JP4460124B2 - Band plate composite FRP lattice material and concrete reinforcing method using the band plate composite FRP lattice material - Google Patents

Band plate composite FRP lattice material and concrete reinforcing method using the band plate composite FRP lattice material Download PDF

Info

Publication number
JP4460124B2
JP4460124B2 JP2000231232A JP2000231232A JP4460124B2 JP 4460124 B2 JP4460124 B2 JP 4460124B2 JP 2000231232 A JP2000231232 A JP 2000231232A JP 2000231232 A JP2000231232 A JP 2000231232A JP 4460124 B2 JP4460124 B2 JP 4460124B2
Authority
JP
Japan
Prior art keywords
strip
lattice material
frp lattice
resin
composite frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000231232A
Other languages
Japanese (ja)
Other versions
JP2002038655A (en
Inventor
健一 関根
Original Assignee
日鉄コンポジット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄コンポジット株式会社 filed Critical 日鉄コンポジット株式会社
Priority to JP2000231232A priority Critical patent/JP4460124B2/en
Publication of JP2002038655A publication Critical patent/JP2002038655A/en
Application granted granted Critical
Publication of JP4460124B2 publication Critical patent/JP4460124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0262Devices specifically adapted for anchoring the fiber reinforced plastic elements, e.g. to avoid peeling off

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Reinforcement Elements For Buildings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、格子状の繊維強化樹脂(FRP)部材に、帯状シートのFRP部材を複合させた板複合FRP格子材に関するものであり、特に、例えば、コンクリートの剥落防止部材として、例えばトンネル、更には、梁、柱、桁、壁、床板、煙突、給水槽等の補修、補強(以後単に「補強」という。)のために好適に使用し得るFRP帯板複合格子状FRP部材に関するものであり、又、斯かる帯板複合FRP格子材を使用したコンクリート補強方法に関するものである。
【0002】
【従来の技術】
例えば、老朽化した、クラックの発生などの問題のあるトンネル内部のコンクリート剥落防止を目的としたトンネルの内面補強工法として、炭素繊維等の高強度強化繊維に常温硬化型エポキシ樹脂を十分に含浸させ、シート状に硬化させた連続繊維シート(FRP材)をトンネル覆工部に接着樹脂にて貼り付ける工法が採用されているが、大量の常温接着樹脂を硬化させるため、施工も短時間で行うことが困難で、設計も高度な設計・施工技術を要し、高価な工法となり、対応可能な施工業者も限られる。
【0003】
そこで、連続繊維シートを用いた工法より安価で、施工が確実・容易な、図9に示すようなFRP格子材100が開発された。
【0004】
このFRP格子材100は、図10をも参照するとよりよく理解されるように、通常、直角に交差して格子状に配置された複数の筋、即ち、縦格子筋101と横格子筋102とからなり、各筋101、102は、主にガラス繊維、炭素繊維、アラミド繊維等の強化繊維を一方向に並べて、ビニルエステル樹脂等のマトリックス樹脂を含浸させた帯状強化繊維を複数積層して形成されたものである。また、各筋101、102は、筋幅(w)3〜10mm、厚さ(t)1〜5mm、であり、格子間距離(W1)3〜15cmの格子板状に成形硬化され、全体としてシート状のFRP格子材100を形成する。このFRP格子材100は、図10に示すように筋の交差部分の厚さが他の部分の厚さと等しくなるように成形硬化されている。
【0005】
このFRP格子材100は、図11のFRP格子材施工図に示すように、コンクリート3の表面に、アンカー4で固定することによりコンクリート構造物に取り付けられる。その後、FRP格子材100に、ポリマーセメント6を吹き付け、手塗りして、構築物と一体化させて所定の厚さT(=10mm〜20mm)に被覆する。
【0006】
このFRP格子材100は鉄筋と同様の補強効果があり、鉄筋よりも軽くて、腐食も少なく、施工もアンカーでとめることができるため、施行が簡便である。
【0007】
【発明が解決しようとする課題】
しかしながら、このFRP格子材100をコンクリート表面に取りつけるに際して、図12(a)のように、筋101、102を貫通してアンカーボルト4を打ち付けた場合には、アンカーボルト4が貫通している部分の筋101、102の繊維が切断され、本来のFRP材の強度が失われる。
【0008】
一方、図12(b)のように、筋101、102の、特に交差部分近くの角の部分にて、座板5及びアンカーボルト4を利用して格子材100を取り付けた場合には、アンカーボルト4及び座板5の一部分しか筋に接触しておらず、取付力が不足し、多数のアンカーを必要とした。
【0009】
従って、FRP格子材本来の補強性の維持、トンネル覆工部への取付安定性、更にはより補強力の増大等といった更なる改良が望まれていた。
【0010】
従って、本発明の目的は、例えばコンクリート剥落防止材として、トンネル、梁、柱、桁、壁、床板、煙突、給水槽などにおいて、アンカーを用いて簡便に取り付けることができ、更に、強力な補強力を持つ帯板複合FRP格子材を提供することである。
【0011】
本発明の他の目的は、上記帯板複合FRP格子材を使用して、補強作業を容易に、短時間に、かつ、確実に行うことのできる、例えば、トンネル、梁、柱、桁、壁、床板、煙突、給水槽などにおけるコンクリート剥落を防止するための補強方法を提供することである。
【0012】
【課題を解決するための手段】
上記目的は本発明に係る帯板複合FRP格子材、及び帯板複合FRP格子材を使用した補強方法にて達成される。要約すれば、第1の本発明によれば、繊維強化樹脂とされる複数の筋を格子状に配置して形成されたFRP格子材と、前記FRP格子材に規則的に或いは不規則的に所定の間隔を持って互いに平行に配列して取付けられた第1の帯板とを有する帯板複合FRP格子材において、
(A)前記各帯板は、平行な少なくとも2本の前記筋に重なるようにし、隣接した前記2本の筋にて形成される単位格子列を埋めるようにして、配置されるか、又は、
(B)前記各帯板は、平行な隣接する2本の前記筋にて形成される単位格子列の中央部で分割され、所定の間隙にて対向配置する態様で前記筋に取り付けられる、
ことを特徴とする帯板複合FRP格子材を提供する。
【0013】
第1の本発明の一実施態様によれば、複数の前記筋は互いに直交して格子状に配置されている。
【0015】
第1の本発明の他の実施態様によれば、前記複数の筋は、互いに3〜15cm離間して格子状に配置され、また、前記複数の筋は、幅が3〜10mm、厚さが1〜5mmとすることができる。
【0016】
第1の本発明の他の実施態様によれば、前記帯板は、帯状の繊維強化樹脂である。
【0017】
第1の本発明の他の実施態様によれば、前記帯状の繊維強化樹脂は、強化繊維を少なくとも一方向に配列した帯状強化繊維シートにマトリクス樹脂を含浸し、硬化して形成されるか、前記帯状の繊維強化樹脂は、強化繊維を織成したクロス或いは強化繊維からなるマットにマトリクス樹脂を含浸し、硬化して形成される。
【0018】
第1の本発明の他の実施態様によれば、前記帯板は、繊維目付100〜1000g/m2、樹脂含浸量が30〜70wt%、厚さが1〜5mmである。
【0019】
第1の本発明の他の実施態様によれば、前記強化繊維は、炭素繊維、ガラス繊維、セラミックス繊維を含む無機繊維;ボロン、チタン、スチールなどの金属繊維;アラミド、ポリエステル、ポリエチレン、ナイロン、PBО、高強度ポリプロピレンなどの有機繊維;などから選択されるいずれかの繊維であるか、或いは、前記繊維を複数種混入したハイブリッドタイプとされ、また、前記マトリクス樹脂は、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリアミド樹脂、常温硬化型エポキシ樹脂、熱硬化型エポキシ樹脂、ポリカーボネート樹脂、又は、MMAなどのラジカル反応系樹脂を少なくとも一種以上含む。
【0020】
第2の本発明は、前記帯板複合FRP格子材の、少なくとも前記帯板部分を、接着樹脂により、コンクリート構造物に張り付けることを特徴とするコンクリート補強方法を提供する。
【0021】
第2の本発明の一実施態様によると、前記帯板複合FRP格子材の前記帯板部分を利用してコンクリート構造物にアンカーどめされる。
【0022】
第2の本発明の他の実施態様によると、複数の前記帯板複合FRP格子材は、互いに隣り合った前記帯板複合FRP格子材の帯板を互いに重ね合わせ、この重ね合わせた部分を貼り合わせて、コンクリート構造物にアンカーどめし、複数の前記帯板複合FRP格子材を互いに接続する。
【0023】
第2の本発明の他の実施態様によると、前記帯板複合FRP格子材をコンクリート構造物に施工後に、必要に応じて更に、前記所定の帯板の上に帯状の繊維強化樹脂部材を、貼付する。
【0024】
【発明の実施の形態】
以下、本発明に係る帯板複合FRP格子材及び帯板複合FRP格子材を使用したコンクリートの補強方法を図面に則して更に詳しく説明する。
【0025】
実施例1
図1に本発明の帯板複合FRP格子材1の一実施例を示す。本発明の帯板複合FRP格子材1は、従来と同様の繊維強化樹脂(FRP)にて形成されたFRP格子材100に、帯板200を複合させた構成に特徴を有する。帯板200は、本実施例では、帯状の繊維強化樹脂(FRP)にて作製されるものとする。
【0026】
更に説明すると、本実施例にて、帯板複合FRP格子材1は、図9及び図10に示す従来のFRP格子材100と同様のFRP格子材100を有する。即ち、本実施例にて、FRP格子材100は、通常、直角に交差して格子状に配置された複数の筋、即ち、縦格子筋101と横格子筋102とを備えている。各筋101、102は、主にガラス繊維、炭素繊維、アラミド繊維等の強化繊維を一方向に並べて、ビニルエステル樹脂等のマトリックス樹脂を含浸させた強化繊維を複数積層し、硬化して形成される。FRP格子材100は、通常、筋幅(w)3〜10mm、厚さ(t)1〜5mm、であり、格子間距離(W1)3〜15cmとされる。上述のように、各筋101、102は、互いに直交して配置されるが、所望に応じて互いに90度以外の所定の角度にて交差し、格子状となるように構成することも可能である。
【0027】
通常、強化繊維としてガラス繊維を使用した場合には、FRP格子材100は500N/mm2以上の引張強度、30000N/mm2以上の引張弾性率を有している。
【0028】
又、このような構成のFRP格子材100は、軽量で、耐食性であり、又、曲げ易く、施工性に優れている。また、図10に示すように、筋101、102の交差部分が他の筋部分と略同一平面上にあり、薄いシート状とされ、重ねてもかさばらない。
【0029】
更に、本実施例によると、シート状のFRP格子材100の表面には、所定の間隔にて互いに平行にFRP帯板200が取付けられる。
【0030】
FRP帯板200は、本実施例では、縦格子筋101に沿って、2本の縦格子筋101に重なるようにし、同方向の単位格子列(本明細書では隣接する2本の筋にて形成される一方向の格子列を意味するものとする。)を埋めるようにして、配置される。FRP帯板200は、FRP格子材100の成形時に、完全に硬化しない状態にて、或いは樹脂未含浸にてFRP格子材100に積層して取り付けられ、筋101、102と共に樹脂含浸、硬化されるので、帯板200と筋101、102は一体化され、筋101、102と帯板200は同一平面になる。帯板複合FRP格子材1の作製方法は、上記のものに限定されるものではなく、種々の方法を採用し得る。
【0031】
また、FRP帯板200は、図2に示すように、単位格子列9列置きといったように規則的に配置される。ただ、FRP帯板200の配置態様はこれに限定されるものではなく、FRP格子材100が使用される用途に応じて任意に配置される。一例を挙げれば、FRP帯板200は、例えば、筋101、102の間隔が5cmとされる場合には、単位格子列9列置きに、又、筋101、102の間隔が10cmとされる場合には、単位格子列5列置きといった具合に配置することができる。
【0032】
本実施例にて、FRP帯板200は、上述のように、帯状の繊維強化樹脂とされ、強化繊維を一方向に配列した帯状強化繊維シートにマトリクス樹脂を含浸し、硬化して形成される。又、帯状の強化繊維シートは、強化繊維を織成したクロス或いは強化繊維からなるマットとすることもできる。FRP帯板200における繊維目付は、100〜1000g/m2、樹脂含浸量は30〜70wt%、厚さは、通常、1〜5mmとされる。
【0033】
本発明におけるFRP筋及びFRP帯板に使用する強化繊維は、炭素繊維、ガラス繊維、セラミックス繊維を含む無機繊維;ボロン、チタン、スチールなどの金属繊維;アラミド、ポリエステル、ポリエチレン、ナイロン、PBО、高強度ポリプロピレンなどの有機繊維;などから選択されるいずれかの繊維であるか、或いは、前記繊維を複数種混入したハイブリッドタイプとし得る。マトリクス樹脂としては、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリアミド樹脂、常温硬化型エポキシ樹脂、熱硬化型エポキシ樹脂、ポリカーボネート樹脂等の樹脂を使用することができる。
【0034】
本発明の帯板複合FRP格子材1は、FRP格子材100に、例えばFRPとされる帯板200を複合することによって、コンクリート構造物に取り付けた場合、より大きなコンクリート塊の剥落防止を達成し得る。
【0035】
特に、本実施例の帯板複合FRP格子材1は、上述のように、FRP格子材100と、FRP帯板200を材料としているので、軽く、巻回した状態でも搬送でき、運搬、加工が容易である。
【0036】
上記構成の本発明の帯板複合FRP格子材1をトンネル覆工部に設置した態様を図3に示す。帯板複合FRP格子材1は、帯板200がトンネルの周方向となるように配置される。
【0037】
本発明の帯板複合FRP格子材1は、帯板200部分を接着樹脂によりコンクリート構造物に貼りつけられる。
【0038】
更に、本発明の帯板複合FRP格子材1は、図4に示すように、筋101、102に重ならない帯板200部分に、好ましくは座板5を介してアンカーボルト4を打ち込むことによって固定することができる。従って、筋101、102の強化繊維を切断することはない。
【0039】
上述のように、帯板複合FRP格子材1は薄く、帯板部分に塗着された接着樹脂にてコンクリート構造物に貼りつけられた後に、アンカーボルト4を帯板200に打ち込むことによってコンクリート構造物に固定されて取りつけられるので、図5に示すように、2枚の隣接する帯板複合FRP格子材1A、1Bを平面方向に接続するときは、接続する両帯板複合FRP格子材1A、1Bの帯板200部分を重ね合わせて接着樹脂で接着し、アンカーボルト4を打ち込むことによって達成される。
【0040】
このように、本発明の帯板複合FRP格子材は、帯板を利用してアンカーボルト4によりコンクリート構造物に取付けることができるので、帯板200をコンクリート構造物に接着する接着樹脂の硬化を待つといった必要はなく、補強作業を容易に、短時間に、且つ確実に行うことができ、更には、従来のFRP格子材に比べて、取りつけ安定性が優れている。
【0041】
更に、コンクリート構造物に施工された帯板複合FRP格子材1の補強を増大させることが必要な場合には、コンクリート構造物に施工された帯板複合FRP格子材1の帯板200部分の上に、帯状の繊維強化樹脂シートを接着樹脂で貼り付け、更にアンカーボルトで固定することもできる。この帯状の繊維強化樹脂シートは、帯板200と同様の材料を使用することができる。
【0042】
実施例2
実施例1では、帯板200は、隣り合った2本の筋にて形成される単位格子列の全面にわたって取り付けられるものとしたが、図6に示すように、単位格子列の中央部にて分割され、間隙Gにて対向配置する態様で筋101、102に取りつけることも可能である。
【0043】
この場合には、アンカーボルト4は、帯板200を貫通させることなく、2枚の帯板200の間隙G部分にアンカーボルト4を打ち込むことによって取りつけることもできる。勿論、座板5が帯板200に適当な面積で接触する。
【0044】
実施例3
図7に、本発明の帯板複合FRP格子材の他の実施例を示す。本実施例では、更に第2の帯板201が、上記第1の帯板200に交差する態様で配置し、FRP格子材100に取付けられる。
【0045】
本実施例によれば、本発明の帯板複合FRP格子材1の第2の帯板201配列方向における引張強度をも向上させることができ、帯板複合FRP格子材1の補強効果を増大させる。
【0046】
実施例4
図8に、本発明の帯板複合FRP格子材の他の実施例を示す。本実施例では、帯板200が、縦格子筋101に沿って、3本の縦格子筋101に重なるようにし、同方向の2列の単位格子列を埋めるようにして取り付けられる。
【0047】
本実施例にて、FRP帯板200は、単位格子列6列置いて配置されているが、実施例1にて説明したように、FRP帯板200の配置態様はこれに限定されるものではなく、FRP格子材100が使用される用途に応じて任意に配置される。
【0048】
本実施例の帯板複合FRP格子材においても、帯板200と交差する態様で第2の帯板を配置することも可能である。
【0049】
実施例5
上記本発明の帯板複合FRP格子材1を使用して、図3に示すように、トンネルの内側部分にコンクリート剥落防止のための補強工事をした。帯板複合FRP格子材1は、図4に示すように、その帯板200部分を利用して、座板5及びアンカーボルト4にてコンクリート面に取付けたが、筋部分を損傷することなく、容易に、迅速に、しかも極めて安定して設置することができた。
【0050】
また、帯板複合FRP格子材の帯板部分に、塊が引っ掛かるので、大きなコンクリート塊の剥落を防止できた。
【0051】
【発明の効果】
以上説明したように,本発明によれば、繊維強化樹脂とされる複数の筋を格子状に配置して形成されたFRP格子材と、前記FRP格子材に規則的に或いは不規則的に所定の間隔を持って互いに平行に配列して取付けられた第1の帯板とを有する帯板複合FRP格子材において、
(A)各帯板は、平行な少なくとも2本の筋に重なるようにし、隣接した2本の筋にて形成される単位格子列を埋めるようにして、配置されるか、又は、
(B)各帯板は、平行な隣接する2本の筋にて形成される単位格子列の中央部で分割され、所定の間隙にて対向配置する態様で筋に取り付けられる、
構成とされるので、従来のFRP格子板の長所である軽量、可撓性、耐食性、などの良好な性質は損なうことなく、大き目のコンクリート塊の剥落は帯板部をも利用して防止することができ、小さ目のコンクリート塊の剥落は筋にて防止することができ、広範囲なコンクリート剥落を有効に防止し得る。
【0052】
また、本発明に係る帯板複合FRP格子材を使用したコンクリート補強方法は、帯板複合FRP格子材の、少なくとも帯板部分を、接着樹脂により、コンクリート構造物に貼り付けることができ、また、帯板複合FRP格子材は、帯板を利用してアンカーボルトによりコンクリート構造物に取付けることができ、帯板複合FRP格子材をコンクリート構造物表面に接着するための接着樹脂の硬化を待つといった必要はなく、補強作業を容易に、短時間に、且つ確実に行うことができ、更には、従来のFRP格子材に比べて、取り付け安定性が著しく向上する。
【図面の簡単な説明】
【図1】本発明に係る帯板複合FRP格子材の一実施例の斜視図である。
【図2】本発明に係る帯板複合FRP格子材の一実施例の平面図である。
【図3】本発明に係る帯板複合FRP格子材をトンネル覆工部へ施工した態様を示す図である。
【図4】本発明に係る帯板複合FRP格子材をアンカーどめした状態を説明する平面図である。
【図5】本発明に係る帯板複合FRP格子材の接続方法を説明する断面図である。
【図6】本発明に係る帯板複合FRP格子材の他の実施例の平面図である。
【図7】本発明に係る帯板複合FRP格子材の他の実施例の平面図である。
【図8】本発明に係る帯板複合FRP格子材の他の実施例の平面図である。
【図9】FRP格子材の斜視図である。
【図10】FRP格子材の拡大斜視図である。
【図11】従来のFRP格子材の施工態様を説明する施工図である。
【図12】従来のFRP格子材のアンカーどめ態様を説明する平面図である。
【符号の説明】
1、1A、1B 帯板複合FRP格子材
3 コンクリート構造物
4 アンカーボルト
5 FRP座板
6 ポリマーセメント
100 FRP格子材
101 縦格子筋
102 横格子筋
200 第1の帯板
201 第2の帯板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plate composite FRP lattice material obtained by combining a lattice-like fiber reinforced resin (FRP) member with an FRP member of a belt-like sheet, and particularly, for example, as a concrete peeling prevention member, for example, a tunnel, Relates to an FRP strip composite lattice FRP member that can be suitably used for repair and reinforcement (hereinafter simply referred to as “reinforcement”) of beams, columns, girders, walls, floor boards, chimneys, water tanks, etc. The present invention also relates to a concrete reinforcing method using such a strip composite FRP lattice material.
[0002]
[Prior art]
For example, as a method of reinforcing the inner surface of a tunnel for the purpose of preventing concrete peeling inside a tunnel that has problems such as aging and cracks, carbon fiber and other high-strength reinforcing fibers are sufficiently impregnated with room temperature curable epoxy resin. In addition, a continuous fiber sheet (FRP material) cured in the form of a sheet is applied to the tunnel lining part with an adhesive resin, but since a large amount of room temperature adhesive resin is cured, construction is also performed in a short time. It is difficult to design, requires advanced design and construction techniques, becomes an expensive construction method, and the number of contractors who can handle it is limited.
[0003]
Therefore, an FRP lattice material 100 as shown in FIG. 9 has been developed, which is cheaper than a construction method using a continuous fiber sheet and is reliable and easy to construct.
[0004]
As will be better understood with reference also to FIG. 10, the FRP lattice material 100 is generally composed of a plurality of lines arranged in a lattice pattern intersecting at right angles, that is, a vertical lattice line 101 and a horizontal lattice line 102. Each of the streaks 101 and 102 is formed by laminating a plurality of band-like reinforcing fibers in which reinforcing fibers such as glass fibers, carbon fibers, and aramid fibers are arranged in one direction and impregnated with a matrix resin such as a vinyl ester resin. It has been done. In addition, each of the stripes 101 and 102 has a stripe width (w) of 3 to 10 mm and a thickness (t) of 1 to 5 mm, and is molded and cured into a lattice plate shape having an interstitial distance (W1) of 3 to 15 cm. A sheet-like FRP lattice material 100 is formed. As shown in FIG. 10, the FRP lattice material 100 is molded and cured so that the thickness of the crossing portion of the streaks is equal to the thickness of the other portions.
[0005]
The FRP lattice material 100 is attached to a concrete structure by being fixed to the surface of the concrete 3 with anchors 4 as shown in the FRP lattice material construction diagram of FIG. Thereafter, the polymer cement 6 is sprayed on the FRP lattice material 100, and is applied by hand to be integrated with the structure and coated to a predetermined thickness T (= 10 mm to 20 mm).
[0006]
Since this FRP lattice material 100 has the same reinforcing effect as a reinforcing bar, is lighter than a reinforcing bar, has little corrosion, and can be stopped by an anchor, it is easy to implement.
[0007]
[Problems to be solved by the invention]
However, when attaching the FRP lattice material 100 to the concrete surface, as shown in FIG. 12A, when the anchor bolt 4 is driven through the bars 101 and 102, the portion through which the anchor bolt 4 passes. The fibers of the streaks 101 and 102 are cut, and the strength of the original FRP material is lost.
[0008]
On the other hand, as shown in FIG. 12B, when the lattice material 100 is attached using the seat plate 5 and the anchor bolts 4 at the corners of the muscles 101 and 102, particularly near the intersection, Only a part of the bolt 4 and the seat plate 5 is in contact with the muscle, the mounting force is insufficient, and a large number of anchors are required.
[0009]
Therefore, further improvements such as maintaining the original reinforcing property of the FRP lattice material, mounting stability to the tunnel lining, and further increasing the reinforcing force have been desired.
[0010]
Therefore, the object of the present invention is to be able to easily attach using anchors in tunnels, beams, columns, girders, walls, floor boards, chimneys, water tanks, etc. It is to provide a strip composite FRP lattice material having strength.
[0011]
Another object of the present invention is to use the above-described strip composite FRP lattice material to perform a reinforcing operation easily, in a short time, and reliably, for example, tunnels, beams, columns, girders, walls. It is to provide a reinforcing method for preventing concrete peeling in floor boards, chimneys, water tanks and the like.
[0012]
[Means for Solving the Problems]
The above object is achieved by a strip composite FRP lattice material according to the present invention and a reinforcing method using the strip composite FRP lattice material. In summary, according to the first aspect of the present invention, an FRP lattice material formed by arranging a plurality of streaks, which are fiber reinforced resins, in a lattice shape, and the FRP lattice material regularly or irregularly. in strip composite FRP grating material to have a a first strip attached to arranged parallel to one another at a predetermined interval,
(A) Each of the strips is arranged so as to overlap at least two of the parallel stripes and fill a unit cell row formed by the adjacent two stripes, or
(B) Each of the strips is divided at a central portion of a unit cell array formed by two parallel adjacent stripes, and is attached to the stripes in a manner of being opposed to each other with a predetermined gap.
A strip composite FRP lattice material is provided.
[0013]
According to an embodiment of the first aspect of the present invention, the plurality of the streaks are arranged in a lattice pattern orthogonal to each other.
[0015]
According to another embodiment of the first aspect of the present invention, the plurality of streaks are arranged in a lattice pattern 3-15 cm apart from each other, and the plurality of streaks have a width of 3-10 mm and a thickness of It can be 1-5 mm.
[0016]
According to another embodiment of the first invention, each of the strips is a strip-shaped fiber reinforced resin.
[0017]
According to another embodiment of the first aspect of the present invention, the band-shaped fiber reinforced resin is formed by impregnating a matrix resin into a band-shaped reinforcing fiber sheet in which reinforcing fibers are arranged in at least one direction and curing the sheet. The band-shaped fiber reinforced resin is formed by impregnating a matrix resin made of cloth or a woven fiber made of reinforced fibers and then curing the matrix resin.
[0018]
According to another embodiment of the first invention, each of the band plates has a fiber basis weight of 100 to 1000 g / m 2 , a resin impregnation amount of 30 to 70 wt%, and a thickness of 1 to 5 mm.
[0019]
According to another embodiment of the first invention, the reinforcing fibers include inorganic fibers including carbon fibers, glass fibers, and ceramic fibers; metal fibers such as boron, titanium, and steel; aramids, polyesters, polyethylenes, nylons, PBO, organic fiber such as high-strength polypropylene, or the like, or a hybrid type in which a plurality of the fibers are mixed, and the matrix resin is a vinyl ester resin, unsaturated It includes at least one radical reaction resin such as polyester resin, polyamide resin, room temperature curable epoxy resin, thermosetting epoxy resin, polycarbonate resin, or MMA.
[0020]
2nd this invention provides the concrete reinforcement method characterized by sticking at least the said strip part of the said strip composite FRP lattice material to a concrete structure with adhesive resin.
[0021]
According to an embodiment of the second aspect of the present invention, the band plate portion of the band plate composite FRP lattice material is used to anchor to a concrete structure.
[0022]
According to another embodiment of the second aspect of the present invention, a plurality of the strip composite FRP lattice members are overlapped with each other adjacent to the strip composite FRP lattice members, and the overlapped portions are pasted. At the same time, it is anchored to the concrete structure, and the plurality of strip composite FRP lattice members are connected to each other.
[0023]
According to another embodiment of the second aspect of the present invention, after the strip composite FRP lattice material is applied to the concrete structure, if necessary, a strip-shaped fiber reinforced resin member is further formed on the predetermined strip. Affix it.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the strip composite FRP lattice material and the concrete reinforcing method using the strip composite FRP lattice material according to the present invention will be described in more detail with reference to the drawings.
[0025]
Example 1
FIG. 1 shows an embodiment of a strip composite FRP lattice material 1 of the present invention. The strip composite FRP lattice material 1 of the present invention is characterized in that the strip plate 200 is combined with the FRP lattice material 100 formed of the same fiber reinforced resin (FRP) as in the prior art. In this embodiment, the band plate 200 is made of a band-shaped fiber reinforced resin (FRP).
[0026]
More specifically, in this embodiment, the strip composite FRP lattice material 1 has the same FRP lattice material 100 as the conventional FRP lattice material 100 shown in FIGS. In other words, in the present embodiment, the FRP lattice material 100 is usually provided with a plurality of stripes that intersect at right angles and are arranged in a lattice pattern, that is, the vertical lattice stripes 101 and the horizontal lattice stripes 102. Each of the streaks 101 and 102 is mainly formed by arranging a plurality of reinforcing fibers impregnated with a matrix resin such as a vinyl ester resin by arranging reinforcing fibers such as glass fibers, carbon fibers, and aramid fibers in one direction. The The FRP lattice material 100 usually has a line width (w) of 3 to 10 mm, a thickness (t) of 1 to 5 mm, and an interstitial distance (W1) of 3 to 15 cm. As described above, the respective stripes 101 and 102 are arranged orthogonal to each other, but can be configured to cross each other at a predetermined angle other than 90 degrees and to form a lattice shape as desired. is there.
[0027]
Usually, when using glass fibers as reinforcing fibers, FRP grating member 100 has 500 N / mm 2 or more in tensile strength, the 30000 N / mm 2 or more tensile modulus.
[0028]
Further, the FRP lattice material 100 having such a configuration is lightweight, corrosion-resistant, easy to bend, and excellent in workability. Also, as shown in FIG. 10, the crossing portions of the streaks 101 and 102 are substantially on the same plane as the other streaks, and are formed in a thin sheet shape, so that they are not bulky.
[0029]
Further, according to the present embodiment, the FRP strips 200 are attached to the surface of the sheet-like FRP lattice material 100 in parallel with each other at a predetermined interval.
[0030]
In this embodiment, the FRP strip 200 is overlapped with the two vertical lattice stripes 101 along the vertical lattice stripes 101, and is arranged in the unit lattice row in the same direction (in this specification, by two adjacent stripes). It is assumed to mean a grid row formed in one direction.) The FRP band plate 200 is attached to the FRP lattice material 100 in a state where the FRP lattice material 100 is not completely cured or unimpregnated with the resin, and is impregnated and cured together with the streaks 101 and 102 when the FRP lattice material 100 is molded. Therefore, the strip 200 and the stripes 101 and 102 are integrated, and the stripes 101 and 102 and the strip 200 are in the same plane. The production method of the strip composite FRP lattice material 1 is not limited to the above, and various methods can be adopted.
[0031]
Further, as shown in FIG. 2, the FRP strips 200 are regularly arranged such as every nine unit cell rows. However, the arrangement | positioning aspect of the FRP strip 200 is not limited to this, It is arbitrarily arrange | positioned according to the use for which the FRP lattice material 100 is used. For example, in the FRP strip 200, for example, when the distance between the streaks 101 and 102 is 5 cm, the unit cell array is arranged every nine rows, and the distance between the streaks 101 and 102 is 10 cm. Can be arranged such as every 5 unit cell rows.
[0032]
In this embodiment, as described above, the FRP band plate 200 is a band-shaped fiber reinforced resin, and is formed by impregnating a matrix resin into a band-shaped reinforcing fiber sheet in which reinforcing fibers are arranged in one direction and curing. . The belt-like reinforcing fiber sheet may be a cloth made of woven reinforcing fibers or a mat made of reinforcing fibers. The fiber basis weight in the FRP strip 200 is 100 to 1000 g / m 2 , the resin impregnation amount is 30 to 70 wt%, and the thickness is usually 1 to 5 mm.
[0033]
The reinforcing fibers used for the FRP streaks and FRP strips in the present invention are inorganic fibers including carbon fibers, glass fibers and ceramic fibers; metal fibers such as boron, titanium and steel; aramid, polyester, polyethylene, nylon, PBO, high It can be any fiber selected from organic fibers such as strength polypropylene; or a hybrid type in which a plurality of the fibers are mixed. As the matrix resin, a resin such as a vinyl ester resin, an unsaturated polyester resin, a polyamide resin, a room temperature curable epoxy resin, a thermosetting epoxy resin, or a polycarbonate resin can be used.
[0034]
The band composite FRP lattice material 1 of the present invention achieves prevention of larger concrete lump removal when it is attached to a concrete structure by combining the FRP lattice material 100 with a band plate 200 made of, for example, FRP. obtain.
[0035]
In particular, since the strip composite FRP lattice material 1 of the present embodiment is made of the FRP lattice material 100 and the FRP strip 200 as described above, it can be transported in a light and wound state, and can be transported and processed. Easy.
[0036]
The aspect which installed the strip board composite FRP lattice material 1 of this invention of the said structure in the tunnel lining part is shown in FIG. The strip composite FRP lattice material 1 is disposed so that the strip 200 is in the circumferential direction of the tunnel.
[0037]
In the strip composite FRP lattice material 1 of the present invention, the strip 200 is bonded to a concrete structure with an adhesive resin.
[0038]
Furthermore, as shown in FIG. 4, the strip composite FRP lattice material 1 of the present invention is fixed by driving anchor bolts 4 into a portion of the strip 200 that does not overlap the stripes 101 and 102, preferably via the seat plate 5. can do. Therefore, the reinforcing fibers of the muscles 101 and 102 are not cut.
[0039]
As described above, the strip composite FRP lattice material 1 is thin, and after being attached to a concrete structure with an adhesive resin applied to the strip portion, the anchor bolt 4 is driven into the strip plate 200 to provide a concrete structure. As shown in FIG. 5, when two adjacent strip composite FRP lattice members 1A and 1B are connected in a plane direction, as shown in FIG. This is achieved by overlapping the 1B band plate 200 parts and bonding them with an adhesive resin, and driving the anchor bolts 4.
[0040]
Thus, since the strip composite FRP lattice material of the present invention can be attached to a concrete structure by the anchor bolt 4 using the strip, the adhesive resin that bonds the strip 200 to the concrete structure can be cured. There is no need to wait, and the reinforcement work can be performed easily, in a short time, and reliably, and further, the mounting stability is superior to the conventional FRP lattice material.
[0041]
Further, when it is necessary to increase the reinforcement of the strip composite FRP lattice material 1 applied to the concrete structure, the upper portion of the strip 200 of the composite strip FRP lattice material 1 applied to the concrete structure is used. Further, a belt-like fiber reinforced resin sheet can be attached with an adhesive resin, and further fixed with an anchor bolt. The belt-like fiber reinforced resin sheet can use the same material as that of the belt plate 200.
[0042]
Example 2
In the first embodiment, the band plate 200 is attached over the entire surface of the unit cell array formed by two adjacent streaks. However, as shown in FIG. It is also possible to attach to the muscles 101 and 102 in such a manner that they are divided and arranged opposite each other in the gap G.
[0043]
In this case, the anchor bolt 4 can be attached by driving the anchor bolt 4 into the gap G between the two strips 200 without penetrating the strips 200. Of course, the seat plate 5 contacts the strip plate 200 in an appropriate area.
[0044]
Example 3
FIG. 7 shows another embodiment of the strip composite FRP lattice material of the present invention. In the present embodiment, the second strip 201 is further arranged in a manner intersecting the first strip 200 and attached to the FRP lattice material 100.
[0045]
According to the present embodiment, the tensile strength in the arrangement direction of the second strip 201 of the strip composite FRP lattice material 1 of the present invention can be improved, and the reinforcing effect of the strip composite FRP lattice 1 is increased. .
[0046]
Example 4
FIG. 8 shows another embodiment of the strip composite FRP lattice material of the present invention. In the present embodiment, the band plate 200 is attached so as to overlap the three vertical lattice stripes 101 along the vertical lattice stripes 101 and fill the two unit lattice rows in the same direction.
[0047]
In the present embodiment, the FRP strips 200 are arranged in six unit cell rows. However, as described in the first embodiment, the arrangement of the FRP strips 200 is not limited to this. Rather, the FRP lattice material 100 is arbitrarily arranged depending on the application in which it is used.
[0048]
Also in the strip composite FRP lattice material of the present embodiment, it is possible to dispose the second strip in a manner that intersects with the strip 200.
[0049]
Example 5
Using the strip composite FRP lattice material 1 of the present invention, as shown in FIG. 3, reinforcement work for preventing concrete peeling was performed on the inner part of the tunnel. As shown in FIG. 4, the band plate composite FRP lattice material 1 is attached to the concrete surface with the seat plate 5 and the anchor bolt 4 using the band plate 200 portion, but without damaging the muscle portion, It was easy, quick and extremely stable.
[0050]
Further, since the lump is caught on the band plate portion of the band plate composite FRP lattice material, the large concrete lump can be prevented from being peeled off.
[0051]
【The invention's effect】
As described above , according to the present invention , an FRP lattice material formed by arranging a plurality of streaks, which are fiber reinforced resins, in a lattice shape, and the FRP lattice material is regularly or irregularly defined. in strip composite FRP grating material with a spacing to have a a first strip attached to arranged parallel to one another,
(A) Each strip is arranged so as to overlap at least two parallel stripes and fill a unit cell row formed by two adjacent stripes, or
(B) Each strip is divided at the center of the unit cell array formed by two parallel adjacent stripes, and is attached to the stripes in a manner of facing each other with a predetermined gap.
Because it is configured, the good properties such as light weight, flexibility, corrosion resistance, etc. that are the advantages of the conventional FRP lattice plate are not impaired, and the stripping of large concrete blocks is also prevented using the strip plate portion. The small concrete block can be prevented from peeling off with a streak, and a wide range of concrete peeling can be effectively prevented.
[0052]
Moreover, the concrete reinforcement method using the strip composite FRP lattice material according to the present invention can attach at least the strip portion of the strip composite FRP lattice material to the concrete structure with an adhesive resin. The strip composite FRP lattice material can be attached to the concrete structure by anchor bolts using the strip plate, and it is necessary to wait for the curing of the adhesive resin for bonding the strip composite FRP lattice material to the concrete structure surface. However, the reinforcing operation can be performed easily, in a short time, and reliably, and the mounting stability is significantly improved as compared with the conventional FRP lattice material.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of a strip composite FRP lattice material according to the present invention.
FIG. 2 is a plan view of an embodiment of a strip composite FRP lattice material according to the present invention.
FIG. 3 is a view showing a mode in which a strip composite FRP lattice material according to the present invention is applied to a tunnel lining portion.
FIG. 4 is a plan view for explaining a state in which a strip composite FRP lattice material according to the present invention is anchored.
FIG. 5 is a cross-sectional view illustrating a method for connecting strip composite FRP lattice members according to the present invention.
FIG. 6 is a plan view of another embodiment of the strip composite FRP lattice material according to the present invention.
FIG. 7 is a plan view of another embodiment of a strip composite FRP lattice material according to the present invention.
FIG. 8 is a plan view of another embodiment of the strip composite FRP lattice material according to the present invention.
FIG. 9 is a perspective view of an FRP lattice material.
FIG. 10 is an enlarged perspective view of an FRP lattice material.
FIG. 11 is a construction diagram illustrating a construction mode of a conventional FRP lattice material.
FIG. 12 is a plan view for explaining an anchoring mode of a conventional FRP lattice material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1A, 1B Strip composite FRP lattice material 3 Concrete structure 4 Anchor bolt 5 FRP seat plate 6 Polymer cement 100 FRP lattice material 101 Vertical lattice reinforcement 102 Horizontal lattice reinforcement 200 First belt strip 201 Second strip

Claims (15)

繊維強化樹脂とされる複数の筋を格子状に配置して形成されたFRP格子材と、前記FRP格子材に規則的に或いは不規則的に所定の間隔を持って互いに平行に配列して取付けられた第1の帯板とを有する帯板複合FRP格子材において、
前記各帯板は、平行な少なくとも2本の前記筋に重なるようにし、隣接した前記2本の筋にて形成される単位格子列を埋めるようにして、配置されることを特徴とする帯板複合FRP格子材。
An FRP lattice material formed by arranging a plurality of streaks made of fiber reinforced resin in a lattice shape, and attached to the FRP lattice material regularly or irregularly with a predetermined interval in parallel. In the strip composite FRP lattice material having the first strip formed,
Each of the strips is arranged so as to overlap at least two of the parallel streaks and to fill a unit cell row formed by the adjacent two streaks. Composite FRP lattice material.
繊維強化樹脂とされる複数の筋を格子状に配置して形成されたFRP格子材と、前記FRP格子材に規則的に或いは不規則的に所定の間隔を持って互いに平行に配列して取付けられた第1の帯板とを有する帯板複合FRP格子材において、
前記各帯板は、平行な隣接する2本の前記筋にて形成される単位格子列の中央部で分割され、所定の間隙にて対向配置する態様で前記筋に取り付けられることを特徴とする帯板複合FRP格子材。
An FRP lattice material formed by arranging a plurality of streaks made of fiber reinforced resin in a lattice shape, and attached to the FRP lattice material regularly or irregularly with a predetermined interval in parallel. In the strip composite FRP lattice material having the first strip formed,
Each of the strips is divided at a central portion of a unit cell array formed by two parallel adjacent stripes, and is attached to the stripes so as to face each other with a predetermined gap. Strip composite FRP lattice material.
複数の前記筋は互いに直交して格子状に配置されていることを特徴とする請求項1又は2の帯板複合FRP格子材。  The strip composite FRP lattice material according to claim 1 or 2, wherein the plurality of streaks are arranged orthogonally to each other in a lattice shape. 前記複数の筋は、互いに3〜15cm離間して格子状に配置されることを特徴とする請求項1〜のいずれかの項に記載の帯板複合FRP格子材。The strip composite FRP lattice material according to any one of claims 1 to 3 , wherein the plurality of streaks are arranged in a lattice shape with a spacing of 3 to 15 cm from each other. 前記複数の筋は、幅が3〜10mm、厚さが1〜5mmとされることを特徴とする請求項の帯板複合FRP格子材。5. The strip composite FRP lattice material according to claim 4 , wherein the plurality of stripes have a width of 3 to 10 mm and a thickness of 1 to 5 mm. 前記各帯板は、帯状の繊維強化樹脂であることを特徴とする請求項1〜のいずれかの項に記載の帯板複合FRP格子材。The strip composite FRP lattice material according to any one of claims 1 to 5 , wherein each of the strips is a strip-like fiber reinforced resin. 前記帯状の繊維強化樹脂は、強化繊維を少なくとも一方向に配列した帯状強化繊維シートにマトリクス樹脂を含浸し、硬化して形成されることを特徴とする請求項の帯板複合FRP格子材。7. The strip composite FRP lattice material according to claim 6 , wherein the strip-shaped fiber reinforced resin is formed by impregnating a matrix resin into a strip-shaped reinforcing fiber sheet in which reinforcing fibers are arranged in at least one direction and curing. 前記帯状の繊維強化樹脂は、強化繊維を織成したクロス或いは強化繊維からなるマットにマトリクス樹脂を含浸し、硬化して形成されることを特徴とする請求項の帯板複合FRP格子材。7. The strip composite FRP lattice material according to claim 6 , wherein the belt-shaped fiber reinforced resin is formed by impregnating a matrix resin into a mat made of cloth or reinforcing fibers woven with reinforcing fibers and curing. 前記各帯板は、繊維目付100〜1000g/m2、樹脂含浸量が30〜70wt%、厚さが1〜5mmであることを特徴とする請求項又はの帯板複合FRP格子材。Each strip is fibrous basis weight 100~1000g / m 2, 30~70wt% resin impregnation amount, the strip composite FRP grating material according to claim 7 or 8 thickness, characterized in that a 1 to 5 mm. 前記強化繊維は、炭素繊維、ガラス繊維、セラミックス繊維を含む無機繊維;ボロン、チタン、スチールなどの金属繊維;アラミド、ポリエステル、ポリエチレン、ナイロン、PBО、高強度ポリプロピレンなどの有機繊維;などから選択されるいずれかの繊維であるか、或いは、前記繊維を複数種混入したハイブリッドタイプとされることを特徴とする請求項7、8又はの帯板複合FRP格子材。The reinforcing fibers are selected from inorganic fibers including carbon fibers, glass fibers, and ceramic fibers; metal fibers such as boron, titanium, and steel; organic fibers such as aramid, polyester, polyethylene, nylon, PBO, and high-strength polypropylene; The strip composite FRP lattice material according to claim 7, 8 or 9 , wherein the fiber plate is a hybrid type in which a plurality of types of fibers are mixed. 前記マトリクス樹脂は、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリアミド樹脂、常温硬化型エポキシ樹脂、熱硬化型エポキシ樹脂、ポリカーボネート樹脂、又は、MMAなどのラジカル反応系樹脂を少なくとも一種以上含むことを特徴とする請求項10のいずれかの項に記載の帯板複合FRP格子材。The matrix resin includes at least one radical reaction resin such as vinyl ester resin, unsaturated polyester resin, polyamide resin, room temperature curable epoxy resin, thermosetting epoxy resin, polycarbonate resin, or MMA. The strip composite FRP lattice material according to any one of claims 7 to 10 . 請求項1〜11のいずれかの項に記載の前記帯板複合FRP格子材の、少なくとも前記帯板部分を、接着樹脂により、コンクリート構造物に張り付けることを特徴とするコンクリート補強方法。Said strip composite FRP grating material according to any one of claims 1 to 11, at least the strip portions, by an adhesive resin, reinforced concrete wherein the pasting the concrete structure. 前記帯板複合FRP格子材の前記帯板部分を利用してコンクリート構造物にアンカーどめされることを特徴とする請求項12のコンクリート補強方法。The concrete reinforcing method according to claim 12 , wherein the band plate portion of the band plate composite FRP lattice material is anchored to a concrete structure. 複数の前記帯板複合FRP格子材は、互いに隣り合った前記帯板複合FRP格子材の帯板を互いに重ね合わせ、この重ね合わせた部分を貼り合わせて、コンクリート構造物にアンカーどめし、複数の前記帯板複合FRP格子材を互いに接続することを特徴とする請求項12又は13のコンクリート補強方法。A plurality of the strip composite FRP lattice members adjacent to each other are overlapped with each other, and the overlapped portions are bonded together to be anchored to the concrete structure. The concrete reinforcing method according to claim 12 or 13 , wherein the strip composite FRP lattice members are connected to each other. 前記帯板複合FRP格子材をコンクリート構造物に施工後に、必要に応じて更に、前記所定の帯板の上に帯状の繊維強化樹脂部材を、貼付することを特徴とする請求項12、13又は14のコンクリート補強方法。Said strip composite FRP grating material after construction in a concrete structure, further optionally, a strip-shaped fiber-reinforced resin member on the predetermined strip of claim 12, 13 or, characterized in that affixed 14 concrete reinforcement methods.
JP2000231232A 2000-07-31 2000-07-31 Band plate composite FRP lattice material and concrete reinforcing method using the band plate composite FRP lattice material Expired - Fee Related JP4460124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231232A JP4460124B2 (en) 2000-07-31 2000-07-31 Band plate composite FRP lattice material and concrete reinforcing method using the band plate composite FRP lattice material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231232A JP4460124B2 (en) 2000-07-31 2000-07-31 Band plate composite FRP lattice material and concrete reinforcing method using the band plate composite FRP lattice material

Publications (2)

Publication Number Publication Date
JP2002038655A JP2002038655A (en) 2002-02-06
JP4460124B2 true JP4460124B2 (en) 2010-05-12

Family

ID=18724098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231232A Expired - Fee Related JP4460124B2 (en) 2000-07-31 2000-07-31 Band plate composite FRP lattice material and concrete reinforcing method using the band plate composite FRP lattice material

Country Status (1)

Country Link
JP (1) JP4460124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926831A (en) * 2020-08-14 2020-11-13 中建三局集团有限公司 Prefabricated assembled slope protection lattice beam structure

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830399B2 (en) * 2002-02-15 2006-10-04 日鉄コンポジット株式会社 Fiber reinforced concrete wall for shield excavation
JP4351846B2 (en) * 2003-01-16 2009-10-28 日鉄コンポジット株式会社 Structure of mountain retaining wall for shield excavation
JP4004436B2 (en) * 2003-05-15 2007-11-07 首都高速道路公団 Road deck reinforcement method
JP2004346702A (en) * 2003-05-26 2004-12-09 Takashi Miura Reinforcing paving method for steel floor slab and reinforced paved floor slab
JP4090944B2 (en) * 2003-05-29 2008-05-28 ユニチカ株式会社 Concrete stripping prevention method
JP2005105697A (en) * 2003-09-30 2005-04-21 Nippon Oil Corp Reinforced fiber resin plate and reinforcing method of structure using the same
KR100601733B1 (en) 2004-04-02 2006-07-14 주식회사 엠텍 Punched-steel-plate fiber-mesh one-directional-fiber composite mesh and construction method using thereof
JP4647338B2 (en) * 2005-02-25 2011-03-09 有限会社エスティニューテック研究会 Reinforcement method around the perforated part after the construction of single reinforcement foundation for low-rise housing
JP5182929B2 (en) * 2008-05-21 2013-04-17 大成建設株式会社 Reinforcing method for existing concrete structures
JP2011006841A (en) * 2009-06-23 2011-01-13 West Nippon Expressway Engineering Shikoku Co Ltd Net for preventing concrete piece exfoliation and construction method for the same
JP5562720B2 (en) * 2010-05-20 2014-07-30 西日本高速道路エンジニアリング四国株式会社 Concrete piece protection net
JP5748629B2 (en) * 2011-10-04 2015-07-15 ショーボンド建設株式会社 Reinforcing structure and reinforcing method of concrete surface and reticulated reinforcing material made of fiber reinforced resin
JP6253058B2 (en) * 2014-10-10 2017-12-27 学校法人日本大学 Reinforcing bar member and reinforced concrete structure using the reinforcing bar member
JP6845501B2 (en) * 2017-01-12 2021-03-17 インフラテック株式会社 Vertical member installation structure, vertical member installation method, and precast vertical member
CN106705089A (en) * 2017-01-13 2017-05-24 南京大自然环境科技有限公司 Corrosion resistant lining and chimney
CN106948610A (en) * 2017-05-03 2017-07-14 福州大学 FRP networks and construction method for reinforcing wall
KR102131202B1 (en) * 2018-02-12 2020-07-07 주식회사 미래기술 Structure of fiber net and construction method for pavement using the same
JP7303354B2 (en) * 2018-03-26 2023-07-04 日鉄ケミカル&マテリアル株式会社 Manufacturing method of FRP lattice material with projections
JP7149090B2 (en) * 2018-03-26 2022-10-06 日鉄ケミカル&マテリアル株式会社 FRP lattice material with protrusions
CN110118089B (en) * 2019-05-23 2021-09-07 新疆大学 Mining FRP grid-coal gangue-self-compacting concrete regenerated top plate and construction method thereof
DE102020108728A1 (en) * 2020-03-30 2021-09-30 International Automotive Components Group Gmbh Interior trim for a motor vehicle, comprising a headliner and a stiffening frame, and method for their manufacture
JP7457630B2 (en) 2020-10-27 2024-03-28 九州電力株式会社 Reinforcement method and structure for concrete structures
CN114233041B (en) * 2021-12-31 2023-06-16 南京工程学院 Integral reinforcement method for masonry structure
KR102474070B1 (en) * 2022-03-11 2022-12-07 (주)리콘 Seismic Panel And Construction Method Using The Same
CN117231026A (en) * 2023-08-01 2023-12-15 中南大学 Concrete structure composite reinforcing device and reinforcing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926831A (en) * 2020-08-14 2020-11-13 中建三局集团有限公司 Prefabricated assembled slope protection lattice beam structure

Also Published As

Publication number Publication date
JP2002038655A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP4460124B2 (en) Band plate composite FRP lattice material and concrete reinforcing method using the band plate composite FRP lattice material
JP5214864B2 (en) Structure reinforcement method
US6309732B1 (en) Modular fiber reinforced polymer composite structural panel system
US6455131B2 (en) Modular fiber reinforced polymer composite deck system
JP5122336B2 (en) Tunnel inner surface repair material
US20230279624A1 (en) Composite structural panel and method of fabrication
JP4314163B2 (en) Concrete peeling prevention method
JP5645440B2 (en) Structure reinforcement method
JP5409259B2 (en) Structure reinforcement method
JP6012951B2 (en) End coating method for reinforcing fiber sheets of structures
JP5748629B2 (en) Reinforcing structure and reinforcing method of concrete surface and reticulated reinforcing material made of fiber reinforced resin
JP4642591B2 (en) Fiber reinforced resin permanent mold for reinforced concrete floor slab, method for producing the same, and reinforced concrete composite floor slab using permanent mold
JP6327634B2 (en) Repair and reinforcement method for steel structures
JP4194871B2 (en) Method for reinforcing concrete structures
JP3806252B2 (en) Reinforcing method of concrete structure with reinforcing fiber sheet
CN218406676U (en) FRP-SMA composite sheet
JPS62153449A (en) Concrete reinforcing member
JP6436428B2 (en) Steel bridge repair and reinforcement method and reinforcement structure
JP3801726B2 (en) Repair and reinforcement method for existing concrete structures
JP3350447B2 (en) Fiber sheet for reinforcement and repair
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
JPH09125601A (en) Reinforcing structure of peripheral edge of hole of concrete structure and peripheral edge of hole of concrete beam
JP3094851B2 (en) Civil and architectural reinforcement
JP3947463B2 (en) Reinforcement method of structure by continuous tension fiber sheet sequential tension bonding
JP4681748B2 (en) Structure reinforcement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

R150 Certificate of patent or registration of utility model

Ref document number: 4460124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees