JP3957066B2 - Fluidized bed type pulverizer - Google Patents

Fluidized bed type pulverizer Download PDF

Info

Publication number
JP3957066B2
JP3957066B2 JP2002276526A JP2002276526A JP3957066B2 JP 3957066 B2 JP3957066 B2 JP 3957066B2 JP 2002276526 A JP2002276526 A JP 2002276526A JP 2002276526 A JP2002276526 A JP 2002276526A JP 3957066 B2 JP3957066 B2 JP 3957066B2
Authority
JP
Japan
Prior art keywords
pulverization
fluidized bed
nozzle
partition plate
bed type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002276526A
Other languages
Japanese (ja)
Other versions
JP2004113839A (en
Inventor
信康 牧野
文敏 村上
睦 高橋
哲也 田中
秀行 山東
聡 宮元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002276526A priority Critical patent/JP3957066B2/en
Publication of JP2004113839A publication Critical patent/JP2004113839A/en
Application granted granted Critical
Publication of JP3957066B2 publication Critical patent/JP3957066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、トナー粉砕分級方法に関し、微粒子粉砕分級手段に応用される。
【0002】
【従来の技術】
流動層式粉砕機方法として、粉砕室断面積に対する粉砕ノズルの合計断面積を一定範囲に規定することが記載(特許文献1)され、また、下上段の対抗ノズルと上段の対抗ノズルを真上から見たとき重ならないように配置することが記載(特許文献2)され、また、粉砕物を上方の分級部に導く通路と、上方からの戻り粗粉を下方向の粉砕部に導く通路とを区画する円筒状の分離板を設けることが記載(特許文献3)され、また、各設置ノズルに対向する二等辺三角形の斜面を有する角錐型の突起物を、粉砕室底部中心に設けることが記載(特許文献4)され、また、内部空気密度の定義が記載(特許文献5)され、また、ノズル開口から噴射された被粉砕物を衝突させる衝突部材として、粉砕ノズル開口に対向するように配置された鋭角の突出部先端から根元方向に拡がる裾野部を有する衝突部材が記載(特許文献6)され、また、粉砕機内の高圧加速ガスとして蒸気噴流を併用することが記載(特許文献7)されている。
また、本発明者らは、流動層型ジェット粉砕機内の内面コートに関する発明を完成し、特願2002−78325号として出願済みである。
【0003】
【特許文献1】
特開2000−117137号公報(請求項1)
【特許文献2】
特開2000−107626号公報(請求項1、2)
【特許文献3】
特開2000−15126号公報(請求項1)
【特許文献4】
特開2000−5621号公報(特許請求の範囲)
【特許文献5】
特開2000−126560号公報
【特許文献6】
特開平8−112543号公報(特許請求の範囲)
【特許文献7】
特開平11−70340号公報(請求項1〜14)
【0004】
従来の流動層ジェット粉砕機を示す図1は、粉砕ノズル(1)が層内ジェット噴流を射出する際、供給済みの周囲の被粉砕物(2)を加速し、対抗する粉砕ノズル同士の相対速度によって粉砕を行なう。効率を高めるには予め粉砕ノズルを覆うレベル量の被粉砕物の初期投入が重要になる。また、粉砕された材料はただちに上部に設置された分級ロータ(4)を介して分級され、分級された微粉砕品は配管(5)を介して回収され、粗粉は流動層内を落下し再び粉砕されることが要求される。しかしながら、現在の流動層では被粉砕物を、粉砕ノズルを覆うレベル量まで投入すると粉砕ノズル(1)と流動層底部(3)にて粉砕されるもの以上に被粉砕物の投入量が多く、被粉砕物の舞上りが増大し分級ロータ廻りの固気比が上昇する。結果的に分級精度の低下による過粉砕や粉砕上り品への粗粉混入が増大し、生産能力の低下につながる。
特に、処理能力を高めるために、上部に分級ロータを複数個設置したものは粉砕物が分級ロータに導かれる過程で相互干渉を生じ、結果、流動層内の挙動に乱れが生じ分級精度の低下による過粉砕や粉砕上り品への粗粉混入が増大し、生産能力の低下につながる。
【0005】
【発明が解決しようとする課題】
したがって、本発明の課題は、当該分野の上記現状に鑑み、簡単な構造で融通性があり能力が高められた新規流動層式粉砕分級機を提供することにあり、特に、被粉砕物を多量に投入しても分級室内での被粉砕物の舞上りが少なく、上部に配置された分級ロータ廻りの固気比が異常上昇せず、結果的に分級精度の低下がなくしたがって過粉砕や粉砕上り品への粗粉混入がなく、生産能力の低下がない新規流動層式粉砕分級機を提供することにある。
【0006】
【課題を解決するための手段】
上記課題は、本発明の(1)「粉砕機底部と粉砕ノズルとの間の距離を調節可能な粉砕位置調節体を装着して、粉砕ノズルの周囲で、粉砕されるべき被粉砕物の供給量を調節可能にした流動層式粉砕分級機(カウンタージェットミル方式)であって、前記粉砕位置調節体の上面形状は、周辺部から中心部に向かって低くなった勾配を有する逆円錐形状であり、該逆円錐形状の頂角θが下記式(数)を満たすものであることを特徴とする流動層式粉砕分級機;
【0007】
【数9】

Figure 0003957066
【0008】
)「前記粉砕位置調節体が、嵩上げできる底板の円周が粉砕ノズルの開口位置レベル(C)−(D)に対し下記式(数2)の範囲の距離( )で調整可能であることを特徴とする第(1)項に記載の流動層式粉砕分級機;
【0009】
【数10】
Figure 0003957066
【0010】
)「流動層式粉砕分級機機(カウンタージェットミル方式)において、対向し設置しているノズル上部に、粉砕流を相互干渉なく流動化し分級ロータに到達可能とする流動仕切り板を装着したことを特徴とする第(1)項または第(2)項に記載の流動層式粉砕分級機」;
【0011】
)「該流動仕切り板は、上下方向長さ(H)が、前記粉砕位置調節体の調整可能範囲の距離( )とは、下記式(数3)の関係を満たすものであることを特徴とする第()項に記載の流動層式粉砕分級機;
【0012】
【数11】
1/3H≦H≦2/3H ・・・(数3)」;
【0013】
)「前記流動仕切り板の上下方向長さ(H)が、下記式(数4)の範囲であることを特徴とする第()項または第()項に記載の流動層式粉砕分級機;
【0014】
【数12】
Figure 0003957066
【0016】
)「前記粉砕位置調節体および流動仕切り板は、表面が導電性ポリテトラフロロエチレン系フッ素樹脂で形成されていることを特徴とする第()項乃至第()項の何れかに記載の流動層式粉砕分級機」により達成される。
【0017】
また、上記課題は、本発明の(7)「粉砕ノズルの周囲に粉砕されるべき被粉砕物が適正供給できるように粉砕機低部と粉砕ノズルとの間の距離を嵩上げできる調節可能な粉砕位置調節体を装着した流動層式粉砕分級装置(カウンタージェットミル方式)を用いて製造する静電荷像現像用トナーの製造方法であって、前記粉砕位置調節体の上面形状は、周辺部から中心部に向かって低くなった勾配を有する逆円錐形状であり、該逆円錐形状の頂角θが下記式(数)を満たすものであることを特徴とする静電荷像現像用トナーの製造方法;
【0019】
【数14】
Figure 0003957066
【0020】
)「前記粉砕位置調節体が、嵩上げできる底板の円周が粉砕ノズルの開口位置レベル(C)−(D)に対し下記式(数2)の範囲の距離( )で調整可能であることを特徴とする第(項に記載の静電荷像現像用トナーの製造方法;
【0021】
【数15】
Figure 0003957066
【0022】
)「前記流動層式粉砕分級機が、対向し設置しているノズル上部に、粉砕流を相互干渉なく流動化し分級ロータに到達可能とする流動仕切り板を装着したことを特徴とする第(7)項または第(8)項に記載の静電荷像現像用トナーの製造方法」;
【0023】
10)「該流動仕切り板は、上下方向長さ(H)が、前記粉砕位置調節体の調整可能範囲の距離( )とは、下記式(数3)の関係を満たすものであることを特徴とする第()項に記載の静電荷像現像用トナーの製造方法;
【0024】
【数16】
1/3H≦H≦2/3H ・・・(数3)」;
【0025】
11)「前記流動仕切り板の上下方向長さ(H)が、下記式(数4)の範囲であることを特徴とする第()項または第(10)項のいずれかに記載の静電荷像現像用トナーの製造方法;
【0026】
【数17】
Figure 0003957066
【0029】
12)「前記粉砕位置調節体および流動仕切り板は、表面が導電性ポリテトラフロロエチレン系フッ素樹脂で形成されていることを特徴とする第()項請求項乃至第(11)項の何れかに記載の静電荷像現像用トナーの製造方法」により達成される。
【0030】
【発明の実施の形態】
以下、本発明を図面を参照して詳細に説明する。
本発明は、図2に示されるように、ジェットミル断面図において、粉砕ノズル(1)の周囲に粉砕に必要な被粉砕物が適正供給できるように、粉砕機底部(3)と粉砕ノズル(1)との間の距離を、嵩上げ等の調節が可能な、例えば板状体のような粉砕位置調節体(3a)を装着することを上記第(1)項および第(8)項は特徴とする。その際、粉砕位置調節体(3a)は流動層の内筒径に適合させる。粉砕位置調節体(3a)は、粉砕分級機に着脱自在のものとすることが必須ではないが好ましい。図2−1に粉砕位置調節体(3a)が板状体である場合の1例の詳細を示す。
【0031】
流動層内部は粉砕位置調節体(3a)による嵩上げ等の距離調節により被粉砕物の過剰な機内初期投入量を抑制することによって、分級ロータ(4)の固気比が低下し、常時、粉砕物のみがロータ周囲を覆うため分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
【0032】
また、図3に示されるように、粉砕位置調節体(3a)が、周辺部から中心部に向かって低くなった勾配を有するコーン状の上面形状を有し、図3に示されるように、カウンタージェットミル断面図中心線(AB)と底板(3)の円周(3b)、(3c)で形成されるコーンの頂角(3d)の角度θ、中心からの垂線と円周を結ぶ角度θが下記式(数1)の範囲を形成し、即ち該勾配の程度は、下記式(数1)を満たす流動層式粉砕分級機である。
【0033】
【数19】
Figure 0003957066
【0034】
図3−1にコーン例の詳細を示す。
この例においては、流動層内部は板状体の形の粉砕位置調節体(3a)による嵩上げの頂角θによるコーン状になることで粉砕ノズル(1)の噴流軌跡(1a)、(1b)に沿った形状を成すことになり、そのため流動層下部のデットスペースが解消され初期投入された被粉砕物の粉砕がより向上すると共に、コーン状勾配面に沿って衝突しながら噴射されるため粉砕効率も低下せず、分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
【0035】
このような板状体の形の粉砕位置調節体(3a)としては、勾配及び腰の高さの異なるものを複数個準備しておき、粉砕ノズル(1)からの噴射強度の違いに起因する噴射粉雲の拡がり角度の変化に応じて使い分けられるようにすることができる。
【0036】
上記第()項および第()項は、図3に示す嵩上げできる底板の円周が粉砕ノズル中心線(C)−(D)と底板(3)の流動層内面に接する中心線(E)−(F)の設置距離( )が下記式(数2)の範囲で調整可能を特徴とする流動層式粉砕分級機である。即ち正確に云えば、嵩上げ等の調節が可能な、例えば板状体のような粉砕位置調節体(3a)が、嵩上げできる底板の円周が粉砕ノズルの開口位置レベル(C)−(D)に対し下記式(数2)の範囲の距離( )で調整可能なものである。
【0037】
【数20】
Figure 0003957066
【0038】
被粉砕物の目的粒度や粉砕性に応じて板状体のような粉砕位置調節体(3a)の粉砕ノズルまでの高さを調整することによって常に粉砕効率のよい量の被粉砕物の初期投入が達成され粉砕能力の向上と分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
【0039】
図4に上記第()項および第()項記載の流動層式粉砕分級機(カウンタージェットミル方式)を示す。対向し設置されるノズル上部に粉砕流が相互干渉なく流動化し分級ロータに到達できるように流動層内筒に流動仕切り板(6)を装着することを特徴とする粉砕分級装置である。仕切板(6)は例えば粉砕ノズル(1)の設置本数に応じて図4−1に詳細に示すように複数枚の板片から構成された形になっている。また仕切り板(6)の流動層内設置はノズルが4本の場合、3本の場合流動層断面(J)−(K)で図4−2,図4−3に示すように設置する。仕切り板の設置により流動層内で粉砕された被粉砕物は上部に設置された分級ロータ(4)に到達される間、粒子同士の干渉がなく分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
【0040】
上記第()項および第(10)項に記載の粉砕分級機は、図4に示す対向し設置しているノズル上部に設置する流動仕切り板長さ( )が、分級ロータ中心線(L)−(M)と粉砕ノズル中心線(C)−(D)間の前記高さ()に対し下記式(数5)の範囲を満足する流動層式粉砕分級機である。即ち流動仕切り板(6)は、その上下方向長さ(H)が、前記粉砕位置調節体の調整可能範囲の距離( )とは、下記式(数3)の関係を満たすものである。
【0041】
【数21】
Figure 0003957066
【0042】
被粉砕物の目的粒度や粉砕性に応じて流動層内の仕切り板高さを調整することによって、流動層内の流動範囲が調整でき、分級ロータ(4)の周囲は干渉の少ない粉体で覆われるため粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
【0046】
上記第()項および第(12)項は、嵩上げできる底板および流動仕切り板の表面は導電性ポリテトラフロロエチレン系フッ素樹脂(離型剤)で形成されていることを特徴とする流動層式粉砕分級機である。
離型剤の具体例としてシリコン系樹脂、フッ素樹脂系が挙げられるが、特にトナー材質と粒径の特性を考慮するとフッ素樹脂系が特に好ましい。離型剤によって仕切り板を通過する粉体の付着・凝集・融着・固着等の少なくとも一つを抑制するのに有効である。
【0047】
【実施例】
以下、実施例により詳細に説明する。
比較例1)
リエステル樹脂80重量%とスチレンアクリル共重合樹脂5重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後ハンマーミルで粗粉砕したトナー原料を、図2のフローで拡大図2−1に示した底板(板状体の形の粉砕位置調節体(3a))を装着し粉砕エアー圧力0.6Mpa分級ローター4で周速45m/sで粉砕したところ重量平均粒径6.5μmで4μm以下微粉含有率が個数平均で49POP.%、16μm以下粗粉含有率が重量平均で1.0Vol%のトナー粒径を12kg/Hr得ることができた。この粒径測定に際してはコールターカウンター社のマルチサイザーを用いた。
【0048】
(比較例
比較例1と同一の混練品と粉砕分級条件を用いて図1に示す従来型のカウンタージェットミルで粉砕を行なったところ、重量平均粒径6.6μmで4μm以下微粉含有率が個数平均で52POP.%、16μm以下粗粉含有率が重量平均で1.2Vol%のトナー粒径を10kg/Hr得ることができた。
【0049】
(実施例1)
比較例1の混練品と粉砕分級条件を用いて図3に示すカウンタージェットミルの粉砕位置調節体としての底板の頂角θ=120°で粉砕したところ重量平均粒径6.5μmで4μm以下微粉含有率が個数平均で47POP.%、16μm以下粗粉含有率が重量平均で0.8Vol%のトナー粒径を13kg/Hr得ることができた。
【0050】
(実施例
比較例1の混練品と粉砕分級条件を用いて図3に示す工程フローでカウンタージェットミルの底板の頂角θ=120°で粉砕ノズル中心線(C)−(D)と底板(3)の流動層内面に接する(E)−(F)の設置距離が( )=60mmで粉砕したところ重量平均粒径6.5μmで4μm以下微粉含有率が個数平均で46POP.%、16μm以下粗粉含有率が重量平均で0.7Vol%のトナー粒径を14kg/Hr得ることができた。
【0051】
(実施例
比較例1の混練品と粉砕分級条件を用いて図4に示す流動層内筒(7)に流動仕切り板(6)を装着し粉砕したところ重量平均粒径6.5μmで4μm以下微粉含有率が個数平均で46POP.%、16μm以下粗粉含有率が重量平均で0.8Vol%のトナー粒径を15kg/Hr得ることができた。
【0052】
(実施例
比較例1の混練品を用いて図4に示す対向し設置しているノズル上部に設置する流動仕切り板長さ( )を分級ロータ中心線(L)−(M)と粉砕ノズル中心線(C)−(D)間の高さに対し( )=4/6Hで粉砕したところ重量平均粒径6.5μmで4μm以下微粉含有率が個数平均で45POP.%、16μm以下粗粉含有率が重量平均で0.5Vol%のトナー粒径を16kg/Hr得ることができた。
【0053】
(実施例
比較例1の混練品を用いて図5に示す対向し設置しているノズル上部に設置する流動仕切り板の幅(W2)は流動層(7)の内径(W1)に対し(W2)=3/5(W1)で粉砕したところ重量平均6.5μmで4μm以下微粉含有率が個数平均で45POP.%、16μm以下粗粉含有率が重量平均で0.5Vol%のトナー粒径を17kg/Hr得ることができた。
【0054】
(実施例
比較例1の混練品を用いて実施例5の条件の流動層仕切り板表面にFEP(テレラフルオロエチレン−ヘキサフルオロプロピレン共重合体)電気抵抗値10Ω・cmのコーティングを施し1500kg粉砕処理したところ重量平均6.5μmで4μm以下微粉含有率が個数平均で45POP.%、16μm以下粗粉含有率が重量平均で0.5Vol%のトナー粒径を17kg/Hr得ることができ終了後流動仕切り板の表面に付着・凝集はなかった。
【0055】
【発明の効果】
以上、詳細かつ具体的な説明から明らかなように、本発明により、従来法と比べジェット噴流中の被粉砕物は底板(粉砕位置調節体)による機内初期投入量の過剰抑制によって、分級ロータの固気比が低下し常時粉砕物のみがローター周囲を覆うため分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
また、本発明により、流動層内部の粉砕位置調節体(底板)がコーン状を形成することで粉砕ノズルの噴流軌跡による流動層下部のデットスペースが解消されるため初期投入された被粉砕物の粉砕がより向上し分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
また、本発明により、嵩上げした粉砕位置調節体(底板)が粉砕ノズルまでの高さで調整できることによって常に粉砕効率のよい被粉砕物の初期投入が達成され粉砕能力の向上と分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
また、本発明により、流動層内筒に流動仕切り板を装着することによって流動層内で粉砕された被粉砕物が分級ロータに到達される間、粒子同士の干渉が無く分級された粉砕品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
また、本発明により、被粉砕物の目的粒度や粉砕性に応じて流動層内の仕切り板高さを調整することで流動範囲が調整でき分級ロータ(4)の周囲は干渉の少ない粉体で覆われるため粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
また、本発明により、被粉砕物の目的粒度や粉砕性に応じて仕切り板幅を調整することによって流動範囲が調整でき分級ロータの周囲は干渉の少ない粉体で覆われるため粉砕上がり品への粗粉の飛込みあるいは過粉砕による微粉の増加が抑制される。
さらにまた、本発明により、離型剤によって仕切り板を通過する粉体の付着・凝集・融着・固着等が抑制され高処理能力を長期にわたって持続させることが可能となる。
【図面の簡単な説明】
【図1】従来の流動層ジェット粉砕機を示した図である。
【図2】本発明の流動層ジェット粉砕機を示した別の図である。
【図3】本発明の流動層ジェット粉砕機を示した更に別の図である。
【図4】本発明の流動層ジェット粉砕機を示した更に別の図である。
【図5】本発明の流動層ジェット粉砕機を示した更に別の図である。
【符号の説明】
1 粉砕ノズル
1a 噴流軌跡
1b 噴流軌跡
2 被粉砕物
3 流動層底部
3a 粉砕位置調節体
3b 円周
3c 円周
3d 頂角
4 分級ロータ
5 配管
6 仕切板
7 流動層
H 高さ
H 設置距離
H 仕切り板長さ
AB 中心線
CD 中心線
EF 中心線
JK 流動層断面
LM 分級ロータ中心線
流動層内径
仕切り板の幅[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a toner pulverization classification method and is applied to a fine particle pulverization classification means.
[0002]
[Prior art]
As a fluidized bed type pulverizer method, it is described that the total cross-sectional area of the pulverization nozzle relative to the cross-sectional area of the pulverization chamber is defined within a certain range (Patent Document 1), and the upper upper counter nozzle and the upper upper counter nozzle are directly above. (Patent document 2) which describes arrangement | positioning so that it may not overlap when it sees from, and the channel | path which guides a pulverized material to an upper classification | category part, and the channel | path which guides the return coarse powder from the upper direction to a downward pulverization part (Patent Document 3), and a pyramidal projection having an isosceles triangular slope facing each installation nozzle is provided at the center of the bottom of the grinding chamber. As described in (Patent Document 4), the definition of the internal air density is described (Patent Document 5), and as a collision member that collides the object to be crushed from the nozzle opening, it faces the pulverizing nozzle opening. Placed acute angle From Deb tip colliding member having a skirt portion extending in the root direction is described (Patent Document 6), it has also been described (Patent Document 7) be used in combination with steam jet as a high pressure accelerated gas pulverizer.
In addition, the present inventors have completed an invention relating to the inner surface coating in a fluidized bed jet pulverizer and have been filed as Japanese Patent Application No. 2002-78325.
[0003]
[Patent Document 1]
JP 2000-117137 A (Claim 1)
[Patent Document 2]
JP 2000-107626 A (Claims 1 and 2)
[Patent Document 3]
JP 2000-15126 A (Claim 1)
[Patent Document 4]
JP 2000-5621 A (Claims)
[Patent Document 5]
JP 2000-126560 A [Patent Document 6]
JP-A-8-112543 (Claims)
[Patent Document 7]
JP-A-11-70340 (Claims 1 to 14)
[0004]
FIG. 1 showing a conventional fluidized bed jet pulverizer shows a relative relationship between pulverizing nozzles that accelerate and oppose the supplied crushed object (2) when the pulverizing nozzle (1) injects an in-layer jet jet. Grind by speed. In order to increase the efficiency, it is important to initially input a level amount of the object to be ground that covers the grinding nozzle. In addition, the pulverized material is immediately classified through the classification rotor (4) installed at the upper part, the classified finely pulverized product is recovered through the pipe (5), and the coarse powder falls in the fluidized bed. It is required to be ground again. However, in the current fluidized bed, if the material to be crushed is charged to a level that covers the pulverizing nozzle, the amount of material to be crushed is larger than that pulverized at the pulverizing nozzle (1) and the fluidized bed bottom (3), The rise of the material to be crushed increases and the solid-gas ratio around the classification rotor increases. As a result, excessive pulverization due to a decrease in classification accuracy and coarse powder mixture in the pulverized product increase, leading to a decrease in production capacity.
In particular, in order to increase the processing capacity, those with multiple classification rotors installed at the top cause mutual interference in the process in which the pulverized material is guided to the classification rotor, resulting in disturbances in the behavior in the fluidized bed and a decrease in classification accuracy. Over-grinding due to pulverization and mixing of coarse powder into pulverized finished products increase, leading to a decrease in production capacity.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a novel fluidized bed type pulverizing and classifying machine with a simple structure, flexibility, and increased capability in view of the above-mentioned present state of the art, and in particular, a large amount of materials to be crushed. Even if thrown into the classifier, there is little uplift of the material to be crushed in the classification chamber, the solid-gas ratio around the classification rotor placed in the upper part does not rise abnormally, and as a result there is no reduction in classification accuracy. The object is to provide a new fluidized bed type pulverizing and classifying machine that does not contain coarse powder in the ascending product and does not have a decrease in production capacity.
[0006]
[Means for Solving the Problems]
The above-described problem is (1) “Supplying a material to be pulverized around the pulverizing nozzle by attaching a pulverization position adjuster capable of adjusting the distance between the bottom of the pulverizer and the pulverizing nozzle. It is a fluidized bed type pulverizing and classifying machine (counter jet mill type) capable of adjusting the amount, and the upper surface shape of the pulverizing position adjusting body is an inverted conical shape having a gradient that decreases from the peripheral part toward the central part. There, fluidized-bed pulverization classifier, wherein the apex angle of the inverted cone shape θ is one that satisfies the following formula (number);
[0007]
[Equation 9]
Figure 0003957066
[0008]
( 2 ) “The crushing position adjusting body can be raised by adjusting the distance ( H 1 ) within the range of the following formula (Equation 2 ) with respect to the opening position level (C)-(D) of the crushing nozzle. Fluidized bed type pulverizing and classifying machine according to item (1), characterized in that
[0009]
[Expression 10]
Figure 0003957066
[0010]
( 3 ) In the fluidized bed type pulverizing and classifying machine (counter jet mill type), a fluid partition plate that fluidizes the pulverized flow without mutual interference and reaches the classifying rotor is mounted on the upper part of the opposed nozzle. A fluidized bed type pulverizing and classifying machine according to item (1) or (2), wherein :
[0011]
( 4 ) “The flow partition plate has a vertical length (H 2 ) that satisfies the relationship of the following formula (Equation 3) with the distance ( H 1 ) in the adjustable range of the grinding position adjuster. Fluidized bed type pulverizing and classifying machine according to item ( 3 ), characterized in that:
[0012]
[Expression 11]
1 / 3H 2 ≦ H 1 ≦ 2 / 3H 2 (Equation 3) ”;
[0013]
( 5 ) “The fluidized bed according to item ( 3 ) or ( 4 ), wherein the length (H 2 ) in the vertical direction of the fluid partition plate is in the range of the following formula (Equation 4 ): Type crushing and classifying machine;
[0014]
[Expression 12]
Figure 0003957066
[0016]
( 6 ) Any one of the items ( 1 ) to ( 5 ), wherein the pulverization position adjusting body and the flow partition plate are formed of a conductive polytetrafluoroethylene-based fluororesin. In the fluidized bed type pulverizing and classifying machine described in 1.].
[0017]
Further, the above problem is (7) “Adjustable pulverization that can increase the distance between the lower part of the pulverizer and the pulverization nozzle so that the material to be pulverized around the pulverization nozzle can be properly supplied. An electrostatic charge image developing toner manufacturing method using a fluidized bed type pulverizing and classifying apparatus (counter jet mill method) equipped with a position adjusting body, wherein the top surface shape of the pulverizing position adjusting body is centered from the periphery. an inverted cone shape having a slope becomes lower toward the section, method for producing a toner for developing electrostatic images, wherein the apex angle of the inverted cone shape θ is one that satisfies the following formula (number);
[0019]
[Expression 14]
Figure 0003957066
[0020]
( 8 ) “The crushing position adjuster can adjust the circumference of the bottom plate that can be raised by the distance ( H 1 ) in the range of the following formula (Equation 2 ) relative to the crushing nozzle opening position level (C)-(D). The method for producing a toner for developing an electrostatic charge image according to item ( 7 ), characterized in that:
[0021]
[Expression 15]
Figure 0003957066
[0022]
( 9 ) "The fluidized bed type pulverizing and classifying machine is characterized in that a fluid partition plate that fluidizes the pulverized flow without mutual interference and reaches the classification rotor is mounted on the upper part of the nozzle disposed oppositely. ( Method for producing toner for developing electrostatic image according to item (7) or (8) ";
[0023]
( 10 ) “The flow partition plate has a vertical length (H 2 ) satisfying the relationship of the following formula (Equation 3) with the distance ( H 1 ) in the adjustable range of the grinding position adjuster. A method for producing a toner for developing an electrostatic charge image according to item ( 9 ), characterized in that:
[0024]
[Expression 16]
1 / 3H 2 ≦ H 1 ≦ 2 / 3H 2 (Equation 3) ”;
[0025]
( 11 ) “The length (H 2 ) in the vertical direction of the flow partition plate is within the range of the following formula (Equation 4),” according to any one of the items ( 9 ) and ( 10 ) A method for producing a toner for developing an electrostatic image of
[0026]
[Expression 17]
Figure 0003957066
[0029]
( 12 ) The surface of the pulverization position adjusting body and the flow partition plate is formed of a conductive polytetrafluoroethylene-based fluororesin. ( 7 ) The claims ( 7 ) to ( 11 ) are characterized in that This is achieved by any one of the above-mentioned methods for producing a toner for developing an electrostatic charge image.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
As shown in FIG. 2, in the jet mill cross-sectional view, the present invention provides a pulverizer bottom (3) and a pulverizing nozzle (3) so that a material to be pulverized necessary for pulverization can be properly supplied around the pulverizing nozzle (1). The above items (1) and (8) are characterized in that a pulverization position adjusting body (3a) such as a plate-like body, which can adjust the distance to 1), such as raising the height, is mounted. And At that time, the pulverization position adjusting body (3a) is adapted to the inner cylinder diameter of the fluidized bed. Although it is not essential that the pulverization position adjuster (3a) be detachable from the pulverizer, it is preferable. FIG. 2-1 shows details of an example in the case where the grinding position adjusting body (3a) is a plate-like body.
[0031]
In the fluidized bed, the solid-gas ratio of the classification rotor (4) is lowered by controlling the distance of the pulverization position adjusting body (3a) to raise the distance and the like, thereby suppressing the initial initial charging amount of the material to be crushed. Since only the object covers the periphery of the rotor, the increase of fine powder due to the jumping of coarse powder into the classified pulverized product or excessive pulverization is suppressed.
[0032]
Further, as shown in FIG. 3, the pulverization position adjusting body (3a) has a cone-like top surface shape having a gradient that decreases from the peripheral part toward the central part, and as shown in FIG. Counter jet mill sectional view The center line (AB) and the circumference (3b) of the bottom plate (3), the angle θ of the apex angle (3d) of the cone formed by (3c), the angle connecting the perpendicular and the circumference from the center θ forms the range of the following formula (Equation 1), that is, the degree of the gradient is a fluidized bed type pulverization classifier that satisfies the following formula (Equation 1).
[0033]
[Equation 19]
Figure 0003957066
[0034]
Fig. 3-1 shows the details of the cone example.
In this example, the inside of the fluidized bed is shaped like a cone with the apex angle θ raised by the crushing position adjusting body (3a) in the form of a plate, so that the jet trajectories (1a) and (1b) of the crushing nozzle (1) Therefore, the dead space at the bottom of the fluidized bed is eliminated, and the pulverization of the initially charged material is further improved, and the material is injected while colliding along the cone-shaped gradient surface. The efficiency is not lowered, and the increase of fine powder due to jumping of coarse powder into the classified pulverized product or overpulverization is suppressed.
[0035]
As the pulverization position adjusting body (3a) having such a plate-like shape, a plurality of pulverization position adjusting bodies (3a) having different gradients and waist heights are prepared, and injection caused by the difference in the injection intensity from the pulverization nozzle (1). It can be used properly according to the change in the spread angle of the powder cloud.
[0036]
The above-mentioned ( 2 ) term and ( 8 ) term are the center line (C)-(D) where the circumference of the bottom plate that can be raised shown in FIG. 3 is in contact with the fluidized bed inner surface (C)-(D) and the bottom plate (3). E)-(F) is a fluidized bed type pulverization classifier characterized in that the installation distance ( H 1 ) can be adjusted within the range of the following formula (Equation 2 ). That is, to be precise, the crushing position adjusting body (3a) such as a plate-like body that can be raised is adjusted, and the circumference of the bottom plate that can be raised is the opening position level (C)-(D) of the crushing nozzle. On the other hand, the distance can be adjusted by the distance ( H 1 ) in the range of the following formula (Equation 2).
[0037]
[Expression 20]
Figure 0003957066
[0038]
The initial amount of the material to be pulverized is always initially charged by adjusting the height of the pulverization position adjusting body (3a) such as a plate-like material to the pulverization nozzle according to the target particle size and pulverization property of the material to be pulverized. Thus, the improvement of pulverization ability and the increase of fine powder due to the pulverization of the coarse powder into the classified pulverized product or excessive pulverization are suppressed.
[0039]
FIG. 4 shows a fluidized bed type pulverizing and classifying machine (counter jet mill system) described in the above items ( 3 ) and ( 9 ). A pulverizing and classifying device characterized in that a fluid partition plate (6) is attached to a fluidized bed inner cylinder so that the pulverized flow can be fluidized without mutual interference and reach the classifying rotor at the upper part of the nozzle that is installed oppositely. For example, the partition plate (6) is formed of a plurality of plate pieces as shown in detail in FIG. 4-1 according to the number of pulverization nozzles (1) installed. The partition plate (6) is installed in the fluidized bed when the number of nozzles is four and when the number of nozzles is three, as shown in FIGS. While the material to be pulverized in the fluidized bed by the installation of the partition plate reaches the classification rotor (4) installed in the upper part, the coarse powder does not enter the classified pulverized product without interference between particles or An increase in fine powder due to overgrinding is suppressed.
[0040]
In the pulverizing and classifying apparatus described in the above items ( 4 ) and ( 10 ), the length of the flow partition plate ( H 2 ) installed at the upper part of the opposed nozzle shown in FIG. It is a fluidized bed type pulverization classifier that satisfies the range of the following formula (Equation 5) with respect to the height ( H ) between (L)-(M) and the pulverization nozzle center line (C)-(D). That is, the flow partition plate (6) has a vertical length (H 2 ) that satisfies the relationship of the following formula (Equation 3) with the distance ( H 1 ) in the adjustable range of the grinding position adjuster. is there.
[0041]
[Expression 21]
Figure 0003957066
[0042]
The flow range in the fluidized bed can be adjusted by adjusting the partition plate height in the fluidized bed according to the target particle size and grindability of the material to be ground, and the surroundings of the classification rotor (4) are made of powder with less interference. Since it is covered, an increase in fine powder due to intrusion of coarse powder or excessive grinding is suppressed.
[0046]
Said ( 6 ) term and ( 12 ) term are the fluidized bed characterized in that the bottom plate which can be raised and the surface of the fluid partition plate are made of conductive polytetrafluoroethylene-based fluororesin (release agent) Type pulverizer.
Specific examples of the release agent include silicon resin and fluororesin, and fluororesin is particularly preferable in consideration of the characteristics of the toner material and the particle size. This is effective in suppressing at least one of adhesion, aggregation, fusion, and adhesion of the powder passing through the partition plate by the release agent.
[0047]
【Example】
Hereinafter, the embodiment will be described in detail.
( Comparative Example 1)
Melting and kneading the port Riesuteru resin 80 wt% styrene-acrylic copolymer resin 5 wt% of carbon black 15% by weight of the mixture in a roll mill, a toner material was coarsely ground by a hammer mill after cooled and solidified, in the flow of FIG. 2 When the bottom plate (pulverization position adjusting body (3a) in the form of a plate-like body) shown in Fig. 2-1 is mounted and pulverized with a pulverization air pressure 0.6 Mpa classification rotor 4 at a peripheral speed of 45 m / s, the weight average particle diameter 6.5 μm and 4 μm or less Fine powder content is 49 POP. %, A particle size of 16 μm or less, and a toner particle diameter of 12 Vol / Hr with a coarse powder content of 1.0 vol% on a weight average could be obtained. A multisizer manufactured by Coulter Counter was used for the particle size measurement.
[0048]
(Comparative Example 2 )
When the same kneaded product as in Comparative Example 1 and the pulverization classification conditions were used, pulverization was carried out using the conventional counter jet mill shown in FIG. 1. As a result, the weight average particle size was 6.6 μm and the particle size content was 52 μP. . %, A particle diameter of 16 μm or less, and a toner particle size of 1.2 Vol% on a weight average was 10 kg / Hr.
[0049]
Example 1
Using the kneaded product of Comparative Example 1 and the pulverization classification conditions, the powder was pulverized at the apex angle θ = 120 ° of the bottom plate as the pulverization position adjuster of the counter jet mill shown in FIG. The content is 47 POP. %, A particle size of 16 μm or less was obtained, and a toner particle diameter of 13 vol / h was obtained with a coarse powder content of 0.8 vol% on a weight average.
[0050]
(Example 2 )
By using the kneaded product of Comparative Example 1 and the pulverization classification conditions, the pulverization nozzle center line (C)-(D) and the bottom plate (3) at the apex angle θ = 120 ° of the bottom plate of the counter jet mill in the process flow shown in FIG. When the installation distance of (E)-(F) in contact with the inner surface of the fluidized bed is ( H 1 ) = 60 mm and pulverized, the weight average particle size is 6.5 μm and 4 μm or less. The fine powder content is 46 POP. %, 16 μm or less, the toner particle size was 14 kg / Hr with a coarse powder content of 0.7 Vol% on a weight average.
[0051]
(Example 3 )
When the fluidized partition plate (6) is attached to the fluidized bed inner cylinder (7) shown in FIG. 4 and pulverized using the kneaded product of Comparative Example 1 and the pulverization classification conditions, the weight average particle size is 6.5 μm and the fine powder content is 4 μm or less. Is 46POP. %, A particle diameter of 16 μm or less, and a toner particle diameter of 15 vol / hr with a weight average of 0.8 vol% of the coarse powder content could be obtained.
[0052]
(Example 4 )
Using the kneaded product of Comparative Example 1 , the flow partition plate length ( H 2 ) installed at the top of the nozzles facing each other shown in FIG. 4 is classified into the classification rotor center line (L)-(M) and the pulverization nozzle center line. When pulverized with ( H 2 ) = 4 / 6H with respect to the height between (C) and (D), the weight average particle size is 6.5 μm and 4 μm or less, and the fine powder content is 45 POP. %, 16 μm or less, and a coarse particle content of 0.5 Vol% on a weight average was able to obtain a toner particle size of 16 kg / Hr.
[0053]
(Example 5 )
Using the kneaded material Comparative Example 1 faces shown in FIG. 5 installed to have the width of the flow partition plate installed in the nozzle top (W 2) whereas the inner diameter (W 1) of the fluidized bed (7) (W 2 ) = 3/5 (W 1 ), the weight average is 6.5 μm and the content of fine powder is 4 μm or less. The number average is 45 POP. %, 16 μm or less, and a toner particle size of 0.5 Vol% on a weight average basis can be obtained at 17 kg / Hr.
[0054]
(Example 6 )
Using the kneaded product of Comparative Example 1, the surface of the fluidized bed partition plate under the conditions of Example 5 was coated with FEP (terafluoroethylene-hexafluoropropylene copolymer) electric resistance of 10 6 Ω · cm and crushed 1500 kg. However, a weight average of 6.5 μm and a fine powder content of 4 μm or less has a number average of 45 POP. %, 16 μm or less, and a coarse powder content of 0.5 Vol% on a weight average, a toner particle size of 17 kg / Hr was obtained. After completion, there was no adhesion or aggregation on the surface of the fluid partition plate.
[0055]
【The invention's effect】
Above, as apparent from the detailed and concrete description, the more the onset bright, the pulverized jet jets compared with the conventional method the bottom plate (grinding position adjusting member) flight initial input amount of excess suppression by classifying Since the solid-gas ratio of the rotor is reduced and only the pulverized material always covers the periphery of the rotor, the increase in fine powder due to the pulverized powder that has been classified or over-pulverized is suppressed.
Also, more the onset bright, the fluidized bed inside the grinding position adjusting member (bottom plate) is to be ground, which is initially introduced for dead space of the fluidized layer lower by jet trajectories of the grinding nozzles is eliminated by forming a cone-shaped The pulverization of the product is further improved, and the increase of fine powder due to jumping of the coarse powder into the classified pulverized product or excessive pulverization is suppressed.
Also, more the onset bright, grinding position adjusting member that is raised (the bottom plate) is improved and classification of the initial charge is achieved milled ability of always grinding efficient object to be crushed by adjustable in height to pulverization nozzle The increase of fine powder due to jumping of coarse powder into the pulverized product or excessive pulverization is suppressed.
Furthermore, more the onset bright, while the object to be crushed that is ground in the fluidized bed by mounting the flow partition plate in the fluidized bed tube is reached classifying rotor, grinding interference of the particles is not classified The increase of fine powder due to jumping of coarse powder into the product or excessive grinding is suppressed.
Also, more the onset bright, little flour interference around the object to be crushed object particle size and grindability partition plate height flow range can be adjusted classification rotor by adjusting the fluidized bed according to (4) Since it is covered with the body, the increase of fine powder due to the intrusion of coarse powder or excessive grinding is suppressed.
Also, more the onset bright, crushed up product for the periphery of the can classification rotor adjustment flow range by depending on the purpose particle size and grindability to adjust the partition plate width covered with less powder interference of material to be ground The increase of fine powder due to jumping of coarse powder into the powder or excessive grinding is suppressed.
Furthermore, more the onset Akira, adhesion and aggregation and fusion, sticking, etc. of the powder passing through the partition plate makes it possible to long lasting high throughput is inhibited by the release agent.
[Brief description of the drawings]
FIG. 1 is a view showing a conventional fluidized bed jet crusher.
FIG. 2 is another view showing a fluidized bed jet crusher of the present invention.
FIG. 3 is still another view showing a fluidized bed jet mill according to the present invention.
FIG. 4 is another view showing a fluidized bed jet crusher of the present invention.
FIG. 5 is still another view showing a fluidized bed jet crusher of the present invention.
[Explanation of symbols]
1 grinding nozzle 1a jet trajectory 1b jet trajectory 2 object to be crushed 3 fluidized bed bottom 3a grinding position adjusting body 3b circumference 3c circumference 3d apex angle 4 classification rotor 5 piping 6 partition plate 7 fluidized bed
H height
H 1 Installation distance
H 2 partition plate length AB center line CD center line EF center line JK fluidized bed section LM Classification rotor center line W 1 fluidized bed inner diameter W 2 partition plate width

Claims (12)

粉砕機底部と粉砕ノズルとの間の距離を調節可能な粉砕位置調節体を装着して、粉砕ノズルの周囲で、粉砕されるべき被粉砕物の供給量を調節可能にした流動層式粉砕分級機(カウンタージェットミル方式)であって、前記粉砕位置調節体の上面形状は、周辺部から中心部に向かって低くなった勾配を有する逆円錐形状であり、該逆円錐形状の頂角θが下記式(数)を満たすものであることを特徴とする流動層式粉砕分級機。
Figure 0003957066
Fluidized bed type pulverization classification, which is equipped with a pulverization position adjuster that can adjust the distance between the bottom of the pulverizer and the pulverization nozzle, and the supply amount of the material to be pulverized can be adjusted around the pulverization nozzle. a machine (counter jet mill system), the upper surface shape of the grinding position adjusting member is a reverse conical shape with a slope becomes lower toward the center portion from the periphery, the apex angle of the inverted cone shape θ is A fluidized bed type pulverizing and classifying machine characterized by satisfying the following formula (number).
Figure 0003957066
前記粉砕位置調節体が、嵩上げできる底板の円周が粉砕ノズルの開口位置レベル(C)−(D)に対し下記式(数2)の範囲の距離(H)で調整可能であることを特徴とする請求項1に記載の流動層式粉砕分級機。
Figure 0003957066
The circumference of the bottom plate which can raise the crushing position adjusting body can be adjusted by the distance (H 1 ) in the range of the following formula (Equation 2) with respect to the opening position level (C)-(D) of the crushing nozzle. The fluidized bed type pulverizing and classifying machine according to claim 1, wherein
Figure 0003957066
流動層式粉砕分級機機(カウンタージェットミル方式)において、対向し設置しているノズル上部に、粉砕流を相互干渉なく流動化し分級ロータに到達可能とする流動仕切り板を装着したことを特徴とする請求項1または2に記載の流動層式粉砕分級機。  In the fluidized bed type pulverizing and classifying machine (counter jet mill type), the upper part of the nozzle installed oppositely is equipped with a fluid partition plate that allows the pulverized flow to flow without mutual interference and reach the classification rotor. The fluidized bed type pulverizing and classifying machine according to claim 1 or 2. 該流動仕切り板は、上下方向長さ(H)が、前記粉砕位置調節体の調整可能範囲の距離(H)とは、下記式(数3)の関係を満たすものであることを特徴とする請求項3に記載の流動層式粉砕分級機。
Figure 0003957066
The flow partition plate has a vertical length (H 2 ) that satisfies the relationship of the following formula (Equation 3) with the distance (H 1 ) in the adjustable range of the grinding position adjuster. The fluidized bed type pulverizing and classifying machine according to claim 3.
Figure 0003957066
前記流動仕切り板の上下方向長さ(H)が、下記式(数4)の範囲であることを特徴とする請求項3または4に記載の流動層式粉砕分級機。
Figure 0003957066
The fluidized bed type pulverizing and classifying machine according to claim 3 or 4, wherein a vertical length (H 2 ) of the fluid partition plate is in a range of the following formula (Equation 4).
Figure 0003957066
前記粉砕位置調節体および流動仕切り板は、表面が導電性ポリテトラフロロエチレン系フッ素樹脂で形成されていることを特徴とする請求項1乃至5の何れかに記載の流動層式粉砕分級機。  The fluidized bed type pulverization classifier according to any one of claims 1 to 5, wherein surfaces of the pulverization position adjusting body and the fluid partition plate are formed of a conductive polytetrafluoroethylene-based fluororesin. 粉砕ノズルの周囲に粉砕されるべき被粉砕物が適正供給できるように粉砕機低部と粉砕ノズルとの間の距離を嵩上げできる調節可能な粉砕位置調節体を装着した流動層式粉砕分級装置(カウンタージェットミル方式)を用いて製造する静電荷像現像用トナーの製造方法であって、前記粉砕位置調節体の上面形状は、周辺部から中心部に向かって低くなった勾配を有する逆円錐形状であり、該逆円錐形状の頂角θが下記式(数)を満たすものであることを特徴とする静電荷像現像用トナーの製造方法。
Figure 0003957066
Fluidized bed type pulverization classifier equipped with an adjustable pulverization position adjuster that can increase the distance between the lower part of the pulverizer and the pulverization nozzle so that the material to be pulverized can be properly supplied around the pulverization nozzle ( The electrostatic charge image developing toner is manufactured using a counter jet mill method, and the top surface shape of the pulverization position adjuster is an inverted conical shape having a gradient that decreases from the peripheral portion toward the central portion. , and the method for producing a toner for developing electrostatic images, wherein the apex angle of the inverted cone shape θ is one that satisfies the following formula (number).
Figure 0003957066
前記粉砕位置調節体が、嵩上げできる底板の円周が粉砕ノズルの開口位置レベル(C)−(D)に対し下記式(数2)の範囲の距離(H)で調整可能であることを特徴とする請求項7に記載の静電荷像現像用トナーの製造方法。
Figure 0003957066
The circumference of the bottom plate which can raise the crushing position adjusting body can be adjusted by the distance (H 1 ) in the range of the following formula (Equation 2) with respect to the opening position level (C)-(D) of the crushing nozzle. The method for producing a toner for developing an electrostatic image according to claim 7.
Figure 0003957066
前記流動層式粉砕分級機が、対向し設置しているノズル上部に、粉砕流を相互干渉なく流動化し分級ロータに到達可能とする流動仕切り板を装着したことを特徴とする請求項7または8に記載の静電荷像現像用トナーの製造方法。  9. The fluidized bed type pulverizing and classifying machine is provided with a fluid partition plate that fluidizes a pulverized flow without mutual interference and reaches a classifying rotor at an upper part of an opposing nozzle. A method for producing a toner for developing an electrostatic image as described in 1. 該流動仕切り板は、上下方向長さ(H)が、前記粉砕位置調節体の調整可能範囲の距離(H)とは、下記式(数3)の関係を満たすものであることを特徴とする請求項9に記載の静電荷像現像用トナーの製造方法。
Figure 0003957066
The flow partition plate has a vertical length (H 2 ) that satisfies the relationship of the following formula (Equation 3) with the distance (H 1 ) in the adjustable range of the grinding position adjuster. The method for producing a toner for developing an electrostatic charge image according to claim 9.
Figure 0003957066
前記流動仕切り板の上下方向長さ(H)が、下記式(数4)の範囲であることを特徴とする請求項9または10に記載の静電荷像現像用トナーの製造方法。
Figure 0003957066
11. The method for producing a toner for developing an electrostatic charge image according to claim 9, wherein a length (H 2 ) in the vertical direction of the fluid partition plate is in a range of the following formula (Equation 4).
Figure 0003957066
前記粉砕位置調節体および流動仕切り板は、表面が導電性ポリテトラフロロエチレン系フッ素樹脂で形成されていることを特徴とする請求項7乃至11の何れかに記載の静電荷像現像用トナーの製造方法。  The electrostatic charge image developing toner according to any one of claims 7 to 11, wherein the pulverization position adjusting member and the flow partition plate are formed of a conductive polytetrafluoroethylene fluororesin. Production method.
JP2002276526A 2002-09-24 2002-09-24 Fluidized bed type pulverizer Expired - Fee Related JP3957066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276526A JP3957066B2 (en) 2002-09-24 2002-09-24 Fluidized bed type pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276526A JP3957066B2 (en) 2002-09-24 2002-09-24 Fluidized bed type pulverizer

Publications (2)

Publication Number Publication Date
JP2004113839A JP2004113839A (en) 2004-04-15
JP3957066B2 true JP3957066B2 (en) 2007-08-08

Family

ID=32272376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276526A Expired - Fee Related JP3957066B2 (en) 2002-09-24 2002-09-24 Fluidized bed type pulverizer

Country Status (1)

Country Link
JP (1) JP3957066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103996A1 (en) 2008-03-17 2009-09-23 Ricoh Company, Ltd. Method for preparing toner, toner prepared by the method, and image forming apparatus using the toner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836634B2 (en) * 2006-04-03 2011-12-14 株式会社リコー Fluidized tank type pulverizing and classifying machine for producing electrophotographic toner and toner production method using the same
JP5268584B2 (en) * 2008-11-18 2013-08-21 花王株式会社 Powder crusher
CN108114793B (en) * 2017-12-13 2023-08-29 廊坊新龙立机械制造有限公司 Horizontal fluid bed jet mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103996A1 (en) 2008-03-17 2009-09-23 Ricoh Company, Ltd. Method for preparing toner, toner prepared by the method, and image forming apparatus using the toner

Also Published As

Publication number Publication date
JP2004113839A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
US7156331B2 (en) Fluidized bed pulverizing and classifying apparatus, and method of pulverizing and classifying solids
JP3992224B2 (en) Fluidized tank type pulverizing and classifying machine for producing electrophotographic toner and toner production method using the same
JP2006061902A (en) Pulverizing apparatus and method for pulverizing
EP0328074B1 (en) Gas current classifying separator
KR20110033810A (en) Method for producing powder and fluidized bed pulverizing apparatus
JP3957066B2 (en) Fluidized bed type pulverizer
JP4732794B2 (en) Grinding device and grinding method
JP4025179B2 (en) Grinding device and grinding method
JP4464696B2 (en) Powder grinding classification system and powder grinding classification method
JP4562871B2 (en) Classifier and vertical mill
JPH06230606A (en) Production of toner and producing equipment system used therefor
JP2006297305A (en) Crusher and crushing method method
JP4738770B2 (en) Grinding device and grinding method
JP2004113841A (en) Fluidized bed type grinding classifier
JP5472612B2 (en) Toner manufacturing method
JP2531028B2 (en) Pulverizer
JP2654989B2 (en) Powder grinding method
JP3872301B2 (en) Grinding device and toner production device
JP2004358365A (en) Pulverizer and pulverizing method
JPH11319601A (en) Mechanically pulverizing device
JP2805332B2 (en) Grinding method
JP2759499B2 (en) Powder grinding method
CN205833318U (en) Adjustable air flow pulverizer
JP3102902B2 (en) Collision type supersonic jet crusher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees