JP4902718B2 - Centrifugal blower and vacuum cleaner - Google Patents

Centrifugal blower and vacuum cleaner Download PDF

Info

Publication number
JP4902718B2
JP4902718B2 JP2009233166A JP2009233166A JP4902718B2 JP 4902718 B2 JP4902718 B2 JP 4902718B2 JP 2009233166 A JP2009233166 A JP 2009233166A JP 2009233166 A JP2009233166 A JP 2009233166A JP 4902718 B2 JP4902718 B2 JP 4902718B2
Authority
JP
Japan
Prior art keywords
surface side
flow path
shroud
height
centrifugal blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009233166A
Other languages
Japanese (ja)
Other versions
JP2011080409A (en
Inventor
康明 加藤
奈穂 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009233166A priority Critical patent/JP4902718B2/en
Publication of JP2011080409A publication Critical patent/JP2011080409A/en
Application granted granted Critical
Publication of JP4902718B2 publication Critical patent/JP4902718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、電気掃除機などに好適に使用される遠心送風機および遠心送風機を備えた電気掃除機に関するものである。   The present invention relates to a centrifugal blower preferably used for a vacuum cleaner and the like and a vacuum cleaner provided with the centrifugal blower.

従来の遠心送風機は、ハブとシュラウドと隣接する2枚の翼とで囲まれる風路の断面は、軸方向寸法となるハブとシュラウドとの距離が周方向において一定であることが一般的である。しかしながら、風路内の流れは翼間で一定ではなく分布を有する。その分布に起因する剥離流れによって生じる騒音増加や送風効率低下といった送風性能低下を抑制するために、ハブまたはシュラウドを周方向に階段状に形成することによって、ブレードの圧力面側の出口幅を負圧面側の出口幅よりも小さくした遠心送風機がある(たとえば、特許文献1参照)。
その一方、シュラウド(側板とも呼ばれる)の曲率を周方向に変化させるようにした遠心送風機もある(たとえば、特許文献2参照)。
In the conventional centrifugal blower, the cross section of the air passage surrounded by the hub and the two blades adjacent to the shroud generally has a constant distance between the hub and the shroud in the circumferential direction. . However, the flow in the air passage is not constant between the blades and has a distribution. In order to suppress a decrease in blowing performance such as an increase in noise caused by the separation flow caused by the distribution and a decrease in blowing efficiency, the hub or shroud is formed in a step shape in the circumferential direction, thereby reducing the outlet width on the pressure surface side of the blade. There is a centrifugal blower that is smaller than the outlet width on the pressure side (see, for example, Patent Document 1).
On the other hand, there is a centrifugal blower in which the curvature of a shroud (also called a side plate) is changed in the circumferential direction (for example, see Patent Document 2).

特開2001−263294号公報(図4、図6)JP 2001-263294 A (FIGS. 4 and 6) 特開2008−223741号公報(図6、図7)JP 2008-223741 A (FIGS. 6 and 7)

しかし、特許文献1、2に開示された遠心送風機は空気調和機などのように比較的低静圧、高風量の用途に適用するものであり、電気掃除機などのように高静圧、低風量の用途に対しては騒音性能、送風効率において満足のいくものではなかった。特に、特許文献2のように圧力面側の風路高さを相対的に高く(特許文献2では曲率α1を小さく)すると、圧力面側へ流れが集中する。電気掃除機用などのより高静圧の遠心送風機では、翼出口(空気吐出口)の周方向速度分布が大きいと出口部における損失が顕著になる。また、翼外周にあるディフューザーの静翼への流入速度変動が大きくなり、騒音が大きくなる。
特許文献1では、圧力面側の風路高さ(出口高さも同様)を負圧面側よりも低くしているものの、この風路高さの高低関係は回転軸を中心とする円筒断面においてのみ考慮されているにすぎない。そのため、風路高さの高低差の程度によっては流路における速度分布や圧力分布に偏りが生じ、騒音が大きくなる場合がある。
However, the centrifugal blowers disclosed in Patent Documents 1 and 2 are applied to applications with a relatively low static pressure and a high air volume, such as an air conditioner, and have a high static pressure and a low pressure, such as a vacuum cleaner. It was not satisfactory in noise performance and ventilation efficiency for the use of air volume. In particular, when the height of the air passage on the pressure surface side is relatively high as in Patent Document 2 (the curvature α1 is small in Patent Document 2), the flow concentrates on the pressure surface side. In a centrifugal fan with a higher static pressure such as for a vacuum cleaner, the loss at the outlet becomes significant when the circumferential velocity distribution at the blade outlet (air discharge port) is large. In addition, the fluctuation of the inflow speed of the diffuser on the outer periphery of the blade to the stationary blade increases, and the noise increases.
In Patent Document 1, although the height of the air passage on the pressure surface side (the outlet height is the same) is made lower than that on the suction surface side, the height relationship of this air passage height is only in the cylindrical cross section around the rotation axis. It is only considered. Therefore, depending on the degree of the height difference of the air passage height, the speed distribution and pressure distribution in the flow path may be biased, and noise may increase.

本発明は、上記のような課題に鑑み、空気調和機よりもはるかに高静圧、低風量の運転条件となる電気掃除機などに適用する遠心送風機において、騒音低減、送風効率向上を実現することを目的としている。   In view of the above-described problems, the present invention realizes noise reduction and air blowing efficiency improvement in a centrifugal blower applied to a vacuum cleaner or the like that has a much higher static pressure and lower air flow than air conditioners. The purpose is that.

本発明に係る遠心送風機は、電動機と、電動機の出力軸に結合されて回転駆動される羽根車と、羽根車を覆い中央部に空気を取り入れるベルマウスを有するファンカバーと、羽根車の外周に配置されたディフューザーとを備え、
前記羽根車は、前記電動機の出力軸に結合されたハブと、ハブに対向して配置され中央部に流体の流入開口部を有するシュラウドと、ハブとシュラウドとの間に回転方向に対して後ろ向きに配置され複数の流路を形成する翼とを備え、
回転中心を中心とする円筒断面における前記流路の軸方向高さが、シュラウドの内周端において最も高く、外周側に進むにつれて低くなり、内周端近傍および外周端近傍においては全周同じ高さであり、その間の流路断面では、圧力面側の軸方向高さが負圧面側の軸方向高さよりも低くなっているものである。
A centrifugal blower according to the present invention includes an electric motor, an impeller coupled to the output shaft of the electric motor and driven to rotate, a fan cover having a bell mouth that covers the impeller and takes air into a central portion, and an outer periphery of the impeller. With a diffuser arranged,
The impeller includes a hub coupled to the output shaft of the electric motor, a shroud disposed opposite to the hub and having a fluid inflow opening in the center, and a rearward direction with respect to the rotation direction between the hub and the shroud. And a wing that is arranged in a plurality to form a plurality of flow paths,
The axial height of the flow path in the cylindrical cross section centered on the center of rotation is the highest at the inner peripheral end of the shroud and decreases as it goes to the outer peripheral side, and is the same height around the inner peripheral end and the outer peripheral end. The axial height on the pressure surface side is lower than the axial height on the suction surface side in the flow path cross section in between.

本発明の遠心送風機は、流路内の流れが圧力面側に偏ることを抑制し、羽根車から吐出する流出開口部において、圧力面側から負圧面側にかけての圧力分布、速度分布の偏りを抑制するので空力音を低減するという効果がある。
また、回転する翼の後縁において圧力面側からの流れと負圧面側からの流れとの混合による損失を低減するので、必要な動力の低減すなわち送風効率の向上を実現することができる。
The centrifugal blower of the present invention suppresses the flow in the flow path from being biased toward the pressure surface side, and in the outflow opening that discharges from the impeller, the pressure distribution from the pressure surface side to the negative pressure surface side is uneven. Since it suppresses, there is an effect of reducing aerodynamic sound.
Further, since loss due to mixing of the flow from the pressure surface side and the flow from the suction surface side is reduced at the trailing edge of the rotating blade, the required power can be reduced, that is, the blowing efficiency can be improved.

本発明の実施の形態1に係る遠心送風機の断面図である。It is sectional drawing of the centrifugal blower which concerns on Embodiment 1 of this invention. 実施の形態1における羽根車の斜視図である。1 is a perspective view of an impeller in Embodiment 1. FIG. 羽根車のシュラウドを除いた状態を示す斜視図である。It is a perspective view which shows the state except the shroud of the impeller. 実施の形態1における羽根車の上面図である。3 is a top view of the impeller according to Embodiment 1. FIG. 実施の形態1における羽根車の円筒断面位置における断面図である。It is sectional drawing in the cylindrical cross section position of the impeller in Embodiment 1. FIG. 実施の形態1における羽根車の上面図である。3 is a top view of the impeller according to Embodiment 1. FIG. 実施の形態1における羽根車の垂直断面位置における断面図である。FIG. 3 is a cross-sectional view at a vertical cross-sectional position of the impeller in the first embodiment. 実施の形態1における羽根車内の流路における空気の流れを示す部分上面図である。FIG. 3 is a partial top view showing the flow of air in the flow path in the impeller in the first embodiment. 実施の形態1における羽根車と静翼の部分上面図である。FIG. 3 is a partial top view of an impeller and a stationary blade in the first embodiment. 実施の形態1の遠心送風機の部分断面図である。2 is a partial cross-sectional view of the centrifugal blower of Embodiment 1. FIG. 実施の形態2の遠心送風機を備えた電気掃除機の概要図である。It is a schematic diagram of the vacuum cleaner provided with the centrifugal blower of Embodiment 2.

以下、図面に基づいて本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施の形態1.
図1は本発明の実施の形態1に係る遠心送風機1を示す断面図で、回転軸を通る平面における断面図である。
本実施の形態に係る遠心送風機1は、電気掃除機に使用される遠心送風機(電動送風機)として構成されている。この遠心送風機1は、電動機10の出力軸11に連結される円形のハブ4と、中心に円形開口部を有するシュラウド2と、ハブ4とシュラウド2との間に回転方向に対し後ろ向きに配置された複数の翼3とから構成された羽根車5を備える。羽根車5は、回転軸6(図面では回転中心として示されている。)を中心に回転する。回転軸6は電動機10の出力軸11と同一または動力伝達された軸である。本例では回転軸が電動機の出力軸と同一の場合を示している。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a centrifugal blower 1 according to Embodiment 1 of the present invention, and is a cross-sectional view in a plane passing through a rotation axis.
Centrifugal blower 1 concerning this embodiment is constituted as a centrifugal blower (electric blower) used for a vacuum cleaner. The centrifugal blower 1 is disposed between the hub 4 connected to the output shaft 11 of the electric motor 10, the shroud 2 having a circular opening at the center, and the hub 4 and the shroud 2 in the rearward direction with respect to the rotation direction. An impeller 5 composed of a plurality of blades 3 is provided. The impeller 5 rotates around a rotating shaft 6 (shown as the center of rotation in the drawing). The rotating shaft 6 is the same as the output shaft 11 of the electric motor 10 or a shaft to which power is transmitted. In this example, the rotation shaft is the same as the output shaft of the electric motor.

羽根車5の上部はファンカバー7で覆われ、ファンカバー7の中心部には空気の吸込口8を形成するベルマウス9が一体に取り付けられている。羽根車5の外周にはファンカバー7と一体のディフューザー12を構成する静翼13が配設してあり、本例では電動機10を冷却するために、気流を内周側に戻す風路を構成する戻り静翼14が配設されている。なお、図1に示す矢印は空気の流れの方向を示している。15は電動機10のケーシングに設けられた排気口である。   The upper part of the impeller 5 is covered with a fan cover 7, and a bell mouth 9 that forms an air suction port 8 is integrally attached to the center of the fan cover 7. A stationary blade 13 constituting a diffuser 12 integrated with the fan cover 7 is disposed on the outer periphery of the impeller 5, and in this example, an air path for returning the airflow to the inner peripheral side is formed in order to cool the electric motor 10. A return vane 14 is disposed. In addition, the arrow shown in FIG. 1 has shown the direction of the flow of air. Reference numeral 15 denotes an exhaust port provided in the casing of the electric motor 10.

図2は羽根車5のみを取り出した斜視図である。シュラウド2の中央には空気を取り入れるための流入開口部16が設けられる。流入開口部16はファンカバー7のベルマウス9により形成される吸込口8に連通している。ハブ4とシュラウド2の外周端における隣接する2枚の翼間の翼空間は空気を吐出するための流出開口部17である。なお、矢印18は羽根車5の回転方向(図面では反時計方向)である。   FIG. 2 is a perspective view showing only the impeller 5 taken out. An inflow opening 16 for taking in air is provided in the center of the shroud 2. The inflow opening 16 communicates with the suction port 8 formed by the bell mouth 9 of the fan cover 7. A blade space between two adjacent blades at the outer peripheral ends of the hub 4 and the shroud 2 is an outflow opening 17 for discharging air. The arrow 18 indicates the rotational direction of the impeller 5 (counterclockwise in the drawing).

図3は羽根車5の内部を分かり易く説明するために、図2からシュラウド2を除いた状態を示す斜視図である。翼3は内周から外周に向かい回転方向17とは反対に向かう後ろ向きの羽根である。なお、翼3はキャンバーを有する翼型形状に形成されていてもよい。
そして、翼3の圧力面3aと回転方向18に隣接する翼3の負圧面3bとハブ4とシュラウド2(図3では図示していない)とで囲まれた空間で羽根車5内に複数の流路20を区画形成する。流路20の高さとなる回転軸6と平行な方向の寸法は全体としては、流入開口部16に近い内周端(シュラウド内周端)において最も高く、外周側に進むにつれて低くなり流出開口部17付近では全周同じ高さとなっている。つまり、シュラウド2の外周端近傍はハブ4内側面と平行な環状平坦面となっている。したがって、流路20の入口および出口は、後述する円筒断面で見た場合にはそれぞれ全周にわたって一定の高さを有する方形状となっている。
FIG. 3 is a perspective view showing a state in which the shroud 2 is removed from FIG. 2 in order to easily explain the inside of the impeller 5. The wing 3 is a backward-facing blade that goes from the inner periphery toward the outer periphery and opposite to the rotation direction 17. The blade 3 may be formed in an airfoil shape having a camber.
In the impeller 5, a space surrounded by the pressure surface 3 a of the blade 3, the negative pressure surface 3 b of the blade 3 adjacent to the rotation direction 18, the hub 4, and the shroud 2 (not shown in FIG. 3). The flow path 20 is partitioned. As a whole, the dimension in the direction parallel to the rotary shaft 6 that is the height of the flow path 20 is the highest at the inner peripheral end (shroud inner peripheral end) close to the inflow opening 16, and becomes lower as it goes to the outer peripheral side. In the vicinity of 17, the entire circumference is the same height. That is, the vicinity of the outer peripheral end of the shroud 2 is an annular flat surface parallel to the inner surface of the hub 4. Therefore, the inlet and outlet of the flow path 20 have a rectangular shape having a certain height over the entire circumference when viewed in a cylindrical cross section described later.

図4は羽根車5をシュラウド2側から回転軸に平行な視点で見た上面図である。図4に破線で示す円筒断面線21は、回転軸を中心とした円筒断面位置を示す線である。
図5は図4で示す円筒断面位置で羽根車5を切断したときの断面側面図であり、流路20の形状を説明するための図である。
シュラウド2の形状は周方向で一定ではなく、ハブ4と対向する内側の面(以下、内面という)およびファンカバー7に向いた外側の面(以下、外面という)に周方向に段差22を有する。そのため、翼3の圧力面3aはシュラウド2の段差22に沿って配置されているので、流路断面の圧力面側高さ(翼3の圧力面の高さ)Haが負圧面側高さ(隣接する翼3の負圧面の高さ)Hbよりも低くなっている。
なお、シュラウド2の外面にも段差22を形成しているが、好ましくは外面は山形状の滑らかな曲面の隆起に形成する方がよい(図示省略)。このような外面形状にすることにより、シュラウド2の回転による空気の乱れや渦が外面の段差から生じるのを抑制することができ、騒音の低下、送風効率の向上を図ることができる。
FIG. 4 is a top view of the impeller 5 viewed from the shroud 2 side from a viewpoint parallel to the rotation axis. A cylindrical sectional line 21 indicated by a broken line in FIG. 4 is a line indicating a cylindrical sectional position around the rotation axis.
FIG. 5 is a cross-sectional side view when the impeller 5 is cut at the cylindrical cross-sectional position shown in FIG. 4, and is a view for explaining the shape of the flow path 20.
The shape of the shroud 2 is not constant in the circumferential direction, and has a step 22 in the circumferential direction on an inner surface facing the hub 4 (hereinafter referred to as an inner surface) and an outer surface facing the fan cover 7 (hereinafter referred to as an outer surface). . Therefore, since the pressure surface 3a of the blade 3 is disposed along the step 22 of the shroud 2, the pressure surface side height (height of the pressure surface of the blade 3) Ha of the flow path cross section is the suction surface side height ( The height of the suction surface of the adjacent blade 3 is lower than Hb.
In addition, although the level | step difference 22 is formed also in the outer surface of the shroud 2, it is better to form an outer surface in the ridge of the smooth curved surface of a mountain shape (illustration omitted). By adopting such an outer surface shape, it is possible to suppress the occurrence of air turbulence and vortices due to the rotation of the shroud 2 from the steps on the outer surface, and it is possible to reduce noise and improve blowing efficiency.

ここで、円筒断面における流路高さの圧力面側と負圧面側の差と円筒断面の半径位置との関係について説明する。
流路20の内周端および外周端近傍ではそれぞれ圧力面側と負圧面側の高さは同じ、つまりHa=Hbであり、その間の流路断面では圧力面側高さHaが負圧面側高さHbよりも低く、つまりHa<Hbとなっている。すなわち、流路20の内周端および外周端近傍における断面形状はいずれも矩形となっており、その間の流路断面形状は矩形の上辺が負圧面3bから圧力面3aに向かって下向きに傾斜した横向きの台形状で連続する形態となっている。
Here, the relationship between the difference between the flow path height in the cylindrical section between the pressure surface side and the suction surface side and the radial position of the cylindrical section will be described.
In the vicinity of the inner peripheral end and the outer peripheral end of the flow path 20, the heights of the pressure surface side and the suction surface side are the same, that is, Ha = Hb. Is lower than Hb, that is, Ha <Hb. That is, the cross-sectional shape in the vicinity of the inner peripheral end and the outer peripheral end of the flow channel 20 is rectangular, and the cross-sectional shape of the flow channel in between is inclined downward from the negative pressure surface 3b to the pressure surface 3a. It is a continuous form in a horizontal trapezoidal shape.

そして、HaとHbの差が最大となるのは、シュラウド2の流入開口部16の半径をRi、流出開口部17の半径をRoとしたときに、両者の平均よりも内周側、つまり(Ri+Ro)/2よりも内周側の半径位置である。これは、上流(内周)側で速度分布がついてしまうと、下流(外周)側で是正するのは困難であるという理由による。しかし、最内周で大きく高さの差(圧力面と負圧面の高さの差)を付けると流路20の入口にできる高さの差から渦が発生し昇圧性能を低下させてしまうため、最内周は高さの差を付けないものとする。その基で上流側で速度分布を抑制する効果を最大限に得るために「圧力面側と負圧面側の高さの差が最大となる半径位置」を上記のように設定するものである。
また、内周端および外周端近傍でそれぞれHa=Hbである範囲は、内周側は(Ro−Ri)の5%程度、外周側は20%程度が適当である。
The difference between Ha and Hb is maximized when the radius of the inflow opening 16 of the shroud 2 is Ri and the radius of the outflow opening 17 is Ro, that is, on the inner circumference side, that is, ( (Ri + Ro) / 2 is a radial position on the inner peripheral side with respect to 2. This is because if the velocity distribution is on the upstream (inner circumference) side, it is difficult to correct on the downstream (outer circumference) side. However, if there is a large difference in height (difference between the pressure surface and the suction surface) on the innermost circumference, a vortex is generated due to the difference in height that can be formed at the inlet of the flow path 20 and the pressure increase performance is degraded. The innermost circumference shall not have a difference in height. In order to obtain the maximum effect of suppressing the velocity distribution on the upstream side based on that, the “radial position where the difference in height between the pressure surface side and the suction surface side is maximum” is set as described above.
Further, it is appropriate that the range where Ha = Hb in the vicinity of the inner peripheral end and the outer peripheral end is about 5% of (Ro-Ri) on the inner peripheral side and about 20% on the outer peripheral side.

図6は図4と同じく羽根車5の上面図である。翼3を翼間の半ピッチ分だけ回転させた位置にあたる流路中央線21を想定し、流路中央線21に垂直かつ回転軸(回転中心)に平行となる面で切断する流路垂直断面線22を考える。つまり、流路中央線21は翼3を翼間の半ピッチ分だけ回転させたときの翼3のハブ面への投影線(翼中心線の投影線)である。
図7は図6に点線で示した丸鋸歯状の流路垂直断面線22で羽根車5を切断したときの断面図であり、流路20の形状の特徴を説明するための図である。
すなわち、垂直断面における流路20の圧力面側高さ(翼3の圧力面の高さ)Hcは、負圧面側高さ(隣接する翼3の負圧面の高さ)Hdよりも高く、または同じとしている。つまり、Hc≧Hdである。これは、先に述べたHa<Hbの関係を制限する狙いを有しているものであり、円筒断面における流路20の圧力面側高さHaが過度に低くなるのを防ぐためである。
FIG. 6 is a top view of the impeller 5 as in FIG. Assuming a flow path center line 21 corresponding to a position where the blade 3 is rotated by a half pitch between the blades, a flow path vertical section cut along a plane perpendicular to the flow path center line 21 and parallel to the rotation axis (rotation center) Consider line 22. That is, the flow path center line 21 is a projection line on the hub surface of the blade 3 (projection line of the blade center line) when the blade 3 is rotated by a half pitch between the blades.
FIG. 7 is a cross-sectional view of the impeller 5 taken along the circular sawtooth-shaped flow path vertical cross-section line 22 indicated by a dotted line in FIG. 6, and is a view for explaining the characteristics of the shape of the flow path 20.
That is, the pressure surface side height (height of the pressure surface of the blade 3) Hc in the vertical cross section is higher than the suction surface side height (height of the suction surface of the adjacent blade 3) Hd, or It is the same. That is, Hc ≧ Hd. This is intended to limit the relationship of Ha <Hb described above, and is to prevent the pressure surface side height Ha of the flow path 20 in the cylindrical cross section from becoming excessively low.

次に動作について説明する。
上記のように構成された遠心送風機1においては、電動機10の出力により回転軸とともに羽根車5が回転する。羽根車5内の気体は全体的には遠心力を受け外周へ向かう力を受け、流入開口部16から流出開口部17へと向かう流路20内の流れができる。
Next, the operation will be described.
In the centrifugal blower 1 configured as described above, the impeller 5 rotates together with the rotating shaft by the output of the electric motor 10. The gas in the impeller 5 is entirely subjected to centrifugal force and receives a force toward the outer periphery, and a flow in the flow path 20 from the inflow opening 16 toward the outflow opening 17 is made.

羽根車5内の流路20における流れを図8を用いて説明する。図8は上面視であり、流路20内を分かり易くするためにシュラウドは図示していない。流入開口部16の縁は破線で示している。回転する羽根車5を基準とした相対場で見ると、矢印で示す流れは翼3の圧力面3a、負圧面3bに概ね平行であり、詳細には負圧面側から圧力面側に傾いた流れである。図4や図5のような円筒断面における流れは当然負圧面3bから圧力面3aに向いた流れであるが、図6や図7のような垂直断面においても負圧面3bから圧力面3aに向いた流れとなる。   The flow in the flow path 20 in the impeller 5 will be described with reference to FIG. FIG. 8 is a top view, and the shroud is not shown for easy understanding of the inside of the flow path 20. The edge of the inflow opening 16 is indicated by a broken line. When viewed in a relative field with the rotating impeller 5 as a reference, the flow indicated by the arrow is substantially parallel to the pressure surface 3a and the suction surface 3b of the blade 3, and more specifically, a flow inclined from the suction surface side to the pressure surface side. It is. The flow in the cylindrical cross section as shown in FIGS. 4 and 5 is naturally the flow from the negative pressure surface 3b to the pressure surface 3a, but also in the vertical cross section as in FIGS. 6 and 7, the flow from the negative pressure surface 3b to the pressure surface 3a. It becomes the flow that was.

本実施の形態の遠心送風機1では、流路20の軸方向高さを図5のように円筒断面において圧力面側の軸方向高さHaを負圧面側の軸方向高さHbよりも低くしているので、圧力面側の流路が負圧面側に比べて相対的に狭くなるため負圧面側から圧力面側への流れの傾きが抑制される。その結果、翼3の後縁3cにおいて圧力面側からの流れと負圧面側からの流れの混合による乱れが抑制されるため、騒音の小さい送風機とすることができる。また、流れの混合による圧力損失が少なく、送風効率の高い送風機とすることができる。   In the centrifugal blower 1 of the present embodiment, the axial height of the flow path 20 is set to be lower than the axial height Hb on the pressure side in the cylindrical cross section as shown in FIG. Therefore, since the flow path on the pressure surface side is relatively narrow compared to the suction surface side, the inclination of the flow from the suction surface side to the pressure surface side is suppressed. As a result, since the turbulence due to mixing of the flow from the pressure surface side and the flow from the suction surface side is suppressed at the trailing edge 3c of the blade 3, a blower with low noise can be obtained. Further, the pressure loss due to the mixing of the flows is small, and a blower with high blowing efficiency can be obtained.

また、図7を用いて説明したように、流路中央線21に垂直な断面においては流路高さを圧力面側と負圧面側で同じ、もしくは圧力面側を高くしているので、円筒断面において、圧力面側が負圧面側に対して過度に低くならないために低騒音、高効率の遠心送風機とすることができる。   Further, as described with reference to FIG. 7, in the cross section perpendicular to the flow path center line 21, the flow path height is the same on the pressure surface side and the suction surface side, or the pressure surface side is increased. In the cross section, since the pressure surface side does not become excessively lower than the suction surface side, a centrifugal fan with low noise and high efficiency can be obtained.

次に、羽根車5からの流れと静翼13との関係について説明する。図9は図8に静翼13の前縁側を追記したものである。従来技術の場合、流出開口部17からの流れは絶対場で見て、翼3の圧力面側では羽根車外周における接線に対する角度が相対的に大きく、負圧面側では小さい。また速度は圧力面側が相対的に小さく、負圧面側が大きい。つまり、静翼13への入射角度、速度は、翼3との位置関係によって変動する。このことは、設計入射角からのずれが生じることを意味し、騒音増加、効率低下の要因である。特に翼3の後縁3cが通過する時は瞬時に大きく変動するとともに、圧力面側からの流れと負圧面側からの流れが混合し大きく乱れた流れが入射する。   Next, the relationship between the flow from the impeller 5 and the stationary blade 13 will be described. FIG. 9 is obtained by adding the leading edge side of the stationary blade 13 to FIG. In the case of the prior art, the flow from the outflow opening 17 is an absolute field, and the angle with respect to the tangent on the outer periphery of the impeller is relatively large on the pressure surface side of the blade 3, and is small on the suction surface side. The speed is relatively small on the pressure surface side and large on the negative pressure surface side. That is, the incident angle and speed on the stationary blade 13 vary depending on the positional relationship with the blade 3. This means that a deviation from the design incident angle occurs, which is a factor of noise increase and efficiency decrease. In particular, when the trailing edge 3c of the blade 3 passes, the flow greatly fluctuates instantaneously, and the flow from the pressure surface side and the flow from the suction surface side are mixed and a greatly disturbed flow is incident.

本実施の形態の遠心送風機1では、流路20の軸方向高さを図5のように円筒断面において圧力面側の軸方向高さHaを負圧面側の軸方向高さHbよりも低くしていることで、負圧面側から圧力面側への流れの傾きが抑制され、流出開口部17において圧力面側から負圧面側へかけての流れの角度、速度の変化が抑制される。このことにより、静翼13へ入射する流れの角度、速度の変動が小さく、騒音を小さく、効率の高い送風機を得ることができる。   In the centrifugal blower 1 of the present embodiment, the axial height of the flow path 20 is set to be lower than the axial height Hb on the pressure side in the cylindrical cross section as shown in FIG. Thus, the inclination of the flow from the suction surface side to the pressure surface side is suppressed, and changes in the angle and speed of the flow from the pressure surface side to the suction surface side are suppressed at the outflow opening 17. As a result, it is possible to obtain a highly efficient blower in which fluctuations in the angle and speed of the flow incident on the stationary blade 13 are small, noise is small.

さらに、シュラウド外周部近傍の高さ位置つまり軸方向位置における流れについて説明を補足する。流路20の出口高さを圧力面側から負圧面側にかけて同一としているので、流路20の出口高さにおける流路からの吹出し風速つまり静翼13への入射流れの変動を抑制する効果を有する。   Further, the flow at the height position in the vicinity of the outer periphery of the shroud, that is, the axial position will be supplemented. Since the outlet height of the flow path 20 is the same from the pressure surface side to the negative pressure surface side, the effect of suppressing fluctuations in the blown air velocity from the flow path at the outlet height of the flow path 20, that is, the incident flow to the stationary blades 13, is achieved. Have.

次に、シュラウド2とファンカバー7との間の空間の流れについて説明する。
図10は図1に示した遠心送風機1の部分断面拡大図である。ベルマウス9を介して遠心送風機1に入った空気は羽根車5の作用により流出開口部17から吐出されディフューザー12の静翼13へ流入する。この時、一部の空気はシュラウド2の外周端とファンカバー7との隙間から、シュラウド2とファンカバー9との間の空間へ流れ込む。ここではこの空気を「漏れ流れ」(漏れ流れを矢印25で示す)と呼ぶ。漏れ流れはベルマウス9とシュラウド2の流入開口部16の縁との隙間から羽根車5の内部へと流れ込む。しかし、以下に説明するように、この漏れ流れの流量分を羽根車5で昇圧する動力は送風機としての出力にはなっていない。
Next, the flow of the space between the shroud 2 and the fan cover 7 will be described.
FIG. 10 is an enlarged partial sectional view of the centrifugal fan 1 shown in FIG. The air that has entered the centrifugal blower 1 through the bell mouth 9 is discharged from the outflow opening 17 by the action of the impeller 5 and flows into the stationary blade 13 of the diffuser 12. At this time, a part of the air flows into the space between the shroud 2 and the fan cover 9 through the gap between the outer peripheral end of the shroud 2 and the fan cover 7. Here, this air is referred to as “leakage flow” (leakage flow is indicated by arrow 25). Leakage flows from the gap between the bell mouth 9 and the edge of the inflow opening 16 of the shroud 2 into the impeller 5. However, as will be described below, the power for boosting the amount of the leakage flow by the impeller 5 is not an output as a blower.

本実施の形態の遠心送風機1では、図5からもわかるようにシュラウド2のファンカバー側の面(シュラウド外面)に、翼3の圧力面3aに沿って段付の壁(段差22)が回転方向に向かって設けられている。このような段差22を持つシュラウド外面では空気を外周側へ押し出す作用を持ち、シュラウド2とファンカバー7との間を外周側から内周側へ向かう漏れ流れに対して抵抗なり、漏れ流れを抑制する。そのため、送風機として出力とならない、漏れ流れ流量分の羽根車の出力が抑えられ、効率の高い遠心送風機とすることができる。または所定の送風機出力において必要な羽根車出力を小さくできるので騒音も小さくすることができる。   In the centrifugal blower 1 of the present embodiment, a stepped wall (step 22) is rotated along the pressure surface 3a of the blade 3 on the fan cover side surface (shroud outer surface) of the shroud 2 as can be seen from FIG. It is provided toward the direction. The outer surface of the shroud having such a step 22 has an action of pushing air to the outer peripheral side, and resists leakage flow between the shroud 2 and the fan cover 7 from the outer peripheral side to the inner peripheral side, thereby suppressing the leakage flow. To do. Therefore, the output of the impeller corresponding to the leakage flow rate that is not output as a blower is suppressed, and a highly efficient centrifugal blower can be obtained. Or since the impeller output required in a predetermined blower output can be reduced, noise can also be reduced.

実施の形態2.
図11は、本発明の遠心送風機1を電気掃除機に適用した例を示している。図に示すように掃除機本体30内に、実施の形態1で説明した遠心送風機1を備え、吸引口31から棒状のパイプ32、屈曲自在のホース33を介して気流とともに塵埃を吸引し、吸引した塵埃を集塵ボックス34にためる。
遠心送風機1は、実施の形態1で説明したように、低騒音で高効率の遠心送風機である。掃除機に求められる騒音低減、高効率を実現することができ、掃除機に適する遠心送風機である。
Embodiment 2. FIG.
FIG. 11 shows an example in which the centrifugal blower 1 of the present invention is applied to a vacuum cleaner. As shown in the drawing, the vacuum cleaner body 30 includes the centrifugal blower 1 described in the first embodiment, and sucks dust together with the air current from the suction port 31 through the rod-shaped pipe 32 and the bendable hose 33, and sucks it. The collected dust is accumulated in the dust collection box 34.
As described in the first embodiment, the centrifugal blower 1 is a centrifugal blower with low noise and high efficiency. It is a centrifugal blower suitable for vacuum cleaners, which can achieve noise reduction and high efficiency required for vacuum cleaners.

本発明の活用例として、電動送風機としては電気掃除機などの家庭用電化機器はもちろんのこと、液体用ポンプなど産業機器にも適用できる。またハンドドライヤーにも適用できる。   As an application example of the present invention, the electric blower can be applied not only to household appliances such as a vacuum cleaner but also to industrial equipment such as a liquid pump. It can also be applied to hand dryers.

1 遠心送風機、2 シュラウド、3 翼、3a 圧力面、3b 負圧面、3c 後縁、4 ハブ、5 羽根車、6 回転軸、7 ファンカバー、8 吸気口、9 ベルマウス、10 電動機、11 出力軸、12 ディフューザー、13 静翼、14 戻り静翼、15 排気口、16 流入開口部、17 流出開口部、18 羽根車の回転方向、20 羽根車内の流路、21 円筒断面線、22 段差、23 流路中央線、24 流路垂直断面線、25 漏れ流れ、30 掃除機本体、31 吸引口、32 パイプ、33 ホース、34 集塵ボックス。   1 Centrifugal blower, 2 shroud, 3 blades, 3a pressure surface, 3b negative pressure surface, 3c trailing edge, 4 hub, 5 impeller, 6 rotating shaft, 7 fan cover, 8 air inlet, 9 bell mouth, 10 electric motor, 11 output Shaft, 12 diffuser, 13 stationary blade, 14 return stationary blade, 15 exhaust port, 16 inflow opening, 17 outflow opening, 18 rotation direction of impeller, 20 flow path in impeller, 21 cylindrical section line, 22 step, 23 Channel center line, 24 Channel vertical section line, 25 Leakage flow, 30 Vacuum cleaner body, 31 Suction port, 32 Pipe, 33 Hose, 34 Dust collection box.

Claims (8)

電動機と、電動機の出力軸に連結されて回転駆動される羽根車と、羽根車を覆い中央部に空気を取り入れるベルマウスを有するファンカバーと、羽根車の外周に配置されたディフューザーとを備え、
前記羽根車は、前記電動機の出力軸に連結されたハブと、ハブに対向して配置され中央部に流体の流入開口部を有するシュラウドと、ハブとシュラウドとの間に回転方向に対して後ろ向きに配置され複数の流路を形成する翼とを備え、
回転中心を中心とする円筒断面における前記流路の軸方向高さが、シュラウドの内周端において最も高く、外周側に進むにつれて低くなり、内周端近傍および外周端近傍においては全周同じ高さであり、その間の流路断面では、圧力面側の軸方向高さが負圧面側の軸方向高さよりも低くなっていることを特徴とする遠心送風機。
An electric motor, an impeller connected to the output shaft of the electric motor and driven to rotate, a fan cover having a bell mouth that covers the impeller and takes air into the center, and a diffuser disposed on the outer periphery of the impeller,
The impeller includes a hub connected to the output shaft of the electric motor, a shroud disposed opposite to the hub and having a fluid inflow opening at the center, and a rearward direction with respect to the rotation direction between the hub and the shroud. And a wing that is arranged in a plurality to form a plurality of flow paths,
The axial height of the flow path in the cylindrical cross section centered on the center of rotation is the highest at the inner peripheral end of the shroud and decreases as it goes to the outer peripheral side, and is the same height around the inner peripheral end and the outer peripheral end. A centrifugal blower characterized in that the axial height on the pressure surface side is lower than the axial height on the suction surface side in the cross-section of the flow path therebetween.
前記円筒断面における流路の圧力面側と負圧面側の高さの差が最大となる半径位置が、シュラウドの内周端半径と外周端半径との平均よりも内周側にあることを特徴とする請求項1に記載の遠心送風機。   The radial position where the difference in height between the pressure surface side and the suction surface side of the flow path in the cylindrical cross section is maximum is located on the inner peripheral side with respect to the average of the inner peripheral end radius and the outer peripheral end radius of the shroud. The centrifugal blower according to claim 1. 翼を翼間の半ピッチだけ回転した位置における流路中央線を想定し、該流路中央線に垂直かつ回転中心に平行な垂直断面において、圧力面側の軸方向高さが負圧面側の軸方向高さと同じ、または前者が後者より高くしたことを特徴とする請求項1または請求項2に記載の遠心送風機。   Assuming a flow path center line at a position where the blades are rotated by a half pitch between the blades, the axial height on the pressure surface side of the suction surface side is perpendicular to the flow path center line and parallel to the rotation center. The centrifugal blower according to claim 1 or 2, wherein the height is equal to the height in the axial direction, or the former is higher than the latter. ディフューザーに静翼を備えることを特徴とする請求項1から請求項3のいずれかに記載の遠心送風機。   The centrifugal blower according to any one of claims 1 to 3, wherein the diffuser includes a stationary blade. シュラウドのファンカバーに向いた面に、翼の圧力面に沿って段差が設けられていることを特徴とする請求項1から請求項4のいずれかに記載の遠心送風機。   The centrifugal blower according to any one of claims 1 to 4, wherein a step is provided on a surface of the shroud facing the fan cover along the pressure surface of the blade. 電動機と、電動機の出力軸に連結されて回転駆動される羽根車とを備え、
前記羽根車は、前記電動機の出力軸に連結されたハブと、ハブに対向して配置され中央部に流体の流入開口部を有するシュラウドと、ハブとシュラウドとの間に回転方向に対して後ろ向きに配置され複数の流路を形成する翼とを備え、
回転中心を中心とする円筒断面における前記流路の軸方向高さが、シュラウドの内周端において最も高く、外周側に進むにつれて低くなり、内周端近傍および外周端近傍においては全周同じ高さであり、その間の流路断面では、圧力面側の軸方向高さが負圧面側の軸方向高さよりも低くなっており、
さらに、翼を翼間の半ピッチだけ回転した位置における流路中央線を想定し、該流路中央線に垂直かつ回転中心に平行な垂直断面において、圧力面側の軸方向高さが負圧面側の軸方向高さと同じ、または前者が後者より高くしたことを特徴とする遠心送風機。
An electric motor and an impeller coupled to the output shaft of the electric motor and driven to rotate;
The impeller includes a hub connected to the output shaft of the electric motor, a shroud disposed opposite to the hub and having a fluid inflow opening at the center, and a rearward direction with respect to the rotation direction between the hub and the shroud. And a wing that is arranged in a plurality to form a plurality of flow paths,
The axial height of the flow path in the cylindrical cross section centered on the center of rotation is the highest at the inner peripheral end of the shroud and decreases as it goes to the outer peripheral side, and is the same height around the inner peripheral end and the outer peripheral end. In the cross section of the flow path between them, the axial height on the pressure surface side is lower than the axial height on the suction surface side,
Further, assuming a flow path center line at a position where the blades are rotated by a half pitch between the blades, the axial height on the pressure surface side is the suction surface in a vertical section perpendicular to the flow path center line and parallel to the rotation center. A centrifugal blower characterized by having the same axial height as the side or the former being higher than the latter.
前記円筒断面における流路の圧力面側と負圧面側の高さの差が最大となる半径位置が、シュラウドの内周端半径と外周端半径との平均よりも内周側にあることを特徴とする請求項6に記載の遠心送風機。   The radial position where the difference in height between the pressure surface side and the suction surface side of the flow path in the cylindrical cross section is maximum is located on the inner peripheral side with respect to the average of the inner peripheral end radius and the outer peripheral end radius of the shroud. The centrifugal blower according to claim 6. 請求項1から請求項7のいずれかに記載の遠心送風機を備えたことを特徴とする電気掃除機。   A vacuum cleaner comprising the centrifugal blower according to any one of claims 1 to 7.
JP2009233166A 2009-10-07 2009-10-07 Centrifugal blower and vacuum cleaner Expired - Fee Related JP4902718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233166A JP4902718B2 (en) 2009-10-07 2009-10-07 Centrifugal blower and vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233166A JP4902718B2 (en) 2009-10-07 2009-10-07 Centrifugal blower and vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2011080409A JP2011080409A (en) 2011-04-21
JP4902718B2 true JP4902718B2 (en) 2012-03-21

Family

ID=44074701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233166A Expired - Fee Related JP4902718B2 (en) 2009-10-07 2009-10-07 Centrifugal blower and vacuum cleaner

Country Status (1)

Country Link
JP (1) JP4902718B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261342B (en) * 2011-08-04 2013-01-16 张家港施亿百机电设备有限公司 Centrifugal fan with external motor
JP6314998B2 (en) * 2016-01-18 2018-04-25 ダイキン工業株式会社 Centrifugal fan impeller
JP6798011B2 (en) 2017-04-19 2020-12-09 三菱電機株式会社 Electric blowers, vacuum cleaners, and hand dryers
DE102017120537A1 (en) * 2017-09-06 2019-03-07 Ebm-Papst Mulfingen Gmbh & Co. Kg Radial blower wheel with asymmetrical disc
JP2022185276A (en) * 2021-06-02 2022-12-14 株式会社デンソー centrifugal blower

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113095A (en) * 1983-11-25 1985-06-19 Matsushita Electric Ind Co Ltd Impeller of blower
JPH01115892A (en) * 1987-10-29 1989-05-09 Mitsubishi Electric Corp Apparatus for liquid growth
JP4644903B2 (en) * 2000-03-23 2011-03-09 ダイキン工業株式会社 Centrifugal turbo air machine impeller, centrifugal turbo air machine, and air conditioner
JP4464629B2 (en) * 2003-06-17 2010-05-19 三相電機株式会社 Centrifugal pump for liquid
JP2008223741A (en) * 2007-03-16 2008-09-25 Daikin Ind Ltd Centrifugal blower

Also Published As

Publication number Publication date
JP2011080409A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
CN107850083B (en) Blower and air conditioner equipped with same
CN106030120B (en) Blower and outdoor unit of air conditioner including the same
JP5316365B2 (en) Turbo fluid machine
TWI394895B (en) Centrifugal fans and air fluid machinery using the centrifugal fan
JP4902718B2 (en) Centrifugal blower and vacuum cleaner
JP6229141B2 (en) Blower
JP2010124534A (en) Mixed flow fan for electric motors and motor equipped with this mixed flow fan
WO2018116498A1 (en) Multiblade fan
JP6375821B2 (en) Centrifugal blower and air cleaner equipped with the same
JP7466683B2 (en) Multi-blade centrifugal blower
CN110914553B (en) Impeller, blower and air conditioner
JP2009287427A (en) Centrifugal blower
US20230135727A1 (en) Impeller, multi-blade air-sending device, and air-conditioning apparatus
JP4349327B2 (en) Whirlpool fan
JP2010019262A (en) Air blower, air conditioner and air cleaner using the same
WO2014141417A1 (en) Impeller and axial blower in which same is used
JP5260579B2 (en) Electric blower and vacuum cleaner equipped with it
JP5200702B2 (en) Electric blower and electric vacuum cleaner using the same
AU2019236795B2 (en) Propeller fan
JP2011052673A (en) Sirocco fan and indoor unit of air conditioner using this sirocco fan
JP4395539B1 (en) Multiblade centrifugal fan and vehicle air conditioner
JP7254648B2 (en) centrifugal blower
JP7446469B2 (en) multi-blade centrifugal blower
JP2019178616A (en) Electric blower and vacuum cleaner employing the same
JP7466707B2 (en) Centrifugal Blower

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees