JP4461537B2 - Power line carrier communication equipment - Google Patents

Power line carrier communication equipment Download PDF

Info

Publication number
JP4461537B2
JP4461537B2 JP36850499A JP36850499A JP4461537B2 JP 4461537 B2 JP4461537 B2 JP 4461537B2 JP 36850499 A JP36850499 A JP 36850499A JP 36850499 A JP36850499 A JP 36850499A JP 4461537 B2 JP4461537 B2 JP 4461537B2
Authority
JP
Japan
Prior art keywords
line
power
communication
power supply
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36850499A
Other languages
Japanese (ja)
Other versions
JP2001186062A (en
Inventor
光義 黒田
茂之 榊
敦 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP36850499A priority Critical patent/JP4461537B2/en
Publication of JP2001186062A publication Critical patent/JP2001186062A/en
Application granted granted Critical
Publication of JP4461537B2 publication Critical patent/JP4461537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、給電線を介して通信を行う電力線搬送通信装置に関し、特に軌道上を走行する搬送車などの移動体に地上側から非接触状態で電力を供給する非接触給電装置に適用される電力線搬送通信装置に関する。
【0002】
【従来の技術】
従来、ファクトリー・オートメーション化の一環として工場の無人化が推し進められており、構内での物資の搬送が無人の搬送車により行われている。この搬送車は、地上側に設置された制御部からの指令に従って、搬送すべき物資が置かれた場所まで軌道上を自走して所定の位置に停止し、物資を積載して目的地まで搬送するようになっている。
【0003】
この搬送車の給電装置として、搬送車に直接的に接触することなく地上側から搬送車に給電するいわゆる非接触給電装置がある。この給電装置は、軌道に付設された給電線に高周波電流(交流電力)を供給して高周波磁界を発生する一次側の回路・給電線路と、搬送車側に搭載されて上記一次側と磁気的に結合されたた二次側回路とを有し、一次側回路から二次側回路に磁界を介して電力を供給するように構成されている。この非接触給電装置の場合、いわゆるトロリー給電等と異なり、非接触で電力の給電が行われるので、ブラシ等の保守点検作業が不要となり、また、何よりも走行中のブラシ等の接触による塵や埃等の発生がなく、クリーンルームのような清浄雰囲気中での適用に好都合である。
【0004】
この種の無人搬送システムでは、無人の搬送車を制御する必要上、地上側の制御部と搬送車との間で通信が行われ、そのための通信装置として、非接触給電装置の給電線に通信信号を重畳し、給電線を通信信号の伝送路としても使用するいわゆる電力線搬送通信装置がある。
【0005】
図4に、従来の電力線搬送通信装置が適用された非接触給電装置の一次側回路を模式的に示す。同図において、符号10は、高周波電流を発生する高周波電源である。符号20は、この高周波電源10から高周波電流が供給されて磁界を発生する給電線である。この給電線20は、その中間付近で折り返されおり、この折り返し点までの一方の線路20Aと他方の線路20Bとを一対の平行線路として、搬送車の走行路である軌道30に付設されている。また、この給電線20は高周波電源10に接続され、線路20Aおよび線路20Bには位相が180度異なる高周波電流がそれぞれ供給される。
【0006】
ここで、電力線搬送通信装置の地上側通信トランス40は、高周波電源10の近くに設置されて給電線20と磁気的に結合されており、またこの電力線搬送通信装置の搬送車側通信トランス50は、搬送車に搭載されて給電線20と磁気的に結合されている。電力線搬送通信装置の地上側通信装置と搬送車側通信装置(共に図示なし)は、これら通信トランスを介して給電線20と接続されており、給電線20を介して地上側と搬送車側の間の通信が行われる。
【0007】
この電力線搬送通信装置によれば、例えば地上側から搬送車にディジタルコードを含む通信信号を送信する場合、論理値「0」を数百kHzの周波数の下位の周波数に対応づけ、論理値「1」をそれより上位の周波数に対応づけて、通信信号の内容に応じた周波数成分の組み合わせを、地上側通信トランス40を介して給電線20上の電力成分に重畳させて送信する。軌道上の搬送車は、電力成分に重畳された通信信号を搬送車側通信トランス50を介して受信する。
【0008】
【発明が解決しようとする課題】
ところで、上述の従来技術の構成によれば、地上側通信トランス40から給電線20の折り返し点までの線路長が、通信信号の4分の1波長付近になると、給電線20上に通信信号による定在波が発生し、通信不能となる領域が軌道上に発生するという問題がある。
【0009】
このメカニズムを図5および図6を参照して説明する。
上述の図4に示す給電線20は、分布定数回路を形成し、図5に示すように、線路20Aと線路20Bとからなる平行線路の終端Tb(給電線20の折り返し点に相当する部位)を短絡したものと等価となる。このため、平行線路の終端Tbにおいて反射が生じ、この平行線路の始端Taと終端Tbとの間の線路長が通信信号の略4分の1波長になると、図6に示すように、始端Ta付近に節(共振点)を有する通信信号(通信電流)の定在波が平行線路上に発生する。この結果、始端Ta付近での通信信号の振幅が極めて小さくなり、搬送車は、始端Ta付近に位置する場合、地上側からの通信信号を受信できなくなり、従って搬送車の制御が不能となる。
【0010】
例えば、通信信号の周波数を上述のように数百kHz付近に設定した場合では、その波長は少なくとも千m以上となるが、給電線の内部では信号の伝搬速度が低下するため、その5分の3程度に達し、線路長が百m程度になると定在波が出現することが考えられる。したがって、現実の線路長(例えば100〜200m)の前後で、電力線搬送波通信が不能となる可能性がある。
【0011】
これを回避するためには給電線の線路長を変えればよいが、給電線を長くすると、電力損失の増大を招き、電力の供給に支障が生じる場合があり、逆に、給電線を分割して短くすると、装置の構成が複雑になるなどの不都合がある。
【0012】
この発明は、上記事情に鑑みてなされたもので、電力線搬送通信において通信信号による反射波や定在波が給電線上に発生することがなく、軌道上の搬送車と地上側との間の通信が全軌道上で可能な電力線搬送通信装置を提供することを課題とする。
【0013】
【課題を解決するための手段】
上記課題を解決するため、この発明は移動体の軌道に沿って該軌道に付設された給電線に交流電力を供給して前記移動体に対する非接触給電を行う非接触給電装置であって、その非接触給電装置に適用され、前記給電線を介して地上側と前記移動体との間の通信を行うための電力線搬送通信装置であって、前記給電線上の電気的な終端とみなされる部位に、インピーダンス整合用の抵抗と、前記交流電力の周波数で共振するLC直列共振回路とを設け、前記給電線が、前記交流電力が始端に供給される平行線路からなり、前記インピーダンス整合用の抵抗と前記LC直列共振回路とが、前記平行線路をなす各線路の終端間に並列接続されることを特徴とする電力線搬送通信装置である。
【0016】
【発明の実施の形態】
以下、図面を参照しながら、この発明の実施の形態に係る電力線搬送通信装置を説明する。なお、各図において共通する要素には同一符号を付し、その説明を適宜省略する。
【0017】
図1に、この実施の形態にかかる電力線搬送通信装置が適用された非接触給電装置の地上側(一次側回路)の構成を示す。同図において、符号100は、高周波電流を発生する高周波電源である。符号200は、高周波電源100から高周波電流が供給されて磁界を発生する給電線である。この給電線200は、線路200Aと線路200Bとから平行線路を形成しており、搬送車(図示なし)の走行路である軌道300に沿って付設されている。この平行線路(給電線200)の始端Taは高周波電源100に接続され、その終端Tbには、後述する終端回路600が接続されている。
【0018】
電力線搬送通信装置の地上側通信トランス400は、高周波電源100の近傍に設置されていて、給電線200と磁気的に結合されている。また、この電力線搬送通信装置の搬送車側通信トランス500は、搬送車(図示なし)に搭載されており、給電線200と磁気的に結合されている。つまり、電力線搬送通信装置の地上側通信装置と搬送車側通信装置(共に図示なし)は、これら通信トランスを介して給電線200とそれぞれ接続されており、給電線200が通信信号の伝送路として使用される。地上側と搬送車側との間の通信は、数百kHzの周波数の通信信号を用いて行われ、論理値「0」に対応した下位周波数成分と、論理値「1」に対応した上位周波数成分とを電力に重畳させて行われる。
【0019】
ここで、図2(a)に示すように、地上側通信トランス400は、給電線200をなす線路200Aおよび線路200Bの双方と磁気的に結合されている。この地上側通信トランス400の一次側巻線400Aには通信信号に応じた周波数の電流が供給されると、線路200Aおよび線路200Bに通信信号の電流成分が誘導され、この通信信号の電流成分が、高周波電源100から給電線200(すなわち線路200Aおよび線路200B)に供給される電力成分に重畳されるようになっている。
【0020】
また、同図(b)に示すように、搬送車側通信トランス500は、軌道300に付設された給電線200の線路200A,200Bと磁気的に結合されており、線路200Aおよび線路200Bを流れる通信信号の電流成分によって、二次側巻線500Aに通信信号が誘導されるようになっている。この搬送車側通信トランス500は、給電線200との磁気的な結合を維持したまま、搬送車と共に給電線200に沿って移動するようになっている。
【0021】
さらに、図3に示すように、終端回路600は、コイルLおよびコンデンサCからなるLC直列共振回路601と、インピーダンス整合用の抵抗Rから構成される。これらインピーダンス整合用の抵抗RおよびLC直列共振回路601は、給電線200上の電気的な終端Tbとみなされる部位、すなわち平行線路をなす線路200Aの終端と線路200Bの終端との間に並列接続されている。
【0022】
ここで、インピーダンス整合用の抵抗Rは、線路200Aおよび線路200Bからなる給電線200の特性インピーダンスに略等しいインピーダンスを有しており、終端Tbで生じる通信信号の反射波を吸収する。また、LC直列共振回路601は、高周波電源100から供給される交流電力の周波数で共振するように設定されており、この交流電力に対して平行線路の終端Tbを交流的に短絡し、高周波電源100から供給される交流電力成分を通過させる。また、通信信号の周波数において、LC直列共振回路601のインピーダンスが抵抗Rのインピーダンスよりも十分に大きくなるように、終端回路600を構成する抵抗R、コイルL、コンデンサCの各値が設定されている。
【0023】
以下、図3を参照して、この実施の形態に係る電力線搬送通信装置の動作を説明する。
まず、高周波電源100により給電線200に対して電力としての高周波電流が供給されると、終端回路600のLC直列共振回路601が共振状態となり、終端Tbにおいて線路200Aと線路200Bとが交流的に短絡される。これにより、高周波電源100から供給される高周波電流のほとんどがLC直列共振回路601を介して給電線200を流れ、この給電線200の回りに高周波磁界を発生させる。この結果、軌道上の搬送車501の電源が確立し、搬送車501が運転可能な状態となる。このとき、高周波電源100から供給される高周波電流のほとんどがLC直列共振回路601を流れ、インピーダンス整合用の抵抗Rにはほとんど流れ込まないので、終端回路600において電力の損失がほとんど生じない。
【0024】
次に、地上側から軌道上の搬送車501に対し、例えば行き先などを指示するための通信信号を送る場合、地上側の通信装置は、地上側通信トランス400を介して通信信号を給電線200に出力する。これにより、地上側からの通信信号は、高周波電源100から交流電力として供給される高周波電流に重畳されて給電線200上を伝送される。
【0025】
ここで、平行線路の始端Ta側に設置された地上側通信トランス400から出力された通信信号は、給電線200上を伝搬して終端Tb側に達するが、終端回路600の抵抗Rにより終端Tbでのインピーダンスが整合された状態にあるので、この通信信号による反射波は発生しない。また、上述したように、通信信号の周波数では、LC直列共振回路600は共振せず、しかもLC直列共振回路600のインピーダンスが抵抗Rのインピーダンスよりも十分に大きく設定されているので、通信信号の電流成分のほとんどがインピーダンス整合用の抵抗R側に流れ込む。
【0026】
このため、インピーダンス整合用の抵抗Rにより通信信号の反射波が有効に抑制され、しかもLC直列共振回路600による通信信号の損失がほとんど生じない。したがって、給電線200の線路長が例えば通信信号の4分の1波長であっても、給電線200上に通信信号の定在波が形成されることがなく、搬送車501は、軌道300の全域で地上側から送信された通信信号を受信することができる。
【0027】
逆に、搬送車501から地上側に通信信号を送信する場合を考えると、搬送車501から出力された通信信号が終端Tbに到達しても、同様に終端Tbのインピーダンスが整合した状態にあるので、この通信信号による反射波は発生せず、定在波が形成されない。したがって、搬送車501が軌道上のどこに位置していても、地上側の通信装置は、搬送車501からの通信信号を受信することができる。
【0028】
上述したように、この実施の形態によれば、電力の損失を生じることなく、終端でのインピーダンスを整合させることができるので、通信信号による反射波や定在波の発生が抑制され、全軌道上で給電線200を介した双方向通信が可能となる。
【0029】
また、給電線200の終端での反射波が抑制されるので、給電線200の線路長がどのようであっても、通信信号による反射波や定在波が給電線200上に形成されることがない。したがって、全軌道上で通信信号の振幅が一様となり、全軌道にわたってSN比を安定させることが可能となる。
【0030】
以上、この発明の一実施の形態を説明したが、この発明は、上述の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、上述の実施の形態では、給電線200を構成する線路200Aおよび線路200Bの双方に通信信号を出力するものとしたが、これに限定されることなく、片側の線路にのみ通信信号を出力するものとしてもよい。
また、LC直列共振回路601により電力成分のみを通過させるものとしたが、このLC直列共振回路601に代えて、例えばフィルタ回路を使用することもできる。
【0031】
【発明の効果】
以上説明したように、この発明によれば、給電線上の電気的な終端とみなされる部位に、インピーダンス整合用の抵抗と、給電線に供給される交流電力の周波数で共振する共振回路とを設けたので、電力線搬送通信において通信信号による反射波や定在波が給電線上に発生することがなく、軌道上の搬送車と地上側との間の通信が全軌道上で可能となる。
【図面の簡単な説明】
【図1】 この発明の実施の形態に係る電力線搬送通信装置が適用された非接触給電装置の地上側の構成を示す図である。
【図2】 この発明の実施の形態に係る電力線搬送通信装置の地上側通信トランスおよび搬送車側通信トランスの構成を示す回路図である。
【図3】 この発明の実施の形態に係る電力線搬送通信装置の終端回路の構成を示す回路図である。
【図4】 従来技術に係る電力線搬送通信装置が適用された非接触給電装置の構成を示す図である。
【図5】 従来技術に係る電力線搬送通信装置の動作を説明するための図である。
【図6】 従来技術に係る電力線搬送通信装置による給電線上の定在波の波形を示す図である。
【符号の説明】
100:高周波電源
200:給電線
200A,200B;線路(平行線路)
300:軌道
400;地上側通信トランス
400A:地上側通信トランスの一次側巻線
500;搬送車側通信トランス
500A;搬送車側通信トランスの二次側巻線
501;搬送車
C;コンデンサ
L;コイル
R;インピーダンス整合用の抵抗
Ta;始端
Tb;終端
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power line carrier communication device that performs communication via a power feed line, and is particularly applied to a non-contact power feed device that supplies power from a ground side to a moving body such as a transport vehicle that travels on a track in a non-contact state. The present invention relates to a power line carrier communication device.
[0002]
[Prior art]
Conventionally, unmanned factories have been promoted as part of factory automation, and materials are transported on the premises by unmanned transport vehicles. In accordance with a command from the control unit installed on the ground side, this transport vehicle travels on the track to the place where the goods to be transported are placed, stops at a predetermined position, and loads the goods to the destination. It is designed to be transported.
[0003]
As a power supply device for this transport vehicle, there is a so-called non-contact power supply device that supplies power to the transport vehicle from the ground side without directly contacting the transport vehicle. This power supply device includes a primary side circuit / feed line that generates a high frequency magnetic field by supplying a high frequency current (alternating current power) to a power supply line attached to a track, and is mounted on the carrier side so as to be magnetically connected to the primary side. And a secondary side circuit coupled to the primary side circuit, and configured to supply power from the primary side circuit to the secondary side circuit via a magnetic field. In the case of this non-contact power supply device, unlike so-called trolley power supply, power is supplied in a non-contact manner, so that maintenance work such as brushes is unnecessary, and above all, dust and dirt caused by contact with the running brush etc. There is no generation of dust and the like, which is convenient for application in a clean atmosphere such as a clean room.
[0004]
In this type of unmanned conveyance system, it is necessary to control an unmanned conveyance vehicle, and communication is performed between the control unit on the ground side and the conveyance vehicle. There is a so-called power line carrier communication device that superimposes signals and uses a feeder line as a transmission path for communication signals.
[0005]
FIG. 4 schematically shows a primary circuit of a non-contact power feeding device to which a conventional power line carrier communication device is applied. In the figure, reference numeral 10 denotes a high-frequency power source that generates a high-frequency current. Reference numeral 20 denotes a power supply line that generates a magnetic field when a high-frequency current is supplied from the high-frequency power supply 10. The feeder line 20 is folded in the vicinity of the middle, and is attached to a track 30 that is a traveling path of the transport vehicle, with one line 20A and the other line 20B up to the turning point as a pair of parallel lines. . The feeder line 20 is connected to the high-frequency power source 10, and high-frequency currents having a phase difference of 180 degrees are respectively supplied to the line 20A and the line 20B.
[0006]
Here, the ground-side communication transformer 40 of the power line carrier communication device is installed near the high-frequency power supply 10 and is magnetically coupled to the power supply line 20, and the carrier-side communication transformer 50 of this power line carrier communication device is It is mounted on the transport vehicle and is magnetically coupled to the feeder line 20. The ground side communication device and the carrier vehicle side communication device (both not shown) of the power line carrier communication device are connected to the feeder line 20 via these communication transformers, and the ground side and carrier vehicle side via the feeder line 20 are connected. Communication between them.
[0007]
According to this power line carrier communication device, for example, when a communication signal including a digital code is transmitted from the ground side to the carrier vehicle, the logical value “0” is associated with a lower frequency of a frequency of several hundred kHz, and the logical value “1”. "Is associated with a higher frequency, and a combination of frequency components corresponding to the content of the communication signal is superimposed on the power component on the feeder 20 via the ground communication transformer 40 and transmitted. The transport vehicle on the track receives the communication signal superimposed on the power component via the transport vehicle-side communication transformer 50.
[0008]
[Problems to be solved by the invention]
By the way, according to the above-described configuration of the prior art, when the line length from the ground-side communication transformer 40 to the turn-around point of the feed line 20 is around a quarter wavelength of the communication signal, the communication signal is placed on the feed line 20. There is a problem that a standing wave is generated and an area where communication is impossible occurs on the orbit.
[0009]
This mechanism will be described with reference to FIGS.
The above-described feed line 20 shown in FIG. 4 forms a distributed constant circuit, and as shown in FIG. 5, the end Tb of the parallel line made up of the line 20A and the line 20B (part corresponding to the turning point of the feed line 20). Equivalent to short-circuiting. For this reason, reflection occurs at the end Tb of the parallel line, and when the line length between the start end Ta and the end Tb of the parallel line becomes approximately a quarter wavelength of the communication signal, as shown in FIG. A standing wave of a communication signal (communication current) having a node (resonance point) in the vicinity is generated on the parallel lines. As a result, the amplitude of the communication signal in the vicinity of the start end Ta becomes extremely small, and when the transport vehicle is located in the vicinity of the start end Ta, it becomes impossible to receive a communication signal from the ground side, and thus the transport vehicle cannot be controlled.
[0010]
For example, when the frequency of the communication signal is set near several hundred kHz as described above, the wavelength is at least 1000 m or more, but the signal propagation speed is reduced inside the feeder line, so that 5 minutes When it reaches about 3 and the line length is about 100 m, it is considered that standing waves appear. Therefore, there is a possibility that power line carrier wave communication becomes impossible before and after the actual line length (for example, 100 to 200 m).
[0011]
In order to avoid this, the length of the feeder line can be changed. However, if the feeder line is lengthened, power loss may increase and the supply of power may be hindered. If it is shortened, there is a disadvantage that the configuration of the apparatus becomes complicated.
[0012]
The present invention has been made in view of the above circumstances, and in power line carrier communication, a reflected wave or standing wave due to a communication signal does not occur on the feeder line, and communication between the carrier on the track and the ground side is possible. An object of the present invention is to provide a power line carrier communication device that can be used on all tracks.
[0013]
[Means for Solving the Problems]
To solve the above problems, this invention provides a contactless power supply apparatus for performing non-contact power supply to the movable body by supplying AC power to the annexed to said track along the track of the moving body feeding line, A power line carrier communication device that is applied to the non-contact power supply device and performs communication between the ground side and the mobile body via the power supply line, and is considered as an electrical terminal on the power supply line Provided with an impedance matching resistor and an LC series resonance circuit that resonates at the frequency of the AC power, and the power supply line comprises a parallel line to which the AC power is supplied at the start, and the impedance matching resistor And the LC series resonance circuit are connected in parallel between terminal ends of the parallel lines .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a power line carrier communication apparatus according to an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the description is abbreviate | omitted suitably.
[0017]
FIG. 1 shows a configuration on the ground side (primary side circuit) of a non-contact power feeding device to which the power line carrier communication device according to this embodiment is applied. In the figure, reference numeral 100 denotes a high-frequency power source that generates a high-frequency current. Reference numeral 200 denotes a power supply line that generates a magnetic field when a high-frequency current is supplied from the high-frequency power source 100. The feeder line 200 forms a parallel line from the line 200A and the line 200B, and is attached along a track 300 that is a traveling path of a transport vehicle (not shown). The starting end Ta of the parallel line (feed line 200) is connected to the high frequency power supply 100, and a terminating circuit 600 described later is connected to the terminating end Tb.
[0018]
The ground-side communication transformer 400 of the power line carrier communication device is installed in the vicinity of the high-frequency power source 100 and is magnetically coupled to the feeder line 200. In addition, the carrier-side communication transformer 500 of the power line carrier communication device is mounted on a carrier vehicle (not shown) and is magnetically coupled to the feeder line 200. In other words, the ground-side communication device and the carrier-side communication device (both not shown) of the power line carrier communication device are connected to the power supply line 200 via these communication transformers, and the power supply line 200 serves as a transmission path for communication signals. used. Communication between the ground side and the transport vehicle side is performed using a communication signal having a frequency of several hundred kHz, and a lower frequency component corresponding to a logical value “0” and an upper frequency corresponding to a logical value “1”. This is done by superimposing the component on the power.
[0019]
Here, as shown in FIG. 2A, the ground side communication transformer 400 is magnetically coupled to both the line 200 </ b> A and the line 200 </ b> B forming the feeder line 200. When a current having a frequency corresponding to a communication signal is supplied to the primary side winding 400A of the ground side communication transformer 400, a current component of the communication signal is induced in the line 200A and the line 200B. The power component supplied from the high-frequency power source 100 to the power supply line 200 (that is, the line 200A and the line 200B) is superposed.
[0020]
Further, as shown in FIG. 5B, the carrier-side communication transformer 500 is magnetically coupled to the lines 200A and 200B of the feeder 200 attached to the track 300, and flows through the lines 200A and 200B. The communication signal is induced in the secondary winding 500A by the current component of the communication signal. The transport vehicle-side communication transformer 500 moves along the feed line 200 together with the transport vehicle while maintaining magnetic coupling with the feed line 200.
[0021]
Further, as shown in FIG. 3, the termination circuit 600 includes an LC series resonance circuit 601 including a coil L and a capacitor C, and an impedance matching resistor R. The impedance matching resistor R and the LC series resonance circuit 601 are connected in parallel between a portion regarded as an electrical termination Tb on the feeder line 200, that is, between the termination of the line 200A forming the parallel line and the termination of the line 200B. Has been.
[0022]
Here, the resistance R for impedance matching has an impedance substantially equal to the characteristic impedance of the feeder 200 formed of the line 200A and the line 200B, and absorbs the reflected wave of the communication signal generated at the terminal Tb. The LC series resonance circuit 601 is set so as to resonate at the frequency of the AC power supplied from the high frequency power source 100. The terminal Tb of the parallel line is short-circuited with respect to the AC power in an AC manner. The AC power component supplied from 100 is passed. In addition, the values of the resistor R, the coil L, and the capacitor C constituting the termination circuit 600 are set so that the impedance of the LC series resonance circuit 601 is sufficiently larger than the impedance of the resistor R at the frequency of the communication signal. Yes.
[0023]
Hereinafter, the operation of the power line carrier communication apparatus according to this embodiment will be described with reference to FIG.
First, when a high-frequency current as power is supplied from the high-frequency power supply 100 to the feeder line 200, the LC series resonance circuit 601 of the termination circuit 600 enters a resonance state, and the line 200A and the line 200B are exchanged in an alternating manner at the termination Tb. Shorted. As a result, most of the high-frequency current supplied from the high-frequency power supply 100 flows through the power supply line 200 via the LC series resonance circuit 601 and generates a high-frequency magnetic field around the power supply line 200. As a result, the power supply of the transport vehicle 501 on the track is established, and the transport vehicle 501 becomes operable. At this time, since most of the high-frequency current supplied from the high-frequency power supply 100 flows through the LC series resonance circuit 601 and hardly flows into the impedance matching resistor R, almost no power loss occurs in the termination circuit 600.
[0024]
Next, when a communication signal for instructing a destination or the like is sent from the ground side to the transport vehicle 501 on the track, the ground side communication device sends the communication signal to the feeder 200 via the ground side communication transformer 400. Output to. As a result, the communication signal from the ground side is transmitted over the feeder line 200 while being superimposed on the high-frequency current supplied as the AC power from the high-frequency power supply 100.
[0025]
Here, the communication signal output from the ground-side communication transformer 400 installed on the start end Ta side of the parallel line propagates on the feed line 200 and reaches the end Tb side. Therefore, the reflected wave by this communication signal is not generated. Further, as described above, the LC series resonance circuit 600 does not resonate at the frequency of the communication signal, and the impedance of the LC series resonance circuit 600 is set sufficiently higher than the impedance of the resistor R. Most of the current component flows into the impedance matching resistor R side.
[0026]
For this reason, the reflected wave of the communication signal is effectively suppressed by the impedance matching resistor R, and the loss of the communication signal by the LC series resonance circuit 600 hardly occurs. Therefore, even if the line length of the feeder line 200 is, for example, a quarter wavelength of the communication signal, a standing wave of the communication signal is not formed on the feeder line 200, and the carrier vehicle 501 Communication signals transmitted from the ground side can be received in the entire area.
[0027]
Conversely, considering the case where a communication signal is transmitted from the transport vehicle 501 to the ground side, even if the communication signal output from the transport vehicle 501 reaches the terminal Tb, the impedance of the terminal Tb is similarly matched. Therefore, no reflected wave is generated by this communication signal, and no standing wave is formed. Therefore, the communication device on the ground side can receive the communication signal from the transport vehicle 501 regardless of where the transport vehicle 501 is located on the track.
[0028]
As described above, according to this embodiment, it is possible to match the impedance at the terminal without causing power loss, so that the generation of reflected waves and standing waves due to communication signals is suppressed, and the entire trajectory is reduced. Two-way communication via the feeder line 200 is possible.
[0029]
In addition, since the reflected wave at the end of the feed line 200 is suppressed, a reflected wave or standing wave due to a communication signal is formed on the feed line 200 regardless of the line length of the feed line 200. There is no. Therefore, the amplitude of the communication signal is uniform on the entire track, and the SN ratio can be stabilized over the entire track.
[0030]
The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and the present invention includes any design changes that do not depart from the gist of the present invention. It is. For example, in the above-described embodiment, the communication signal is output to both the line 200A and the line 200B constituting the feeder line 200. However, the present invention is not limited to this, and the communication signal is output only to one line. It is good also as what to do.
Further, although only the power component is allowed to pass through the LC series resonance circuit 601, a filter circuit, for example, can be used instead of the LC series resonance circuit 601.
[0031]
【The invention's effect】
As described above, according to the present invention, the impedance matching resistor and the resonance circuit that resonates at the frequency of the AC power supplied to the power supply line are provided at the portion regarded as the electrical terminal on the power supply line. Therefore, a reflected wave or standing wave due to a communication signal is not generated on the feeder line in the power line carrier communication, and communication between the carrier on the track and the ground side is possible on the whole track.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration on the ground side of a non-contact power feeding device to which a power line carrier communication device according to an embodiment of the present invention is applied.
FIG. 2 is a circuit diagram showing configurations of a ground side communication transformer and a carrier vehicle side communication transformer of the power line carrier communication apparatus according to the embodiment of the present invention.
FIG. 3 is a circuit diagram showing a configuration of a termination circuit of the power line carrier communication device according to the embodiment of the present invention.
FIG. 4 is a diagram illustrating a configuration of a non-contact power feeding device to which a power line carrier communication device according to a conventional technique is applied.
FIG. 5 is a diagram for explaining the operation of the power line carrier communication apparatus according to the prior art.
FIG. 6 is a diagram showing a waveform of a standing wave on a feeder line by a power line carrier communication device according to the prior art.
[Explanation of symbols]
100: high frequency power source 200: feeder lines 200A, 200B; lines (parallel lines)
300: Track 400; Ground-side communication transformer 400A: Ground-side communication transformer primary winding 500; Carrier-vehicle-side communication transformer 500A; Carrier-vehicle-side communication transformer secondary-side winding 501; Carrier vehicle C; Capacitor L; Coil R: impedance matching resistor Ta; start end Tb; end

Claims (1)

移動体の軌道に沿って該軌道に付設された給電線に交流電力を供給して前記移動体に対する非接触給電を行う非接触給電装置であって、その非接触給電装置に適用され、前記給電線を介して地上側と前記移動体との間の通信を行うための電力線搬送通信装置であって
前記給電線上の電気的な終端とみなされる部位に、インピーダンス整合用の抵抗と、前記交流電力の周波数で共振するLC直列共振回路とを設け
前記給電線が、前記交流電力が始端に供給される平行線路からなり、前記インピーダンス整合用の抵抗と前記LC直列共振回路とが、前記平行線路をなす各線路の終端間に並列接続される
ことを特徴とする電力線搬送通信装置。
A non-contact power supply apparatus that supplies AC power to a power supply line attached to the track along a track of the mobile body to perform non-contact power supply to the mobile body, and is applied to the non-contact power supply apparatus, via an electric wire a power line communication device for communicating between the ground side the moving body,
In a portion regarded as an electrical termination on the feeder line, an impedance matching resistor and an LC series resonance circuit that resonates at the frequency of the AC power are provided .
The feeder line is composed of a parallel line to which the AC power is supplied to the starting end, and the impedance matching resistor and the LC series resonance circuit are connected in parallel between the ends of the lines forming the parallel line. A power line carrier communication device.
JP36850499A 1999-12-24 1999-12-24 Power line carrier communication equipment Expired - Fee Related JP4461537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36850499A JP4461537B2 (en) 1999-12-24 1999-12-24 Power line carrier communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36850499A JP4461537B2 (en) 1999-12-24 1999-12-24 Power line carrier communication equipment

Publications (2)

Publication Number Publication Date
JP2001186062A JP2001186062A (en) 2001-07-06
JP4461537B2 true JP4461537B2 (en) 2010-05-12

Family

ID=18492000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36850499A Expired - Fee Related JP4461537B2 (en) 1999-12-24 1999-12-24 Power line carrier communication equipment

Country Status (1)

Country Link
JP (1) JP4461537B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100587230B1 (en) 2004-09-02 2006-06-08 삼성중공업 주식회사 Direct current power apparatus for power line communication
JP5797313B1 (en) * 2014-08-25 2015-10-21 株式会社京三製作所 Regenerative circulator, high frequency power supply device, and high frequency power regeneration method
JP6551974B2 (en) * 2015-08-05 2019-07-31 国立大学法人豊橋技術科学大学 Matching device and mobile power feeding system
JP7117693B2 (en) * 2018-03-22 2022-08-15 大成建設株式会社 power transmission system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107535A (en) * 1985-11-05 1987-05-18 Matsushita Electric Ind Co Ltd Power line carrier transmission and reception equipment
JPS62128629A (en) * 1985-11-29 1987-06-10 Mitsubishi Electric Corp Carrying system for distribution line
JPH0281521A (en) * 1988-09-19 1990-03-22 Hitachi Ltd Indoor lighting line terminating equipment
JPH07143040A (en) * 1993-11-16 1995-06-02 San'eisha Mfg Co Ltd Distribution line transportation/communication system
JPH0823293A (en) * 1994-07-07 1996-01-23 Inter Nix Kk Power wiring communication interface equipment
JPH09102763A (en) * 1995-10-05 1997-04-15 Sony Corp Impedance matching circuit
JPH09326734A (en) * 1996-06-05 1997-12-16 Secom Co Ltd Power feed system
JP3627507B2 (en) * 1998-04-03 2005-03-09 神鋼電機株式会社 Dolly operation system
CA2332902A1 (en) * 1998-05-18 1999-11-25 Digital Harmony Technologies, Inc. Combined analog/digital data transmission system

Also Published As

Publication number Publication date
JP2001186062A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP3512798B2 (en) Non-contact power distribution system
US6686823B2 (en) Inductive power transmission and distribution apparatus using a coaxial transformer
JP2005313884A (en) Non-contact electric power supply equipment
JPH1084303A (en) Communication method for mobile body and communication system
JP5217324B2 (en) Power supply system
BRPI0115143B1 (en) contactless power supply system and junction box used for this
JP4461537B2 (en) Power line carrier communication equipment
KR20030085680A (en) Adapter for using Power Line Communication
JP4461538B2 (en) Power line carrier communication equipment
JPH02151202A (en) Electric car drive
JP3491179B2 (en) Non-contact power receiving device
JP6360657B2 (en) Non-contact power transmission method and non-contact power transmission system
JP3473455B2 (en) Power line communication system for mobile objects
TW201340532A (en) Contactless power supply system and contactless power supply method
JPH11178248A (en) Power circuit for non-contact power supply
KR100208206B1 (en) Noncontact power distribution system
JP3339421B2 (en) Contactless power supply system
JP2000184625A (en) Non-contact feeding method for transport cars in transporting system
US7315234B2 (en) Load control apparatus and load control system
JPH08251842A (en) Non-contact power feeding apparatus
JP4134523B2 (en) Contactless power receiving device
JP4122713B2 (en) Contactless power supply
JP3598715B2 (en) Non-contact power supply
JP2627177B2 (en) Load transfer equipment
WO2022172691A1 (en) Non-contact power receiving device and non-contact power feeding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees