JP4464696B2 - Powder grinding classification system and powder grinding classification method - Google Patents

Powder grinding classification system and powder grinding classification method Download PDF

Info

Publication number
JP4464696B2
JP4464696B2 JP2004016190A JP2004016190A JP4464696B2 JP 4464696 B2 JP4464696 B2 JP 4464696B2 JP 2004016190 A JP2004016190 A JP 2004016190A JP 2004016190 A JP2004016190 A JP 2004016190A JP 4464696 B2 JP4464696 B2 JP 4464696B2
Authority
JP
Japan
Prior art keywords
fluidized bed
pulverization
pulverizing
classification
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004016190A
Other languages
Japanese (ja)
Other versions
JP2004243317A (en
Inventor
信康 牧野
睦 高橋
文敏 村上
誠 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004016190A priority Critical patent/JP4464696B2/en
Publication of JP2004243317A publication Critical patent/JP2004243317A/en
Application granted granted Critical
Publication of JP4464696B2 publication Critical patent/JP4464696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、トナーの粉砕分級装置システムに関し、タルク、石灰、セラミック、樹脂、化粧品、染料、漢方薬等の鉱物原料、化学製品、薬品等の粉砕分級装置システムに応用される。   The present invention relates to a pulverizing and classifying apparatus system for toner, and is applied to a pulverizing and classifying apparatus system for mineral raw materials such as talc, lime, ceramic, resin, cosmetics, dyes, and herbal medicines, chemical products, and medicines.

流動層式粉砕機(流動層型ジェット粉砕機ともいう)は、粉砕室、衝突部材およびノズルを具備し、ノズルから噴射される高速ガスによって粗粒子を粉砕するタイプのものが一般的である。
従来から、流動層式粉砕機の改良技術として様々な提案がなされている。
例えば、粉砕効率を向上させる改良技術として、ノズルを多段に設置し、真上から見たとき上段のノズルと下段のノズルが重ならないように対向配置する技術(例えば、特許文献1参照。)、粉砕物を分級部に導く通路と、分級された分級粗粉を粉砕部に導く通路とを分離する円筒状の分離板を設ける技術(例えば、特許文献2参照)、およびノズル軸と粉砕室中心軸を含む縦断面におけるノズル軸と衝突部材とのなす角度を特定範囲とし、各設置ノズルに対向する二等辺三角形の斜面を有する角錐型の突起物を、粉砕室底部中心に設ける技術(例えば、特許文献3参照。)がそれぞれ提案されている。
A fluidized bed pulverizer (also referred to as a fluidized bed jet pulverizer) is generally of a type that includes a pulverization chamber, a collision member, and a nozzle, and pulverizes coarse particles with a high-speed gas injected from the nozzle.
Conventionally, various proposals have been made as improved techniques for fluidized bed pulverizers.
For example, as an improved technique for improving the pulverization efficiency, nozzles are installed in multiple stages, and when viewed from directly above, the upper nozzle and the lower nozzle are arranged so as not to overlap each other (see, for example, Patent Document 1). A technique for providing a cylindrical separation plate that separates the passage for guiding the pulverized product to the classification section and the passage for guiding the classified coarse powder to the pulverization section (see, for example, Patent Document 2), and the nozzle shaft and the center of the pulverization chamber A technology in which an angle formed by a nozzle shaft and a collision member in a longitudinal section including the shaft is a specific range, and a pyramidal projection having an isosceles triangular slope facing each installation nozzle is provided at the center of the bottom of the grinding chamber (for example, (See Patent Document 3).

図1に示される流動層式粉砕分級機によって、従来の粉砕分級方法を説明する。
流動層式粉砕分級機(1)は、対向する粉砕ノズル(6)から圧縮空気を噴射すると、断熱膨張作用によって温度低下が起こるため、熱を嫌う物質の粉砕が可能となり、また、噴射された圧縮空気によって供給加速された被粉砕物相互に相対速度差をもたらすため、主に表面粉砕が起こり微粉砕に適している。
しかしながら、反面、被粉砕物相互の接触が主であるため、微粉が発生しやすく、また、接触回数の少ない被粉砕物が粗粉のまま分級ロータ(2)に飛びこみ、粉砕品として排出されてしまうという問題がある。
A conventional pulverization classification method will be described with reference to a fluidized bed pulverization classifier shown in FIG.
When the fluidized bed type pulverizing classifier (1) is jetted with compressed air from the opposed pulverizing nozzle (6), the temperature is lowered by the adiabatic expansion action, so that the substance that dislikes heat can be crushed and injected. Since a relative speed difference is caused between the objects to be pulverized supplied and accelerated by compressed air, surface pulverization mainly occurs and it is suitable for fine pulverization.
However, since the contact between the objects to be crushed is the main, fine powder is likely to be generated, and the object to be pulverized with a small number of contacts jumps into the classification rotor (2) as a coarse powder and is discharged as a pulverized product. There is a problem of end.

しかしながら、従来提案されているこのような改良技術を用いても、粉砕効率を向上させるには不充分であり、さらに該問題を解決するの技術として、本発明者等は、流動層式粉砕機の底部と粉砕ノズルとの間の距離を調節する粉砕位置調節体を装着して、粉砕ノズルの周囲で、粉砕されるべき被粉砕物の初期供給量を調節することによって、分級ロータの固気比を低下させて、粉砕物のみが常時ローター周囲を覆うようにし、分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加を抑制可能とする流動層式粉砕分級機を提案し、先に出願(特願2002−276526)した。   However, even using such an improved technique that has been proposed in the past, it is insufficient to improve the pulverization efficiency. Further, as a technique for solving this problem, the present inventors have proposed a fluidized bed pulverizer. By attaching a pulverization position adjuster that adjusts the distance between the bottom of the pulverization nozzle and the pulverization nozzle, and adjusting the initial supply amount of the material to be pulverized around the pulverization nozzle, We propose a fluidized bed type pulverizer that reduces the ratio so that only the pulverized material always covers the rotor periphery, and suppresses the increase of fine powder due to the pulverized or excessively pulverized powder. And previously filed (Japanese Patent Application No. 2002-276526).

粉砕時の過粉砕を防止するには粉砕圧力を低下させ衝突速度を落とし微粉の増加を抑制できる。
しかしながら従来の流動層式粉砕分級機では、被粉砕物や粉砕物まで流動化が低下してしまい、上部に設けた分級ローターの周囲まで粉砕物が有効に到達できないために、その結果、分級精度の低下による過粉砕が抑制できない問題が生じていた。
また、上記の本出願人にかかる、流動層式粉砕機の底部と粉砕ノズルとの間の距離を調節する粉砕位置調節体を装着する方式によっても過粉砕を完全に抑制するには至らなかった。
In order to prevent over-pulverization at the time of pulverization, the pulverization pressure can be reduced to reduce the collision speed and suppress the increase in fine powder.
However, in the conventional fluidized bed type pulverizing and classifying machine, fluidization decreases to the pulverized material and pulverized material, and the pulverized material cannot effectively reach the periphery of the classification rotor provided at the upper portion. There has been a problem in that over-pulverization due to the decrease in the thickness cannot be suppressed.
Further, overgrinding could not be completely suppressed even by the system according to the above-mentioned applicant, which is equipped with a grinding position adjusting body for adjusting the distance between the bottom of the fluidized bed type grinding machine and the grinding nozzle. .

特開2000−107626号公報(請求項1、2)JP 2000-107626 A (Claims 1 and 2) 特開2000−15126号公報(請求項1)JP 2000-15126 A (Claim 1) 特開2000−5621号公報(請求項1)JP 2000-5621 A (Claim 1)

したがって、本発明の課題は、当該分野の上記現状に鑑み、簡単な構造で融通性があり能力が高められた新規流動層式粉砕分級機を提供することにあり、特に、被粉砕物を多量に投入しても分級室内での被粉砕物の舞上りが少なく、上部に配置された分級ロータ廻りの固気比が異常上昇せず、結果的に分級精度の低下がなくしたがって過粉砕や粉砕上り品への粗粉混入がなく、生産能力の低下がない流動層式粉砕分級機およびそれを用いた粉体粉砕分級方法を提供することにある。   Accordingly, an object of the present invention is to provide a novel fluidized bed type pulverizing and classifying machine with a simple structure, flexibility, and increased capability in view of the above-mentioned present state of the art, and in particular, a large amount of materials to be crushed. Even if thrown into the classifier, there is little uplift of the material to be crushed in the classification chamber, the solid-gas ratio around the classification rotor placed in the upper part does not rise abnormally, and as a result there is no reduction in classification accuracy. It is an object of the present invention to provide a fluidized bed type pulverizing and classifying method and a powder pulverizing and classifying method using the same, in which coarse powder is not mixed into the finished product and production capacity is not reduced.

上記課題は、本発明の(1)「粉砕ノズルが設けられた粉砕ゾーンと分級ロータが設けられた分級ゾーンを具備し、前記粉砕ノズルから噴射される圧縮空気とは別の空気(二次エアー)を供給する機構を有する流動層式粉砕分級機、二次エアーの供給量を流動層内の圧力によってフィードバック制御するための圧力計、および前記粉砕分級機の粉砕品出口以降に設置された排気風量をフィードバック制御するための流量計を具備することを特徴とする粉体粉砕分級システム」、(2)「前記流動層式粉砕分級機は、二次エアーを供給する前記機構によって、流動層の内面に対し接線方向に二次エアー供給することを特徴とする前記第(1)項に記載の粉体粉砕分級システム」、(3)「前記流動層式粉砕分級機は、対向する粉砕ノズルより下方の流動層底部に流動床を設置することを特徴とする前記第(1)項又は第(2)項に記載の粉体粉砕分級システム」により達成される。
また、上記課題は、本発明の()「前記第(1)項乃至第(3)項のいずれかに記載の粉体粉砕分級システムによって、粉砕ノズルから圧縮空気を噴射と共に、別途空気(二次エアー)を供給しながら行なうことを特徴とする粉体粉砕分級方法」、()「二次エアーの供給流量(Q2)と粉砕ノズルから噴射される圧縮空気量(Q1)とが下記(式1)で表わされる条件になるように設定して行なうことを特徴とする前記第()項に記載の粉体粉砕分級方法;
Above problems, the present invention (1) "comprises a pulverization nozzle and the grinding zone provided classification classification zone the rotor is provided, separate air (secondary air from the compressed air ejected from the grinding nozzles ), A pressure gauge for feedback control of the secondary air supply amount by the pressure in the fluidized bed, and an exhaust installed after the pulverized product outlet of the pulverizing classifier A powder pulverizing and classifying system comprising a flow meter for feedback control of the air volume ", (2)" The fluidized bed type pulverizing and classifying machine has a fluidized bed by means of the mechanism for supplying secondary air. Secondary air is supplied in a tangential direction to the inner surface, the powder pulverizing and classifying system according to item (1) above, (3) “The fluidized bed pulverizing and classifying machine is provided by an opposing pulverizing nozzle. under It is achieved by the paragraph (1) or the (2) Powder pulverizing and classifying system according to claim "characterized by installing a fluidized bed in a fluidized layer the bottom of.
Moreover, the problem is the (4) "the paragraph (1), second (3) powder pulverizing and classifying system according to any one of the sections of this invention, the injection of compressed air from the grinding nozzles, separate air ( Powder pulverization classification characterized by being performed while supplying secondary air), ( 5 ) “Supply flow rate of secondary air (Q 2 ) and amount of compressed air injected from pulverization nozzle (Q 1 ) wherein the (4) powder pulverizing and classifying method according to claim but which comprises carrying out set to be the condition represented by the following (equation 1);

Figure 0004464696
」、()「二次エアーの供給圧力(P)が下記(式2)で表わされる条件になるように設定して行なうことを特徴とする前記第()項又は第()項に記載の粉体粉砕分級方法;
Figure 0004464696
, ( 6 ) “Secondary air supply pressure (P) is set so as to satisfy the condition represented by the following (formula 2)” ( 4 ) or ( 5 ) Powder pulverization classification method according to claim 1;

Figure 0004464696
」、()「二次エアーを、流動層または上部設置された分級ローターに対し、対向する粉砕ノズルより下方の流動層底部から鉛直方向に断続的に噴出して行なうことを特徴とする前記第()項乃至第()項のいずれかに記載の粉体粉砕分級方法」により達成される。
Figure 0004464696
( 7 ) “The secondary air is intermittently ejected in the vertical direction from the bottom of the fluidized bed below the opposed pulverizing nozzle to the fluidized bed or the classification rotor installed at the top. This is achieved by the “powder pulverization and classification method according to any one of ( 4 ) to ( 6 )”.

本発明の流動層式粉砕分級機およびそれを用いた粉砕分級システムによって、粉砕ノズルから噴射される圧縮空気以外に空気(二次エアー)を供給すると、粉砕ゾーンから分級ゾーンへの上昇気流は条件に関係なく一定しているので、過粉砕による微粉の発生、粉砕品への粗粉の飛びこみが抑制でき、粉砕効率が向上できる。
また、本発明の流動層式粉砕分級機およびそれを用いた粉砕分級システムによって、二次エアーを対向する粉砕ノズルより下方の流動層底部から供給することで、衝突の際に下方に逃げた所望の粒径範囲以下のものは上昇し、分級ゾーンに到達しているので、過粉砕による微粉の発生が抑制でき、粉砕効率が向上できる。
また、本発明の流動層式粉砕分級機およびそれを用いた粉砕分級システムによって、二次エアーを分級ロータの接線方向に流動層上部から供給することで、固気比が高くならないように調節できるので、粉砕品への粗粉の飛びこみが抑制でき、粉砕効率が向上する。
また、本発明の流動層式粉砕分級機およびそれを用いた粉砕分級システムによって、二次エアーを対向する粉砕ノズルより下方の流動層底部と分級ロータの接線方向に流動層上部から供給することで、衝突の際に下方に逃げた所望の粒径範囲以下のものは上昇し、分級ゾーンに到達しているので、過粉砕による微粉の発生が抑制でき、また、分級ゾーンの固気比が高くならないので、粉砕品への粗粉の飛びこみが抑制でき、粉砕効率が向上できる。
また、本発明の流動層式粉砕分級機およびそれを用いた粉砕分級システムによって、対向する粉砕ノズルより下方の流動層底部に流動床を設置することで、衝突の際に下方に逃げ、流動層底部に広がった所望の粒径範囲以下のものは上昇し、分級ゾーンに到達しているので、過粉砕による微粉の発生が抑制でき、粉砕効率が向上できる。また、流動層底部で滞留している被粉砕物を流動化することで、効率よく対向する粉砕ノズルから噴射した圧縮空気により供給加速されているので、粉砕効率が向上できる。
また、本発明の流動層式粉砕分級機およびそれを用いた粉砕分級システムによって、二次エアーの供給量を流動層内の圧力によるフィードバック制御、排気風量を粉砕分級機の粉砕品出口以降に設置された流量計によるフィードバック制御とすることで、粉砕ゾーンから分級ゾーンへの上昇気流の変動を抑制できる。
When air (secondary air) is supplied in addition to the compressed air injected from the pulverization nozzle by the fluidized bed pulverization classifier and the pulverization classification system of the present invention, the ascending airflow from the pulverization zone to the classification zone is the condition. Therefore, the generation of fine powder due to excessive pulverization and the intrusion of coarse powder into the pulverized product can be suppressed, and the pulverization efficiency can be improved.
In addition, the fluidized bed type pulverizing and classifying machine of the present invention and the pulverizing and classifying system using the same supply secondary air from the bottom of the fluidized bed below the opposing pulverizing nozzle, so that the desired escaped downward in the event of a collision. Since the particles below the particle size range rise and reach the classification zone, generation of fine powder due to overgrinding can be suppressed, and grinding efficiency can be improved.
Further, the fluidized bed type pulverizing classifier and the pulverizing and classifying system using the same can be adjusted so that the solid-gas ratio does not increase by supplying secondary air from the upper part of the fluidized bed in the tangential direction of the classification rotor. As a result, the coarse powder can be prevented from entering the pulverized product, and the pulverization efficiency is improved.
Further, by the fluidized bed type pulverization classifier and the pulverization classification system of the present invention, the secondary air is supplied from the upper part of the fluidized bed in the tangential direction of the fluidized bed bottom and the classification rotor below the opposed pulverization nozzle. In the case of a collision, those below the desired particle size range that has escaped downward rise and reach the classification zone, so generation of fine powder due to overgrinding can be suppressed, and the solid-gas ratio in the classification zone is high. Therefore, it is possible to suppress the pulverized product from entering the pulverized product and improve the pulverization efficiency.
In addition, the fluidized bed type pulverizing classifier and the pulverizing and classifying system using the same provide a fluidized bed at the bottom of the fluidized bed below the opposing pulverizing nozzle, thereby escaping downward in the event of a collision. Those below the desired particle size range spread to the bottom rise and reach the classification zone, so that the generation of fine powder due to overgrinding can be suppressed and grinding efficiency can be improved. In addition, since the object to be crushed staying at the bottom of the fluidized bed is fluidized, the supply is accelerated by the compressed air jetted from the pulverizing nozzles facing each other efficiently, so that the pulverization efficiency can be improved.
In addition, with the fluidized bed type pulverization classifier and the pulverization classification system of the present invention, the secondary air supply amount is feedback controlled by the pressure in the fluidized bed, and the exhaust air volume is installed after the pulverized product outlet of the pulverization classifier By using the feedback control by the flow meter that has been made, fluctuations in the updraft from the pulverization zone to the classification zone can be suppressed.

以下、本発明を図面を参照して詳細に説明する。
先ず、従来の粉砕分級方法の問題点について、図1の流動層式粉砕分級機によってさらに詳細に説明する。
図1において、流動層内の粉砕ゾーン(5)から分級ゾーン(3)への上昇気流は、分級ロータ(2)の回転数による圧損の影響があるが、主に粉砕ノズル(6)から噴射される圧縮空気と粉砕ブロワ(12)による排気によって発生されるものである。
通常、最終的に得られる粉砕物が所望の粒径範囲内になるように設定される条件から、粉砕ノズル(6)から噴射される圧縮空気の圧力と分級ロータ(2)の回転数が決定され、また粉砕ブロワ(12)の排気風量も流動層内の圧力を一定にする条件から決定される。
Hereinafter, the present invention will be described in detail with reference to the drawings.
First, the problems of the conventional pulverization classification method will be described in more detail using the fluidized bed type pulverization classifier shown in FIG.
In FIG. 1, the upward air flow from the pulverization zone (5) to the classification zone (3) in the fluidized bed is affected by pressure loss due to the rotational speed of the classification rotor (2), but is mainly injected from the pulverization nozzle (6). Generated by exhausting the compressed air and the pulverizing blower (12).
Usually, the pressure of the compressed air injected from the pulverizing nozzle (6) and the rotational speed of the classification rotor (2) are determined from the conditions set so that the finally obtained pulverized product falls within the desired particle size range. In addition, the exhaust air volume of the pulverizing blower (12) is also determined from the condition for keeping the pressure in the fluidized bed constant.

このために、これらの条件によって流動層内の粉砕ゾーン(5)から分級ゾーン(3)への上昇気流が異なり、条件によっては充分な上昇気流が得られない場合があって、所望の粒径範囲内のものが分級ゾーン(3)に到達できずに、粉砕ゾーン(5)中で再粉砕されることになって、その結果粒径の小さすぎる微粉が多く発生してしまうことになる。
また、対向設置される複数の粉砕ノズル(6)(図1においては3個の粉砕ノズル)から噴射された圧縮空気とこの圧縮空気によって供給加速された被粉砕物とは、粉砕ゾーン(5)内に形成される流動層のセンター付近で衝突されるが、その際に被粉砕物が上方だけでなく下方にも逃げることがあると、上昇気流に乗れなかった所望の粒径範囲以下のものは分級ゾーン(3)に到達できず、再度粉砕され粒径の小さすぎる微粉が多く発生してしまう。
逆に、条件よっては過剰な上昇気流が発生して、粒径の大きな粗粉も含んだ多量の粉砕品(場合によっては被粉砕物も)が分級ゾーン(3)に集まり、その結果最終的に得られる粉砕品の中に粗粉が含まれることになる、いわゆる粗粉の飛びこみが発生してしまう。
For this reason, the ascending air flow from the pulverization zone (5) in the fluidized bed to the classification zone (3) varies depending on these conditions, and depending on the conditions, a sufficient ascending air current may not be obtained, and the desired particle size may be reduced. Those within the range cannot reach the classification zone (3) and are re-ground in the pulverization zone (5). As a result, many fine powders having a too small particle size are generated.
Further, the compressed air injected from a plurality of pulverizing nozzles (6) (three pulverizing nozzles in FIG. 1) installed opposite to each other and the object to be crushed and accelerated by the compressed air are divided into a pulverizing zone (5). Colliding near the center of the fluidized bed formed inside, if the material to be crushed escapes not only upward but also downward, the particle size is less than the desired particle size range that could not get on the rising airflow Cannot reach the classification zone (3) and is pulverized again to generate a lot of fine powder having a too small particle diameter.
On the contrary, an excessive ascending airflow is generated depending on the conditions, and a large amount of pulverized products (including crushed materials in some cases) including coarse powder having a large particle size gather in the classification zone (3), and as a result In the crushed product obtained in the above, coarse powder is contained, so-called coarse powder jumping occurs.

本発明は、流動層式粉砕分級機を用いて行なわれる従来の粉砕分級方法によって発生するこのような問題を解決可能とするものである。
図2中、(a)は本発明の流動層式粉砕分級機例の概略断面図であり、(b)(c)は(a)の流動層式粉砕分級機の流動層下部を真上から見たときの概略図であり、(b)は流動床(13)全体にフィルタ(14)を設置した場合、(c)は流動床(13)の粉砕ノズル(6)から噴射される圧縮空気流路を阻害しないようにフィルタ(14)を設置した場合の例を示すものである。
図2に示される流動層式粉砕分級機において、粉砕ノズル(6)から噴射される圧縮空気に加えて、空気(二次エアー)を供給する機構によって空気(二次エアー)を供給すると、該粉砕ゾーン(5)から分級ゾーン(3)への上昇気流を条件に関係なく一定にすることができるために、上記の問題を解決することができる。
The present invention makes it possible to solve such a problem caused by a conventional pulverization classification method performed using a fluidized bed pulverization classifier.
2, (a) is a schematic cross-sectional view of an example of a fluidized bed type pulverizing and classifying machine of the present invention, and (b) and (c) are views of the lower part of the fluidized bed type pulverizing and classifying machine of (a) from directly above. It is the schematic when it sees, When (b) installs a filter (14) in the whole fluidized bed (13), (c) is the compressed air injected from the crushing nozzle (6) of a fluidized bed (13). An example in which a filter (14) is installed so as not to obstruct the flow path is shown.
In the fluidized bed type pulverization classifier shown in FIG. 2, when air (secondary air) is supplied by a mechanism for supplying air (secondary air) in addition to compressed air injected from the pulverization nozzle (6), Since the upward air flow from the pulverization zone (5) to the classification zone (3) can be made constant regardless of the conditions, the above problem can be solved.

すなわち、図2中の(a)に示されるように、粉砕ゾーン(5)の下方底部に流動床(13)を設置し、該流動床(13)の下部に二次エアーを供給する機構を設けて、二次エアーを供給すると、供給フィーダー(4)から送られた被粉砕物が、対向設置された複数の粉砕ノズル(6)から排出される圧縮空気によって粉砕される際、被粉砕物は流動化され充分な上昇気流が得られ、粉砕された所望の粒径物を効率良く上昇させ、分級ゾーン(3)に到達でき分級されるので過粉砕が防止できるので、好ましい。
また、流動層底部で滞留している被粉砕物を流動化させると、対向する粉砕ノズル(6)から噴射した圧縮空気にまんべんなく供給でき加速衝突するようにできるので、被粉砕物の粉砕、特に粗大粒子の粉砕が効果的に行われる。
That is, as shown in FIG. 2 (a), a mechanism is provided in which a fluidized bed (13) is installed at the lower bottom of the pulverization zone (5) and secondary air is supplied to the lower part of the fluidized bed (13). When the secondary air is provided and the object to be crushed sent from the supply feeder (4) is pulverized by the compressed air discharged from the plurality of pulverizing nozzles (6) installed oppositely, the object to be crushed Is preferable because it can be fluidized to obtain a sufficient ascending airflow, efficiently raise the desired pulverized particle size, reach the classification zone (3) and be classified, and thus prevent excessive pulverization.
In addition, when the object to be crushed staying at the bottom of the fluidized bed is fluidized, it can be supplied evenly to the compressed air injected from the opposed pulverizing nozzle (6) and can be accelerated and collided. Coarse particles are effectively pulverized.

特に、該二次エアー)を供給する機構を、粉砕ノズル(6)よりも下方に設置される流動床の粉砕ゾーン(5)と反対側の底部から空気(二次エアー)を供給できるように設置すると、衝突の際に下方に逃げた所望の粒径範囲以下のものを上昇させ、分級ゾーン(3)に到達できるようになるので、有効である。   In particular, the mechanism for supplying the secondary air) can supply air (secondary air) from the bottom portion on the opposite side of the pulverization zone (5) of the fluidized bed installed below the pulverization nozzle (6). When installed, it is effective because the particles having a desired particle size that escaped downward during the collision can be raised and reach the classification zone (3).

図3は、本発明の他の流動層式粉砕分級機の概念図である。
図3に示される流動層式粉砕分級機においては、二次エアーが分級ロータ(2)の接線方向に流動層上部から供給される機構を有するものであり、二次エアーを分級ロータ(2)の接線方向に流動層上部から供給すると、過剰な上昇気流が発生するようなことが起きても、分級ゾーン(3)に粗粉も含んだ多量の粉砕品(場合によっては被粉砕物も)が集まらないために、固気比が高くならず分級精度の低下を抑え、粉砕品に粗粉が飛びこむのを防ぐことができるので、好ましい。
FIG. 3 is a conceptual diagram of another fluidized bed type pulverization classifier of the present invention.
In the fluidized bed type pulverization classifier shown in FIG. 3, the secondary air is supplied from the upper part of the fluidized bed in the tangential direction of the classification rotor (2), and the secondary air is classified into the classification rotor (2). Even if an excessive updraft occurs when supplied from the upper part of the fluidized bed in the tangential direction, a large amount of pulverized product including coarse powder in the classification zone (3) (sometimes to be pulverized) Therefore, it is preferable because the solid-gas ratio is not increased, the deterioration of the classification accuracy is suppressed, and the coarse powder can be prevented from jumping into the pulverized product.

また、二次エアーを、対向する粉砕ノズル(6)より下方の流動床の底部と分級ロータ(2)の接線方向に流動層上部との双方から供給すると、衝突の際に下方に逃げた所望の粒径範囲以下のものを上昇させ、分級ゾーン(3)に到達できるようにするとともに分級ゾーン(3)の固気比が高くならなくできるので、好ましい。   Further, when the secondary air is supplied from both the bottom of the fluidized bed below the opposing crushing nozzle (6) and the fluidized bed top in the tangential direction of the classification rotor (2), the desired escaped downward in the event of a collision The particle size range below this range is increased so that it can reach the classification zone (3) and the solid-gas ratio in the classification zone (3) can be prevented from becoming high.

また、被粉砕物を流動層内で効率良く流動化させて、粉砕能力を高めるためには、流動層内部の圧力を   In order to efficiently fluidize the material to be pulverized in the fluidized bed and increase the pulverization ability,

Figure 0004464696
に設定して行なうことが望ましい。
粉砕圧力が+3kpaを越えた場合には、加速衝突する際の背圧が上昇して衝突速度低下する傾向があるため、粉砕能力が低下して来る場合があり、さらには、流動層内の上昇気流も低下して、分級ゾーンへの粉砕物の供給能力も低下する傾向が出てきて、分級精度までも低下してしまう場合がある。
一方、流動層内の圧力が−10kpa未満の場合には、流層化が必要以上に進んで、粉砕ノズル(6)から噴射される圧縮空気周辺の固気比が低下する傾向があるために、粉砕能力が低下する場合があり、また被粉砕物の流層化が必要以上に進んで、分級ゾーンへの被粉砕物の供給も進む傾向がでてきて、粗大粒子が混入し分級精度まで低下する場合がある。
なお、流動層内の圧力の管理方法としては、例えば、圧力計(8)で行なうのが好ましい。
Figure 0004464696
It is desirable to set it to.
When the pulverization pressure exceeds +3 kpa, the back pressure during accelerated collision tends to increase and the collision speed tends to decrease, so the pulverization ability may decrease, and in the fluidized bed Ascending airflow also decreases, and the ability to supply the pulverized product to the classification zone tends to decrease, which may reduce the classification accuracy.
On the other hand, when the pressure in the fluidized bed is less than −10 kpa, fluidized bed formation proceeds more than necessary, and the solid-gas ratio around compressed air injected from the pulverizing nozzle (6) tends to decrease. In some cases, the pulverization ability may be reduced, and the stratification of the crushed material will progress more than necessary, and the supply of the pulverized material to the classification zone will also progress. May decrease.
As a method for managing the pressure in the fluidized bed, for example, it is preferable to use a pressure gauge (8).

また、供給する二次エアーの流量(Q2)としては、被粉砕物の粉砕性に応じて、粉砕流量(Q1)に対し、 Further, the flow rate (Q 2 ) of the secondary air to be supplied is based on the pulverization flow rate (Q 1 ) according to the pulverization property of the object to be crushed.

Figure 0004464696
で表わされる条件になるように設定して行なうことが望ましい。
二次エアーの流量(Q2)がQ1/20未満の場合には、流動化が十分行なわれない傾向があって、従来の粉砕法と同様に過粉砕や粗大粒子の混入が発生する場合がある。
一方、二次エアーの流量(Q2)が3Q1/20を越えた場合には、被粉砕物や粗大粒子までもが上昇し分級ゾーン(3)に到達する傾向が出てくるために、従来以上に粗大粒子が製品中に混入する場合があって好ましくない。
Figure 0004464696
It is desirable to set it so that the condition expressed by
If the secondary air flow rate (Q 2) is less than Q 1/20 is tended to fluidize is not performed sufficiently, if the contamination of conventional pulverizing method as well as over-pulverization and coarse particles occurs There is.
On the other hand, if the secondary air flow rate (Q 2) exceeds 3Q 1/20, in order to come out tend to reach even rise to classification zone to the object to be crushed and coarse particles (3), Coarse particles may be mixed in the product than before, which is not preferable.

図2の(b)(c)の場合において流動床(13)に設置されるフィルタ(14)としては、限定的ではないが、80メッシュ(180μm)〜250メッシュ(63μm)の範囲のSUS材網を重ねあわせ焼結したものを用いることが望ましい。   The filter (14) installed in the fluidized bed (13) in the cases of (b) and (c) of FIG. 2 is not limited, but is an SUS material in the range of 80 mesh (180 μm) to 250 mesh (63 μm). It is desirable to use a net that is laminated and sintered.

また、粉砕ノズル(6)へ供給する圧縮空気の圧力、分級ロータ(2)の回転数、及び粉砕ブロワ(12)の排気風量は、設定値になるようにコントロールされているが、コンプレッサから供給される元圧縮空気圧力の変動、分級ゾーン(3)の固気比変化による分級ロータ(2)のモータ(9)の負荷変動、及び分級ロータ(2)の回転数変動による圧損の変化等によってばらつきやすいものであり、ばらつくと粉砕ゾーン(5)から分級ゾーン(3)への上昇気流が安定しない場合が生じる。   The pressure of the compressed air supplied to the pulverizing nozzle (6), the rotational speed of the classification rotor (2), and the exhaust air volume of the pulverizing blower (12) are controlled so as to become set values, but are supplied from the compressor. Due to fluctuations in the original compressed air pressure, changes in the load of the motor (9) of the classification rotor (2) due to changes in the solid-gas ratio in the classification zone (3), changes in pressure loss due to fluctuations in the rotational speed of the classification rotor (2) If it fluctuates, the upward air flow from the pulverization zone (5) to the classification zone (3) may not be stable.

以上説明した本発明の流動層式粉砕分級機は、図4に示されるように、圧力計(8)を設置して、二次エアーの供給量を流動層内の圧力によってフィードバック制御し、さらに粉砕分級機の粉砕品出口以降に流量計(17)を設置して、排気風量をフィードバック制御して、粉砕ゾーン(5)から分級ゾーン(3)への上昇気流を安定させることができる。
このように、本発明は、流動層式粉砕分級機、圧力計および流量計とを具備する粉体粉砕分級システムを構成することができる。
The fluidized bed type pulverizing and classifying machine of the present invention described above has a pressure gauge (8) as shown in FIG. 4 to feedback control the amount of secondary air supplied by the pressure in the fluidized bed, A flow meter (17) is installed after the pulverized product outlet of the pulverization classifier, and the exhaust air flow is feedback controlled to stabilize the upward air flow from the pulverization zone (5) to the classification zone (3).
As described above, the present invention can constitute a powder pulverization classification system including a fluidized bed pulverization classifier, a pressure gauge, and a flow meter.

図4は、二次エアーを供給ブロワ(15)によって供給し、その供給量を流動層内の圧力を圧力計(8)によって検知し、その信号を供給ブロワ(15)の回転数をインバータ(16)に送りで制御することによって調節し、排気風量をバグフィルタ(10)出口に設置された流量計(17)によって調節することにした場合を示した、本発明の粉体粉砕分級システムの例である。
図5は、図4における流動層式粉砕分級機(1)に設置される分級ローター(2)の(3a)〜(3b)の断面図である。
In FIG. 4, secondary air is supplied by a supply blower (15), the amount of supply is detected by a pressure gauge (8), and the rotation speed of the supply blower (15) is converted into an inverter ( 16) of the powder pulverizing and classifying system according to the present invention, in which the exhaust air volume is adjusted by the feed control and the flow rate (17) installed at the bag filter (10) outlet is adjusted. It is an example.
FIG. 5 is a cross-sectional view of (3a) to (3b) of the classification rotor (2) installed in the fluidized bed pulverization classifier (1) in FIG.

トナー粒子V(m/S)は、ローターの回転によって受ける遠心力Fで決定され、該遠心力Fは下記(式3)で表わすことができる。
すなわち、ローターの回転数が早くなる程、粒子に働く遠心力が強くなって、細かい粒子が分級ローターの円周方向に飛んで、小粒径となる。
The toner particles V (m / S) are determined by the centrifugal force F received by the rotation of the rotor, and the centrifugal force F can be expressed by the following (formula 3).
That is, as the rotational speed of the rotor becomes faster, the centrifugal force acting on the particles becomes stronger, and fine particles fly in the circumferential direction of the classification rotor, resulting in a small particle size.

Figure 0004464696
Figure 0004464696

以下、実施例により詳細に説明する。しかし、本発明はこれらの実施例によって限定されない。
(実施例1)
ポリエステル樹脂75重量%とスチレンアクリル共重合樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後ハンマーミルで粗粉砕したトナー原料を、二次エアーを対向する粉砕ノズルより下方の流動層底部から供給する構成の流動層式粉砕分級機を用い、粉砕ノズルへ供給する圧縮空気圧力:0.5Mpa、分級ロータ周速:40m/s、流動層内圧力(二次エアーの供給圧力(P)):−5kpaの条件に設定して粉砕した結果、重量平均粒径:6.5μm、4μm以下の微粉の含有率(個数平均):58pop.%、12.7μm以上の粗粉の含有率(重量平均):0.7wt.%のトナーを13kg/hr得ることができた。
この粒径測定に際しては、コールターカウンター社のマルチサイザーを用いた。
Hereinafter, the embodiment will be described in detail. However, the present invention is not limited by these examples.
Example 1
A mixture of 75% by weight of a polyester resin, 10% by weight of a styrene acrylic copolymer resin and 15% by weight of carbon black is melt-kneaded by a roll mill, cooled and solidified, and then coarsely pulverized by a hammer mill. Using a fluidized bed type pulverizing classifier configured to be supplied from the bottom of the fluidized bed below the pulverizing nozzle, compressed air pressure supplied to the pulverizing nozzle: 0.5 Mpa, classification rotor peripheral speed: 40 m / s, fluidized bed internal pressure (2 Next air supply pressure (P)): As a result of pulverization under the condition of −5 kpa, weight average particle size: 6.5 μm, content of fine powder of 4 μm or less (number average): 58 pop. %, Content of coarse powder of 12.7 μm or more (weight average): 0.7 wt. % Of toner could be obtained at 13 kg / hr.
A multisizer manufactured by Coulter Counter was used for the particle size measurement.

(比較例1)
実施例1と同一の混練品と粉砕分級条件によって、図1に示される二次エアーの供給のない従来の流動層式粉砕分級を用いて粉砕を行なった結果、重量平均粒径:6.6μm、4μm以下の微粉の含有率(個数平均):61pop.%、12.7μm以上の粗粉の含有率(重量平均):1.2wt.%のトナーを10kg/hr得ることができた。
(Comparative Example 1)
As a result of pulverization using the same kneaded product and pulverization classification conditions as in Example 1 using the conventional fluidized bed pulverization classification without secondary air supply shown in FIG. 1, the weight average particle size: 6.6 μm Content of fine powder of 4 μm or less (number average): 61 pop. %, Content of coarse powder of 12.7 μm or more (weight average): 1.2 wt. % Of toner could be obtained at 10 kg / hr.

(実施例2)
実施例1と同一の混練品を用い、二次エアーを対向する粉砕ノズルより下方の流動層底部から供給する構成の流動層式粉砕分級機を用い、粉砕ノズルへ供給する圧縮空気圧力:0.5Mpa、分級ロータ周速:43m/s、流動層内圧力(二次エアーの供給圧力(P)):−5kpaの条件に設定して粉砕した結果、重量平均粒径:6.3μm、4μm以下の微粉の含有率(個数平均):59pop.%、12.7μm以上の粗粉の含有率(重量平均):0.8wt.%のトナーを12kg/hr得ることができた。
この粒径測定に際しては、コールターカウンター社のマルチサイザーを用いた。
(Example 2)
Compressed air pressure supplied to the pulverization nozzle using the same kneaded product as in Example 1 and using a fluidized bed pulverization classifier configured to supply secondary air from the bottom of the fluidized bed below the opposing pulverization nozzle: 5 Mpa, classification rotor peripheral speed: 43 m / s, fluidized bed pressure (secondary air supply pressure (P)): -5 kpa, pulverized, weight average particle size: 6.3 μm, 4 μm or less Content of fine powder (number average): 59 pop. %, Content of coarse powder of 12.7 μm or more (weight average): 0.8 wt. % Of toner could be obtained at 12 kg / hr.
A multisizer manufactured by Coulter Counter was used for the particle size measurement.

(実施例3)
ポリエステル樹脂85重量%とスチレンアクリル共重合樹脂12重量%とカーボンブラック13重量%の混合物をロールミルにて溶融混練し、冷却固化した後ハンマーミルで粗粉砕したトナー原料を、実施例1と同一の粉砕分級条件によって、二次エアーを対向する
(Example 3)
A toner raw material obtained by melt-kneading a mixture of 85% by weight of a polyester resin, 12% by weight of a styrene acrylic copolymer resin and 13% by weight of carbon black in a roll mill, cooling and solidifying, and then roughly pulverizing in a hammer mill is the same as in Example 1. Depending on the pulverization classification condition, the secondary air is opposed.

粉砕ノズルより下方の流動層底部と分級ロータの接線方向に流動層上部から供給する構成の流動層式粉砕分級機を用いて粉砕した結果、重量平均粒径:6.5μm、4μm以下の微粉の含有率(個数平均):56pop.%、12.7μm以上の粗粉の含有率(重量平均):0.7wt.%のトナーを15kg/hr得ることができた。 As a result of pulverization using a fluidized bed type pulverizing and classifying machine configured to supply from the fluidized bed bottom portion below the pulverizing nozzle and the fluidized bed top in the tangential direction of the classifying rotor, a weight average particle size of 6.5 μm, 4 μm or less Content (number average): 56 pop. %, Content of coarse powder of 12.7 μm or more (weight average): 0.7 wt. % Of toner could be obtained at 15 kg / hr.

(実施例4)
図2に示されるような、粉砕ノズルから噴射される圧縮空気流路を阻害しない位置に、表面空孔径:20μm、材質:硬質ポリエチレン、気孔率:35%、厚さ:5mmの焼結成形フィルタを設けた流動床が設置された流動層式粉砕分級機を用いて、実施例2と同一の混練品と粉砕分級条件によって、流動床の下方から二次エアーを供給し粉砕した結果、重量平均粒径:6.5μm、4μm以下の微粉の含有率(個数平均):55pop.%、12.7μm以上の粗粉の含有率(重量平均):0.5wt.%のトナーを17kg/hr得ることができた。
Example 4
A sintered molded filter having a surface pore diameter of 20 μm, a material of: hard polyethylene, a porosity of 35%, and a thickness of 5 mm at a position that does not hinder the compressed air flow path ejected from the pulverizing nozzle, as shown in FIG. Using a fluidized bed type pulverizing / classifying machine provided with a fluidized bed, the secondary air was supplied from below the fluidized bed and pulverized according to the same kneaded product and pulverizing classification conditions as in Example 2, resulting in a weight average. Particle size: 6.5 μm, content of fine powder of 4 μm or less (number average): 55 pop. %, Content of coarse powder of 12.7 μm or more (weight average): 0.5 wt. % Of toner could be obtained at 17 kg / hr.

(実施例5)
実施例5においては、実施例4に記載した流動床と同一のものが設置され流動層式粉砕分級機、二次エアーの供給量を流動層内の圧力によってフィードバック制御するための圧力計および排気風量をフィードバック制御するために前記粉砕分級機の粉砕品出口以降に設置された流量計とを具備する図4に示されるような粉体粉砕分級システムを用いる。
この粉体粉砕分級システムを用い、実施例2と同一の混練品と粉砕分級条件によって、流動床の下方から二次エアーを供給し粉砕した結果、重量平均粒径:6.5μm、4μm以下の微粉の含有率(個数平均):54pop.%、12.7μm以上の粗粉の含有率(重量平均):0.4wt.%のトナーを17kg/hr得ることができた。
(Example 5)
In Example 5, the same fluidized bed as described in Example 4 is installed, a fluidized bed type pulverizing and classifier, a pressure gauge for controlling feedback of the supply amount of secondary air by the pressure in the fluidized bed, and exhaust In order to perform feedback control of the air volume, a powder pulverizing and classifying system as shown in FIG. 4 having a flow meter installed after the pulverized product outlet of the pulverizing and classifying device is used.
Using this powder pulverization classification system, secondary air was supplied from below the fluidized bed and pulverized according to the same kneaded product and pulverization classification conditions as in Example 2. As a result, the weight average particle size: 6.5 μm, 4 μm or less Fine powder content (number average): 54 pop. %, Content of coarse powder of 12.7 μm or more (weight average): 0.4 wt. % Of toner could be obtained at 17 kg / hr.

(実施例6)
ポリエステル樹脂85重量%とスチレンアクリル共重合樹脂12重量%とカーボンブラック13重量%の混合物をロールミルにて溶融混練し、冷却固化した後ハンマーミルで粗粉砕したトナー原料を、図2に示されるような装置を用い、粉砕ノズルから噴射される圧縮空気量Qが10m3/minで圧縮空気流路を阻害しない位置に、表面空孔径:20μm、材質:硬質ポリエチレン、気孔率:35%、厚さ:5mmの焼結成形フィルタを設けた流動床が設置された流動層式粉砕分級機を用いて、実施例1と同一の混練品と粉砕分級条件によって、流動床の下方から二次エアー供給圧力Pを−5kpa、二次エアーの供給流量Q2を0.6m3/minで供給し粉砕した結果、重量平均粒径:6.5μm、4μm以下の微粉の含有率(個数平均):53pop.%、12.7μm以上の粗粉の含有率(重量平均):0.2wt.%のトナーを18kg/hr得ることができた。
(Example 6)
As shown in FIG. 2, a toner raw material obtained by melt-kneading a mixture of 85% by weight of a polyester resin, 12% by weight of a styrene acrylic copolymer resin and 13% by weight of carbon black by a roll mill, cooling and solidifying, and then roughly pulverizing by a hammer mill is shown in FIG. The surface air hole diameter: 20 μm, material: rigid polyethylene, porosity: 35%, thickness at a position where the compressed air flow rate Q 1 injected from the pulverizing nozzle is 10 m 3 / min and does not hinder the compressed air flow path Length: Secondary air supply from below the fluidized bed using the same kneaded product and pulverization classification conditions as in Example 1 using a fluidized bed pulverization classifier equipped with a fluidized bed with a 5 mm sintered filter. -5kpa the pressure P, the result of the supply flow rate Q 2 of the secondary air was fed at 0.6 m 3 / min grinding, the weight average particle diameter: 6.5 [mu] m, the content of the following fine 4 [mu] m (number Rights ): 53pop. %, Content of coarse powder of 12.7 μm or more (weight average): 0.2 wt. % Of toner was obtained at 18 kg / hr.

(a)は従来の流動層式粉砕分級機とそれを用いた粉砕分級システムの一例の概略構成(断面)図を示し、(b)は(a)における流動層式粉砕分級機の流動層下部を真上から見たときの概略図である。(A) shows the schematic structure (cross-section) figure of an example of the conventional fluidized bed type pulverization classifier and the pulverization classification system using the same, and (b) shows the lower part of the fluidized bed of the fluidized bed type pulverization classifier in (a). It is the schematic when seeing from right above. (a)は本発明の流動層式粉砕分級機の概略断面図であり、(b)、(c)は(a)における流動層式粉砕分級機の流動層下部を真上から見たときの概略図である。(A) is a schematic sectional drawing of the fluidized bed type pulverization classifier of the present invention, (b), (c) when the lower part of the fluidized bed type pulverization classifier in (a) is viewed from directly above. FIG. 本発明の流動層式粉砕分級機の他の例の概略断面図である。It is a schematic sectional drawing of the other example of the fluid bed type pulverization classifier of the present invention. 本発明の流動層式粉砕分級機の他の例の概略断面図である。It is a schematic sectional drawing of the other example of the fluid bed type pulverization classifier of the present invention. 図4における流動層式粉砕分級機に設置される分級ローター(2)の(3a)〜(3b)の断面図である。It is sectional drawing of (3a)-(3b) of the classification rotor (2) installed in the fluidized bed type | mold grinding | pulverization classifier in FIG.

符号の説明Explanation of symbols

1:流動層式粉砕分級機
2:分級ロータ
3:分級ゾーン
3a:断面図
3b:断面図
4:供給フィーダ
5:粉砕ゾーン
6:粉砕ノズル
7:粉砕品出口
8:圧力計
9:モータ
10:バグフィルタ11:粉砕品
12:粉砕ブロワ
13:流動床
14:フィルタ
15:供給ブロワ
16:インバータ
17:流量計
1: Fluidized bed type pulverization classifier 2: Classification rotor 3: Classification zone 3a: Cross section 3b: Cross section 4: Feeding feeder 5: Crushing zone 6: Crushing nozzle 7: Pulverized product outlet 8: Pressure gauge 9: Motor 10: Bag filter 11: pulverized product 12: pulverized blower 13: fluidized bed 14: filter 15: supply blower 16: inverter 17: flow meter

Claims (7)

粉砕ノズルが設けられた粉砕ゾーンと分級ロータが設けられた分級ゾーンを具備し、前記粉砕ノズルから噴射される圧縮空気とは別の空気(二次エアー)を供給する機構を有する流動層式粉砕分級機、二次エアーの供給量を流動層内の圧力によってフィードバック制御するための圧力計、および前記粉砕分級機の粉砕品出口以降に設置された排気風量をフィードバック制御するための流量計を具備することを特徴とする粉体粉砕分級システム。 Comprising a fluff nozzle is provided pulverization zone classification classification zone the rotor is provided, a fluidized bed grinding having a mechanism for supplying the different air and compressed air injected from the grinding nozzles (secondary air) Equipped with a classifier , a pressure gauge for feedback control of the supply amount of secondary air by the pressure in the fluidized bed, and a flow meter for feedback control of the exhaust air volume installed after the pulverized product outlet of the pulverization classifier A powder pulverization and classification system characterized by: 前記流動層式粉砕分級機は、二次エアーを供給する前記機構によって、流動層の内面に対し接線方向に二次エアー供給することを特徴とする請求項1に記載の粉体粉砕分級システム。 2. The powder pulverizing and classifying system according to claim 1, wherein the fluidized bed pulverizing and classifying device supplies secondary air in a tangential direction to the inner surface of the fluidized bed by the mechanism that supplies secondary air . 3. 前記流動層式粉砕分級機は、対向する粉砕ノズルより下方の流動層底部に流動床を設置することを特徴とする請求項1又は2に記載の粉体粉砕分級システム。 3. The powder pulverizing and classifying system according to claim 1, wherein the fluidized bed type pulverizing and classifying device is provided with a fluidized bed at a bottom of the fluidized bed below an opposing pulverizing nozzle . 4. 請求項1乃至3のいずれかに記載の粉体粉砕分級システムによって、粉砕ノズルから圧縮空気を噴射と共に、別途空気(二次エアー)を供給しながら行なうことを特徴とする粉体粉砕分級方法。 The powder pulverizing and classifying system according to any one of claims 1 to 3, together with the injection of compressed air from the grinding nozzles, a powder pulverized and classified method characterized by performing while supplying additional air (secondary air). 二次エアーの供給流量(Q2)と粉砕ノズルから噴射される圧縮空気量(Q1)とが下記(式1)で表わされる条件になるように設定して行なうことを特徴とする請求項に記載の粉体粉砕分級方法。
Figure 0004464696
The secondary air supply flow rate (Q 2 ) and the amount of compressed air (Q 1 ) injected from the pulverizing nozzle are set so as to satisfy the conditions expressed by the following (formula 1). 4. The powder pulverization classification method according to 4.
Figure 0004464696
二次エアーの供給圧力(P)が下記(式2)で表わされる条件になるように設定して行なうことを特徴とする請求項4又は5に記載の粉体粉砕分級方法。
Figure 0004464696
The powder pulverization classification method according to claim 4 or 5 , wherein the supply pressure (P) of the secondary air is set so as to satisfy the condition represented by the following (formula 2).
Figure 0004464696
二次エアーを、流動層または上部設置された分級ローターに対し、対向する粉砕ノズルより下方の流動層底部から鉛直方向に断続的に噴出して行なうことを特徴とする請求項4乃至6のいずれかに記載の粉体粉砕分級方法。 Secondary air, to the fluid layer or top the installed classifying rotor, more of claims 4 to 6, characterized in that performing the fluidized bed bottom below the grinding nozzles facing intermittently ejected vertically The powder pulverization classification method according to any one of the above.
JP2004016190A 2003-01-23 2004-01-23 Powder grinding classification system and powder grinding classification method Expired - Fee Related JP4464696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016190A JP4464696B2 (en) 2003-01-23 2004-01-23 Powder grinding classification system and powder grinding classification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003015063 2003-01-23
JP2004016190A JP4464696B2 (en) 2003-01-23 2004-01-23 Powder grinding classification system and powder grinding classification method

Publications (2)

Publication Number Publication Date
JP2004243317A JP2004243317A (en) 2004-09-02
JP4464696B2 true JP4464696B2 (en) 2010-05-19

Family

ID=33032033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016190A Expired - Fee Related JP4464696B2 (en) 2003-01-23 2004-01-23 Powder grinding classification system and powder grinding classification method

Country Status (1)

Country Link
JP (1) JP4464696B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504629B2 (en) * 2009-01-05 2014-05-28 株式会社リコー Airflow type pulverization classification device
CN102441474B (en) * 2011-12-28 2013-10-30 潍坊正远粉体工程设备有限公司 Cyclonic jet mill
IT201600098452A1 (en) 2016-09-30 2018-03-30 Micro Macinazione Sa EQUIPMENT FOR THE MICRONIZATION OF DUSTY MATERIAL WITH THE ABILITY TO PREVENT SCREENING

Also Published As

Publication number Publication date
JP2004243317A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US7156331B2 (en) Fluidized bed pulverizing and classifying apparatus, and method of pulverizing and classifying solids
US8668091B2 (en) Air classifier
US8540174B2 (en) Method for producing powder and fluidized bed pulverizing apparatus
JP2006061902A (en) Pulverizing apparatus and method for pulverizing
JP2000015126A (en) Fluidized-bed jet crusher
JP5504629B2 (en) Airflow type pulverization classification device
JP4464696B2 (en) Powder grinding classification system and powder grinding classification method
JP2007136299A (en) Cement clinker grinding facility
JP2004351286A (en) Milling method
JP2008126213A (en) Pulverizing apparatus, method for pulverizing, method for manufacturing toner using the same, and toner obtained by the method
JP4025179B2 (en) Grinding device and grinding method
JP4732794B2 (en) Grinding device and grinding method
JP3957066B2 (en) Fluidized bed type pulverizer
JP2004113841A (en) Fluidized bed type grinding classifier
JP4738770B2 (en) Grinding device and grinding method
JP5472612B2 (en) Toner manufacturing method
JP2654989B2 (en) Powder grinding method
JP5267332B2 (en) Vertical crusher
JP5397754B2 (en) Vertical crusher
JP3313922B2 (en) Crusher
JP2004358365A (en) Pulverizer and pulverizing method
JP3229470B2 (en) Crusher
JPH04210253A (en) Crushing method by jet mill
JPH0651129B2 (en) Collision type airflow crusher and crushing method
JPH0938580A (en) Classifying machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees