JP4464629B2 - Centrifugal pump for liquid - Google Patents

Centrifugal pump for liquid Download PDF

Info

Publication number
JP4464629B2
JP4464629B2 JP2003172638A JP2003172638A JP4464629B2 JP 4464629 B2 JP4464629 B2 JP 4464629B2 JP 2003172638 A JP2003172638 A JP 2003172638A JP 2003172638 A JP2003172638 A JP 2003172638A JP 4464629 B2 JP4464629 B2 JP 4464629B2
Authority
JP
Japan
Prior art keywords
impeller
blade
pressure surface
axial flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003172638A
Other languages
Japanese (ja)
Other versions
JP2005009361A (en
Inventor
銀春 曹
秀樹 一井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanso Electric Co Ltd
Original Assignee
Sanso Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanso Electric Co Ltd filed Critical Sanso Electric Co Ltd
Priority to JP2003172638A priority Critical patent/JP4464629B2/en
Publication of JP2005009361A publication Critical patent/JP2005009361A/en
Application granted granted Critical
Publication of JP4464629B2 publication Critical patent/JP4464629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遠心流体機械に有する遠心羽根車の構造のうち、特に液体用の遠心ポンプの遠心羽根車の構造に関する。
【0002】
【従来技術】
従来、図1に示す液体用の遠心ポンプの遠心羽根車(以下、「羽根車」という。)1では、図2に示すように、羽根車の羽根圧力面7から羽根負圧面8までの羽根間12、あるいは羽根厚さを無視した場合での、羽根圧力面から羽根負圧面までの羽根間のZ×θ[θ=360°/Z、Z:羽根枚数]の範囲で、かつ、羽根車入口14から羽根車出口15に向っての各羽根半径において、軸方向流路幅16が一定である。ところで、角速度ωで回転する羽根車1内を総体速度Wで流れる密度ρの流体には、単位面積当たり2ρωWのコリオリ力が他の力より大きく作用する。一方、小形低比速度の液体用の遠心ポンプに対しては、軸方向流路幅16が狭くなり、2ρωWのコリオリ力もさらに大きくなると考えられる。このため、図3の(b)に示すように、羽根車主板4の面または羽根車側板6の面の近くの境界層では、流体は羽根5間の羽根圧力面7から羽根負圧面8に向って流れて、羽根負圧面8付近、特に羽根車側板6の面と羽根負圧面8の角の付近に低エネルギー流体20が集積し、この低エネルギー流体20である二次流れが流路通路の大部分を占め、羽根負圧面8付近における主流19である非低エネルギー流体の有効流路幅が著しく狭くなる。このため、羽根5間で圧力が一様でなくなり、図1において、羽根車出口15の流れと渦巻室2の舌部3などとのポテンシャル干渉と粘性後流干渉によって、吐出口10における圧力は、(回転数n)×(羽根枚数z)の基本成分を持つ周期変動ΔP(圧力脈動)を繰り返す。
【0003】
液体用の遠心ポンプの低振動化と低騒音化のため、従来、図1に示す、渦巻室2の舌部3と羽根車外径11との隙間18を拡大したり、渦巻室2の舌部3の形状を変えるなどの対策が行われてきた。このようにすることで、液体用の遠心ポンプの振動および騒音または圧力脈動はある程度低減することができる。しかし、羽根車1と渦巻室2との間における流体損失が多く生じる場合があり、液体用の遠心ポンプの性能が下がってしまう傾向もある。
【0004】
一方、液体用の遠心ポンプの羽根車1を遠心ポンプ(以下、「ポンプ」という。)の羽根車1とした場合では、ポンプのキャビテーション性能については、羽根車1の羽根枚数を減らしたり、羽根車入口14における流速を遅くしたり、羽根5の形状を最適化すること等によって、ポンプのキャビテーション性能を向上できる。しかし、ポンプのキャビテーション性能とポンプの効率との間にトレードオフの関係があり、これらがポンプの高効率維持に悪影響をもたらす問題がある。
【0005】
【特許文献1】
特願2002−119764(平成14年4月22日出願)
【0006】
【発明が解決しようとする課題】
本発明では、液体用の遠心ポンプのイニシャルコストアップ無しに、液体用の遠心ポンプの高効率またはポンプとした場合の高キャビテーション性能を維持して、羽根車出口流れと渦巻室の舌部とのポテンシャル干渉と粘性後流干渉の低減を図ることによって、圧力脈動の低減化および騒音の低減化を実現できる液体用の遠心ポンプを提供することである。
【0007】
【課題を解決するための手段】
上記の課題を解決するための本発明の手段は、モータにより駆動されることにより、流体を吸込口9に吸込み、渦巻室2内の羽根車1から遠心力により羽根車1の周辺の渦巻室2の周辺部へ吐出し、吐出された流体を渦巻室2の周辺部から集めて吐出口10へ一括して吐出する吐出管13からなる液体用の遠心ポンプであり、この液体用の遠心ポンプでは羽根車1は最も重要な要素であって、複数枚の羽根5とそれらが結合されている羽根車主板4と羽根車側板6からなり、羽根車1の隣り合う2枚の羽根5並びに羽根車主板4と羽根車側板6で形成される羽根間流路12は、羽根車入口14から羽根車出口15に向かう間に、羽根圧力面7側の軸方向流路幅16を羽根負圧面8側の軸方向流路幅17と相違するものとした遠心機械に関するものである。この場合、羽根圧力面7から羽根負圧面8までの羽根5間で、かつ、羽根車入口14から羽根車出口15に向かう間に、羽根圧力面7側の軸方向流路幅16と羽根負圧面8側の軸方向流路幅17が相違して行くものも上記の遠心粒体機械に含まれる。
【0008】
このようにすることによって、液体用の遠心ポンプの運転時に、羽根車1の、羽根間流路12における流れまたは遠心力とコリオリ力などにより生じた低エネルギー流体20の二次流れと羽根車出口15の流れ分布をコントロールすることを可能とする。
【0009】
すなわち、第1の手段では、遠心羽根車を有する液体用の遠心ポンプにおいて、羽根車1は、羽根車出口15側における羽根圧力面7から羽根負圧面8までの羽根5間で、羽根圧力面7側の軸方向流路幅16に比して羽根負圧面8側の軸方向流路幅17が拡大し、さらに羽根入口14側における羽根圧力面7から羽根負圧面8までの羽根5間で、羽根圧力面7側の軸方向流路幅16に比して羽根負圧面8側の軸方向流路幅17が拡大し、かつ、羽根圧力面7側の軸方向流路幅16に比して羽根負圧面8側の軸方向流路幅17が拡大した状態を保ちつつ羽根車入口14から羽根車出口15まで形成されていることを特徴とする液体用の遠心ポンプである。
第2の手段では、遠心羽根車を有する液体用の遠心ポンプにおいて、羽根車1は、羽根車出口15側における羽根圧力面7から羽根負圧面8までの羽根5間で、羽根圧力面7側の軸方向流路幅16に比して羽根負圧面8側の軸方向流路幅17が拡大し、さらに羽根入口14側における羽根圧力面7から羽根負圧面8までの羽根5間で、羽根圧力面7側の軸方向流路幅16が羽根負圧面8側の軸方向流路幅17と同じで、かつ、羽根圧力面7側の軸方向流路幅16と羽根負圧面8側の軸方向流路幅17と同じである状態の羽根車入口14から羽根車出口15になるに連れて羽根圧力面7側と羽根負圧面8側の間の軸方向流路幅が徐々に縮小すると共に、羽根圧力面7側の軸方向流路幅16が羽根負圧面8側の軸方向流路幅17より縮小して形成されていることを特徴とする液体用の遠心ポンプである
【0010】
このようにすることで羽根負圧面8付近における主流の有効流路幅が増やされ、羽根車出口15における流れの周方向分布がある程度均一化されることが考えられ、羽根車出口15の流れと渦巻室2の舌部3との干渉を低減することで、液体用の遠心ポンプの圧力脈動や騒音を低減できる。
【0011】
一方、羽根車入口14においても、羽根負圧面8側の羽根車主板4と羽根車側板6の間である軸方向流路幅17は羽根圧力面7側の羽根車主板4と羽根車側板6の間である軸方向流路幅16と同じであるか、軸方向流路幅16に比べて徐々に拡大されているものである。このようにすることで、液体用の遠心ポンプの羽根車1、例えば遠心ポンプの羽根車1としたときのポンプの高キャビテーション性能を維持することができる。
【0012】
第3の手段では、羽根車1は、外径が200mm以下で、かつ、比速度Ns=nQ1/2/H3/4が200以下の小型低比速度であることを特徴とする上記の第1または第2の手段の液体用の遠心ポンプである。
【0013】
第4の手段では、羽根車1は、その最大外径における対面する2枚の羽根5、5間において、羽根圧力面7側の軸方向流路幅16に対する羽根負圧面8側の軸方向流路幅17が1より大で、かつ、4以下であることを特徴とする第1〜3の手段のいずれか1の手段の液体用の遠心ポンプである。
【0014】
ところで、一般的に液体用の遠心ポンプの性能の面から考慮して、羽根車入口14における軸方向流路幅は羽根車出口15における軸方向流路幅と同じとするか又はそれより大きくすることを基本とする。その上で、羽根車入口14側における羽根圧力面7側の軸方向流路幅16に対する羽根負圧面8側の軸方向流路幅17の比率を異なるものとする場合もある。一方、圧力脈動の低減のみを重視する場合では、羽根車入口14側において、従来の様に羽根圧力面7側の軸方向流路幅16に対する羽根負圧面8側の軸方向流路幅17を同一とすることもある。
【0015】
ここで、本発明の作用について説明する。先ず、従来の液体用の遠心ポンプの低振動化や低騒音化に当たっては、渦巻室2の舌部3と羽根車外径11との隙間18を広げたり、渦巻室2の舌部3の形状を変えることなどによって、液体用の遠心ポンプの振動および騒音をある程度まで低減できた。しかし、これらは、羽根車1と渦巻室2との間における流体損失が多く生じる場合があり、液体用の遠心ポンプの性能が下がってしまう傾向があり、また液体用の遠心ポンプのサイズアップを図らなければならない傾向もある。一方、液体用の遠心ポンプとした場合のポンプのキャビテーション性能については、羽根車1の羽根5の枚数を減らしたり、羽根車入口14における流速を遅くさせたり、羽根車入口14の形状と羽根5の枚数を減らしたり、羽根車入口14における流速を遅くさせたり、羽根5の形状を最適化することなどによって、キャビテーション性能が向上できる。しかし、ポンプのキャビテーション性能とポンプの効率との間にはトレードオフの関係があり、ポンプの高効率維持に悪影響をもたらす。これに対して、本発明の流体機械では、請求項1の手段における羽根車1を採用することによって液体用の遠心ポンプの高効率、かつ、遠心ポンプとした場合のポンプの高キャビテーション性能を維持することができ、圧力変動が大幅に低減される。
【0016】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。図1は羽根車と渦巻室の断面図である。図2は従来の液体用の遠心ポンプの羽根車の構造をその内径側(a)と外径側(b)で切断した端面を模式的に直線化して示して説明する断面図と、羽根車の半径分を示す模式図である。図3は、従来の羽根車出口における流体の流れ構造および圧力脈動の説明図て、(a)は圧力脈動の模式図で、(b)は羽根車内の流れ構造の模式図である。図4は本発明の液体用の遠心ポンプの一実施の形態の羽根車の構造をその内径側(a)と外径側(b)で切断した端面を模式的に直線化して示して説明する断面図と、羽根車の半径分を示す模式図である。図5は本発明の液体用の遠心ポンプの他の一実施の形態の羽根車の構造をその内径側(a)と外径側(b)で切断した端面を模式的に直線化して示して説明する断面図と、羽根車の半径分を示す模式図である。図6は本発明の液体用の遠心ポンプのさらに他の一実施の形態の羽根車の構造をその内径側(a)と外径側(b)で切断した端面を模式的に直線化して示して説明する断面図と、羽根車の半径分を示す模式図である。図7は本発明の液体用の遠心ポンプのさらに他の一実施の形態の羽根車の構造をその内径側(a)と外径側(b)で切断した端面を模式的に直線化して示して説明する断面図と、羽根車の半径分を示す模式図である。図8は従来の羽根車の遠心ポンプと本発明の羽根車の遠心ポンプの性能比較図である。図9は従来の羽根車の遠心ポンプと本発明の羽根車のNPSH3(3%揚程低下)の測定比較図である。図10は従来の羽根車の圧力脈動波形を示す図である。図11は本発明の羽根車の圧力脈動波形を示す図である。
【0017】
本発明の一実施の形態は液体用の遠心ポンプである。図1に示すように、この遠心ポンプは、渦巻室2内に、モータの駆動により汲み上げる液体を、遠心ポンプの吸込口9に吸込み、遠心ポンプの吐出口10に吐出すための、羽根車1を有し、さらに羽根車1より吐出され液体を集める渦巻室2を有する。この羽根車1は本発明の液体用の遠心ポンプにおいて最も重要な要素であって、複数枚の羽根5と羽根5を垂直に結合して挟持している羽根車主板4と羽根車側板6から形成されている。羽根車1の隣り合う2枚の羽根5並びに羽根車主板4と羽根車側板6で形成される羽根間流路12は、図4に示すように、羽根負圧面8側の軸方向流路幅17が羽根圧力面7側の軸方向流路幅16に比べて徐々に拡大されている状態を保ちつつ、羽根車入口14から羽根車出口15まで形成されている。
【0018】
このようにすることで、羽根車1の羽根負圧面8付近の流れ有効流路を拡大して、羽根車出口15側における流れを含めた羽根間流路12の流れがある程度均一化され、羽根車出口15の流れと渦巻室2の舌部3との干渉を低減することで、液体用の遠心ポンプの圧力脈動や騒音を低減できる。一方、羽根車1の羽根車入口14においては、羽根負圧面8側の軸方向流路幅17が羽根圧力面7側の軸方向流路幅16に比べ徐々に拡大され、羽根車入口14側付近の羽根負圧面8における相対流速も減少されることによって、遠心ポンプの羽根車1としたポンプの高キャビテーション性能を維持できる。
【0019】
さらに、図5に示す実施の形態では、その(a)に示すように羽根車入口14側である羽根車1の内径側の部分では、軸方向流路幅は羽根圧力面7側が羽根車負圧面8側も共に同じ軸方向流路幅を有している。しかし、図5の(b)に示すように羽根車出口15側である羽根車1の外径側の部分では、羽根圧力面7側の軸方向流路幅16に比して羽根負圧面8側の軸方向流路幅17が徐々に拡大されている。
【0020】
さらに、図6に示す実施の形態では、図5における実施の形態と同様に、その(a)に示すように、羽根車入口14側である羽根車1の内径側の部分では、軸方向流路幅は羽根圧力面7側が羽根負圧面8側も共に同じ軸方向流路幅である。しかし、図6の(b)に示すように羽根車出口15側である羽根車1の外径側の部分では、羽根車主板4の板厚は一定のものであるが、羽根車側板6の板厚はその内面側のみにテーパーが形成されることで、羽根圧力面7側の軸方向流路幅16に比して羽根負圧面8側の軸方向流路幅17が徐々に拡大されている。
【0021】
さらに、図7に示す実施の形態では、その(a)に示すように羽根車入口14側である羽根車1の内径側の部分では、軸方向流路幅は羽根圧力面7側が羽根負圧面8側も共に同じ軸方向流路幅である。しかし、図7の(b)に示すように羽根車出口15側である羽根車1の外径側の部分では、羽根圧力面7側の軸方向流路幅16が羽根負圧面8側への一定の長さの間は軸方向流路幅16が一定の狭い幅をしているが、その途中から羽根負圧面8側になるに連れて羽根負圧面8側の軸方向流路幅17が徐々に拡大されて行くものである。
【0022】
以上のようにしたことで、本発明の液体用の遠心ポンプの実施の形態である遠心ポンプでは、低圧力脈動や低騒音とすることができる。
【0023】
さらに、他の実施の形態では、羽根圧力面7側の軸方向流路幅16に対する羽根負圧面8側の軸方向流路幅17は、1より大で、かつ、4以下とする小形低比速度の遠心ポンプである。
【0024】
【実施例】
先ず、図4に示す本発明の実施例の遠心ポンプの仕様の諸寸法を例示すると、羽根車1の外径は62mm、羽根車入口14の羽根負圧面8の軸方向流路幅は5.8mm、羽根車入口14の羽根圧力面7の軸方向流路幅は3.8mm、羽根車出口15の羽根負圧面8の軸方向流路幅は4.5mm、羽根車出口15の羽根圧力面7の軸方向流路幅は2.5mmである。
【0025】
さらに、図5に示す本発明の実施例の遠心ポンプの仕様の諸寸法を例示すると、羽根車1の外径は62mm、羽根車入口14の軸方向流路幅は羽根負圧面8も羽根圧力面7も同じ幅で4.8mm、羽根車出口15の羽根負圧面8の軸方向流路幅は4.5mm、羽根車出口15の羽根圧力面7の軸方向流路幅は2.5mmである。
【0026】
なお、比較のために従来の軸方向流路幅が羽根負圧面側も羽根圧力面側も同一である遠心ポンプの諸寸法を示すと、羽根車1の外径は62mm、羽根車入口14の軸方向流路幅は4.8mm、羽根車出口15の軸方向流路幅は3.5mmである。上記において、渦巻室2を含めた遠心ポンプの他の諸寸法は全て同一であり、設計流量Qdは30l/minとしている。
【0027】
図8に従来の羽根車を装備した遠心ポンプと本発明における上記の図4に示す実施例の羽根車1を装備した遠心ポンプの性能を比較して示す。ただし、本発明の図5に示す実施例の羽根車1を装備した遠心ポンプの性能が図4に示す実施例の羽根車1を装備した遠心ポンプの性能一致しているため、本発明における図4に示す羽根車1を装備した遠心ポンプの性能を従来の羽根車を装備した遠心ポンプと比較している。全流量域において、本発明における羽根車を装備した遠心ポンプ効率は、従来のポンプの効率と変わらないものの、全揚程Hが少々高く現れ、遠心羽根車の内部流れと出口流れがコントロールされていることが推測される。
【0028】
図9に、従来の羽根車を装備した小形低比速度遠心ポンプと本発明における上記の図4の実施例の羽根車1を装備した小形低比速度遠心ポンプの揚程3%低下を対比して示す。従来のポンプに比べ、揚水量Qが増加するに連れて本発明の遠心羽根車を有する遠心ポンプのキャビテーション性能が僅かに良くなっている傾向が見られる。
【0029】
図10に、従来の羽根車を装備した遠心ポンプの吐出口における圧力変動を示し、図11に本発明の図4に示す実施例の羽根車を装備した遠心ポンプの吐出口における圧力変動を、それぞれ(a)の流量Qを0とする場合、(b)の流量Qを1/2×設計流量Qdの場合、(c)の流量Qを設計流量Qdの場合として示した。これら2図の対比からわかるように、本発明の遠心羽根車を装備した遠心ポンプは、(a)の流量Qを0とする場合、(b)の流量Qを1/2×設計流量Qdの場合、(c)の流量Qを設計流量Qdの場合のいずれにおいても圧力変動は小さくなり、ポンプの圧力脈動が大幅に低減されていることがわかる。
【0030】
【発明の効果】
以上説明したように、従来の液体用の遠心ポンプと比べ、本発明は、羽根車出口における軸方向流路幅を羽根圧力面側と羽根負圧面側で相違するものとし、特に羽根圧力面側の軸方向流路幅に比べ羽根負圧面側の軸方向流路幅が拡大する、または、徐々に拡大してゆく、あるいは、羽根入口側における羽根圧力面から羽根負圧面までの羽根間で、羽根圧力面側の軸方向流路幅が羽根負圧面側の軸方向流路幅と同じで、かつ、羽根圧力面側の軸方向流路幅と羽根負圧面側の軸方向流路幅が同じである状態の羽根車入口から羽根車出口になるに連れて羽根圧力面側の軸方向流路幅に比して羽根負圧面側の軸方向流路幅が徐々に縮小して形成されていることで、液体用の遠心ポンプのイニシャルコストを格別にかけることなく、液体用の遠心ポンプの高効率化、さらに、遠心ポンプとした場合でのポンプ高キャビテーション性能を維持しながら、液体用の遠心ポンプの圧力脈動を低減化し、さらに騒音の低減化を図ることができ、本発明は従来にない優れた効果を奏するものである。
【図面の簡単な説明】
【図1】 羽根車と渦巻室の断面図である。
【図2】 従来の羽根車の構造を模式的に説明する断面図である。
【図3】 本発明の羽根車出口における流れ構造および圧力脈動の説明図である。
【図4】 本発明の液体用の遠心ポンプの一実施の形態の羽根車の構造を模式的に説明する断面図である。
【図5】 本発明の液体用の遠心ポンプの他の実施の形態の羽根車の構造を模式的に説明する断面図である。
【図6】 本発明の液体用の遠心ポンプの他の実施の形態の羽根車の構造を模式的に説明する断面図である。
【図7】 本発明の液体用の遠心ポンプのさらに他の実施の形態の羽根車の構造を模式的に説明する断面図である。
【図8】 従来の羽根車の遠心ポンプと本発明の羽根車を有する遠心ポンプの性能比較図である。
【図9】 従来の羽根車と本発明の羽根車のNPSH3(3%揚程低下)測定比較図である。
【図10】 従来の羽根車出口における圧力脈動波形図である。
【図11】 本発明の羽根車出口における圧力脈動波形図である。
【符号の説明】
1 羽根車
2 渦巻室
3 舌部
4 羽根車主板
5 羽根
6 羽根車側板
7 羽根圧力面
8 羽根負圧面
9 吸込口
10 吐出口
11 羽根車外径
12 羽根間流路
13 吐出管
14 羽根車入口
15 羽根車出口
16 軸方向流路幅
17 軸方向流路幅
18 隙間
19 主流
20 低エネルギー流体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of a centrifugal impeller of a centrifugal pump for liquid, among the structures of a centrifugal impeller included in a centrifugal fluid machine.
[0002]
[Prior art]
Conventionally, in the centrifugal impeller (hereinafter referred to as “impeller”) 1 of the liquid centrifugal pump shown in FIG. 1, the blades from the blade pressure surface 7 to the blade negative pressure surface 8 of the impeller, as shown in FIG. 2. 12 or in the range of Z × θ [θ = 360 ° / Z, Z: number of blades] between the blades from the blade pressure surface to the blade suction surface when the blade thickness is ignored, and the impeller At each blade radius from the inlet 14 toward the impeller outlet 15, the axial flow path width 16 is constant. By the way, the Coriolis force of 2ρωW per unit area acts on the fluid of density ρ flowing at the total speed W in the impeller 1 rotating at the angular velocity ω more than other forces. On the other hand, it is considered that the axial flow path width 16 is narrowed and the Coriolis force of 2ρωW is further increased with respect to the centrifugal pump for a small low specific speed liquid . Therefore, as shown in FIG. 3B, in the boundary layer near the surface of the impeller main plate 4 or the surface of the impeller side plate 6, the fluid flows from the blade pressure surface 7 between the blades 5 to the blade negative pressure surface 8. The low energy fluid 20 accumulates in the vicinity of the blade suction surface 8, particularly in the vicinity of the surface of the impeller side plate 6 and the corner of the blade suction surface 8, and the secondary flow that is the low energy fluid 20 is a flow passage. The effective flow path width of the non-low energy fluid which is the main flow 19 in the vicinity of the blade suction surface 8 is remarkably narrowed. For this reason, the pressure is not uniform between the blades 5, and in FIG. 1, the pressure at the discharge port 10 is caused by the potential interference between the flow at the impeller outlet 15 and the tongue 3 of the spiral chamber 2 and the viscous wake interference. , (Cycle number n) × (blade number z), and cyclic fluctuation ΔP (pressure pulsation) having a basic component is repeated.
[0003]
In order to reduce the vibration and noise of the centrifugal pump for liquid , conventionally, the gap 18 between the tongue 3 of the spiral chamber 2 and the outer diameter 11 of the impeller 1 shown in FIG. Measures such as changing the shape of 3 have been taken. By doing so, vibration and noise or pressure pulsation of the centrifugal pump for liquid can be reduced to some extent. However, there may be a lot of fluid loss between the impeller 1 and the spiral chamber 2, and the performance of the liquid centrifugal pump tends to decrease.
[0004]
On the other hand, when the impeller 1 of the centrifugal pump for liquid is the impeller 1 of a centrifugal pump (hereinafter referred to as “pump”), the number of impellers of the impeller 1 can be reduced or Cavitation performance of the pump can be improved by slowing the flow velocity at the vehicle entrance 14 or optimizing the shape of the blades 5. However, there is a trade-off relationship between pump cavitation performance and pump efficiency, which has a problem of adversely affecting the high efficiency of the pump.
[0005]
[Patent Document 1]
Japanese Patent Application No. 2002-119964 (filed on April 22, 2002)
[0006]
[Problems to be solved by the invention]
In the present invention, the initial cost without a centrifugal pump for liquid, while maintaining a high cavitation performance in the case of a high efficiency or pump of the centrifugal pump for liquids, the tongue of the impeller outlet flow and swirl chamber It is an object of the present invention to provide a liquid centrifugal pump capable of reducing pressure pulsation and noise by reducing potential interference and viscous wake interference.
[0007]
[Means for Solving the Problems]
The means of the present invention for solving the above-mentioned problem is that the fluid is sucked into the suction port 9 by being driven by a motor, and the spiral chamber around the impeller 1 is caused by centrifugal force from the impeller 1 in the spiral chamber 2. 2 is a liquid centrifugal pump comprising a discharge pipe 13 for discharging the discharged fluid from the peripheral portion of the spiral chamber 2 and discharging it to the discharge port 10 in a lump, and this liquid centrifugal pump The impeller 1 is the most important element. The impeller 1 is composed of a plurality of blades 5, an impeller main plate 4 and an impeller side plate 6, and the two adjacent blades 5 and blades of the impeller 1. The inter-blade channel 12 formed by the car main plate 4 and the impeller side plate 6 has an axial channel width 16 on the vane pressure surface 7 side as the vane negative pressure surface 8 while moving from the impeller inlet 14 to the impeller outlet 15. The centrifugal machine is different from the axial flow path width 17 on the side. Than is. In this case, between the blades 5 from the blade pressure surface 7 to the blade negative pressure surface 8 and from the impeller inlet 14 to the impeller outlet 15, the axial flow path width 16 on the blade pressure surface 7 side and the blade negative Those having different axial flow path widths 17 on the pressure surface 8 side are also included in the centrifugal granule machine.
[0008]
By doing so, during the operation of the liquid centrifugal pump , the flow of the impeller 1 in the inter-blade flow path 12 or the secondary flow of the low energy fluid 20 generated by the centrifugal force and the Coriolis force and the exit of the impeller It is possible to control 15 flow distributions.
[0009]
That is, in the first means , in the centrifugal pump for liquid having a centrifugal impeller, the impeller 1 is disposed between the blade pressure surface 7 and the blade negative pressure surface 8 on the impeller outlet 15 side, between the blade pressure surfaces 7 and the blade pressure surface. Compared to the axial flow path width 16 on the 7 side, the axial flow path width 17 on the blade suction surface 8 side is increased, and further between the blades 5 from the blade pressure surface 7 to the blade suction surface 8 on the blade inlet 14 side. The axial flow path width 17 on the blade negative pressure surface 8 side is larger than the axial flow path width 16 on the blade pressure surface 7 side, and compared with the axial flow path width 16 on the blade pressure surface 7 side. Thus , the liquid centrifugal pump is formed from the impeller inlet 14 to the impeller outlet 15 while maintaining the state in which the axial flow path width 17 on the impeller negative pressure surface 8 side is enlarged .
In the second means, in the centrifugal pump for liquid having a centrifugal impeller , the impeller 1 is disposed between the blade pressure surface 7 and the blade negative pressure surface 8 on the impeller outlet 15 side, between the blade pressure surface 7 side and the blade pressure surface 7 side. The axial flow passage width 17 on the blade suction surface 8 side is larger than the axial flow passage width 16 of the blade, and further between the blades 5 from the blade pressure surface 7 to the blade suction surface 8 on the blade inlet 14 side, the blade The axial flow path width 16 on the pressure surface 7 side is the same as the axial flow path width 17 on the blade negative pressure surface 8 side, and the axial flow path width 16 on the blade pressure surface 7 side and the shaft on the blade negative pressure surface 8 side. As the impeller inlet 14 in the same state as the directional flow path width 17 changes to the impeller outlet 15, the axial flow path width between the blade pressure surface 7 side and the blade negative pressure surface 8 side gradually decreases. The axial flow path width 16 on the blade pressure surface 7 side is formed smaller than the axial flow path width 17 on the blade negative pressure surface 8 side. It is a centrifugal pump for liquids, characterized in that.
[0010]
By doing so, the effective flow width of the main flow in the vicinity of the blade suction surface 8 is increased, and it is considered that the circumferential distribution of the flow at the impeller outlet 15 is made uniform to some extent. By reducing the interference with the tongue 3 of the spiral chamber 2, pressure pulsation and noise of the liquid centrifugal pump can be reduced.
[0011]
On the other hand, also in the impeller inlet 14, the axial flow path width 17 between the impeller main plate 4 and the impeller side plate 6 on the impeller negative pressure surface 8 side is the impeller main plate 4 and impeller side plate 6 on the impeller pressure surface 7 side. It is the same as the axial flow path width 16 between them, or is gradually enlarged as compared with the axial flow path width 16 . By doing in this way, the high cavitation performance of the pump when it is set as the impeller 1 of the centrifugal pump for liquids, for example, the impeller 1 of a centrifugal pump, can be maintained.
[0012]
In the third means , the impeller 1 is a small low specific speed whose outer diameter is 200 mm or less and whose specific speed Ns = nQ 1/2 / H 3/4 is 200 or less . A centrifugal pump for liquid of the first or second means .
[0013]
In the fourth means , the impeller 1 has an axial flow on the blade suction surface 8 side with respect to the axial flow path width 16 on the blade pressure surface 7 side between the two blades 5 and 5 facing each other at the maximum outer diameter. The centrifugal pump for liquid of any one of the first to third means, wherein the path width 17 is larger than 1 and 4 or less.
[0014]
By the way, generally considering the performance of the centrifugal pump for liquid, the axial flow path width at the impeller inlet 14 is made equal to or larger than the axial flow path width at the impeller outlet 15. Based on that. In addition, the ratio of the axial flow path width 17 on the blade negative pressure surface 8 side to the axial flow path width 16 on the blade pressure surface 7 side on the impeller inlet 14 side may be different. On the other hand, when only the reduction of pressure pulsation is emphasized, the axial flow passage width 17 on the blade negative pressure surface 8 side is set to the axial flow passage width 16 on the blade pressure surface 7 side on the impeller inlet 14 side as in the prior art. It may be the same.
[0015]
Here, the operation of the present invention will be described. First, in order to reduce the vibration and noise of a conventional centrifugal pump for liquid , the gap 18 between the tongue 3 of the spiral chamber 2 and the outer diameter 11 of the impeller is widened, or the shape of the tongue 3 of the spiral chamber 2 is changed. The vibration and noise of the centrifugal pump for liquid could be reduced to some extent by changing it. However, it may fluid loss between the impeller 1 and the swirl chamber 2 a number occurs, there is a tendency to decreased performance of the centrifugal pump for liquids, also the size up centrifugal pump for liquids There is also a tendency to try. On the other hand, regarding the cavitation performance of the pump in the case of a liquid centrifugal pump , the number of blades 5 of the impeller 1 is reduced, the flow velocity at the impeller inlet 14 is decreased, the shape of the impeller inlet 14 and the blade 5 The cavitation performance can be improved by reducing the number of blades, reducing the flow velocity at the impeller inlet 14, and optimizing the shape of the blades 5. However, there is a trade-off relationship between pump cavitation performance and pump efficiency, which adversely affects maintaining high efficiency of the pump. On the other hand, in the fluid machine of the present invention, by adopting the impeller 1 according to the means of claim 1, high efficiency of the centrifugal pump for liquid and high pump cavitation performance when the centrifugal pump is used are maintained. Pressure fluctuations can be greatly reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an impeller and a spiral chamber. FIG. 2 is a cross-sectional view schematically illustrating the structure of an impeller of a conventional centrifugal pump for liquid by linearly showing the end surfaces cut at the inner diameter side (a) and outer diameter side (b), and the impeller It is a schematic diagram which shows the part for radius. 3A and 3B are explanatory views of a conventional fluid flow structure and pressure pulsation at an impeller outlet, in which FIG. 3A is a schematic diagram of pressure pulsation, and FIG. 3B is a schematic diagram of a flow structure in the impeller. FIG. 4 illustrates the structure of an impeller according to an embodiment of the liquid centrifugal pump of the present invention by schematically showing linearly the end faces cut at the inner diameter side (a) and the outer diameter side (b). It is a schematic diagram which shows sectional drawing and the part for the radius of an impeller. FIG. 5 schematically shows a structure of an impeller according to another embodiment of the liquid centrifugal pump of the present invention, with end faces cut at the inner diameter side (a) and the outer diameter side (b) schematically shown as straight lines. It is a schematic diagram which shows sectional drawing to demonstrate and the part for the radius of an impeller. FIG. 6 schematically shows a structure of an impeller of still another embodiment of the centrifugal pump for liquid according to the present invention, with the end faces cut at the inner diameter side (a) and the outer diameter side (b) schematically linearized. FIG. 2 is a cross-sectional view described above and a schematic diagram showing the radius of an impeller. FIG. 7 schematically shows the structure of the impeller of still another embodiment of the centrifugal pump for liquid according to the present invention, with the end faces cut at the inner diameter side (a) and the outer diameter side (b) schematically linearized. FIG. 2 is a cross-sectional view described above and a schematic diagram showing the radius of an impeller. FIG. 8 is a performance comparison diagram of a conventional impeller centrifugal pump and an impeller centrifugal pump of the present invention. FIG. 9 is a measurement comparison diagram of NPSH3 (3% reduction in lift) of a conventional impeller centrifugal pump and the impeller of the present invention. FIG. 10 is a diagram showing a pressure pulsation waveform of a conventional impeller. FIG. 11 is a diagram showing a pressure pulsation waveform of the impeller of the present invention.
[0017]
One embodiment of the present invention is a centrifugal pump for liquid . As shown in FIG. 1, this centrifugal pump has an impeller 1 for sucking a liquid pumped up into a spiral chamber 2 by driving a motor into a suction port 9 of the centrifugal pump and discharging it to a discharge port 10 of the centrifugal pump. And a spiral chamber 2 that collects liquid discharged from the impeller 1. The impeller 1 is the most important element in the centrifugal pump for liquid according to the present invention. The impeller 1 includes an impeller main plate 4 and an impeller side plate 6 that vertically sandwich and hold a plurality of blades 5 and the blades 5. Is formed. As shown in FIG. 4, the inter-blade flow path 12 formed by the two adjacent blades 5 of the impeller 1 and the impeller main plate 4 and the impeller side plate 6 has an axial flow passage width on the blade negative pressure surface 8 side. 17 is formed from the impeller inlet 14 to the impeller outlet 15 while maintaining a state where 17 is gradually enlarged compared to the axial flow path width 16 on the blade pressure surface 7 side.
[0018]
By doing in this way, the flow effective flow path near the blade negative pressure surface 8 of the impeller 1 is expanded, and the flow of the flow path 12 between the blades including the flow on the impeller outlet 15 side is made uniform to some extent. By reducing the interference between the flow of the vehicle outlet 15 and the tongue 3 of the spiral chamber 2, pressure pulsation and noise of the centrifugal pump for liquid can be reduced. On the other hand, at the impeller inlet 14 of the impeller 1, the axial flow path width 17 on the blade negative pressure surface 8 side is gradually enlarged compared to the axial flow path width 16 on the blade pressure surface 7 side, and the impeller inlet 14 side Since the relative flow velocity at the nearby blade suction surface 8 is also reduced, the high cavitation performance of the pump that is the impeller 1 of the centrifugal pump can be maintained.
[0019]
Furthermore, in the embodiment shown in FIG. 5, in the portion on the inner diameter side of the impeller 1 on the impeller inlet 14 side as shown in FIG. 5A, the axial flow passage width is negative on the impeller negative pressure surface 7 side. Both pressure sides 8 also have the same axial flow path width. However, as shown in FIG. 5 (b), at the outer diameter side portion of the impeller 1 on the impeller outlet 15 side, the blade negative pressure surface 8 is compared with the axial flow path width 16 on the blade pressure surface 7 side. The axial flow path width 17 on the side is gradually enlarged.
[0020]
Further, in the embodiment shown in FIG. 6, as in the embodiment in FIG. 5, as shown in FIG. 5A, in the portion on the inner diameter side of the impeller 1 that is on the impeller inlet 14 side, The passage width is the same axial passage width on the blade pressure surface 7 side and on the blade negative pressure surface 8 side. However, as shown in FIG. 6B, the impeller main plate 4 has a constant thickness at the outer diameter side portion of the impeller 1 on the impeller exit 15 side, but the impeller side plate 6 has a constant thickness. The plate thickness is tapered only on the inner surface side, so that the axial flow passage width 17 on the blade negative pressure surface 8 side is gradually enlarged compared to the axial flow passage width 16 on the blade pressure surface 7 side. Yes.
[0021]
Further, in the embodiment shown in FIG. 7, as shown in FIG. 7A, in the portion on the inner diameter side of the impeller 1 on the impeller inlet 14 side, the axial flow path width is the blade negative pressure surface on the blade pressure surface 7 side. Both 8 sides have the same axial flow path width. However, as shown in FIG. 7B, in the outer diameter side portion of the impeller 1 on the impeller outlet 15 side, the axial flow path width 16 on the impeller pressure surface 7 side is directed to the impeller negative pressure surface 8 side. The axial flow path width 16 has a constant narrow width for a certain length, but the axial flow path width 17 on the blade negative pressure surface 8 side increases from the middle toward the blade negative pressure surface 8 side. It will gradually expand.
[0022]
As described above, the centrifugal pump which is an embodiment of the liquid centrifugal pump of the present invention can achieve low pressure pulsation and low noise.
[0023]
Further, in another embodiment, the small low ratio in which the axial flow passage width 17 on the blade negative pressure surface 8 side with respect to the axial flow passage width 16 on the blade pressure surface 7 side is greater than 1 and 4 or less. Speed centrifugal pump.
[0024]
【Example】
First, the dimensions of the specifications of the centrifugal pump of the embodiment of the present invention shown in FIG. 4 are exemplified. The outer diameter of the impeller 1 is 62 mm, and the axial flow path width of the blade suction surface 8 of the impeller inlet 14 is 5. 8 mm, the axial flow width of the blade pressure surface 7 of the impeller inlet 14 is 3.8 mm, the axial flow width of the blade negative pressure surface 8 of the impeller outlet 15 is 4.5 mm, and the blade pressure surface of the impeller outlet 15 The axial flow path width of 7 is 2.5 mm.
[0025]
Furthermore, the dimensions of the specifications of the centrifugal pump of the embodiment of the present invention shown in FIG. 5 are exemplified. The outer diameter of the impeller 1 is 62 mm, the axial flow path width of the impeller inlet 14 is the blade negative pressure surface 8 and the blade pressure. The surface 7 has the same width of 4.8 mm, the axial flow width of the blade suction surface 8 of the impeller outlet 15 is 4.5 mm, and the axial flow width of the blade pressure surface 7 of the impeller outlet 15 is 2.5 mm. is there.
[0026]
For comparison, when the dimensions of a centrifugal pump in which the conventional axial flow path width is the same on both the blade suction surface side and the blade pressure surface side are shown, the outer diameter of the impeller 1 is 62 mm, the impeller inlet 14 is The axial flow path width is 4.8 mm, and the axial flow path width of the impeller outlet 15 is 3.5 mm. In the above, all other dimensions of the centrifugal pump including the spiral chamber 2 are the same, and the design flow rate Q d is 30 l / min.
[0027]
FIG. 8 compares the performance of a centrifugal pump equipped with a conventional impeller and a centrifugal pump equipped with the impeller 1 of the embodiment shown in FIG. 4 in the present invention. However, the performance of the centrifugal pump equipped with the impeller 1 of the embodiment shown in FIG. 5 of the present invention matches the performance of the centrifugal pump equipped with the impeller 1 of the embodiment shown in FIG. The performance of the centrifugal pump equipped with the impeller 1 shown in FIG. 4 is compared with the centrifugal pump equipped with the conventional impeller. In the entire flow rate range, the centrifugal pump efficiency equipped with the impeller in the present invention is not different from the efficiency of the conventional pump, but the total lift H appears a little higher, and the internal flow and outlet flow of the centrifugal impeller are controlled. I guess that.
[0028]
FIG. 9 shows a comparison of the 3% reduction in the head of the small low specific speed centrifugal pump equipped with the conventional impeller and the small low specific speed centrifugal pump equipped with the impeller 1 of the embodiment of FIG. 4 in the present invention. Show. There is a tendency that the cavitation performance of the centrifugal pump having the centrifugal impeller of the present invention is slightly improved as the pumped water amount Q increases as compared with the conventional pump.
[0029]
FIG. 10 shows the pressure fluctuation at the discharge port of the centrifugal pump equipped with the conventional impeller, and FIG. 11 shows the pressure fluctuation at the discharge port of the centrifugal pump equipped with the impeller of the embodiment shown in FIG. When the flow rate Q in (a) is 0, the flow rate Q in (b) is 1/2 × design flow rate Q d , and the flow rate Q in (c) is shown as design flow rate Q d . As can be seen from the comparison of these two figures, the centrifugal pump equipped with the centrifugal impeller of the present invention has the flow rate Q of (b) set to 1/2 × design flow rate Q d when the flow rate Q of (a) is set to 0. cases, it can be seen that even pressure variation in any of the cases of the flow rate Q of the design flow rate Q d is reduced, the pressure pulsation of the pump is significantly reduced in (c).
[0030]
【The invention's effect】
As described above, the present invention differs from the conventional centrifugal pump for liquid in that the axial flow path width at the impeller outlet is different between the blade pressure surface side and the blade negative pressure surface side. The axial flow path width on the blade suction surface side expands or gradually expands compared to the axial flow path width of, or between the blades from the blade pressure surface to the blade suction surface on the blade inlet side, The axial flow path width on the blade pressure surface side is the same as the axial flow path width on the blade suction surface side, and the axial flow path width on the blade pressure surface side is the same as the axial flow path width on the blade suction surface side. The axial flow passage width on the blade negative pressure surface side is gradually reduced as compared to the axial flow passage width on the blade pressure surface side as the impeller inlet in the state is changed to the impeller exit. it is, particularly without imposing initial cost of the centrifugal pump for liquid, a centrifugal pump for liquids High efficiency, further, while maintaining a high cavitation performance of the pump in the case of a centrifugal pump, to reduce the pressure pulsation of a centrifugal pump for liquid, it is possible to further achieve a reduction of noise, the present invention is conventional It has an outstanding effect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an impeller and a spiral chamber.
FIG. 2 is a cross-sectional view schematically illustrating the structure of a conventional impeller.
FIG. 3 is an explanatory diagram of the flow structure and pressure pulsation at the impeller outlet of the present invention.
FIG. 4 is a cross-sectional view schematically illustrating the structure of an impeller according to an embodiment of the liquid centrifugal pump of the present invention.
FIG. 5 is a cross-sectional view schematically illustrating the structure of an impeller according to another embodiment of the liquid centrifugal pump of the present invention.
FIG. 6 is a cross-sectional view schematically illustrating the structure of an impeller according to another embodiment of the liquid centrifugal pump of the present invention.
FIG. 7 is a cross-sectional view schematically illustrating the structure of an impeller according to still another embodiment of the liquid centrifugal pump of the present invention.
FIG. 8 is a performance comparison diagram of a centrifugal pump of a conventional impeller and a centrifugal pump having the impeller of the present invention.
FIG. 9 is a NPSH3 (3% reduction in lift) measurement comparison diagram of a conventional impeller and the impeller of the present invention.
FIG. 10 is a pressure pulsation waveform diagram at a conventional impeller outlet.
FIG. 11 is a pressure pulsation waveform diagram at the impeller outlet of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Impeller 2 Swirl chamber 3 Tongue part 4 Impeller main plate 5 Blade 6 Impeller side plate 7 Blade pressure surface 8 Blade negative pressure surface 9 Suction port 10 Discharge port 11 Impeller outer diameter 12 Flow channel between blades 13 Discharge pipe 14 Impeller inlet 15 Impeller outlet 16 Axial channel width 17 Axial channel width 18 Gap 19 Main flow 20 Low energy fluid

Claims (4)

遠心羽根車を有する液体用の遠心ポンプにおいて、遠心羽根車は、羽根車出口側における羽根圧力面から羽根負圧面までの羽根間で、羽根圧力面側の軸方向流路幅に比して羽根負圧面側の軸方向流路幅が拡大し、さらに羽根入口側における羽根圧力面から羽根負圧面までの羽根間で、羽根圧力面側の軸方向流路幅に比して羽根負圧面側の軸方向流路幅が拡大し、かつ、羽根圧力面側の軸方向流路幅に比して羽根負圧面側の軸方向流路幅が拡大した状態を保ちつつ羽根車入口から羽根車出口まで形成されていることを特徴とする液体用の遠心ポンプIn a centrifugal pump for a liquid having a centrifugal impeller, the centrifugal impeller includes a blade between the blade pressure surface and the blade negative pressure surface on the impeller outlet side compared to the axial flow path width on the blade pressure surface side. The axial flow path width on the suction surface side is increased, and further, between the blades from the blade pressure surface on the blade inlet side to the blade suction surface, the axial flow width on the blade pressure surface side is larger than the axial flow path width on the blade pressure surface side. From the impeller inlet to the impeller outlet while the axial passage width is enlarged and the axial passage width on the vane suction surface side is enlarged compared to the axial passage width on the vane pressure surface side A centrifugal pump for liquid , characterized in that it is formed . 遠心羽根車を有する液体用の遠心ポンプにおいて、遠心羽根車は、羽根車出口側における羽根圧力面から羽根負圧面までの羽根間で、羽根圧力面側の軸方向流路幅に比して羽根負圧面側の軸方向流路幅が拡大し、さらに羽根入口側における羽根圧力面から羽根負圧面までの羽根間で、羽根圧力面側の軸方向流路幅が羽根負圧面側の軸方向流路幅と同じで、かつ、羽根圧力面側の軸方向流路幅と羽根負圧面側の軸方向流路幅が同じである状態の羽根車入口から羽根車出口になるに連れて羽根圧力面側と羽根負圧面側の間の軸方向流路幅が徐々に縮小すると共に、羽根圧力面側の軸方向流路幅が羽根負圧面側の軸方向流路幅より縮小して形成されていることを特徴とする液体用の遠心ポンプIn a centrifugal pump for a liquid having a centrifugal impeller, the centrifugal impeller includes a blade between the blade pressure surface and the blade negative pressure surface on the impeller outlet side compared to the axial flow path width on the blade pressure surface side. The axial flow path width on the suction side increases, and the axial flow path width on the blade pressure side is between the blades from the blade pressure surface on the blade inlet side to the blade suction surface. The blade pressure surface is changed from the impeller inlet to the impeller outlet in the same state as the passage width and the same in the axial passage width on the blade pressure surface side and the axial passage width on the blade suction surface side. The axial flow path width between the side and the blade suction surface side is gradually reduced, and the axial flow path width on the blade pressure surface side is formed to be smaller than the axial flow path width on the blade suction surface side. A centrifugal pump for liquids characterized by the above. 遠心羽根車は、外径が200mm以下で、かつ、比速度Ns=nQ1/2/H3/4が200以下の小型低比速度であることを特徴とする請求項1または2に記載の液体用の遠心ポンプThe centrifugal impeller has a small low specific speed with an outer diameter of 200 mm or less and a specific speed Ns = nQ 1/2 / H 3/4 of 200 or less. Centrifugal pump for liquids . 遠心羽根車は、その最大外径における対面する2枚の羽根間において、羽根圧力面側の軸方向流路幅に対する羽根負圧面側の軸方向流路幅が1より大で、かつ、4以下であることを特徴とする請求項1〜3のいずれか1項に記載の液体用の遠心ポンプIn the centrifugal impeller, the axial flow path width on the blade suction surface side with respect to the axial flow path width on the blade pressure surface side is greater than 1 and less than or equal to 4 between the two facing blades at the maximum outer diameter The centrifugal pump for liquid according to claim 1, wherein the centrifugal pump is for liquid .
JP2003172638A 2003-06-17 2003-06-17 Centrifugal pump for liquid Expired - Lifetime JP4464629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172638A JP4464629B2 (en) 2003-06-17 2003-06-17 Centrifugal pump for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172638A JP4464629B2 (en) 2003-06-17 2003-06-17 Centrifugal pump for liquid

Publications (2)

Publication Number Publication Date
JP2005009361A JP2005009361A (en) 2005-01-13
JP4464629B2 true JP4464629B2 (en) 2010-05-19

Family

ID=34096712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172638A Expired - Lifetime JP4464629B2 (en) 2003-06-17 2003-06-17 Centrifugal pump for liquid

Country Status (1)

Country Link
JP (1) JP4464629B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902718B2 (en) * 2009-10-07 2012-03-21 三菱電機株式会社 Centrifugal blower and vacuum cleaner
CN101984258A (en) * 2010-12-14 2011-03-09 吉林大学 Centrifugal bionic coupling pump
JP2014145269A (en) * 2013-01-28 2014-08-14 Asmo Co Ltd Vehicular pump device
JP6742025B2 (en) * 2017-11-07 2020-08-19 マコー株式会社 Oxide scale removal device
CN108317092B (en) * 2018-02-02 2024-07-23 天津快透平科技发展有限公司 Impeller and centrifugal compressor comprising same
CN110953188A (en) * 2019-11-12 2020-04-03 健龙(海宁)机械工业有限公司 Partial flow passage centrifugal impeller
CN115215409B (en) * 2022-07-13 2023-06-16 江苏大学镇江流体工程装备技术研究院 Centrifugal two-stage cavitation generator
CN117627955B (en) * 2023-12-05 2024-06-11 吉林大学 Emulsion breaking prevention latex pump impeller

Also Published As

Publication number Publication date
JP2005009361A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US8721280B2 (en) Propeller fan
JP3872966B2 (en) Axial fluid machine
US8308420B2 (en) Centrifugal compressor, impeller and operating method of the same
EP0816688B1 (en) Air moving device
AU2007233449B2 (en) Multi-blade fan
JP4464629B2 (en) Centrifugal pump for liquid
JP3756337B2 (en) Fluid pump
JP2018529880A (en) Low cavitation impeller and pump
JP3949663B2 (en) Centrifugal impeller
JP2003232295A (en) Centrifugal fan and cooker equipped with the centrifugal fan
TWI324221B (en)
JP3841391B2 (en) Turbo machine
JPH07279892A (en) Multi-blade fan
KR102495315B1 (en) An axial flow impeller having a self-balancing function by a balancing groove and an axial flow pump having the same
JP4209362B2 (en) Centrifugal compressor
US8282347B2 (en) Impeller and centrifugal pump including the same
CN116194675A (en) Flow control structure for enhanced performance and turbine incorporating the same
JP4174693B2 (en) Centrifugal compressor diffuser
US7179057B2 (en) Velocity profile impeller vane
KR200440266Y1 (en) Casing for pump
JP2006170112A (en) Unstable flow suppression device for fluid machine
KR101203241B1 (en) Centrifugal Blower
JP5207928B2 (en) Centrifugal pump
JP2002235696A (en) Centrifugal pump
JP2008169737A (en) Impeller for pump and pump device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080122

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090504

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term