WO2022172691A1 - Non-contact power receiving device and non-contact power feeding system - Google Patents

Non-contact power receiving device and non-contact power feeding system Download PDF

Info

Publication number
WO2022172691A1
WO2022172691A1 PCT/JP2022/001302 JP2022001302W WO2022172691A1 WO 2022172691 A1 WO2022172691 A1 WO 2022172691A1 JP 2022001302 W JP2022001302 W JP 2022001302W WO 2022172691 A1 WO2022172691 A1 WO 2022172691A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
electrode
conductor
power supply
Prior art date
Application number
PCT/JP2022/001302
Other languages
French (fr)
Japanese (ja)
Inventor
真義 山本
蒼 大矢根
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2022581271A priority Critical patent/JPWO2022172691A1/ja
Publication of WO2022172691A1 publication Critical patent/WO2022172691A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to a contactless power receiving device and a contactless power supply system.
  • Patent Literature 1 discloses a non-contact power feeding system during travel, in which a plurality of coils are arranged along a travel path of a vehicle and coils for power transmission are switched according to the position of the vehicle.
  • the present inventors have found that by supplying power to vehicles from transmission lines installed along roads, it becomes easier to install transmission lines over a wider area than the technique of arranging multiple coils, thereby reducing the cost of the contactless power supply system. I realized I could.
  • a reflected wave exists in the transmission line, there is a position where the current of the forward wave and the current of the reflected wave weaken each other.
  • the received power decreases at those positions when power is supplied using an electric field. If a terminating resistor is provided in the transmission line to suppress reflected waves, power loss occurs due to the terminating resistor. Therefore, the inventors of the present invention have recognized that it is desirable to eliminate the need to suppress reflected waves while suppressing a decrease in received power.
  • One exemplary purpose of the present disclosure is to provide a contactless power receiving device and a contactless power supply system that can eliminate the need to suppress a reflected wave on a power supply line while suppressing a decrease in received power.
  • a non-contact power receiving device includes a coil magnetically coupled to a power supply line having one end connected to an AC power supply, and a first electrode electrically coupled to the power supply line. , through the coil and the first electrode, a first alternating current power by a traveling wave propagating from one end to the other end of the power supply line, and a second power by a reflected wave propagating from the other end to the one end of the power supply line.
  • a power acquisition circuit that acquires AC power
  • a power combining circuit that combines the first AC power and the second AC power acquired by the power acquisition circuit and outputs the combined power.
  • This contactless power supply system includes a power supply line to which an AC power supply is connected at one end, and a contactless power receiving device that receives power from the power supply line.
  • the contactless power receiving device has a coil magnetically coupled to the power supply line and a first electrode electrically coupled to the power supply line, and propagates from one end of the power supply line to the other end via the coil and the first electrode.
  • a power acquisition circuit for acquiring a first AC power by a traveling wave and a second AC power by a reflected wave propagating from the other end to one end of the feeder line; and the first AC power acquired by the power acquisition circuit and a power combining circuit that combines the second AC power and outputs the combined power.
  • a contactless power receiving device and a contactless power supply system that can eliminate the need to suppress reflected waves on a power supply line while suppressing a decrease in received power.
  • FIG. 2 is a perspective view of the feeder line of FIG. 1;
  • FIG. 2 is an equivalent circuit diagram of the contactless power supply system of FIG. 1;
  • FIG. 4(a) is a circuit diagram of a contactless power supply system of a comparative example, and
  • FIG. 4(b) is an equivalent circuit diagram between the power transmission side circuit and the power reception side circuit of FIG. 4(a).
  • It is an equivalent circuit diagram of the non-contact electric power supply system of the 1st modification of 1st Embodiment.
  • FIG. 10 is an equivalent circuit diagram of the contactless power supply system of the second embodiment
  • FIG. 1 is a diagram for explaining a schematic configuration of a contactless power supply system 1 according to the first embodiment.
  • 2 is a perspective view of the feeder line 10 of FIG. 1.
  • FIG. FIG. 3 is an equivalent circuit diagram of the contactless power supply system 1 of FIG.
  • the contactless power supply system 1 wirelessly powers a moving object 100 on a moving path such as a road.
  • the contactless power supply system 1 can supply power even when the moving body 100 is stopped or moving.
  • Mobile object 100 is, for example, a vehicle such as an automobile.
  • a contactless power supply system 1 includes a power supply line 10 and a contactless power receiving device 20 .
  • the feeder line 10 includes a first conductor 12a and a second conductor 12b that are arranged in parallel along the road at a predetermined interval. AC power is supplied from an AC power supply 18 between one end of the first conductor 12a and one end of the second conductor 12b.
  • Each of the first conductor 12a and the second conductor 12b is a plate-like elongated electrode, and can also be called a transmission electrode plate.
  • the first conductor 12a and the second conductor 12b may be mesh electrodes.
  • the feeder line 10 is covered with asphalt or the like and embedded in the road.
  • the road is also called an electrified road.
  • the feeder line 10 functions as a transmission line for high-frequency power supplied from the AC power supply 18 .
  • a voltage V and a current I are generated in the feed line 10 based on the characteristic impedance of the feed line 10, and an electric field E and a magnetic field H are generated.
  • the power feeding line 10 feeds the non-contact power receiving device 20 with both the electric field E and the magnetic field H.
  • the frequency of the AC power supply 18 can be appropriately determined through experiments and simulations based on the transmission line characteristics of the feeder line 10 and the relationship between the wavelength and the size of the moving body 100, and is, for example, 1 MHz to 100 MHz. A higher frequency is preferable as the length of the feeder line 10 is shorter.
  • the contactless power receiving device 20 is mounted on the moving object 100 .
  • the mobile object 100 moves on the power supply line 10 , and the non-contact power receiving device 20 receives power from the power supply line 10 while the mobile object 100 is stopped and moving.
  • the received electric power is used to drive the wheels of the moving body 100 and the like.
  • the feeder line 10 has reflected waves in addition to traveling waves.
  • the contactless power receiving device 20 uses the principle of a directional coupler to receive power from both traveling waves and reflected waves.
  • the contactless power receiving device 20 includes a power acquisition circuit 22, a power combining circuit 24, a smoothing circuit 26, and a load .
  • the power acquisition circuit 22 includes a coil 30 magnetically coupled to the first conductor 12a and the second conductor 12b, a first electrode 32 electrically coupled to the first conductor 12a, and a second electrode 34 electrically coupled to the second conductor 12b.
  • the power acquisition circuit 22 acquires first AC power from a traveling wave propagating from one end of the power supply line 10 to the other end via the coil 30, the first electrode 32, and the second electrode 34, and supplies the power supply line with the power.
  • a second AC power is obtained by a reflected wave propagating from the other end to the one end.
  • One end of the coil 30 outputs the first AC power to the power combining circuit 24 and the other end of the coil 30 outputs the second AC power to the power combining circuit 24 .
  • the coil 30 is arranged on the bottom surface of the vehicle body 102 of the moving body 100 so that the coil surface is substantially parallel to the road. That is, the coil 30 is arranged so that the magnetic flux generated from the first conductor 12 a and the second conductor 12 b penetrates the coil 30 . Magnetic flux is maintained through the coil 30 when the moving body 100 is at rest and during movement.
  • Coil 30 may include a magnetic core.
  • the first electrode 32 and the second electrode 34 are, for example, rectangular metal plates, and are arranged on the bottom surface of the vehicle body 102 of the moving body 100 such that they are substantially parallel to each other and each plate surface is substantially parallel to the road. It is When the moving body 100 stops and moves, the first electrode 32 faces the first conductor 12a and the second electrode 34 faces the second conductor 12b. Each area of the first electrode 32 and the second electrode 34 is, for example, equal.
  • the first electrode 32 and the second electrode 34 are also referred to as receiving electrode plates.
  • the first electrode 32 is connected to the midpoint N1 of the coil 30.
  • the midpoint N1 is the point where the inductance between the midpoint N1 and one end of the coil 30 and the inductance between the midpoint N1 and the other end of the coil 30 are equal.
  • the portion between the midpoint N1 and one end of the coil 30 is represented as a first inductor L1
  • the portion between the midpoint N1 and the other end of the coil 30 is represented as a second inductor L2.
  • the second electrode 34 is electrically connected to the vehicle body 102 of the mobile body 100 .
  • the vehicle body 102 is made of a conductor such as metal, and functions as a common ground for the mobile body 100 .
  • the common ground has a floating potential from the road, the first conductor 12a, and the second conductor 12b.
  • the first inductor L1 of the coil 30 forms a transformer T1 together with the inductance component L10 of the magnetically coupled first conductor 12a.
  • the second inductor L2 of the coil 30 forms a transformer T2 together with the inductance component L11 of the magnetically coupled second conductor 12b.
  • a first capacitor C1 is formed between the electric field-coupled first electrode 32 and the first conductor 12a.
  • a second capacitor C2 is formed between the electric field coupled second electrode 34 and the second conductor 12b.
  • the capacitances of the first capacitor C1 and the second capacitor C2 are the same.
  • the second electrode 34 may not be provided separately from the vehicle body 102 .
  • the vehicle body 102 functions as the second electrode 34, the vehicle body 102 is electrically coupled to the second conductor 12b, and the second capacitor C2 is formed between the vehicle body 102 and the second conductor 12b.
  • the first capacitor C1, the transformer T1 and the transformer T2 constitute a CM type, more specifically a CCM type directional coupler.
  • the received current I1 due to the traveling wave flows through the first conductor 12a and the first capacitor C1. , in the path of the first inductor L1.
  • a received current I2 due to the reflected wave flows along the path of the first conductor 12a, the first capacitor C1, and the second inductor L2.
  • the first alternating current power generated by the traveling wave can be output from one end of the coil 30 and the second alternating current power generated by the reflected wave can be output from the other end of the coil 30 .
  • the power combining circuit 24 is connected to both ends of the coil 30 , combines the first AC power and the second AC power acquired by the power acquisition circuit 22 , and outputs the combined power to the smoothing circuit 26 .
  • the power combining circuit 24 is a current doubler rectifier circuit and has a first rectifying element D1, a second rectifying element D2, a third inductor L3 and a fourth inductor L4.
  • the first rectifying element D1 and the second rectifying element D2 are diodes.
  • the first rectifying element D1 has an anode connected to a common ground and a cathode connected to one end of the coil 30 .
  • the second rectifying element D2 has an anode connected to the common ground and a cathode connected to the other end of the coil 30 .
  • One end of the third inductor L3 is connected to one end of the coil 30 .
  • One end of the fourth inductor L4 is connected to the other end of the coil 30 .
  • the other end of the third inductor L3 and the other end of the fourth inductor L4 are connected, and combined power is output from these connection nodes.
  • a DC cut capacitor is inserted between one end of the coil 30 and a connection node between the cathode of the first rectifying element D1 and one end of the third inductor L3, and the other end of the coil 30 and the second rectifying element
  • a DC cut capacitor may be inserted between the cathode of D2 and a connection node with one end of the fourth inductor L4.
  • the smoothing circuit 26 smoothes the power output from the power combining circuit 24 and supplies the smoothed DC power to the load 28 .
  • the smoothing circuit 26 has a smoothing capacitor C6 having one end supplied with the power output from the power combining circuit 24 and the other end connected to a common ground.
  • the power combining circuit 24 and the smoothing circuit 26 output a voltage based on the voltage of the second electrode 34, which is the voltage of the common ground.
  • the load 28 includes, for example, a motor that generates driving force, an on-vehicle device, a storage battery, and the like.
  • the power receiving current I1 flowing through the first inductor L1 flows through the path of the third inductor L3, the smoothing capacitor C6, the common ground, the second capacitor C2, and the second conductor 12b.
  • the first capacitor C1, the first inductor L1, and the second capacitor C2 form a series resonance circuit for receiving traveling waves.
  • the receiving current I2 flowing through the second inductor L2 flows along the path of the fourth inductor L4, smoothing capacitor C6, common ground, second capacitor C2, and second conductor 12b.
  • the first capacitor C1, the second inductor L2, and the second capacitor C2 form a series resonance circuit for receiving reflected waves.
  • Resonant frequencies of the series resonant circuit for receiving the forward wave and the series resonant circuit for receiving the reflected wave are equal to the frequency of the AC power supply 18 and are included in a predetermined frequency band including the frequency of the AC power supply 18. . Due to the series resonance, the reactance can be reduced in each current path of the receiving current I1 and the receiving current I2, and the voltage drop due to the reactance can be suppressed. Therefore, wireless power supply can be performed with high transmission efficiency using both electric field and magnetic field.
  • FIG. 4(a) is a circuit diagram of a contactless power supply system of a comparative example
  • FIG. 4(b) is an equivalent circuit diagram between the power transmission side circuit 110 and the power reception side circuit 112 of FIG. 4(a). .
  • the mutual capacitance C40 is the sum of the capacitance of the capacitors C30 and C32 due to electric field coupling and the parasitic capacitance between the inductors L30 and L32 due to magnetic coupling.
  • the leakage inductance L40 is the leakage inductance between the magnetically coupled inductors L30 and L32.
  • Parallel resonance of the parallel circuit of the mutual capacitance C40 and the leakage inductance L40 causes the output voltage of the power transmission side circuit 110 to drop and is transmitted to the power reception side circuit 112 . As a result, transmission efficiency and transmission capacity are degraded.
  • both the electric field and the magnetic field are used to receive the power of both the forward wave and the reflected wave. While suppressing, suppression of the reflected wave in the feeder line 10 can be made unnecessary.
  • the other end of the feeder line 10 does not need to be terminated with a terminating resistor. Therefore, power loss due to the termination resistance can be eliminated. For example, if the termination resistor is 50 ⁇ and the termination voltage is 300V, the power loss in the termination resistor is 1.8kW. Such relatively large power losses can be eliminated.
  • FIG. 5 is an equivalent circuit diagram of the contactless power supply system 1 of the first modified example of the first embodiment.
  • the contactless power receiving device 20 further includes a resonance capacitor C4 connected between one end and the other end of the coil 30 .
  • the resonance capacitor C4 and the coil 30 form a parallel resonance circuit.
  • the resonance frequency of the parallel resonance circuit is equivalent to the frequency of AC power supply 18 and is included in a predetermined frequency band including the frequency of AC power supply 18 .
  • Parallel resonance can further reduce the reactance that could not be eliminated by series resonance. Therefore, the transmission efficiency can be made higher.
  • FIG. 6 is an equivalent circuit diagram of the contactless power supply system 1 of the second modification of the first embodiment.
  • the configuration of the power combining circuit 24 is different.
  • the power combining circuit 24 has a first rectifying element D1, a second rectifying element D2, a third rectifying element D3 and a fourth rectifying element D4.
  • An anode of the third rectifying element D3 is connected to one end of the coil 30 .
  • the anode of the fourth rectifying element D4 is connected to the other end of the coil 30.
  • the cathode of the third rectifying element D3 and the cathode of the fourth rectifying element D4 are connected, and combined power is output from these connection nodes.
  • the first rectifying device D1 and the third rectifying device D3 constitute a voltage doubler rectifying circuit
  • the second rectifying device D2 and the fourth rectifying device D4 also constitute a voltage doubler rectifying circuit.
  • power acquisition circuit 22 may function as a current source. In that case, by using a voltage doubler rectifier circuit, rectification and power combining can be performed more appropriately.
  • FIG. 7 is an equivalent circuit diagram of the contactless power supply system 1 of the third modification of the first embodiment.
  • the power acquisition circuit 22 has an adjustment circuit 40 connected between the midpoint N1 of the coil 30 and the second electrode 34, which is a common ground.
  • the adjustment circuit 40 adjusts at least one of the voltage and current at the midpoint N1. Thereby, the characteristics of the power acquisition circuit 22 can be adjusted.
  • the adjustment circuit 40 has, for example, a resistor or adjustment capacitor connected between the midpoint N1 and common ground. A resistor and an adjusting capacitor may be connected in parallel between the midpoint N1 and the common ground.
  • the resistance value is set large so as to reduce the drop in the AC voltage at the midpoint N1. Basically, it is difficult to generate a DC bias voltage at the middle point N1, but if it is generated for some reason, the resistor can eliminate the DC bias voltage at the middle point N1. As a result, the DC bias voltage can be prevented from adversely affecting the operation of the power combiner circuit 24 .
  • the AC voltage at the midpoint N1 can be adjusted by dividing the voltage of the first conductor 12a by the first capacitor C1 and the adjustment capacitor of the adjustment circuit 40. This makes it possible to improve the accuracy of separating the traveling wave and the reflected wave. It is also possible to adjust the resonance frequency.
  • FIG. 8 is an equivalent circuit diagram of the contactless power supply system 1 of the fourth modification of the first embodiment.
  • the contactless power receiving device 20 further includes a detection section 42 and an adjustment section 44 .
  • the detector 42 detects the current flowing through the coil 30 .
  • the adjuster 44 adjusts the inductance of the coil 30 and the capacitance of the first capacitor C1 based on the current detected by the detector 42 .
  • the adjuster 44 may also adjust the capacitance of the second capacitor C2.
  • the coil 30 is configured so that the number of turns, that is, the inductance, can be changed under the control of the adjustment unit 44 .
  • a well-known technique can be used to change the number of turns.
  • the number of turns may be changed stepwise by switching between conduction and non-conduction of a switch element (not shown).
  • the first capacitor C1 is configured such that its capacitance can be changed under the control of the adjustment section 44.
  • a well-known technique can be used to change the capacitance. For example, by switching between conduction and non-conduction of a switch element (not shown), the area of the first electrode 32 can be changed to change the capacitance stepwise.
  • the contactless power receiving device 20 is a power supply line designed to match a known power receiving device that receives power using only an electric field, or a known power receiving device that receives power using only a magnetic field. Power can also be received from the feeder line using both electric and magnetic fields. For example, when power is received from a power supply line for a power receiving apparatus that uses only an electric field, in the non-contact power receiving apparatus 20 designed according to the characteristic impedance of the power supply line 10 of the first embodiment, the current flowing through the coil 30 is 1 embodiment. Therefore, the adjustment unit 44 increases the inductance of the coil 30 by a first predetermined amount when the current detected by the detection unit 42 is equal to or less than the threshold value. Thereby, the current flowing through the coil 30 can be increased.
  • the adjustment unit 44 reduces the capacitance of the first capacitor C1 by a second predetermined amount when the current detected by the detection unit 42 is equal to or less than the threshold value.
  • the resonance frequency of the series resonance circuit which changes by adjusting the inductance of the coil 30, can be made close to the frequency of the AC power supply 18.
  • FIG. Therefore, the received power can be increased according to the characteristics of the existing power supply line.
  • FIG. 9 is a diagram for explaining a schematic configuration of the contactless power supply system 1 of the fifth modification of the first embodiment.
  • the two first electrodes 32 and the two second electrodes 34 are metal parts inside the wheel 104 respectively. Also in this configuration, the first electrode 32 can be electrically coupled to the first conductor 12a, and the second electrode 34 can be electrically coupled to the second conductor 12b. In this case, the degree of freedom in configuration of the non-contact power receiving device 20 can be improved.
  • FIG. 10 is a perspective view of the feeder line 10 of the sixth modification of the first embodiment.
  • the feeder line 10 is a transmission line including one first conductor 12a.
  • One end of the AC power source 18 is connected to one end of the first conductor 12a, and the other end of the AC power source 18 is connected to a ground rod (not shown) to ground.
  • a ground path plate may be provided under the first conductor 12a, and the other end of the AC power supply 18 may be connected to the ground path plate.
  • a ground or ground routing plate serves as the second conductor.
  • the other end of the first conductor 12a is open.
  • the other end of the first conductor 12a may be shorted to ground or a ground routing plate.
  • FIG. 10 also shows the positional relationship between the coil 30 and the first electrode 32 with respect to the feeder line 10 .
  • the coil 30 is arranged so that the coil surface is substantially perpendicular to the road and substantially parallel to the extending direction of the first conductor 12a. In other words, the coil 30 is arranged so that the magnetic flux generated from the first conductor 12a penetrates the coil 30 .
  • the first electrode 32 is arranged to face the first conductor 12a.
  • the second electrode 34 may not be provided, or may be arranged to face the ground or a ground path plate (not shown). If the second electrode 34 is not provided, the vehicle body 102 functioning as the second electrode is electrically coupled to the ground or ground path plate functioning as the second conductor, and a second capacitor is provided between the vehicle body 102 and the ground or ground path plate. C2 is formed.
  • the operation of this contactless power supply system 1 is similar to that of the first embodiment. In this modification, the flexibility of the configuration of the feeder line 10 can be improved. Installation of the feed line 10 can also be performed more easily.
  • the feeder line 10 may include three or more conductors.
  • a central conductor may be placed at the lane boundary on a two-lane road, and one conductor may be placed in each lane. Vehicles traveling in one lane receive power from the lane conductor and the center conductor. The central conductor is shared by vehicles traveling in each lane.
  • FIG. 11 is an equivalent circuit diagram of the contactless power supply system 1 of the second embodiment.
  • the first electrode 32 has a third electrode 36 and a fourth electrode 38 .
  • a third electrode 36 is electrically coupled to the first conductor 12 a and connected to one end of the coil 30 .
  • a fourth electrode 38 is electrically coupled to the first conductor 12 a and connected to the other end of the coil 30 .
  • the third electrode 36 and the fourth electrode 38 are, for example, rectangular metal plates, and are arranged on the bottom surface of the vehicle body 102 of the moving body 100 so that each plate surface is substantially parallel to the road.
  • the third electrode 36 and the fourth electrode 38 are maintained facing the first conductor 12a when the moving body 100 is stopped and during movement.
  • Each area of the third electrode 36 and the fourth electrode 38 is, for example, equal.
  • a first capacitor C1 is formed between the electric field-coupled third electrode 36 and the first conductor 12a.
  • a third capacitor C3 is formed between the electric field coupled fourth electrode 38 and the first conductor 12a. The capacitances of the first capacitor C1 and the third capacitor C3 are the same.
  • the first capacitor C1, the third capacitor C3, the transformer T1 and the transformer T2 constitute a CMC type directional coupler. Assuming a situation in which the voltages of the traveling wave and the reflected wave are in phase and the currents of the waves are in opposite phase, due to the configuration of the directional coupler, the received current I1 due to the traveling wave is transferred to the first conductor 12a and the third capacitor C3. , the second inductor L2 and the first inductor L1, and the current flowing through the first conductor 12a and the first capacitor C1.
  • the received current I2 due to the reflected wave is the sum of the current flowing through the path of the first conductor 12a and the third capacitor C3 and the current flowing through the path of the first conductor 12a, the first capacitor C1, the first inductor L1, and the second inductor L2. It is harmony. As a result, the first alternating current power generated by the traveling wave can be output from one end of the coil 30 and the second alternating current power generated by the reflected wave can be output from the other end of the coil 30 .
  • a CMC-type directional coupler can separate the traveling wave and the reflected wave more clearly.
  • the power receiving current I1 flows through the power combining circuit 24, the smoothing capacitor C6, the common ground, the second capacitor C2, and the second conductor 12b.
  • the power receiving current I2 flows through the power combining circuit 24, the smoothing capacitor C6, the common ground, the second capacitor C2, and the second conductor 12b.
  • the inductance of the coil 30 and the capacitances of the first capacitor C1, the third capacitor C3 and the second capacitor C2 are set so that the reactance is reduced by resonance in the current path from the first conductor 12a to the second conductor 12b. good too. Thereby, voltage drop due to reactance can be suppressed. Therefore, wireless power supply can be performed with high transmission efficiency using both electric field and magnetic field.
  • any two or more of the first to sixth modifications of the first embodiment may be combined.
  • a new embodiment resulting from combination has the effects of each of the combined embodiments.
  • the adjustment unit 44 may also adjust the capacitance of the resonance capacitor C4 so that the parallel resonance frequency approaches the frequency of the AC power supply 18. good.
  • each of the first, second, fourth to sixth modifications of the first embodiment may be combined with the second embodiment. Any two or more of the first, second, fourth to sixth modifications may be combined with the second embodiment. A new embodiment resulting from combination has the effects of each of the combined embodiments.
  • the adjustment unit 44 adjusts the inductance of the coil 30, the capacitance of the first capacitor C1, and the third capacitor C3 based on the current detected by the detection unit 42. may be adjusted.
  • the non-contact power supply system 1 includes, for example, railways, electric aircraft, playground equipment such as roller coasters in amusement parks, cleaning robots, delivery robots, guide robots, etc., self-propelled transport equipment in factory premises, and models. It can be applied to toys such as automobiles. When applied to an electric aircraft, power can be supplied while taxiing.
  • the power supply line 10 may be arranged on a charging stand, and the non-contact power receiving device 20 may be mounted on a mobile device such as a smart phone.
  • the portable device can be charged by placing it at any position on the power supply line 10 of the charging stand.
  • a non-contact power receiving device includes a coil magnetically coupled to a power supply line having one end connected to an AC power supply, and a first electrode electrically coupled to the power supply line, wherein the coil and the first a first alternating current power by a traveling wave propagating from one end of the power supply line to the other end, and a second alternating current power by a reflected wave propagating from the other end to the one end of the power feeding line through the electrodes; and a power combining circuit for combining the first AC power and the second AC power acquired by the power acquiring circuit and outputting the combined power.
  • the feed line includes a first conductor and a second conductor arranged in parallel, the first electrode is electrically coupled to the first conductor and connected to a midpoint of the coil, and one end of the coil is: The first AC power is output, the other end of the coil outputs the second AC power, the power acquisition circuit further includes a second electrode that is electrically coupled to the second conductor, and the power combining The circuit may output a voltage that is referenced to the voltage of said second electrode.
  • a CM type directional coupler can be constructed.
  • a first capacitor formed between the first electrode and the first conductor, a portion between the midpoint of the coil and one end or the other end, and between the second electrode and the second conductor may form a series resonant circuit.
  • the series resonance can reduce the reactance of the current path from the first conductor to the second conductor via the coil.
  • the non-contact power receiving device includes a detection unit that detects current flowing through the coil, and an adjustment unit that adjusts the inductance of the coil and the capacitance of the first capacitor based on the current detected by the detection unit. , may be further provided. In this case, the received power can be increased according to the characteristics of the power supply line.
  • the power acquisition circuit may further include an adjustment circuit that adjusts at least one of voltage and current at the midpoint of the coil. In this case, the characteristics of the power acquisition circuit can be adjusted.
  • the power supply line includes a first conductor and a second conductor arranged in parallel, one end of the coil outputs the first AC power, and the other end of the coil outputs the second AC power.
  • the power acquisition circuit may further comprise a second electrode electrically coupled to the second conductor, and the power combining circuit may output a voltage referenced to the voltage of the second electrode.
  • the first electrode includes a third electrode electrically coupled to the first conductor and connected to one end of the coil, and a fourth electrode electrically coupled to the first conductor and connected to the other end of the coil.
  • a CMC type directional coupler can be constructed, and the traveling wave and the reflected wave can be separated more clearly.
  • the non-contact power receiving device includes a detection unit that detects a current flowing through the coil, and based on the current detected by the detection unit, a current is detected between the inductance of the coil and between the third electrode and the first conductor. It may further comprise an adjusting unit that adjusts the capacitance of the formed first capacitor and the capacitance of the third capacitor formed between the fourth electrode and the first conductor. In this case, the received power can be increased according to the characteristics of the power supply line.
  • the contactless power receiving device may further include a resonance capacitor connected between one end and the other end of the coil. In this case, parallel resonance by the coil and the resonance capacitor can further reduce the reactance.
  • a contactless power supply system includes a power supply line having one end connected to an AC power supply, and a contactless power receiving device that receives power from the power supply line.
  • the non-contact power receiving device has a coil that is magnetically coupled to the power supply line and a first electrode that is electrically coupled to the power supply line, and the power supply line is connected to the power supply line via the first coil and the first electrode.
  • a power acquisition circuit for acquiring first AC power by a traveling wave propagating from one end to the other end and acquiring second AC power by a reflected wave propagating from the other end to the one end of the feeder line; and a power combining circuit that combines the first AC power and the second AC power acquired by the acquisition circuit and outputs the combined power.
  • the other end of the feeder line may be open or short-circuited. In this case, power loss can be reduced compared to the case where a terminating resistor for impedance matching is connected to the feeder line.
  • the present disclosure can be used for contactless power receiving devices and contactless power supply systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

In this non-contact power receiving device 20, a power acquiring circuit 22 has: a coil 30 that is coupled by a magnetic field to a power feeding line 10 having one end connected to an AC power supply; and a first electrode 32 that is coupled by an electronic field to the power feeding line 10. The power acquiring circuit 22 acquires, through the coil 30 and the first electrode 32, a first AC power transmitted by traveling waves propagating on the power feeding line 10 from one end toward the other end and a second AC power transmitted by reflected waves propagating on the power feeding line 10 from the other end toward the one end. A power synthesis circuit 24 synthesizes the first AC power and the second AC power which are acquired by the power acquiring circuit 22 and outputs the synthesized power.

Description

非接触受電装置および非接触給電システムContactless power receiving device and contactless power supply system 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年2月10日に出願された日本国特許出願2021-19679号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2021-19679 filed on February 10, 2021, and claims the benefit of priority thereof. incorporated herein by reference.
 本開示は、非接触受電装置および非接触給電システムに関する。 The present disclosure relates to a contactless power receiving device and a contactless power supply system.
 従来、車両に非接触で電力を伝送し、伝送した電力で車両を走行させる非接触給電システムが提案されている。たとえば特許文献1は、車両の走行路に沿って複数のコイルを配置し、車両の位置に応じて電力伝送するコイルを切り替える走行中非接触給電システムを開示する。 Conventionally, a contactless power supply system has been proposed that transmits electric power to a vehicle in a contactless manner and uses the transmitted electric power to drive the vehicle. For example, Patent Literature 1 discloses a non-contact power feeding system during travel, in which a plurality of coils are arranged along a travel path of a vehicle and coils for power transmission are switched according to the position of the vehicle.
特開2020-48369号公報JP 2020-48369 A
 本発明者らは、道路に沿って設置した伝送線路から車両に電力供給することで、複数のコイルを配置する技術よりも伝送線路を広範囲に設置しやすくなり、非接触給電システムを低コスト化できることを認識した。しかし、伝送線路に反射波が存在する場合、進行波の電流と反射波の電流が弱め合う位置が生じ、磁界を利用して給電する場合にはその位置で磁界による受電電力が低下する。また、伝送線路において進行波の電圧と反射波の電圧が弱め合う位置も生じるため、電界を利用して給電する場合にはその位置で受電電力が低下する。反射波を抑制するため伝送線路に終端抵抗器を設けると、終端抵抗器による電力損失が生じる。そのため、本発明者らは、受電電力の低下を抑制しつつ、反射波の抑制を不要にすることが望ましいことを認識した。 The present inventors have found that by supplying power to vehicles from transmission lines installed along roads, it becomes easier to install transmission lines over a wider area than the technique of arranging multiple coils, thereby reducing the cost of the contactless power supply system. I realized I could. However, when a reflected wave exists in the transmission line, there is a position where the current of the forward wave and the current of the reflected wave weaken each other. In addition, since the voltage of the traveling wave and the voltage of the reflected wave weaken each other at some positions in the transmission line, the received power decreases at those positions when power is supplied using an electric field. If a terminating resistor is provided in the transmission line to suppress reflected waves, power loss occurs due to the terminating resistor. Therefore, the inventors of the present invention have recognized that it is desirable to eliminate the need to suppress reflected waves while suppressing a decrease in received power.
 本開示の例示的な目的の一つは、受電電力の低下を抑制しつつ、給電線路での反射波の抑制を不要にできる非接触受電装置および非接触給電システムを提供することにある。 One exemplary purpose of the present disclosure is to provide a contactless power receiving device and a contactless power supply system that can eliminate the need to suppress a reflected wave on a power supply line while suppressing a decrease in received power.
 上記課題を解決するために、本開示のある態様の非接触受電装置は、交流電源が一端に接続された給電線路に磁界結合するコイルと、給電線路に電界結合する第1電極とを有し、コイルと第1電極とを介して、給電線路を一端から他端に向けて伝搬する進行波による第1交流電力、および、給電線路を他端から一端に向けて伝搬する反射波による第2交流電力を取得する電力取得回路と、電力取得回路で取得された第1交流電力と第2交流電力を合成し、合成された電力を出力する電力合成回路と、を備える。 In order to solve the above problems, a non-contact power receiving device according to one aspect of the present disclosure includes a coil magnetically coupled to a power supply line having one end connected to an AC power supply, and a first electrode electrically coupled to the power supply line. , through the coil and the first electrode, a first alternating current power by a traveling wave propagating from one end to the other end of the power supply line, and a second power by a reflected wave propagating from the other end to the one end of the power supply line A power acquisition circuit that acquires AC power, and a power combining circuit that combines the first AC power and the second AC power acquired by the power acquisition circuit and outputs the combined power.
 本開示の別の態様は、非接触給電システムである。この非接触給電システムは、交流電源が一端に接続された給電線路と、給電線路から電力を受電する非接触受電装置と、を備える。非接触受電装置は、給電線路に磁界結合するコイルと、給電線路に電界結合する第1電極とを有し、コイルと第1電極とを介して、給電線路を一端から他端に向けて伝搬する進行波による第1交流電力、および、給電線路を他端から一端に向けて伝搬する反射波による第2交流電力を取得する電力取得回路と、電力取得回路で取得された第1交流電力と第2交流電力を合成し、合成された電力を出力する電力合成回路と、を備える。 Another aspect of the present disclosure is a contactless power supply system. This contactless power supply system includes a power supply line to which an AC power supply is connected at one end, and a contactless power receiving device that receives power from the power supply line. The contactless power receiving device has a coil magnetically coupled to the power supply line and a first electrode electrically coupled to the power supply line, and propagates from one end of the power supply line to the other end via the coil and the first electrode. a power acquisition circuit for acquiring a first AC power by a traveling wave and a second AC power by a reflected wave propagating from the other end to one end of the feeder line; and the first AC power acquired by the power acquisition circuit and a power combining circuit that combines the second AC power and outputs the combined power.
 なお、以上の構成要素の任意の組み合わせや、本開示の構成要素や表現を方法、システムなどの間で相互に置換したものもまた、本開示の態様として有効である。 It should be noted that any combination of the above constituent elements, and mutual replacement of the constituent elements and expressions of the present disclosure between methods, systems, etc. are also effective as aspects of the present disclosure.
 本開示によれば、受電電力の低下を抑制しつつ、給電線路での反射波の抑制を不要にできる非接触受電装置および非接触給電システムを提供できる。 According to the present disclosure, it is possible to provide a contactless power receiving device and a contactless power supply system that can eliminate the need to suppress reflected waves on a power supply line while suppressing a decrease in received power.
第1の実施の形態の非接触給電システムの概略構成を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating schematic structure of the contactless electric power feeding system of 1st Embodiment. 図1の給電線路の斜視図である。2 is a perspective view of the feeder line of FIG. 1; FIG. 図1の非接触給電システムの等価回路図である。2 is an equivalent circuit diagram of the contactless power supply system of FIG. 1; FIG. 図4(a)は、比較例の非接触給電システムの回路図であり、図4(b)は、図4(a)の送電側回路と受電側回路の間の等価回路図である。FIG. 4(a) is a circuit diagram of a contactless power supply system of a comparative example, and FIG. 4(b) is an equivalent circuit diagram between the power transmission side circuit and the power reception side circuit of FIG. 4(a). 第1の実施の形態の第1変形例の非接触給電システムの等価回路図である。It is an equivalent circuit diagram of the non-contact electric power supply system of the 1st modification of 1st Embodiment. 第1の実施の形態の第2変形例の非接触給電システムの等価回路図である。It is an equivalent circuit diagram of the non-contact electric power supply system of the 2nd modification of 1st Embodiment. 第1の実施の形態の第3変形例の非接触給電システムの等価回路図である。It is an equivalent circuit diagram of the non-contact electric power supply system of the 3rd modification of 1st Embodiment. 第1の実施の形態の第4変形例の非接触給電システムの等価回路図である。It is an equivalent circuit diagram of the non-contact electric power supply system of the 4th modification of 1st Embodiment. 第1の実施の形態の第5変形例の非接触給電システムの概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the non-contact electric power feeding system of the 5th modification of 1st Embodiment. 第1の実施の形態の第6変形例の給電線路の斜視図である。It is a perspective view of the feeder line of the 6th modification of 1st Embodiment. 第2の実施の形態の非接触給電システムの等価回路図である。FIG. 10 is an equivalent circuit diagram of the contactless power supply system of the second embodiment;
(第1の実施の形態)
 図1は、第1の実施の形態の非接触給電システム1の概略構成を説明するための図である。図2は、図1の給電線路10の斜視図である。図3は、図1の非接触給電システム1の等価回路図である。
(First embodiment)
FIG. 1 is a diagram for explaining a schematic configuration of a contactless power supply system 1 according to the first embodiment. 2 is a perspective view of the feeder line 10 of FIG. 1. FIG. FIG. 3 is an equivalent circuit diagram of the contactless power supply system 1 of FIG.
 非接触給電システム1は、たとえば道路などの移動路上の移動体100にワイヤレス給電を行う。非接触給電システム1は、移動体100が停止していても移動していても給電できる。移動体100は、たとえば自動車などの車両である。非接触給電システム1は、給電線路10および非接触受電装置20を備える。 The contactless power supply system 1 wirelessly powers a moving object 100 on a moving path such as a road. The contactless power supply system 1 can supply power even when the moving body 100 is stopped or moving. Mobile object 100 is, for example, a vehicle such as an automobile. A contactless power supply system 1 includes a power supply line 10 and a contactless power receiving device 20 .
 給電線路10の一端には交流電源18が接続され、給電線路10の他端は開放されている。給電線路10の他端は短絡されてもよい。給電線路10は、所定間隔を空けて並列に道路に沿って配置された第1導体12aと第2導体12bを含む。第1導体12aの一端と第2導体12bの一端の間に交流電源18から交流電力が供給される。第1導体12aと第2導体12bは、それぞれ板状の細長い電極であり、送電極板ともよべる。第1導体12aと第2導体12bは、メッシュ状の電極であってもよい。図示しないが、給電線路10は、アスファルトなどで覆われ、道路に埋め込まれている。道路は、電化道路ともよべる。 An AC power supply 18 is connected to one end of the feeder line 10, and the other end of the feeder line 10 is open. The other end of the feeder line 10 may be short-circuited. The feeder line 10 includes a first conductor 12a and a second conductor 12b that are arranged in parallel along the road at a predetermined interval. AC power is supplied from an AC power supply 18 between one end of the first conductor 12a and one end of the second conductor 12b. Each of the first conductor 12a and the second conductor 12b is a plate-like elongated electrode, and can also be called a transmission electrode plate. The first conductor 12a and the second conductor 12b may be mesh electrodes. Although not shown, the feeder line 10 is covered with asphalt or the like and embedded in the road. The road is also called an electrified road.
 給電線路10は、交流電源18から供給される高周波電力の伝送線路として機能する。給電線路10の特性インピーダンスにもとづいて給電線路10に電圧Vと電流Iが発生し、電界Eと磁界Hが発生する。給電線路10は、電界Eと磁界Hの両方により非接触受電装置20に給電する。 The feeder line 10 functions as a transmission line for high-frequency power supplied from the AC power supply 18 . A voltage V and a current I are generated in the feed line 10 based on the characteristic impedance of the feed line 10, and an electric field E and a magnetic field H are generated. The power feeding line 10 feeds the non-contact power receiving device 20 with both the electric field E and the magnetic field H. FIG.
 交流電源18の周波数は、給電線路10の伝送線路としての特性と、移動体100の大きさに対する波長の関係から、実験やシミュレーションにより適宜定めることができ、たとえば1MHz~100MHzである。給電線路10の長さが短いほど、高い周波数が好ましい。 The frequency of the AC power supply 18 can be appropriately determined through experiments and simulations based on the transmission line characteristics of the feeder line 10 and the relationship between the wavelength and the size of the moving body 100, and is, for example, 1 MHz to 100 MHz. A higher frequency is preferable as the length of the feeder line 10 is shorter.
 非接触受電装置20は、移動体100に搭載される。移動体100は給電線路10上を移動し、移動体100の停止中および移動中に、非接触受電装置20は給電線路10から電力を受電する。受電した電力は、移動体100の車輪の駆動などに利用される。 The contactless power receiving device 20 is mounted on the moving object 100 . The mobile object 100 moves on the power supply line 10 , and the non-contact power receiving device 20 receives power from the power supply line 10 while the mobile object 100 is stopped and moving. The received electric power is used to drive the wheels of the moving body 100 and the like.
 既述のように給電線路10の他端は開放されているため、給電線路10には進行波に加えて反射波が存在する。非接触受電装置20は、方向性結合器の原理を利用して、進行波と反射波の両方から電力を受電する。 As described above, since the other end of the feeder line 10 is open, the feeder line 10 has reflected waves in addition to traveling waves. The contactless power receiving device 20 uses the principle of a directional coupler to receive power from both traveling waves and reflected waves.
 図1と図3に示すように、非接触受電装置20は、電力取得回路22、電力合成回路24、平滑回路26、および、負荷28を備える。 As shown in FIGS. 1 and 3, the contactless power receiving device 20 includes a power acquisition circuit 22, a power combining circuit 24, a smoothing circuit 26, and a load .
 電力取得回路22は、第1導体12aと第2導体12bに磁界結合するコイル30と、第1導体12aに電界結合する第1電極32と、第2導体12bに電界結合する第2電極34とを有する。 The power acquisition circuit 22 includes a coil 30 magnetically coupled to the first conductor 12a and the second conductor 12b, a first electrode 32 electrically coupled to the first conductor 12a, and a second electrode 34 electrically coupled to the second conductor 12b. have
 電力取得回路22は、コイル30と第1電極32と第2電極34とを介して、給電線路10を一端から他端に向けて伝搬する進行波による第1交流電力を取得し、給電線路を他端から一端に向けて伝搬する反射波による第2交流電力を取得する。コイル30の一端は第1交流電力を電力合成回路24に出力し、コイル30の他端は第2交流電力を電力合成回路24に出力する。 The power acquisition circuit 22 acquires first AC power from a traveling wave propagating from one end of the power supply line 10 to the other end via the coil 30, the first electrode 32, and the second electrode 34, and supplies the power supply line with the power. A second AC power is obtained by a reflected wave propagating from the other end to the one end. One end of the coil 30 outputs the first AC power to the power combining circuit 24 and the other end of the coil 30 outputs the second AC power to the power combining circuit 24 .
 コイル30は、移動体100の車体102の底面に、コイル面が道路に対して略平行となるように配置されている。つまり、コイル30は、第1導体12aと第2導体12bから発生した磁束がコイル30を貫くように配置されている。移動体100の停止時および移動中、磁束がコイル30を貫く状態に維持される。コイル30は、磁性体コアを含んでもよい。 The coil 30 is arranged on the bottom surface of the vehicle body 102 of the moving body 100 so that the coil surface is substantially parallel to the road. That is, the coil 30 is arranged so that the magnetic flux generated from the first conductor 12 a and the second conductor 12 b penetrates the coil 30 . Magnetic flux is maintained through the coil 30 when the moving body 100 is at rest and during movement. Coil 30 may include a magnetic core.
 第1電極32と第2電極34は、たとえば矩形状の金属板であり、移動体100の車体102の底面に、互いに略平行となり、かつ、各板面が道路と略平行となるように配置されている。移動体100の停止時および移動中、第1電極32は第1導体12aと向かい合い、第2電極34は第2導体12bと向かい合う状態に維持される。第1電極32と第2電極34の各面積は、たとえば同等である。第1電極32と第2電極34は、受電極板ともよべる。 The first electrode 32 and the second electrode 34 are, for example, rectangular metal plates, and are arranged on the bottom surface of the vehicle body 102 of the moving body 100 such that they are substantially parallel to each other and each plate surface is substantially parallel to the road. It is When the moving body 100 stops and moves, the first electrode 32 faces the first conductor 12a and the second electrode 34 faces the second conductor 12b. Each area of the first electrode 32 and the second electrode 34 is, for example, equal. The first electrode 32 and the second electrode 34 are also referred to as receiving electrode plates.
 第1電極32は、コイル30の中点N1に接続される。中点N1は、コイル30の中点N1と一端との間のインダクタンスと、コイル30の中点N1と他端との間のインダクタンスとが同等になる点である。図3では、コイル30の中点N1と一端との間の部分を第1インダクタL1、コイル30の中点N1と他端との間の部分を第2インダクタL2として表す。 The first electrode 32 is connected to the midpoint N1 of the coil 30. The midpoint N1 is the point where the inductance between the midpoint N1 and one end of the coil 30 and the inductance between the midpoint N1 and the other end of the coil 30 are equal. In FIG. 3, the portion between the midpoint N1 and one end of the coil 30 is represented as a first inductor L1, and the portion between the midpoint N1 and the other end of the coil 30 is represented as a second inductor L2.
 第2電極34は、移動体100の車体102に電気的に接続される。車体102は、金属などの導体で構成され、移動体100における共通グランドとして機能する。共通グランドは、道路、第1導体12a、第2導体12bから電位が浮いている。 The second electrode 34 is electrically connected to the vehicle body 102 of the mobile body 100 . The vehicle body 102 is made of a conductor such as metal, and functions as a common ground for the mobile body 100 . The common ground has a floating potential from the road, the first conductor 12a, and the second conductor 12b.
 図3に示すように、コイル30の第1インダクタL1は、磁界結合した第1導体12aのインダクタンス成分L10とともにトランスT1を形成する。コイル30の第2インダクタL2は、磁界結合した第2導体12bのインダクタンス成分L11とともにトランスT2を形成する。 As shown in FIG. 3, the first inductor L1 of the coil 30 forms a transformer T1 together with the inductance component L10 of the magnetically coupled first conductor 12a. The second inductor L2 of the coil 30 forms a transformer T2 together with the inductance component L11 of the magnetically coupled second conductor 12b.
 電界結合した第1電極32と第1導体12aとの間に第1キャパシタC1が形成される。電界結合した第2電極34と第2導体12bとの間に第2キャパシタC2が形成される。第1キャパシタC1と第2キャパシタC2のキャパシタンスは同等である。車体102とは別の第2電極34を設けることで、第2キャパシタC2のキャパシタンスを容易に設計できる。なお、第2電極34は車体102とは別に設けられなくてもよい。この場合、車体102が第2電極34として機能し、車体102が第2導体12bに電界結合し、車体102と第2導体12bとの間に第2キャパシタC2が形成される。 A first capacitor C1 is formed between the electric field-coupled first electrode 32 and the first conductor 12a. A second capacitor C2 is formed between the electric field coupled second electrode 34 and the second conductor 12b. The capacitances of the first capacitor C1 and the second capacitor C2 are the same. By providing the second electrode 34 separate from the vehicle body 102, the capacitance of the second capacitor C2 can be easily designed. Note that the second electrode 34 may not be provided separately from the vehicle body 102 . In this case, the vehicle body 102 functions as the second electrode 34, the vehicle body 102 is electrically coupled to the second conductor 12b, and the second capacitor C2 is formed between the vehicle body 102 and the second conductor 12b.
 第1キャパシタC1、トランスT1およびトランスT2は、CM型、より詳しくはCCM型の方向性結合器を構成する。進行波と反射波の電圧が同位相で、それらの電流が逆位相である状況を想定すると、方向性結合器の構成により、進行波による受電電流I1は、第1導体12a、第1キャパシタC1、第1インダクタL1の経路で流れる。反射波による受電電流I2は、第1導体12a、第1キャパシタC1、第2インダクタL2の経路で流れる。これにより、進行波による第1交流電力をコイル30の一端から出力でき、反射波による第2交流電力をコイル30の他端から出力できる。 The first capacitor C1, the transformer T1 and the transformer T2 constitute a CM type, more specifically a CCM type directional coupler. Assuming a situation in which the voltages of the traveling wave and the reflected wave are in phase and the currents of the waves are in opposite phase, due to the configuration of the directional coupler, the received current I1 due to the traveling wave flows through the first conductor 12a and the first capacitor C1. , in the path of the first inductor L1. A received current I2 due to the reflected wave flows along the path of the first conductor 12a, the first capacitor C1, and the second inductor L2. As a result, the first alternating current power generated by the traveling wave can be output from one end of the coil 30 and the second alternating current power generated by the reflected wave can be output from the other end of the coil 30 .
 電力合成回路24は、コイル30の両端に接続され、電力取得回路22で取得された第1交流電力と第2交流電力を合成し、合成された電力を平滑回路26に出力する。 The power combining circuit 24 is connected to both ends of the coil 30 , combines the first AC power and the second AC power acquired by the power acquisition circuit 22 , and outputs the combined power to the smoothing circuit 26 .
 電力合成回路24は、倍電流整流回路であり、第1整流素子D1、第2整流素子D2、第3インダクタL3および第4インダクタL4を有する。第1整流素子D1と第2整流素子D2は、ダイオードである。第1整流素子D1のアノードは共通グランドに接続され、カソードはコイル30の一端に接続される。第2整流素子D2のアノードは共通グランドに接続され、カソードはコイル30の他端に接続される。第3インダクタL3の一端はコイル30の一端に接続される。第4インダクタL4の一端はコイル30の他端に接続される。第3インダクタL3の他端と第4インダクタL4の他端は接続され、これらの接続ノードから合成された電力を出力する。 The power combining circuit 24 is a current doubler rectifier circuit and has a first rectifying element D1, a second rectifying element D2, a third inductor L3 and a fourth inductor L4. The first rectifying element D1 and the second rectifying element D2 are diodes. The first rectifying element D1 has an anode connected to a common ground and a cathode connected to one end of the coil 30 . The second rectifying element D2 has an anode connected to the common ground and a cathode connected to the other end of the coil 30 . One end of the third inductor L3 is connected to one end of the coil 30 . One end of the fourth inductor L4 is connected to the other end of the coil 30 . The other end of the third inductor L3 and the other end of the fourth inductor L4 are connected, and combined power is output from these connection nodes.
 なお、コイル30の一端と、第1整流素子D1のカソードと第3インダクタL3の一端との接続ノードとの間に直流カット用のキャパシタが挿入され、コイル30の他端と、第2整流素子D2のカソードと第4インダクタL4の一端との接続ノードとの間に直流カット用のキャパシタが挿入されてもよい。 A DC cut capacitor is inserted between one end of the coil 30 and a connection node between the cathode of the first rectifying element D1 and one end of the third inductor L3, and the other end of the coil 30 and the second rectifying element A DC cut capacitor may be inserted between the cathode of D2 and a connection node with one end of the fourth inductor L4.
 平滑回路26は、電力合成回路24から出力された電力を平滑化し、平滑化した直流電力を負荷28に供給する。平滑回路26は、電力合成回路24から出力された電力が供給される一端と、共通グランドに接続された他端とを含む平滑キャパシタC6を有する。 The smoothing circuit 26 smoothes the power output from the power combining circuit 24 and supplies the smoothed DC power to the load 28 . The smoothing circuit 26 has a smoothing capacitor C6 having one end supplied with the power output from the power combining circuit 24 and the other end connected to a common ground.
 電力合成回路24と平滑回路26は、共通グランドの電圧である第2電極34の電圧を基準とする電圧を出力する。 The power combining circuit 24 and the smoothing circuit 26 output a voltage based on the voltage of the second electrode 34, which is the voltage of the common ground.
 負荷28の一端に直流電力が供給され、負荷28の他端は共通グランドに接続される。負荷28は、たとえば、走行駆動力を発生するモータ、車載機器、蓄電池などを含む。 DC power is supplied to one end of the load 28, and the other end of the load 28 is connected to a common ground. The load 28 includes, for example, a motor that generates driving force, an on-vehicle device, a storage battery, and the like.
 第1インダクタL1を流れる受電電流I1は、第3インダクタL3、平滑キャパシタC6、共通グランド、第2キャパシタC2、第2導体12bの経路に流れる。第1キャパシタC1、第1インダクタL1、第2キャパシタC2は、進行波受電用の直列共振回路を構成する。 The power receiving current I1 flowing through the first inductor L1 flows through the path of the third inductor L3, the smoothing capacitor C6, the common ground, the second capacitor C2, and the second conductor 12b. The first capacitor C1, the first inductor L1, and the second capacitor C2 form a series resonance circuit for receiving traveling waves.
 第2インダクタL2を流れる受電電流I2は、第4インダクタL4、平滑キャパシタC6、共通グランド、第2キャパシタC2、第2導体12bの経路に流れる。第1キャパシタC1、第2インダクタL2、第2キャパシタC2は、反射波受電用の直列共振回路を構成する。 The receiving current I2 flowing through the second inductor L2 flows along the path of the fourth inductor L4, smoothing capacitor C6, common ground, second capacitor C2, and second conductor 12b. The first capacitor C1, the second inductor L2, and the second capacitor C2 form a series resonance circuit for receiving reflected waves.
 進行波受電用の直列共振回路と反射波受電用の直列共振回路のそれぞれの共振周波数は、交流電源18の周波数と同等であり、交流電源18の周波数を含む予め定められた周波数帯に含まれる。直列共振により、受電電流I1と受電電流I2のそれぞれの電流経路においてリアクタンスを低減でき、リアクタンスによる電圧降下を抑制できる。したがって、電界と磁界の両方を用いて高い伝送効率でワイヤレス給電できる。 Resonant frequencies of the series resonant circuit for receiving the forward wave and the series resonant circuit for receiving the reflected wave are equal to the frequency of the AC power supply 18 and are included in a predetermined frequency band including the frequency of the AC power supply 18. . Due to the series resonance, the reactance can be reduced in each current path of the receiving current I1 and the receiving current I2, and the voltage drop due to the reactance can be suppressed. Therefore, wireless power supply can be performed with high transmission efficiency using both electric field and magnetic field.
 ここで、本発明者らが認識する電界と磁界の両方を用いて電力伝送する比較例の非接触給電システムを説明する。図4(a)は、比較例の非接触給電システムの回路図であり、図4(b)は、図4(a)の送電側回路110と受電側回路112の間の等価回路図である。 Here, a non-contact power supply system of a comparative example that uses both the electric field and the magnetic field recognized by the present inventors to transmit power will be described. FIG. 4(a) is a circuit diagram of a contactless power supply system of a comparative example, and FIG. 4(b) is an equivalent circuit diagram between the power transmission side circuit 110 and the power reception side circuit 112 of FIG. 4(a). .
 比較例では、図4(b)に示す相互キャパシタンスC40と漏れインダクタンスL40の並列回路が送電側回路110と受電側回路112の間に等価的に存在する。相互キャパシタンスC40は、電界結合によるキャパシタC30とキャパシタC32のキャパシタンスと、磁界結合するインダクタL30とインダクタL32間の寄生容量の和である。漏れインダクタンスL40は、磁界結合するインダクタL30とインダクタL32間の漏れインダクタンスである。相互キャパシタンスC40と漏れインダクタンスL40の並列回路が並列共振することで、送電側回路110の出力電圧が低下して受電側回路112に伝達される。そのため、伝送効率と伝送能力が低下する。 In the comparative example, a parallel circuit of mutual capacitance C40 and leakage inductance L40 shown in FIG. The mutual capacitance C40 is the sum of the capacitance of the capacitors C30 and C32 due to electric field coupling and the parasitic capacitance between the inductors L30 and L32 due to magnetic coupling. The leakage inductance L40 is the leakage inductance between the magnetically coupled inductors L30 and L32. Parallel resonance of the parallel circuit of the mutual capacitance C40 and the leakage inductance L40 causes the output voltage of the power transmission side circuit 110 to drop and is transmitted to the power reception side circuit 112 . As a result, transmission efficiency and transmission capacity are degraded.
 これに対して実施の形態では、既述のように送電側の第1導体12aから非接触受電装置20を介した送電側の第2導体12bまでの経路で直列共振するので、漏れインダクタンスが存在しても、伝送効率の低下を抑制できる。 On the other hand, in the embodiment, since series resonance occurs in the path from the first conductor 12a on the power transmission side to the second conductor 12b on the power transmission side via the non-contact power receiving device 20 as described above, leakage inductance exists. However, the decrease in transmission efficiency can be suppressed.
 実施の形態によれば、電界と磁界の両方を用いて、進行波と反射波の両方の電力を受電するので、給電線路10上の非接触受電装置20の位置に応じた受電電力の低下を抑制しつつ、給電線路10での反射波の抑制を不要にできる。 According to the embodiment, both the electric field and the magnetic field are used to receive the power of both the forward wave and the reflected wave. While suppressing, suppression of the reflected wave in the feeder line 10 can be made unnecessary.
 給電線路10の他端からの反射波を抑制する必要がないため、給電線路10の他端を終端抵抗で終端しなくてよい。そのため、終端抵抗による電力損失を無くすことができる。たとえば、終端抵抗が50Ωであり、終端電圧が300Vの場合、終端抵抗の電力損失は1.8kWである。このような比較的大きな電力損失を無くすことができる。 Since it is not necessary to suppress the reflected wave from the other end of the feeder line 10, the other end of the feeder line 10 does not need to be terminated with a terminating resistor. Therefore, power loss due to the termination resistance can be eliminated. For example, if the termination resistor is 50Ω and the termination voltage is 300V, the power loss in the termination resistor is 1.8kW. Such relatively large power losses can be eliminated.
 また、道路上の他車両などによるインピーダンス不整合が発生すると、そこから反射波が発生するが、この反射波を抑制する必要もない。そのため、道路上に複数の車両が存在する状況でも位置によらず高い伝送効率で給電できる。車両からの反射波の発生を抑制する必要がある場合には車両の位置に応じて終端負荷などの自動インピーダンス制御を行う技術も考えられるが、このような制御が必要ないため、回路と制御の複雑化、コスト増加、電力損失の増加を抑制できる。 Also, when impedance mismatch occurs due to other vehicles on the road, reflected waves are generated, but there is no need to suppress these reflected waves. Therefore, even when there are multiple vehicles on the road, power can be supplied with high transmission efficiency regardless of the location. If it is necessary to suppress the generation of reflected waves from the vehicle, a technology that automatically controls the impedance of the terminating load according to the position of the vehicle is also conceivable. Complications, increased costs, and increased power loss can be suppressed.
(第1の実施の形態の変形例)
 非接触給電システム1の様々な変形例が可能である。以下、第1の実施の形態との相違点を中心に説明する。
(Modification of the first embodiment)
Various modifications of the contactless power supply system 1 are possible. The following description will focus on differences from the first embodiment.
 図5は、第1の実施の形態の第1変形例の非接触給電システム1の等価回路図である。非接触受電装置20は、コイル30の一端と他端との間に接続された共振キャパシタC4をさらに備える。共振キャパシタC4とコイル30は、並列共振回路を構成する。並列共振回路の共振周波数は、交流電源18の周波数と同等であり、交流電源18の周波数を含む予め定められた周波数帯に含まれる。並列共振により、直列共振により無くすことができなかったリアクタンスをさらに低減できる。よって、伝送効率をより高くできる。 FIG. 5 is an equivalent circuit diagram of the contactless power supply system 1 of the first modified example of the first embodiment. The contactless power receiving device 20 further includes a resonance capacitor C4 connected between one end and the other end of the coil 30 . The resonance capacitor C4 and the coil 30 form a parallel resonance circuit. The resonance frequency of the parallel resonance circuit is equivalent to the frequency of AC power supply 18 and is included in a predetermined frequency band including the frequency of AC power supply 18 . Parallel resonance can further reduce the reactance that could not be eliminated by series resonance. Therefore, the transmission efficiency can be made higher.
 図6は、第1の実施の形態の第2変形例の非接触給電システム1の等価回路図である。電力合成回路24の構成が異なる。電力合成回路24は、第1整流素子D1、第2整流素子D2、第3整流素子D3および第4整流素子D4を有する。第3整流素子D3のアノードはコイル30の一端に接続される。第4整流素子D4のアノードはコイル30の他端に接続される。第3整流素子D3のカソードと第4整流素子D4のカソードは接続され、これらの接続ノードから合成された電力を出力する。第1整流素子D1と第3整流素子D3は倍電圧整流回路を構成し、第2整流素子D2と第4整流素子D4も倍電圧整流回路を構成する。回路設計によっては、電力取得回路22が電流源として機能する場合がある。その場合、倍電圧整流回路を利用することで、より適切に整流および電力合成できる。 FIG. 6 is an equivalent circuit diagram of the contactless power supply system 1 of the second modification of the first embodiment. The configuration of the power combining circuit 24 is different. The power combining circuit 24 has a first rectifying element D1, a second rectifying element D2, a third rectifying element D3 and a fourth rectifying element D4. An anode of the third rectifying element D3 is connected to one end of the coil 30 . The anode of the fourth rectifying element D4 is connected to the other end of the coil 30. As shown in FIG. The cathode of the third rectifying element D3 and the cathode of the fourth rectifying element D4 are connected, and combined power is output from these connection nodes. The first rectifying device D1 and the third rectifying device D3 constitute a voltage doubler rectifying circuit, and the second rectifying device D2 and the fourth rectifying device D4 also constitute a voltage doubler rectifying circuit. Depending on the circuit design, power acquisition circuit 22 may function as a current source. In that case, by using a voltage doubler rectifier circuit, rectification and power combining can be performed more appropriately.
 図7は、第1の実施の形態の第3変形例の非接触給電システム1の等価回路図である。電力取得回路22は、コイル30の中点N1と、共通グランドである第2電極34との間に接続された調整回路40を有する。調整回路40は、中点N1の電圧と電流の少なくとも一方を調整する。これにより、電力取得回路22の特性を調整できる。調整回路40は、たとえば、中点N1と共通グランドとの間に接続された抵抗または調整用キャパシタを有する。中点N1と共通グランドとの間に抵抗と調整用キャパシタが並列接続されてもよい。 FIG. 7 is an equivalent circuit diagram of the contactless power supply system 1 of the third modification of the first embodiment. The power acquisition circuit 22 has an adjustment circuit 40 connected between the midpoint N1 of the coil 30 and the second electrode 34, which is a common ground. The adjustment circuit 40 adjusts at least one of the voltage and current at the midpoint N1. Thereby, the characteristics of the power acquisition circuit 22 can be adjusted. The adjustment circuit 40 has, for example, a resistor or adjustment capacitor connected between the midpoint N1 and common ground. A resistor and an adjusting capacitor may be connected in parallel between the midpoint N1 and the common ground.
 調整回路40が抵抗を有する場合、中点N1の交流電圧の低下を小さくするよう抵抗値が大きく設定される。基本的には中点N1には直流バイアス電圧は発生し難いが、何らかの理由により発生した場合、抵抗により、中点N1の直流バイアス電圧を無くすことができる。これにより、直流バイアス電圧が電力合成回路24の動作に悪影響を与えないようにできる。 When the adjustment circuit 40 has a resistance, the resistance value is set large so as to reduce the drop in the AC voltage at the midpoint N1. Basically, it is difficult to generate a DC bias voltage at the middle point N1, but if it is generated for some reason, the resistor can eliminate the DC bias voltage at the middle point N1. As a result, the DC bias voltage can be prevented from adversely affecting the operation of the power combiner circuit 24 .
 調整回路40が調整用キャパシタを有する場合、第1キャパシタC1と調整回路40の調整用キャパシタにより第1導体12aの電圧を分圧することで中点N1の交流電圧を調整できる。これにより、進行波と反射波の分離の精度を高めることができる。共振周波数を調整することもできる。 When the adjustment circuit 40 has an adjustment capacitor, the AC voltage at the midpoint N1 can be adjusted by dividing the voltage of the first conductor 12a by the first capacitor C1 and the adjustment capacitor of the adjustment circuit 40. This makes it possible to improve the accuracy of separating the traveling wave and the reflected wave. It is also possible to adjust the resonance frequency.
 図8は、第1の実施の形態の第4変形例の非接触給電システム1の等価回路図である。非接触受電装置20は、検出部42と調整部44をさらに有する。検出部42は、コイル30に流れる電流を検出する。調整部44は、検出部42で検出された電流にもとづいて、コイル30のインダクタンスと第1キャパシタC1のキャパシタンスとを調整する。調整部44は、第2キャパシタC2のキャパシタンスも調整してもよい。 FIG. 8 is an equivalent circuit diagram of the contactless power supply system 1 of the fourth modification of the first embodiment. The contactless power receiving device 20 further includes a detection section 42 and an adjustment section 44 . The detector 42 detects the current flowing through the coil 30 . The adjuster 44 adjusts the inductance of the coil 30 and the capacitance of the first capacitor C1 based on the current detected by the detector 42 . The adjuster 44 may also adjust the capacitance of the second capacitor C2.
 コイル30は、調整部44の制御に従い、巻き数、すなわちインダクタンスを変更可能に構成されている。巻き数の変更には周知技術を利用でき、たとえば図示しないスイッチ素子の導通と非導通を切り替えることで段階的に変更してよい。 The coil 30 is configured so that the number of turns, that is, the inductance, can be changed under the control of the adjustment unit 44 . A well-known technique can be used to change the number of turns. For example, the number of turns may be changed stepwise by switching between conduction and non-conduction of a switch element (not shown).
 第1キャパシタC1は、調整部44の制御に従い、キャパシタンスを変更可能に構成されている。キャパシタンスの変更には周知技術を利用でき、たとえば図示しないスイッチ素子の導通と非導通を切り替えることで、第1電極32の面積を変更し、段階的にキャパシタンスを変更してよい。 The first capacitor C1 is configured such that its capacitance can be changed under the control of the adjustment section 44. A well-known technique can be used to change the capacitance. For example, by switching between conduction and non-conduction of a switch element (not shown), the area of the first electrode 32 can be changed to change the capacitance stepwise.
 非接触受電装置20は、電界のみを用いて電力を受電する周知の受電装置に合わせて設計された給電線路、または、磁界のみを用いて電力を受電する周知の受電装置に合わせて設計された給電線路から、電界と磁界の両方を用いて電力を受電することもできる。たとえば電界のみを用いる受電装置用の給電線路から受電する場合、第1の実施の形態の給電線路10の特性インピーダンスに合わせて設計された非接触受電装置20において、コイル30に流れる電流は、第1の実施の形態より小さくなる可能性がある。そこで、調整部44は、検出部42で検出された電流がしきい値以下の場合、コイル30のインダクタンスを第1の所定量だけ増加させる。これにより、コイル30に流れる電流を増加させることができる。また、調整部44は、検出部42で検出された電流がしきい値以下の場合、第1キャパシタC1のキャパシタンスを第2の所定量だけ減少させる。これにより、コイル30のインダクタンスの調整により変化する直列共振回路の共振周波数を交流電源18の周波数に近づけることができる。よって、既存の給電線路の特性に合わせて受電電力を大きくできる。 The contactless power receiving device 20 is a power supply line designed to match a known power receiving device that receives power using only an electric field, or a known power receiving device that receives power using only a magnetic field. Power can also be received from the feeder line using both electric and magnetic fields. For example, when power is received from a power supply line for a power receiving apparatus that uses only an electric field, in the non-contact power receiving apparatus 20 designed according to the characteristic impedance of the power supply line 10 of the first embodiment, the current flowing through the coil 30 is 1 embodiment. Therefore, the adjustment unit 44 increases the inductance of the coil 30 by a first predetermined amount when the current detected by the detection unit 42 is equal to or less than the threshold value. Thereby, the current flowing through the coil 30 can be increased. Further, the adjustment unit 44 reduces the capacitance of the first capacitor C1 by a second predetermined amount when the current detected by the detection unit 42 is equal to or less than the threshold value. Thereby, the resonance frequency of the series resonance circuit, which changes by adjusting the inductance of the coil 30, can be made close to the frequency of the AC power supply 18. FIG. Therefore, the received power can be increased according to the characteristics of the existing power supply line.
 図9は、第1の実施の形態の第5変形例の非接触給電システム1の概略構成を説明するための図である。2つの第1電極32と2つの第2電極34は、それぞれ車輪104の内部の金属部分である。この構成でも第1電極32を第1導体12aに電界結合させ、第2電極34を第2導体12bに電界結合させることができる。この場合、非接触受電装置20の構成の自由度を向上できる。 FIG. 9 is a diagram for explaining a schematic configuration of the contactless power supply system 1 of the fifth modification of the first embodiment. The two first electrodes 32 and the two second electrodes 34 are metal parts inside the wheel 104 respectively. Also in this configuration, the first electrode 32 can be electrically coupled to the first conductor 12a, and the second electrode 34 can be electrically coupled to the second conductor 12b. In this case, the degree of freedom in configuration of the non-contact power receiving device 20 can be improved.
 図10は、第1の実施の形態の第6変形例の給電線路10の斜視図である。給電線路10は、1本の第1導体12aを含む伝送線路である。交流電源18の一端が第1導体12aの一端に接続され、交流電源18の他端は地面へのアース棒(図示せず)に接続される。第1導体12aの下側にグランド経路板を設けてもよく、交流電源18の他端はグランド経路板に接続されてもよい。地面またはグランド経路板は、第2導体として機能する。第1導体12aの他端は、開放されている。第1導体12aの他端は、地面またはグランド経路板に短絡されてもよい。 FIG. 10 is a perspective view of the feeder line 10 of the sixth modification of the first embodiment. The feeder line 10 is a transmission line including one first conductor 12a. One end of the AC power source 18 is connected to one end of the first conductor 12a, and the other end of the AC power source 18 is connected to a ground rod (not shown) to ground. A ground path plate may be provided under the first conductor 12a, and the other end of the AC power supply 18 may be connected to the ground path plate. A ground or ground routing plate serves as the second conductor. The other end of the first conductor 12a is open. The other end of the first conductor 12a may be shorted to ground or a ground routing plate.
 図10は、給電線路10に対するコイル30と第1電極32の位置関係も示す。コイル30は、コイル面が道路に対して略垂直となり、かつ、第1導体12aの延びる方向に略平行となるように配置されている。つまり、コイル30は、第1導体12aから発生した磁束がコイル30を貫くように配置されている。 FIG. 10 also shows the positional relationship between the coil 30 and the first electrode 32 with respect to the feeder line 10 . The coil 30 is arranged so that the coil surface is substantially perpendicular to the road and substantially parallel to the extending direction of the first conductor 12a. In other words, the coil 30 is arranged so that the magnetic flux generated from the first conductor 12a penetrates the coil 30 .
 第1電極32は、第1導体12aと向かい合うように配置されている。第2電極34は設けられなくてもよいし、図示しないが地面またはグランド経路板に向かい合うように配置されてもよい。第2電極34が設けられない場合、第2電極として機能する車体102が第2導体として機能する地面またはグランド経路板に電界結合し、車体102と地面またはグランド経路板との間に第2キャパシタC2が形成される。この非接触給電システム1の動作は、第1の実施の形態と同様である。この変形例では、給電線路10の構成の自由度を向上できる。給電線路10の設置をより容易に行うこともできる。 The first electrode 32 is arranged to face the first conductor 12a. The second electrode 34 may not be provided, or may be arranged to face the ground or a ground path plate (not shown). If the second electrode 34 is not provided, the vehicle body 102 functioning as the second electrode is electrically coupled to the ground or ground path plate functioning as the second conductor, and a second capacitor is provided between the vehicle body 102 and the ground or ground path plate. C2 is formed. The operation of this contactless power supply system 1 is similar to that of the first embodiment. In this modification, the flexibility of the configuration of the feeder line 10 can be improved. Installation of the feed line 10 can also be performed more easily.
 なお、給電線路10は、3本以上の導体を含んでもよい。たとえば3本の場合、2車線の道路における車線の境界に中央の導体を配置し、各車線に1本ずつ導体を配置してもよい。一方の車線を走行する車両は、当該車線の導体と中央の導体から受電する。中央の導体は、各車線を走行する車両に共用される。 It should be noted that the feeder line 10 may include three or more conductors. For example, in the case of three, a central conductor may be placed at the lane boundary on a two-lane road, and one conductor may be placed in each lane. Vehicles traveling in one lane receive power from the lane conductor and the center conductor. The central conductor is shared by vehicles traveling in each lane.
(第2の実施の形態)
 第2の実施の形態では、電力取得回路22の構成が第1の実施の形態と異なる。以下、第1の実施の形態との相違点を中心に説明する。
(Second embodiment)
In the second embodiment, the configuration of the power acquisition circuit 22 is different from that in the first embodiment. The following description will focus on differences from the first embodiment.
 図11は、第2の実施の形態の非接触給電システム1の等価回路図である。第1電極32は、第3電極36および第4電極38を有する。第3電極36は、第1導体12aに電界結合し、コイル30の一端に接続される。第4電極38は、第1導体12aに電界結合し、コイル30の他端に接続される。 FIG. 11 is an equivalent circuit diagram of the contactless power supply system 1 of the second embodiment. The first electrode 32 has a third electrode 36 and a fourth electrode 38 . A third electrode 36 is electrically coupled to the first conductor 12 a and connected to one end of the coil 30 . A fourth electrode 38 is electrically coupled to the first conductor 12 a and connected to the other end of the coil 30 .
 第3電極36と第4電極38は、たとえば矩形状の金属板であり、移動体100の車体102の底面に、各板面が道路と略平行となるように配置されている。移動体100の停止時および移動中、第3電極36と第4電極38は、第1導体12aと向かい合う状態に維持される。第3電極36と第4電極38の各面積は、たとえば同等である。 The third electrode 36 and the fourth electrode 38 are, for example, rectangular metal plates, and are arranged on the bottom surface of the vehicle body 102 of the moving body 100 so that each plate surface is substantially parallel to the road. The third electrode 36 and the fourth electrode 38 are maintained facing the first conductor 12a when the moving body 100 is stopped and during movement. Each area of the third electrode 36 and the fourth electrode 38 is, for example, equal.
 電界結合した第3電極36と第1導体12aとの間に第1キャパシタC1が形成される。電界結合した第4電極38と第1導体12aとの間に第3キャパシタC3が形成される。第1キャパシタC1と第3キャパシタC3のキャパシタンスは同等である。 A first capacitor C1 is formed between the electric field-coupled third electrode 36 and the first conductor 12a. A third capacitor C3 is formed between the electric field coupled fourth electrode 38 and the first conductor 12a. The capacitances of the first capacitor C1 and the third capacitor C3 are the same.
 第1キャパシタC1、第3キャパシタC3、トランスT1およびトランスT2は、CMC型の方向性結合器を構成する。進行波と反射波の電圧が同位相で、それらの電流が逆位相である状況を想定すると、方向性結合器の構成により、進行波による受電電流I1は、第1導体12a、第3キャパシタC3、第2インダクタL2、第1インダクタL1の経路で流れる電流と、第1導体12a、第1キャパシタC1の経路で流れる電流との和である。反射波による受電電流I2は、第1導体12a、第3キャパシタC3の経路で流れる電流と、第1導体12a、第1キャパシタC1、第1インダクタL1、第2インダクタL2の経路で流れる電流との和である。これにより、進行波による第1交流電力をコイル30の一端から出力でき、反射波による第2交流電力をコイル30の他端から出力できる。CMC型の方向性結合器により、進行波と反射波をより明確に分離できる。 The first capacitor C1, the third capacitor C3, the transformer T1 and the transformer T2 constitute a CMC type directional coupler. Assuming a situation in which the voltages of the traveling wave and the reflected wave are in phase and the currents of the waves are in opposite phase, due to the configuration of the directional coupler, the received current I1 due to the traveling wave is transferred to the first conductor 12a and the third capacitor C3. , the second inductor L2 and the first inductor L1, and the current flowing through the first conductor 12a and the first capacitor C1. The received current I2 due to the reflected wave is the sum of the current flowing through the path of the first conductor 12a and the third capacitor C3 and the current flowing through the path of the first conductor 12a, the first capacitor C1, the first inductor L1, and the second inductor L2. It is harmony. As a result, the first alternating current power generated by the traveling wave can be output from one end of the coil 30 and the second alternating current power generated by the reflected wave can be output from the other end of the coil 30 . A CMC-type directional coupler can separate the traveling wave and the reflected wave more clearly.
 受電電流I1は、電力合成回路24、平滑キャパシタC6、共通グランド、第2キャパシタC2、第2導体12bの経路に流れる。 The power receiving current I1 flows through the power combining circuit 24, the smoothing capacitor C6, the common ground, the second capacitor C2, and the second conductor 12b.
 受電電流I2は、電力合成回路24、平滑キャパシタC6、共通グランド、第2キャパシタC2、第2導体12bの経路に流れる。 The power receiving current I2 flows through the power combining circuit 24, the smoothing capacitor C6, the common ground, the second capacitor C2, and the second conductor 12b.
 第1導体12aから第2導体12bまでの電流経路において共振によりリアクタンスが低減するように、コイル30のインダクタンスと、第1キャパシタC1、第3キャパシタC3および第2キャパシタC2のキャパシタンスとを設定してもよい。これにより、リアクタンスによる電圧降下を抑制できる。したがって、電界と磁界の両方を用いて高い伝送効率でワイヤレス給電できる。 The inductance of the coil 30 and the capacitances of the first capacitor C1, the third capacitor C3 and the second capacitor C2 are set so that the reactance is reduced by resonance in the current path from the first conductor 12a to the second conductor 12b. good too. Thereby, voltage drop due to reactance can be suppressed. Therefore, wireless power supply can be performed with high transmission efficiency using both electric field and magnetic field.
 以上、本開示を実施の形態にもとづいて説明した。本開示は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本開示の範囲にあることは、当業者に理解されるところである。 The present disclosure has been described above based on the embodiment. It should be understood by those skilled in the art that the present disclosure is not limited to the above embodiments, and that various design changes and modifications are possible, and that such modifications are within the scope of the present disclosure. It is about
 例えば、第1の実施の形態の第1から第6変形例のうち任意の2以上を組み合わせてもよい。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。第1変形例と第4変形例を組み合わせる場合、調整部44は、コイル30のインダクタンスを変更するとき、並列共振周波数が交流電源18の周波数に近づくように共振キャパシタC4のキャパシタンスも調整してもよい。 For example, any two or more of the first to sixth modifications of the first embodiment may be combined. A new embodiment resulting from combination has the effects of each of the combined embodiments. When combining the first modification and the fourth modification, when changing the inductance of the coil 30, the adjustment unit 44 may also adjust the capacitance of the resonance capacitor C4 so that the parallel resonance frequency approaches the frequency of the AC power supply 18. good.
 第1の実施の形態の第1、第2、第4から第6変形例のそれぞれを第2の実施の形態に組み合わせてもよい。第1、第2、第4から第6変形例のうち任意の2以上を第2の実施の形態に組み合わせてもよい。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。第4変形例を第2の実施の形態に組み合わせる場合、調整部44は、検出部42で検出された電流にもとづいて、コイル30のインダクタンスと、第1キャパシタC1のキャパシタンスと、第3キャパシタC3のキャパシタンスとを調整してもよい。 Each of the first, second, fourth to sixth modifications of the first embodiment may be combined with the second embodiment. Any two or more of the first, second, fourth to sixth modifications may be combined with the second embodiment. A new embodiment resulting from combination has the effects of each of the combined embodiments. When combining the fourth modification with the second embodiment, the adjustment unit 44 adjusts the inductance of the coil 30, the capacitance of the first capacitor C1, and the third capacitor C3 based on the current detected by the detection unit 42. may be adjusted.
 非接触給電システム1は、自動車以外にも、たとえば、鉄道、電動航空機、遊園地のジェットコースターなどの遊具、掃除ロボット、配送ロボット、案内ロボットなど、工場敷地内などの自走式搬送設備、模型自動車などの玩具に適用できる。電動航空機に適用する場合、地上走行時に給電できる。 In addition to automobiles, the non-contact power supply system 1 includes, for example, railways, electric aircraft, playground equipment such as roller coasters in amusement parks, cleaning robots, delivery robots, guide robots, etc., self-propelled transport equipment in factory premises, and models. It can be applied to toys such as automobiles. When applied to an electric aircraft, power can be supplied while taxiing.
 実施の形態では給電線路10が道路に配置され、非接触受電装置20が移動体100に搭載される一例を説明したが、これに限らない。給電線路10は充電台に配置されてもよく、非接触受電装置20はスマートフォンなどの携帯機器に搭載されてもよい。この場合、携帯機器を充電台の給電線路10上の任意の位置に置いて充電できる。 In the embodiment, an example in which the power supply line 10 is arranged on the road and the non-contact power receiving device 20 is mounted on the mobile object 100 has been described, but the present invention is not limited to this. The power supply line 10 may be arranged on a charging stand, and the non-contact power receiving device 20 may be mounted on a mobile device such as a smart phone. In this case, the portable device can be charged by placing it at any position on the power supply line 10 of the charging stand.
 本開示の一態様の概要は、次の通りである。本開示のある態様の非接触受電装置は、交流電源が一端に接続された給電線路に磁界結合するコイルと、前記給電線路に電界結合する第1電極とを有し、前記コイルと前記第1電極とを介して、前記給電線路を一端から他端に向けて伝搬する進行波による第1交流電力、および、前記給電線路を他端から一端に向けて伝搬する反射波による第2交流電力を取得する電力取得回路と、前記電力取得回路で取得された前記第1交流電力と前記第2交流電力を合成し、合成された電力を出力する電力合成回路と、を備える。
 この態様によると、受電電力の低下を抑制しつつ、給電線路での反射波の抑制を不要にできる。
A summary of one aspect of the present disclosure is as follows. A non-contact power receiving device according to one aspect of the present disclosure includes a coil magnetically coupled to a power supply line having one end connected to an AC power supply, and a first electrode electrically coupled to the power supply line, wherein the coil and the first a first alternating current power by a traveling wave propagating from one end of the power supply line to the other end, and a second alternating current power by a reflected wave propagating from the other end to the one end of the power feeding line through the electrodes; and a power combining circuit for combining the first AC power and the second AC power acquired by the power acquiring circuit and outputting the combined power.
According to this aspect, it is possible to eliminate the need to suppress reflected waves in the feeder line while suppressing a decrease in received power.
 前記給電線路は、並列に配置された第1導体と第2導体を含み、前記第1電極は、前記第1導体に電界結合し、前記コイルの中点に接続され、前記コイルの一端は、前記第1交流電力を出力し、前記コイルの他端は、前記第2交流電力を出力し、前記電力取得回路は、前記第2導体に電界結合する第2電極をさらに有し、前記電力合成回路は、前記第2電極の電圧を基準とする電圧を出力してもよい。この場合、CM型の方向性結合器を構成できる。 The feed line includes a first conductor and a second conductor arranged in parallel, the first electrode is electrically coupled to the first conductor and connected to a midpoint of the coil, and one end of the coil is: The first AC power is output, the other end of the coil outputs the second AC power, the power acquisition circuit further includes a second electrode that is electrically coupled to the second conductor, and the power combining The circuit may output a voltage that is referenced to the voltage of said second electrode. In this case, a CM type directional coupler can be constructed.
 前記第1電極と前記第1導体との間に形成される第1キャパシタと、前記コイルの中点と一端または他端との間の部分と、前記第2電極と前記第2導体との間に形成される第2キャパシタは、直列共振回路を構成してもよい。この場合、直列共振により、第1導体からコイルを介した第2導体までの電流経路のリアクタンスを低減できる。 A first capacitor formed between the first electrode and the first conductor, a portion between the midpoint of the coil and one end or the other end, and between the second electrode and the second conductor may form a series resonant circuit. In this case, the series resonance can reduce the reactance of the current path from the first conductor to the second conductor via the coil.
 前記非接触受電装置は、前記コイルに流れる電流を検出する検出部と、前記検出部で検出された電流にもとづいて、前記コイルのインダクタンスと、前記第1キャパシタのキャパシタンスとを調整する調整部と、をさらに備えてもよい。この場合、給電線路の特性に合わせて受電電力を大きくできる。 The non-contact power receiving device includes a detection unit that detects current flowing through the coil, and an adjustment unit that adjusts the inductance of the coil and the capacitance of the first capacitor based on the current detected by the detection unit. , may be further provided. In this case, the received power can be increased according to the characteristics of the power supply line.
 前記電力取得回路は、前記コイルの中点の電圧と電流の少なくとも一方を調整する調整回路をさらに有してもよい。この場合、電力取得回路の特性を調整できる。 The power acquisition circuit may further include an adjustment circuit that adjusts at least one of voltage and current at the midpoint of the coil. In this case, the characteristics of the power acquisition circuit can be adjusted.
 前記給電線路は、並列に配置された第1導体と第2導体を含み、前記コイルの一端は、前記第1交流電力を出力し、前記コイルの他端は、前記第2交流電力を出力し、前記電力取得回路は、前記第2導体に電界結合する第2電極をさらに有し、前記電力合成回路は、前記第2電極の電圧を基準とする電圧を出力してもよい。前記第1電極は、前記第1導体に電界結合し、前記コイルの一端に接続された第3電極と、前記第1導体に電界結合し、前記コイルの他端に接続された第4電極と、を有してもよい。この場合、CMC型の方向性結合器を構成でき、進行波と反射波をより明確に分離できる。 The power supply line includes a first conductor and a second conductor arranged in parallel, one end of the coil outputs the first AC power, and the other end of the coil outputs the second AC power. , the power acquisition circuit may further comprise a second electrode electrically coupled to the second conductor, and the power combining circuit may output a voltage referenced to the voltage of the second electrode. The first electrode includes a third electrode electrically coupled to the first conductor and connected to one end of the coil, and a fourth electrode electrically coupled to the first conductor and connected to the other end of the coil. , may have In this case, a CMC type directional coupler can be constructed, and the traveling wave and the reflected wave can be separated more clearly.
 前記非接触受電装置は、前記コイルに流れる電流を検出する検出部と、前記検出部で検出された電流にもとづいて、前記コイルのインダクタンスと、前記第3電極と前記第1導体との間に形成される第1キャパシタのキャパシタンスと、前記第4電極と前記第1導体との間に形成される第3キャパシタのキャパシタンスとを調整する調整部と、をさらに備えてもよい。この場合、給電線路の特性に合わせて受電電力を大きくできる。 The non-contact power receiving device includes a detection unit that detects a current flowing through the coil, and based on the current detected by the detection unit, a current is detected between the inductance of the coil and between the third electrode and the first conductor. It may further comprise an adjusting unit that adjusts the capacitance of the formed first capacitor and the capacitance of the third capacitor formed between the fourth electrode and the first conductor. In this case, the received power can be increased according to the characteristics of the power supply line.
 前記非接触受電装置は、前記コイルの一端と他端との間に接続された共振キャパシタをさらに備えてもよい。この場合、コイルと共振キャパシタによる並列共振により、リアクタンスをさらに低減できる。 The contactless power receiving device may further include a resonance capacitor connected between one end and the other end of the coil. In this case, parallel resonance by the coil and the resonance capacitor can further reduce the reactance.
 本開示のある態様の非接触給電システムは、交流電源が一端に接続された給電線路と、 前記給電線路から電力を受電する非接触受電装置と、を備える。前記非接触受電装置は、前記給電線路に磁界結合するコイルと、前記給電線路に電界結合する第1電極とを有し、前記第1コイルと前記第1電極とを介して、前記給電線路を一端から他端に向けて伝搬する進行波による第1交流電力を取得し、前記給電線路を他端から一端に向けて伝搬する反射波による第2交流電力を取得する電力取得回路と、前記電力取得回路で取得された前記第1交流電力と前記第2交流電力を合成し、合成された電力を出力する電力合成回路と、を備える。この態様によると、受電電力の低下を抑制しつつ、給電線路での反射波の抑制を不要にできる。 A contactless power supply system according to one aspect of the present disclosure includes a power supply line having one end connected to an AC power supply, and a contactless power receiving device that receives power from the power supply line. The non-contact power receiving device has a coil that is magnetically coupled to the power supply line and a first electrode that is electrically coupled to the power supply line, and the power supply line is connected to the power supply line via the first coil and the first electrode. a power acquisition circuit for acquiring first AC power by a traveling wave propagating from one end to the other end and acquiring second AC power by a reflected wave propagating from the other end to the one end of the feeder line; and a power combining circuit that combines the first AC power and the second AC power acquired by the acquisition circuit and outputs the combined power. According to this aspect, it is possible to eliminate the need to suppress reflected waves in the feeder line while suppressing a decrease in received power.
 前記給電線路の他端は、開放または短絡されてもよい。この場合、インピーダンス整合用の終端抵抗を給電線路に接続する場合と比べ、電力損失を低減できる。 The other end of the feeder line may be open or short-circuited. In this case, power loss can be reduced compared to the case where a terminating resistor for impedance matching is connected to the feeder line.
 本開示は、非接触受電装置および非接触給電システムに利用できる。 The present disclosure can be used for contactless power receiving devices and contactless power supply systems.
1…非接触給電システム、10…給電線路、12a…第1導体、12b…第2導体、18…交流電源、20…非接触受電装置、22…電力取得回路、24…電力合成回路、30…コイル、32…第1電極、34…第2電極、36…第3電極、38…第4電極、42…検出部、44…調整部、C1…第1キャパシタ、C2…第2キャパシタ、C3…第3キャパシタ、C4…共振キャパシタ、N1…中点。 REFERENCE SIGNS LIST 1 non-contact power supply system 10 power supply line 12a first conductor 12b second conductor 18 AC power supply 20 non-contact power receiving device 22 power acquisition circuit 24 power combining circuit 30 Coil 32 First electrode 34 Second electrode 36 Third electrode 38 Fourth electrode 42 Detector 44 Adjuster C1 First capacitor C2 Second capacitor C3 Third capacitor, C4... resonance capacitor, N1... middle point.

Claims (10)

  1.  交流電源が一端に接続された給電線路に磁界結合するコイルと、前記給電線路に電界結合する第1電極とを有し、前記コイルと前記第1電極とを介して、前記給電線路を一端から他端に向けて伝搬する進行波による第1交流電力、および、前記給電線路を他端から一端に向けて伝搬する反射波による第2交流電力を取得する電力取得回路と、
     前記電力取得回路で取得された前記第1交流電力と前記第2交流電力を合成し、合成された電力を出力する電力合成回路と、
     を備えることを特徴とする非接触受電装置。
    A coil magnetically coupled to a feeder line having one end connected to an AC power supply, and a first electrode electrically coupled to the feeder line, wherein the feeder line is connected from one end via the coil and the first electrode. a power acquisition circuit for acquiring a first AC power by a traveling wave propagating toward the other end and a second AC power by a reflected wave propagating from the other end toward one end of the feeder line;
    a power combiner circuit for combining the first AC power and the second AC power acquired by the power acquisition circuit and outputting the combined power;
    A contactless power receiving device comprising:
  2.  前記給電線路は、並列に配置された第1導体と第2導体を含み、
     前記第1電極は、前記第1導体に電界結合し、前記コイルの中点に接続され、
     前記コイルの一端は、前記第1交流電力を出力し、
     前記コイルの他端は、前記第2交流電力を出力し、
     前記電力取得回路は、前記第2導体に電界結合する第2電極をさらに有し、
     前記電力合成回路は、前記第2電極の電圧を基準とする電圧を出力する、
     ことを特徴とする請求項1に記載の非接触受電装置。
    The feed line includes a first conductor and a second conductor arranged in parallel,
    the first electrode is electrically coupled to the first conductor and connected to a midpoint of the coil;
    one end of the coil outputs the first AC power,
    the other end of the coil outputs the second AC power,
    the power acquisition circuit further comprising a second electrode that is electrically coupled to the second conductor;
    The power combining circuit outputs a voltage based on the voltage of the second electrode.
    The non-contact power receiving device according to claim 1, characterized by:
  3.  前記第1電極と前記第1導体との間に形成される第1キャパシタと、前記コイルの中点と一端または他端との間の部分と、前記第2電極と前記第2導体との間に形成される第2キャパシタは、直列共振回路を構成する、
     ことを特徴とする請求項2に記載の非接触受電装置。
    A first capacitor formed between the first electrode and the first conductor, a portion between the midpoint of the coil and one end or the other end, and between the second electrode and the second conductor The second capacitor formed in constitutes a series resonant circuit,
    The non-contact power receiving device according to claim 2, characterized in that:
  4.  前記コイルに流れる電流を検出する検出部と、
     前記検出部で検出された電流にもとづいて、前記コイルのインダクタンスと、前記第1キャパシタのキャパシタンスとを調整する調整部と、
     をさらに備えることを特徴とする請求項3に記載の非接触受電装置。
    a detection unit that detects the current flowing through the coil;
    an adjustment unit that adjusts the inductance of the coil and the capacitance of the first capacitor based on the current detected by the detection unit;
    The contactless power receiving device according to claim 3, further comprising:
  5.  前記電力取得回路は、前記コイルの中点の電圧と電流の少なくとも一方を調整する調整回路をさらに有する、
     ことを特徴とする請求項2から4のいずれかに記載の非接触受電装置。
    The power acquisition circuit further comprises an adjustment circuit that adjusts at least one of voltage and current at the midpoint of the coil.
    The non-contact power receiving device according to any one of claims 2 to 4, characterized in that:
  6.  前記給電線路は、並列に配置された第1導体と第2導体を含み、
     前記コイルの一端は、前記第1交流電力を出力し、
     前記コイルの他端は、前記第2交流電力を出力し、
     前記電力取得回路は、前記第2導体に電界結合する第2電極をさらに有し、
     前記電力合成回路は、前記第2電極の電圧を基準とする電圧を出力し、
     前記第1電極は、
     前記第1導体に電界結合し、前記コイルの一端に接続された第3電極と、
     前記第1導体に電界結合し、前記コイルの他端に接続された第4電極と、
     を有することを特徴とする請求項1に記載の非接触受電装置。
    The feed line includes a first conductor and a second conductor arranged in parallel,
    one end of the coil outputs the first AC power,
    the other end of the coil outputs the second AC power,
    the power acquisition circuit further comprising a second electrode that is electrically coupled to the second conductor;
    The power combining circuit outputs a voltage based on the voltage of the second electrode,
    The first electrode is
    a third electrode electrically coupled to the first conductor and connected to one end of the coil;
    a fourth electrode electrically coupled to the first conductor and connected to the other end of the coil;
    The contactless power receiving device according to claim 1, characterized by comprising:
  7.  前記コイルに流れる電流を検出する検出部と、
     前記検出部で検出された電流にもとづいて、前記コイルのインダクタンスと、前記第3電極と前記第1導体との間に形成される第1キャパシタのキャパシタンスと、前記第4電極と前記第1導体との間に形成される第3キャパシタのキャパシタンスとを調整する調整部と、
     をさらに備えることを特徴とする請求項6に記載の非接触受電装置。
    a detection unit that detects the current flowing through the coil;
    based on the current detected by the detection unit, the inductance of the coil, the capacitance of a first capacitor formed between the third electrode and the first conductor, the fourth electrode and the first conductor; an adjustment unit that adjusts the capacitance of a third capacitor formed between
    The contactless power receiving device according to claim 6, further comprising:
  8.  前記コイルの一端と他端との間に接続された共振キャパシタをさらに備える、
     ことを特徴とする請求項2から7のいずれかに記載の非接触受電装置。
    further comprising a resonant capacitor connected between one end and the other end of the coil;
    The contactless power receiving device according to any one of claims 2 to 7, characterized by:
  9.  交流電源が一端に接続された給電線路と、
     前記給電線路から電力を受電する非接触受電装置と、
     を備え、
     前記非接触受電装置は、
     前記給電線路に磁界結合するコイルと、前記給電線路に電界結合する第1電極とを有し、前記コイルと前記第1電極とを介して、前記給電線路を一端から他端に向けて伝搬する進行波による第1交流電力、および、前記給電線路を他端から一端に向けて伝搬する反射波による第2交流電力を取得する電力取得回路と、
     前記電力取得回路で取得された前記第1交流電力と前記第2交流電力を合成し、合成された電力を出力する電力合成回路と、
     を備えることを特徴とする非接触給電システム。
    a feeder line having one end connected to an AC power supply;
    a non-contact power receiving device that receives power from the power supply line;
    with
    The contactless power receiving device
    It has a coil magnetically coupled to the power supply line and a first electrode electrically coupled to the power supply line, and propagates from one end to the other end of the power supply line via the coil and the first electrode. a power acquisition circuit for acquiring a first AC power by a traveling wave and a second AC power by a reflected wave propagating from the other end of the feeder line to one end thereof;
    a power combiner circuit for combining the first AC power and the second AC power acquired by the power acquisition circuit and outputting the combined power;
    A contactless power supply system comprising:
  10.  前記給電線路の他端は、開放または短絡されている、
     ことを特徴とする請求項9に記載の非接触給電システム。
    The other end of the feed line is open or short-circuited,
    The contactless power supply system according to claim 9, characterized in that:
PCT/JP2022/001302 2021-02-10 2022-01-17 Non-contact power receiving device and non-contact power feeding system WO2022172691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022581271A JPWO2022172691A1 (en) 2021-02-10 2022-01-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021019679 2021-02-10
JP2021-019679 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172691A1 true WO2022172691A1 (en) 2022-08-18

Family

ID=82837736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001302 WO2022172691A1 (en) 2021-02-10 2022-01-17 Non-contact power receiving device and non-contact power feeding system

Country Status (2)

Country Link
JP (1) JPWO2022172691A1 (en)
WO (1) WO2022172691A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184561A (en) * 2016-03-31 2017-10-05 株式会社ダイヘン Non-contact power transmission system and power reception device
JP2020048369A (en) * 2018-09-20 2020-03-26 株式会社テクノバ Running non-contact power supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184561A (en) * 2016-03-31 2017-10-05 株式会社ダイヘン Non-contact power transmission system and power reception device
JP2020048369A (en) * 2018-09-20 2020-03-26 株式会社テクノバ Running non-contact power supply system

Also Published As

Publication number Publication date
JPWO2022172691A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
EP3743981B1 (en) Wireless power transfer systems with integrated impedance matching and methods for using the same
JP7211820B2 (en) Systems and methods for powering electric vehicles on the road via wireless power transfer
KR102028059B1 (en) Method and apparatus for resonating in wireless power transfer system
US20200365317A1 (en) Primary-Sided and a Secondary-Sided Arrangement of Winding Structures, a System for Inductive Power Transfer and a Method for Inductively Supplying Power to a Vehicle
EP2775590B1 (en) Coil unit and contactless electric power transmission device
US10186905B2 (en) Method of operating a three phase primary winding structure and a primary unit
KR101478930B1 (en) Contactless power feeding apparatus
CN206790183U (en) For inductively transmitting the device and system of the energy at least one energy accumulator charging to rail vehicle
US20130113298A1 (en) Wireless power transmission system and method based on impedance matching condition
KR20120079799A (en) Non-contact power feeding apparatus of magnetic resonance method
WO2017056343A1 (en) Wireless power transmission system and power transmission device
WO2022172691A1 (en) Non-contact power receiving device and non-contact power feeding system
JP6360657B2 (en) Non-contact power transmission method and non-contact power transmission system
US10491043B2 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
US20180111489A1 (en) Circuit Arrangement and a Method of Operating a Circuit Arrangement for a System for Inductive Power Transfer
GB2539885A (en) A primary-sided and a secondary-sided arrangement of winding structures, a system for inductive power transfer and a method for inductively supplying power
Chowdary et al. Assessment of Dynamic Wireless Charging System with the Variation in Mutual Inductance
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
CN112937334B (en) Stereo garage vehicle charging system
WO2016131766A1 (en) Winding structure of a system for inductive power transfer, method of operating the winding structure and system of inductive power transfer with the winding structure
US9935500B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JP2023069858A (en) Wireless power transmission system, power transmission device, power reception device, and mobile body
Wang et al. A composite decoupling method of the 2D WPT transmitter array based on the compensation topology and orthogonal coupling
CN113922514A (en) Wireless energy receiver and dynamic wireless energy constant-voltage output system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752524

Country of ref document: EP

Kind code of ref document: A1