably and without difficulty for a long period of time even when the anode is immersed in the plating bath.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

二酸化鉛電極は、陽極として極めて安定で、通電を続け
る限り優れた不溶性電極として長期間安定して使用出来
る0例えば、通常のサージェント浴クロムメッキ条件に
て、陽極電流密度を3OA/ds+”とした場合、電極
被覆減耗量ハ50mg/KA)1程度テアリ、電極がl
l1Kニ10Kgの酸化鉛を有し、その50χが使用可
能と仮定すると、計算上約10.000時間、即ち1年
以上の連続使用に耐える。そして、年間使用時間を1,
000〜2.000時間とすると、5〜10年の寿命が
期待出来る。
The lead dioxide electrode is extremely stable as an anode, and can be used stably for a long period of time as an excellent insoluble electrode as long as current is continued. For example, under normal Sargent bath chrome plating conditions, the anode current density was set to 3OA/ds+" In this case, the amount of electrode coating loss is about 50 mg/KA).
Assuming that it has 10 kg of lead oxide per 1 kg and that 50 χ of it is usable, it can withstand continuous use for about 10,000 hours, that is, more than one year. And the annual usage time is 1,
000 to 2,000 hours, a lifespan of 5 to 10 years can be expected.

ところが、実際の操業ではメッキ処理物の入れ替え、夜
間停止等、頻繁に通電を停止することが避けられず、前
記したようにこうした非電解時に二酸化鉛電極をメッキ
浴に浸漬しておくと容易に損傷し、短期間で使用できな
くなる。
However, in actual operations, it is unavoidable to frequently stop the power supply, such as when replacing the plated items or stopping at night. It will be damaged and become unusable in a short period of time.

そこで別途電源に接続した補助陰極をメッキ槽内に設け
、メッキ通電停止時にも二酸化鉛電極に電流を流し、該
電極を陽分極し続ければ、前記した困難を解決し得るこ
とを見出し、本発明に至った。
Therefore, it was discovered that the above-mentioned difficulties could be solved by providing an auxiliary cathode connected to a separate power supply in the plating bath, and by passing current through the lead dioxide electrode to continue to positively polarize the electrode even when the plating current was stopped, and the present invention was made based on the present invention. reached.

即ち、二酸化鉛電極をクロムメッキ浴に浸漬すると、通
常その浸漬電位は1.55〜1.65 Vvs NHE
を示し、この電位は、PbO□の相平衡状態図上の腐食
域に該当し、pb”又はpb”が安定な領域であるので
、鉛成分が溶出してクロム酸鉛を形成する反応が起こる
と考えられる。
That is, when a lead dioxide electrode is immersed in a chromium plating bath, the immersion potential is usually 1.55 to 1.65 V vs NHE.
This potential corresponds to the corrosion region on the phase diagram of PbO□, and since pb" or pb" is a stable region, a reaction occurs in which the lead component is eluted to form lead chromate. it is conceivable that.

これに対して、二酸化鉛に陽極として電流を流すと、そ
の電位は1.8〜1.85 V vs NHEとなり、
Pb0zは安定となるためと考えられる。
On the other hand, when a current is passed through lead dioxide as an anode, the potential becomes 1.8 to 1.85 V vs NHE,
This is thought to be because Pb0z is stable.

このように、陽極に二酸化鉛電極を使用するクロムメッ
キにおいて、非電解時にも陰極にクロムメッキが生じな
い程度の小電流を陽極に継続して流すことにより、二酸
化鉛電極が確実に保護され、電解液を抜いたり、又は電
極を引き上げるといった煩わしさなしに、そのまま次の
メッキ作業を継続することが可能である。
In this way, in chromium plating using a lead dioxide electrode as the anode, the lead dioxide electrode is reliably protected by continuously passing a small current to the anode that does not cause chromium plating on the cathode even when non-electrolytic. It is possible to continue the next plating operation without the trouble of draining the electrolyte or pulling up the electrode.

又、一般に電解用電極は、通電−停止による電源のオン
−オフを繰り返すと電極の消耗が加速されるが、本発明
の方法により陽極はオン−オン状態が継続でき、電流密
度の変化のみとなるので、オン−オフの繰り返しによる
前記消耗の加速が防止され、二酸化鉛電極では、オン−
オフを繰り返した場合に比してその消耗度が5分の1程
度以下になることが判明した。
In addition, in general, electrodes for electrolysis are subject to accelerated wear when the power source is repeatedly turned on and off due to energization and de-energization, but the method of the present invention allows the anode to continue to be in an on-on state, resulting in only a change in current density. This prevents the acceleration of wear due to repeated on-off cycles, and the lead dioxide electrode
It has been found that the level of wear is reduced to about one-fifth compared to when the device is repeatedly turned off.

更に、クロメムメッキ非通電時に、陽極に流す小電流に
より、メッキ液中のCr”の一部がCr”に酸化される
ので、補助陰極の大きさを陽極のそれに対して適宜設定
することにより、メッキ液中のCr”イオン濃度を制御
することが出来るという利点がある。
Furthermore, when chromeme plating is not energized, a small amount of current applied to the anode oxidizes a portion of Cr in the plating solution to Cr, so by appropriately setting the size of the auxiliary cathode relative to that of the anode, There is an advantage that the Cr'' ion concentration in the plating solution can be controlled.

二酸化鉛陽極に流す保護電流の量は、該陽極に1.8V
 vs NHE程度の電位が与えられれば特に限定され
ないが、通常0.01〜IA/d+a”で十分である。
The amount of protective current applied to the lead dioxide anode is 1.8V.
There is no particular limitation as long as a potential of the order of vs NHE is applied, but 0.01 to IA/d+a'' is usually sufficient.

0.01A/dn+”未満では、陽極の形状配置により
部分的に電位が1.8V vs NHE以下になる可能
性があり、又、IA/dI11”程度を越えて大きくな
ると、ガスの発生量が増加するため好ましくない。
If it is less than 0.01A/dn+", the potential may partially fall below 1.8V vs. NHE depending on the shape and arrangement of the anode, and if it increases beyond about IA/dI11", the amount of gas generated will increase. undesirable as it increases

一方、補助陰極は陽極への保護電流通電を主たる目的と
するので、その通電量は特に限定されるものではないが
、実質的に補助陰極上にクロムメッキが生成しないこと
が望ましく、通常陰極電流密度は10A/d■2以下と
することが好ましい。尚、前記したCr”イオンの制御
のためには、陰極電流密度は陽極より大きいこと、即ち
陰極の電極面積を陽極のそれより小さくすることが望ま
しい、補助陰極の形状や材質は、特に限定されるもので
はないが、わずかに陰極上にクロムがメッキ析出する可
能性があり、その電着歪みによる陰極の破損を防ぐため
に、棒状、すだれ状、又は網状のNb、 Ta、 Ti
+ Zr等の金属が好適である。
On the other hand, since the main purpose of the auxiliary cathode is to conduct a protective current to the anode, the amount of current applied is not particularly limited, but it is desirable that chrome plating does not substantially form on the auxiliary cathode, and the cathode current The density is preferably 10 A/d2 or less. In order to control the Cr'' ions mentioned above, it is desirable that the cathode current density be larger than that of the anode, that is, the electrode area of the cathode should be smaller than that of the anode.The shape and material of the auxiliary cathode are not particularly limited. However, there is a slight possibility that chromium may be plated on the cathode, and in order to prevent damage to the cathode due to distortion of the electrodeposition, Nb, Ta, or Ti in the form of rods, blinds, or nets is used.
+ Metals such as Zr are preferred.

補助陰極を用いて二酸化鉛陽極に通電する方法は、少な
くともメッキ通電停止時、又は非電解時に別途電源回路
により陽極に通電すればよい。しかし、前記の如く、保
護電流は0.01〜IA/dm”程度であるので、メッ
キ通電中に該電流回路を閉じて小電流を流したままでも
メッキに大きな影響がないので、保護電流回路はメッキ
の通電、停止にかかわらず切らずにお(ことができる。
In order to energize the lead dioxide anode using the auxiliary cathode, it is sufficient to energize the anode using a separate power supply circuit at least when plating current is stopped or when electrolysis is not performed. However, as mentioned above, the protective current is about 0.01 to IA/dm'', so even if the current circuit is closed and a small current is kept flowing during plating current, it will not have a big effect on the plating, so the protective current circuit can be done without turning off regardless of whether the plating is energized or stopped.

このように、常時保護電流を陽極に流し続ける方法をと
れば、操作が簡単で、より安全に操業を行うことができ
る。
In this way, if a method is adopted in which the protective current is constantly passed through the anode, the operation is simple and the operation can be carried out more safely.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明するが、これ
らは本発明を限定するものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but these are not intended to limit the present invention.

スW−上 クロム酸(CrOi)220g/ E、HzSO*−3
g/ l、残り純水よりなる(サージェント)クロムメ
ッキ浴を用いて、二酸化鉛陽極の腐食試験を行った。
Chromic acid (CrOi) 220g/E, HzSO*-3
Corrosion tests were conducted on lead dioxide anodes using a (Sargent) chromium plating bath consisting of 50 g/l, the remainder pure water.

陰極として直径1 +wmのニオブ線からなるスダレを
用い、温度50℃で陰極電流密度を5A/d11zとし
、陽極電流密度を0.01〜2A/d+*”の各種条件
で通電し、300時間保持した。参考として、同じ二酸
化鉛電極を同じメッキ浴に、通電せずに浸漬したまま保
持した場合と併せて、それらの結果を第1表に示す。
A niobium wire with a diameter of 1 + wm was used as a cathode, and current was applied at a temperature of 50°C with a cathode current density of 5A/d11z and an anode current density of 0.01 to 2A/d+*'' for 300 hours. For reference, the results are shown in Table 1, along with the case where the same lead dioxide electrode was kept immersed in the same plating bath without electricity.

第1表 第1表の結果から、保護電流を流さないで浸漬したまま
の二酸化鉛電極(参考)は、表面がクロム酸鉛の析出生
成によると思われる黄色化が著しく、もろくなっており
、電極の重量減が非常に大きい。これに対して、小電流
を陽極に流し続ける場合は、電極の減耗が著しく少なく
なり、本発明によれば、クロムメッキにおける二酸化鉛
電極の長寿命化がもたらされることは明らかである。
Table 1 From the results in Table 1, the lead dioxide electrode (reference) that was immersed without applying a protective current had a markedly yellowed surface, which is thought to be due to lead chromate precipitation, and was brittle. The weight reduction of the electrode is very large. On the other hand, if a small current is continued to flow through the anode, the wear of the electrode is significantly reduced, and it is clear that the present invention provides a longer service life of the lead dioxide electrode in chrome plating.

尚、ニオブ製スダレ陰極は、変形が全(見られなかった
。しかし、ニオブ板を使用した場合には、若干陽極と反
対側に反る変形が見られた。
It should be noted that no deformation was observed in the niobium Sudare cathode. However, when a niobium plate was used, some deformation was observed in which the niobium plate was warped in the opposite direction to the anode.

裏盗五−又 実施例1と同じメッキ浴中で、陽極電流密度30A/d
a”で10分間通電し、電源を切って20分間通電停止
のサイクルによる二酸化鉛電極のオン−オフ試験を90
0時間行い、電極の消耗量を測定した。この際、電源オ
フの時も陽極にO,IA/dw+”の電流を流し続け、
電流を流さない場合と比較した。その結果、本発明によ
り保護電流を流した場合、電極の減耗量は90g 7m
 tであったが、電流を流さなかった場合の減耗量は8
60g/s”に達した。
In addition, in the same plating bath as in Example 1, the anode current density was 30 A/d.
The lead dioxide electrode was subjected to an on-off test for 90 minutes, with a cycle of energizing for 10 minutes at "A", turning off the power, and stopping the current for 20 minutes.
The test was carried out for 0 hours, and the amount of electrode consumption was measured. At this time, even when the power is off, the current of O, IA/dw+" continues to flow through the anode,
Comparison was made with the case where no current was applied. As a result, when a protective current is applied according to the present invention, the amount of electrode wear is 90g 7m
t, but the amount of wear when no current is applied is 8
60g/s”.

1隻五−主 クロム酸220g/lとケイフッ化ナトリウム5871
、残部水からなるクロムメッキ浴に二酸化鉛電極を陽極
として浸漬し、O,LA/da”の電流を流して腐食試
験を行った。陰極にはニオブのメツシュを使用し、その
電流密度を変えてその影響を調べた。得られた結果を第
2表に示す。
1 ship 5-primary chromic acid 220g/l and sodium silicofluoride 5871
A lead dioxide electrode was immersed as an anode in a chromium plating bath consisting of water and water, and a corrosion test was conducted by passing a current of O, LA/da''. A niobium mesh was used as the cathode, and the current density was varied. The results were shown in Table 2.

第2表 第2表の結果から、陰′極電流密度が大きくなると陽極
には殆ど影響しないが、陰極のメッキによる重量増をも
たらし、補助陰極の電流密度は10A/dm”以下が適
当であることがわかる。
Table 2 From the results shown in Table 2, when the cathode current density increases, it has almost no effect on the anode, but it causes an increase in weight due to cathode plating, so it is appropriate that the current density of the auxiliary cathode is 10 A/dm or less. I understand that.

〔発明の効果〕〔Effect of the invention〕

(1)本発明により、非電解時における二酸化鉛電極の
保護が確実となり、該陽極を用いて繁雑な操作なしにク
ロムメッキ操業を長期間安定して行うことができる。
(1) According to the present invention, protection of the lead dioxide electrode during non-electrolysis is ensured, and chromium plating operations can be carried out stably for a long period of time without complicated operations using the anode.

(2)従来避けられなかった陽極でのクロム酸鉛の生成
が実質的になくなり、電極の劣化、並びにメッキ浴の汚
染を防止できる。
(2) The generation of lead chromate at the anode, which was conventionally unavoidable, is substantially eliminated, and deterioration of the electrode and contamination of the plating bath can be prevented.

(3)メッキ通電−停止の繰り返しによる陽極の消耗を
大幅に減少させることができる。
(3) It is possible to significantly reduce consumption of the anode due to repeated plating energization/stopping.

(4)補助陰極を用いて流す小電流により、メッキ浴中
のCr”イオン濃度を制御することができる。
(4) The Cr'' ion concentration in the plating bath can be controlled by applying a small current using the auxiliary cathode.

Claims (4)

【特許請求の範囲】[Claims] (1)陽極として二酸化鉛電極を使用するクロムメッキ
方法において、メッキ槽内に設置した補助陰極を用いて
メッキ通電停止時にも該陽極に保護電流を流し続けるこ
とを特徴とするクロムメッキ方法。
(1) A chromium plating method using a lead dioxide electrode as an anode, which is characterized by using an auxiliary cathode installed in a plating bath to continue to flow a protective current to the anode even when plating current is stopped.
(2)メッキ通電停止時に陽極に流す保護電流が、陽極
面で0.01〜1A/dm^2である特許請求の範囲第
(1)項に記載の方法。
(2) The method according to claim (1), wherein the protective current applied to the anode when the plating current is stopped is 0.01 to 1 A/dm^2 on the anode surface.
(3)補助陰極が棒状又は網状の金属である特許請求の
範囲第(1)項に記載の方法。
(3) The method according to claim (1), wherein the auxiliary cathode is a rod-shaped or mesh-shaped metal.
(4)補助陰極の電流密度を10A/dm^2以下とす
る特許請求の範囲第(1)項に記載の方法。
(4) The method according to claim (1), wherein the current density of the auxiliary cathode is 10 A/dm^2 or less.
JP14712087A 1987-06-15 1987-06-15 Chromium plating method Granted JPS63310991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14712087A JPS63310991A (en) 1987-06-15 1987-06-15 Chromium plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14712087A JPS63310991A (en) 1987-06-15 1987-06-15 Chromium plating method

Publications (2)

Publication Number Publication Date
JPS63310991A true JPS63310991A (en) 1988-12-19
JPH0477078B2 JPH0477078B2 (en) 1992-12-07

Family

ID=15422986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14712087A Granted JPS63310991A (en) 1987-06-15 1987-06-15 Chromium plating method

Country Status (1)

Country Link
JP (1) JPS63310991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263299A (en) * 1988-04-14 1989-10-19 Sumitomo Metal Ind Ltd Method for protecting chromium plating lead electrode
US6554976B1 (en) 1997-03-31 2003-04-29 Tdk Corporation Electroplating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263299A (en) * 1988-04-14 1989-10-19 Sumitomo Metal Ind Ltd Method for protecting chromium plating lead electrode
JPH0558079B2 (en) * 1988-04-14 1993-08-25 Sumitomo Metal Ind
US6554976B1 (en) 1997-03-31 2003-04-29 Tdk Corporation Electroplating apparatus

Also Published As

Publication number Publication date
JPH0477078B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
US4033837A (en) Plated metallic cathode
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
US20010054557A1 (en) Electroplating of metals using pulsed reverse current for control of hydrogen evolution
US4354915A (en) Low overvoltage hydrogen cathodes
US4169775A (en) Protection of the low hydrogen overvoltage catalytic coatings
US2541721A (en) Process for replenishing nickel plating electrolyte
El-Sharif et al. The sustained deposition of thick coatings of chromium/nickel and chromium/nickel/iron alloys and their properties
US4414064A (en) Method for preparing low voltage hydrogen cathodes
EP2640873A1 (en) Electrolytic dissolution of chromium from chromium electrodes
US4250004A (en) Process for the preparation of low overvoltage electrodes
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
JPS6338436B2 (en)
JPS63310991A (en) Chromium plating method
US3412000A (en) Cathodic protection of titanium surfaces
JP3654204B2 (en) Oxygen generating anode
US5112447A (en) Process for electroplating
JP4465084B2 (en) Copper foil manufacturing method and manufacturing apparatus
Cherkaoui et al. Pulse-Plated Nickel--Molybdenum Coatings
Pradhan et al. Effect of zinc on the electrocrystallization of cobalt
JPH0559999B2 (en)
JPH06158397A (en) Method for electroplating metal
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
JP4299253B2 (en) Hexavalent chromium plating method
JPS5811000B2 (en) Manufacturing method of insoluble anode used for electrolysis of aqueous solution
US4177129A (en) Plated metallic cathode