JP4457554B2 - Polyuronic acid - Google Patents

Polyuronic acid Download PDF

Info

Publication number
JP4457554B2
JP4457554B2 JP2002360523A JP2002360523A JP4457554B2 JP 4457554 B2 JP4457554 B2 JP 4457554B2 JP 2002360523 A JP2002360523 A JP 2002360523A JP 2002360523 A JP2002360523 A JP 2002360523A JP 4457554 B2 JP4457554 B2 JP 4457554B2
Authority
JP
Japan
Prior art keywords
solution
acid
polyuronic acid
polyuronic
chitin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002360523A
Other languages
Japanese (ja)
Other versions
JP2004189923A (en
Inventor
純一 神永
友美子 加藤
龍吉 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2002360523A priority Critical patent/JP4457554B2/en
Publication of JP2004189923A publication Critical patent/JP2004189923A/en
Application granted granted Critical
Publication of JP4457554B2 publication Critical patent/JP4457554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子量で構造が均一な水溶性ポリウロン酸の提供に関する。
【0002】
【従来の技術】
天然に存在するポリウロン酸類としては、アルギン酸やペクチン等が挙げられ、これらはその安全性の高さから食品添加物、増粘剤、安定剤等として工業的に利用されている。さらに生体内に存在するムコ多糖(グリコサミノグリカン)類にも、ヒアルロン酸や、コンドロイチン硫酸等、ウロン酸(β−D−グルクロン酸)を構成単糖とするものがある。ポリウロン酸類は生体適合性、生分解性にも優れると言われており、化粧品材料、医療・医薬用材料等としての応用も検討され、工業化されているものもある。
現在、安全性、生体適合性、生分解性に優れる水溶性ポリウロン酸類を原料として、化学的・物理的修飾、誘導体化、他材料との複合化等、二次修飾することにより生分解性高機能材料を開発しようという検討も行われている。しかし前記の天然に存在するポリウロン酸類は、殆どがヘテロ多糖類であり、不均一な構造ゆえに材料設計を困難にしている。
【0003】
一方で安価な天然多糖類材料を酸化してポリウロン酸類を得る試みもなされている。特に、甲殻類や昆虫類の骨格物質として存在するキチンを、ウロン酸化すると、ヒアルロン酸類似の構造となることから、その有用性が高いと考えられており、盛んに研究されている。しかしピラノース環のC6位の1級水酸基のみを選択的に酸化する手法は少なく、特に有効な溶媒の少ないキチンの選択的酸化は困難であった。現在提案されている酸化手法としては二酸化窒素による酸化、及び2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(以下TEMPOと称する場合もある)等のN−オキシル化合物触媒による酸化が挙げられる。しかし、二酸化窒素による酸化では、ピラノース環のC6位の1級水酸基を全て酸化しようとすると、C3位等の2級水酸基も酸化されてしまったり、重合度低下が大きいことが報告されており、またTEMPO触媒による酸化では、反応条件を制御することで選択性高くC6位の1級水酸基を酸化して、構造の均一なポリウロン酸を得ることができるものの、重量平均分子量が10,000以下の重合度の低いものしか得られていない(例えば、非特許文献1参照)。
【0004】
前記したように、水溶性ポリウロン酸類を化学修飾して、生分解性高機能材料を合成しようとするときに、修飾反応における低分子量化が避けられない場合もあり、原料のポリウロン酸はできるだけ高分子量である方が望ましい。また水溶性ポリウロン酸類をアニオン性材料として、カチオン性の高分子と複合化して、ポリイオンコンプレックス材料を得ることも検討されているが、この場合、生成したポリイオンコンプレックスの強度物性には、原料ポリウロン酸の重合度は大きく影響する。またポリウロン酸水溶液はコーティング剤としても用いられるが、コーティング膜物性にもポリウロン酸の分子量は大きく影響する。
【0005】
【非特許文献1】
Carbohydrate Polymers 39(1999)361−367
【0006】
【発明が解決しようとする課題】
本発明の課題は、安全性、生体適合性、生分解性に優れ、食品、医療・医薬、化粧品等、各種機能材料の合成原料としても有用な、構造が均一で高分子量の水溶性ポリウロン酸を提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明は、アルカリで膨潤または溶解して、下記化学式(2)で表されるm:nの比率が8:2から10:0の範囲にしたキチンを調製する工程と、前記キチンと、N−オキシル化合物と、水とを含む溶液を調製する工程と、前記溶液の温度を5℃以下にし、前記溶液のpHを10から11.5の範囲にし、前記溶液に酸化反応の進行具合に応じて量を調整しながら酸化剤を滴下する工程とを具備することを特徴とするポリウロン酸の製造方法である。
【0008】
【化7】

Figure 0004457554
【0009】
請求項2の発明は、N−アセチル化して、下記化学式(2)で表されるm:nの比率が8:2から10:0の範囲にしたキトサンを調製する工程と、前記キトサンと、N−オキシル化合物と、水とを含む溶液を調製する工程と、前記溶液の温度を5℃以下にし、前記溶液のpHを10から11.5の範囲にし、前記溶液に酸化反応の進行具合に応じて量を調整しながら酸化剤を滴下する工程とを具備することを特徴とするポリウロン酸の製造方法である。
【0010】
【化8】
Figure 0004457554
【0011】
請求項3の発明は、前記溶液は臭化アルカリ金属を含み、前記N−オキシル化合物が2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルであり、前記酸化剤が次亜塩素酸ナトリウムであることを特徴とする請求項1または2に記載のポリウロン酸の製造方法である。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明におけるポリウロン酸は、下記化学式(1)に示す構造からなるもので、式中のX、Yは、水素またはアルカリ金属を示すものである。また、N−アセチル−D−グルコサミヌロン酸(或いはN−アセチル−D−グルコサミヌロン酸のアルカリ金属塩)とD−グルコサミヌロン酸(或いはD−グルコサミヌロン酸のアルカリ金属塩)がβ−(1,4)−結合したもので、化学構造が明確、均一であり、二次修飾する場合の合成原料として特に好ましい。また、化学式(1)中のX、Yが、水素またはナトリウムであれば、25℃の蒸留水に対して、10%以上の溶解性を示すため、水系のコーティング材料として、及び、水系での反応原料として有用である。
【0016】
【化3】
Figure 0004457554
【0017】
また、本発明におけるポリウロン酸は、前記化学式(1)中のm:nの比率、つまりN−アセチル−D−グルコサミヌロン酸(或いはそのアルカリ金属塩)とD−グルコサミヌロン酸(或いはそのアルカリ金属塩)の比率が、8:2から10:0の範囲であることを特徴とするものである。D−グルコサミヌロン酸(或いはそのアルカリ金属塩)は、カチオン性のアミノ基を有し、アニオン性のカルボキシル基とイオン結合を形成し易いことから、D−グルコサミヌロン酸(或いはそのアルカリ金属塩)が全体の20%以上では、安定性の低下、及び水溶性の低下を招くため好ましくない。
【0018】
特に、本発明のポリウロン酸をアニオン性材料として、キトサン等のカチオン性多糖類とポリイオンコンプレックスを形成する際には、N−アセチル−D−グルコサミヌロン酸100%からなるポリウロン酸を用いるよりも、10%程度のD−グルコサミヌロン酸を含有する方が、生成したポリイオンコンプレックスの強度物性が向上する傾向も有する。
【0019】
さらに本発明のポリウロン酸は、その重量平均分子量が30,000以上、より好ましくは50,000以上であることを特徴とし、上記したように、化学構造が明確、均一であり、且つ高分子量である点が大きな特徴である。そのため、本発明のポリウロン酸水溶液をコーティング材料として用いる場合には、塗工性が向上し、塗膜の耐湿性や膜物性の向上も期待できる。さらに、前記のようにポリイオンコンプレックスとした際も、その物性や安定性を向上させる。さらに本発明のポリウロン酸を原料に化学修飾する場合も、生成物の物性向上、及び物性の安定化に寄与し得る。
【0020】
ここに記載した重量平均分子量とは、標準物質としてプルランを用いて、サイズ排除クロマトグラフィー法により測定した、プルラン換算重量平均分子量である。
【0021】
さらに本発明のポリウロン酸は、キチン等を原料として、N−オキシル化合物触媒による酸化手法を用いることにより得られるが、本発明の特徴である均一な構造を有して且つ高分子量のポリウロン酸を得るためには、基質のアクセシビリティーを充分に高め、C6位の1級水酸基を選択的に全てカルボキシル基に変換するとともに、穏やかな条件で酸化することで分子量の低下やC3位の酸化などの副酸化をおさえることが重要となる。つまり、アルカリで充分に膨潤または溶解処理したキチンを原料として、又は、キトサンをN−アセチル化したものを原料として、N−オキシル化合物の触媒の存在下、臭化アルカリ金属と酸化剤を用いて、5℃以下の低温、水系で、pHを10〜11.5の範囲で一定に保ちながら酸化することにより、本発明のポリウロン酸が得られる。ここでN−オキシル化合物としては、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(TEMPO)が、臭化アルカリ金属としては臭化ナトリウムが、酸化剤としては次亜塩素酸ナトリウムが特に好ましい。
【0022】
前記のキチン、及びキトサンは、下記化学式(2)に示す構造を有するもので、キチンは、カニやエビなどの甲殻類、また昆虫類の骨格物質として存在し、一般的には、ほぼN−アセチル−D−グルコサミンから成るものであるが、精製過程における脱アセチル化等により、D−グルコサミンも含むものである。キチンは結晶性が高く、水には不溶であるが、高濃度のアルカリに浸漬後、氷を加えながら低温下で希釈していくことにより、粘調な液体となる。ここに塩酸を加えて中和すると、フレーク状のキチンが析出するが、ほぼ非晶質化したキチンが得られ、これを充分に水洗して乾燥させずに上記酸化反応に供することにより、ほぼ全てのC6位の1級水酸基が選択性高く酸化され、分子量低下は抑えられる。但し、アルカリ雰囲気下では、キチンの脱アセチル化の反応も進行することから、アルカリによる溶解および中和処理、さらに酸化反応中の系内の温度は5℃以下の低温に維持することが重要である。
【0023】
【化4】
Figure 0004457554
【0024】
さらにキトサンは、キチンを脱アセチル化することにより得られる物質で、一般的には前記化学式(2)中のnの比率の方が高い物質であり、酸に対して溶解する。キトサン溶液に無水酢酸を添加すると容易にN−アセチル化され、再びキチンの化学構造に戻すことが可能である。この操作を経て、充分に水洗したものを乾燥させずに上記酸化反応に供することにより、前記同様にC6位の1級水酸基のみ選択性高く酸化して、高分子量の本発明のポリウロン酸を得ることができる。また、この場合は、m/nの比率を任意に設定することが可能である。
【0025】
ここで上記酸化手法は、例えばTEMPOと臭化ナトリウムを溶解した水溶液に、上記の湿潤原料を加えて均一に分散させ、系内を5℃以下に冷却、pHを10に調整し、酸化剤の次亜塩素酸ナトリウム溶液を反応の進行に応じて添加するとともに、水酸化ナトリウム水溶液を滴下して、系内のpHを10〜11.5の範囲で一定に保つ。また反応中は系内の温度を5℃以下に維持する。酸化が進むにつれ、系内は溶解し、均一な溶液となる。この反応条件においては、添加される水酸化ナトリウムの量は、ほぼ酸化により導入されたカルボキシル基の量に対応しており、原料のC6位の1級水酸基量と当モルの添加量に達した時点で、エタノールを添加して過剰の酸化剤を失活させ、過剰量のエタノール中で再沈させる。生成物はアセトンと水の混合溶液を用いて十分洗浄後、アセトンで脱水してから減圧乾燥することにより、本発明のポリウロン酸のナトリウム塩が得られる。
【0026】
なお上記により得られたポリウロン酸のナトリウム塩を水溶後酸処理し、上記のエタノールで再沈、洗浄、乾燥の操作を繰り返すことで脱塩したポリウロン酸を得ることができる。
【0027】
さらに、本発明のポリウロン酸は、構造が均一な、β−(1、4)−ポリウロン酸であるため、重水に溶解させて13C−NMRを測定すると、ピラノース環C6位の水酸基を持つ炭素に由来するピーク(δ=60〜65ppm付近)は見られず、カルボキシル基に由来するピーク(δ=170〜180ppm付近)を有し、さらに、C3位の2級水酸基の酸化により生じるケトンなどのピーク(δ=200〜210ppm付近)は検出されないことを特徴とする。
【0028】
【実施例】
以下実施例により、本発明についてさらに詳しく説明する。
【0029】
<実施例1>
キチン(和光純薬工業(株)製)を5g、45%水酸化ナトリウム水溶液50gに浸漬し、容器の周囲を氷水で冷却しながら、2時間攪拌した。これに、砕いた氷175gを、攪拌しながら添加した。このアルカリ処理によりキチンはほぼ溶解する。低温に維持したまま、塩酸で中和し、十分に水洗した後、乾燥させずに、5%のアルカリ処理キチン懸濁液とした。ここに、TEMPO 75mg、臭化ナトリウム 1.0gを溶解させた水溶液を加え、キチンの固形分濃度が約2wt%になるよう調製した。反応系を冷却し、11%次亜塩素酸ナトリウム水溶液10gを添加し、酸化反応を開始する。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整するとともに、さらに11%次亜塩素酸ナトリウム水溶液35gを反応の進行に応じて調整しながら滴下した。6位の1級水酸基の全モル数に対し、100%のモル数に対応するアルカリ添加量に近づくと、次亜塩素酸ナトリウム水溶液の滴下に関係なく、アルカリの添加速度(反応速度)は遅くなり、系内は完全に溶解してくる。アルカリ添加量が前記の100%(49.2ml)に達した時点で、エタノールを添加して反応を停止させた。反応時間は2時間であった。この反応溶液は、濾過により不溶の不純物を除いてから、過剰量のエタノール中に投入して、生成物を再沈させた。さらに水:アセトン=1:7の溶液により充分洗浄した後、アセトンで脱水して、40℃減圧乾燥して、白色粉末状のポリウロン酸のナトリウム塩5.3gを得た。
【0030】
<実施例2>
脱アセチル化度100%のキトサン(大日精化工業(株)製)を5g、10%酢酸95gに溶解した。濾過により不溶分を除去し、メタノール500mlで希釈して、攪拌しながら無水酢酸4.76gを添加すると数分でゲル化した。1晩静置後、ホモジナイザーで多量のメタノール中に分散させた。メタノール及び水:アセトン=1:7の溶液により充分洗浄し、さらに水洗してメタノールおよびアセトンを完全に除き、N−アセチル化キトサンの5%濃度の懸濁液とした。
このN−アセチル化キトサンの懸濁液の一部を凍結乾燥して、元素分析によりN−アセチル化度を求めたところ、95%であった(前記化学式(2)におけるm:n=95:5)。
さらに前記N−アセチル化キトサンの5%濃度の懸濁液100gに対し、実施例1と同様の酸化処理を行った。反応時間は1時間10分であり、白色粉末状のポリウロン酸のナトリウム塩5.3gが得られた。
【0031】
<実施例3>
実施例1のポリウロン酸のナトリウム塩2gを40mlの蒸留水に溶解し、攪拌しながら、pH1になるまで2N−塩酸を添加した。溶液は透明な溶液のままであった。この溶液を過剰量のエタノール中に投入し、生成物を再沈させた。さらに水:アセトン=1:7の溶液により充分洗浄した後、アセトンで脱水して、40℃減圧乾燥して、白色粉末状の脱塩したポリウロン酸1.6gを得た。
【0032】
得られた実施例1〜3のポリウロン酸を以下の方法で評価した。
(水溶性)
実施例1〜3のポリウロン酸1.0gを、25℃の蒸留水10mlに溶解させた。いずれも完全に溶解し、さらに高濃度での溶解も可能であった。
【0033】
(NMRによる構造分析)
実施例1〜3のサンプルを重水に溶解させ、13C−NMRを測定した。その結果を図1〜3に示す。NMRスペクトルから、キチンのピラノース環C6位の水酸基をもつ炭素に由来するピーク(δ=60〜65ppm付近)が完全に消えて、カルボキシル基(δ=170〜180ppm付近)に変換しており、2位、3位の炭素に由来するピークは変化せず、ケトンなどのピーク(δ=200〜210ppm付近)は確認されなかった。従って、本発明のポリウロン酸は、ほぼ構造が均一な、β−(1,4)−N−アセチル−D−グルコサミヌロン酸であると言える。
【0034】
(重量平均分子量の測定)
実施例1〜3のポリウロン酸の重量平均分子量(Mw)を、GPC法により測定した。カラムはTSK−gelG6000PWXL、TSK−gelG3000PWXLを用い、0.1M−NaClを溶離液とし、RI検出器を用い測定した。分子量既知の標準プルランから検量線を作成し、プルラン換算の重量平均分子量を算出した。その結果、実施例1から順にMw=62,000、78,000、65,000といずれも分子量30,000以上のポリウロン酸であった。さらに数平均分子量(Mn)との比(Mw/Mn)は、いずれも3以下で、分子量分散としては決して広くはなかった。従って分子量分散が広いために、計算上の重量平均分子量が高くなった訳ではないと言える。
【0035】
(生分解性の測定)
実施例1のポリウロン酸の生分解性を以下の手法で評価したところ、試験10日後の生分解度は43%、試験20日後の生分解度は62%であった。なお対照として用いた微結晶セルロースは試験10日後の生分解度は39%、試験20日後の生分解度は60%であり、セルロースと同等以上の高い生分解性を有することが分かる。
(生分解性の評価方法)
八幡物産(株)製の微生物酸化分解測定装置(MODA)を用い、試験土壌として、水分60%に調整した標準コンポスト(八幡物産(株)製 YK−2)250ccと、水分18%に調整した海砂250ccを混合したものを用いた。試料10gを試験土壌と均一に混合して、カラム状の反応筒に充填し、反応筒内の温度を35℃で一定に保持した。さらに反応筒下方より水蒸気を飽和した脱炭酸空気を40ml/分で通気し、反応筒上部からはガス漏れなく配管されて、アンモニアガスを除くために硫酸水浴中を通り、水分を除くためにシリカゲルと塩化カルシウムを充填した吸湿筒を通り、さらにソーダタルク及びソーダライムを充填した吸収筒に導かれる。試料が好気的に生分解して発生する二酸化炭素は全て、吸収筒に吸収されるため、吸収筒の重量変化から生分解により発生した二酸化炭素量を定量できるものである。なお試料を入れない試験土壌のみの空試験を同時に行い、空試験で発生した二酸化炭素量を差し引いて、分解により発生した二酸化炭素量を求めた。試料10g中の炭素含量から理論的に発生する二酸化炭素量を算出し、理論量に対する発生二酸化炭素量の割合を生分解度とした。試料としては、実施例1のポリウロン酸と、対照として、微結晶セルロース(Avicel)を用いた。
【0036】
【発明の効果】
以上より、本発明のポリウロン酸は(化1)の構造よりなる、β−(1,4)−ポリウロン酸であり、その重量平均分子量は30,000以上を有し、高い水溶性を示す。また生分解性も良好で、安全性に優れる。従って、構造が明確ゆえに、各種機能と化学構造の関係を解析していく上で、極めて有効な材料であり、材料設計のし易い合成原料となり得る。また、高分子量で水溶性が良好なことから、水系のコーティング材料として、及び水系の反応原料として好ましく用いることができる。さらには、ポリウロン酸単体、或いは二次修飾や複合化した材料の物性の向上にも寄与し、食品、医療・医薬、化粧品等、様々な機能性材料として応用されることが期待できる。
【0037】
【図面の簡単な説明】
【図1】実施例1のポリウロン酸ナトリウム塩を重水に溶解して測定した13C−NMRスペクトルである。
【図2】実施例2のポリウロン酸ナトリウム塩を重水に溶解して測定した13C−NMRスペクトルである。
【図3】実施例3のポリウロン酸を重水に溶解して測定した13C−NMRスペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the provision of water-soluble polyuronic acid having a high molecular weight and a uniform structure.
[0002]
[Prior art]
Naturally occurring polyuronic acids include alginic acid and pectin, and these are industrially used as food additives, thickeners, stabilizers and the like because of their high safety. Further, some mucopolysaccharides (glycosaminoglycans) existing in the body include uronic acid (β-D-glucuronic acid) such as hyaluronic acid and chondroitin sulfate as constituent monosaccharides. Polyuronic acids are said to be excellent in biocompatibility and biodegradability, and some of them have been industrialized and studied for application as cosmetic materials, medical / pharmaceutical materials and the like.
At present, highly water-degradable polyuronic acids with excellent safety, biocompatibility, and biodegradability are used as raw materials, and they are highly biodegradable through secondary modifications such as chemical and physical modification, derivatization, and complexation with other materials. Studies are also underway to develop functional materials. However, most of the naturally occurring polyuronic acids are heteropolysaccharides, which makes the material design difficult due to the heterogeneous structure.
[0003]
On the other hand, attempts have been made to obtain polyuronic acids by oxidizing inexpensive natural polysaccharide materials. In particular, chitin, which exists as a skeletal material of crustaceans and insects, becomes hyaluronic acid-like structure when it is oxidized by uron, so it is considered to be highly useful and has been actively studied. However, there are few methods for selectively oxidizing only the primary hydroxyl group at the C6 position of the pyranose ring, and it has been difficult to selectively oxidize chitin with a particularly small effective solvent. Currently proposed oxidation methods include oxidation with nitrogen dioxide and N-oxyl compound catalysts such as 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (hereinafter sometimes referred to as TEMPO). Oxidation is mentioned. However, in the oxidation with nitrogen dioxide, it has been reported that when all the primary hydroxyl groups at the C6 position of the pyranose ring are oxidized, secondary hydroxyl groups such as the C3 position are also oxidized, and the degree of polymerization is greatly reduced. In the oxidation with a TEMPO catalyst, the primary hydroxyl group at the C6 position can be oxidized with high selectivity by controlling the reaction conditions to obtain a polyuronic acid having a uniform structure, but the weight average molecular weight is 10,000 or less. Only those having a low degree of polymerization have been obtained (for example, see Non-Patent Document 1).
[0004]
As described above, when chemically modifying water-soluble polyuronic acids to synthesize biodegradable high-performance materials, there is a case where low molecular weight in the modification reaction is unavoidable, and the raw material polyuronic acid is as high as possible. A molecular weight is desirable. In addition, it has been studied to obtain a polyion complex material by combining water-soluble polyuronic acids with an anionic material and a cationic polymer. In this case, the strength properties of the generated polyion complex include the raw material polyuronic acid. The degree of polymerization is greatly affected. Polyuronic acid aqueous solution is also used as a coating agent, but the molecular weight of polyuronic acid greatly affects the physical properties of the coating film.
[0005]
[Non-Patent Document 1]
Carbohydrate Polymers 39 (1999) 361-367
[0006]
[Problems to be solved by the invention]
An object of the present invention is a water-soluble polyuronic acid having a uniform structure and a high molecular weight, which is excellent in safety, biocompatibility and biodegradability, and is also useful as a raw material for synthesizing various functional materials such as food, medicine / pharmaceuticals and cosmetics. Is to provide.
[0007]
[Means for Solving the Problems]
The invention of claim 1 is a step of preparing chitin which is swollen or dissolved in an alkali and has a ratio of m: n represented by the following chemical formula (2) in the range of 8: 2 to 10: 0, And a step of preparing a solution containing an N-oxyl compound and water, the temperature of the solution is set to 5 ° C. or less, the pH of the solution is set to a range of 10 to 11.5, and an oxidation reaction proceeds in the solution. And a step of dropping the oxidizing agent while adjusting the amount according to the condition.
[0008]
[Chemical 7]
Figure 0004457554
[0009]
The invention of claim 2 is a step of N-acetylating to prepare chitosan having a ratio of m: n represented by the following chemical formula (2) in the range of 8: 2 to 10: 0, and the chitosan, A step of preparing a solution containing an N-oxyl compound and water; a temperature of the solution is set to 5 ° C. or less; a pH of the solution is set to a range of 10 to 11.5; And a step of dropping the oxidant while adjusting the amount accordingly, and a method for producing polyuronic acid.
[0010]
[Chemical 8]
Figure 0004457554
[0011]
According to a third aspect of the present invention, the solution contains an alkali metal bromide, the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl, and the oxidizing agent is hypochlorous acid. 3. The method for producing polyuronic acid according to claim 1, wherein the polyuronic acid is sodium chlorate.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The polyuronic acid in the present invention has a structure represented by the following chemical formula (1), and X and Y in the formula represent hydrogen or an alkali metal. In addition, N-acetyl-D-glucosaminouronic acid (or an alkali metal salt of N-acetyl-D-glucosamineuronic acid) and D-glucosaminouronic acid (or an alkali metal salt of D-glucosamineuronic acid) are β- (1,4)- It is bonded, has a clear and uniform chemical structure, and is particularly preferable as a synthetic raw material in the case of secondary modification. Further, when X and Y in the chemical formula (1) are hydrogen or sodium, they exhibit a solubility of 10% or more with respect to distilled water at 25 ° C. Therefore, as an aqueous coating material and in an aqueous system It is useful as a reaction raw material.
[0016]
[Chemical 3]
Figure 0004457554
[0017]
In addition, the polyuronic acid in the present invention has a ratio of m: n in the chemical formula (1), that is, N-acetyl-D-glucosaminouronic acid (or an alkali metal salt thereof) and D-glucosaminouronic acid (or an alkali metal salt thereof). The ratio is in the range of 8: 2 to 10: 0. Since D-glucosaminouronic acid (or its alkali metal salt) has a cationic amino group and easily forms an ionic bond with an anionic carboxyl group, D-glucosamineuronic acid (or its alkali metal salt) is entirely If it is 20% or more, the stability is lowered and the water solubility is lowered.
[0018]
In particular, when the polyuronic acid of the present invention is used as an anionic material to form a polyion complex with a cationic polysaccharide such as chitosan, the polyuronic acid composed of 100% N-acetyl-D-glucosaminouronic acid is used in an amount of 10%. The one containing about 1% of D-glucosamineuronic acid also tends to improve the strength properties of the produced polyion complex.
[0019]
Furthermore, the polyuronic acid of the present invention has a weight average molecular weight of 30,000 or more, more preferably 50,000 or more, and as described above, the chemical structure is clear and uniform, and has a high molecular weight. A certain point is a major feature. Therefore, when the polyuronic acid aqueous solution of the present invention is used as a coating material, coating properties are improved, and improvement in moisture resistance and film properties of the coating film can be expected. Furthermore, the physical properties and stability of the polyion complex are improved as described above. Further, when the polyuronic acid of the present invention is chemically modified as a raw material, it can contribute to improvement of physical properties of the product and stabilization of physical properties.
[0020]
The weight average molecular weight described here is a weight average molecular weight in terms of pullulan measured by size exclusion chromatography using pullulan as a standard substance.
[0021]
Furthermore, the polyuronic acid of the present invention can be obtained by using chitin or the like as a raw material and using an oxidation method with an N-oxyl compound catalyst. In order to obtain it, the accessibility of the substrate is sufficiently increased, and all primary hydroxyl groups at the C6 position are selectively converted to carboxyl groups, and oxidation is performed under mild conditions to reduce molecular weight and oxidation at the C3 position. It is important to suppress suboxidation. That is, using chitin sufficiently swollen or dissolved with alkali as a raw material, or using N-acetylated chitosan as a raw material, an alkali metal bromide and an oxidizing agent in the presence of an N-oxyl compound catalyst. The polyuronic acid of the present invention can be obtained by oxidizing at a low temperature of 5 ° C. or lower and an aqueous system while keeping the pH constant within a range of 10 to 11.5. Here, the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO), the alkali metal bromide is sodium bromide, and the oxidizing agent is hypochlorous acid. Sodium acid is particularly preferred.
[0022]
The chitin and chitosan have a structure represented by the following chemical formula (2), and chitin exists as a crustacean such as crabs and shrimps, and insect skeletons. Although it consists of acetyl-D-glucosamine, it also contains D-glucosamine by deacetylation or the like in the purification process. Chitin has high crystallinity and is insoluble in water, but after being immersed in a high-concentration alkali, it becomes a viscous liquid by diluting at a low temperature while adding ice. When hydrochloric acid is added thereto and neutralized, flaky chitin precipitates, but an almost amorphous chitin is obtained. By subjecting the chitin to the above oxidation reaction without sufficiently washing and drying, All primary hydroxyl groups at the C6 position are oxidized with high selectivity, and molecular weight reduction is suppressed. However, since the reaction of deacetylation of chitin also proceeds in an alkaline atmosphere, it is important to maintain the temperature in the system during the dissolution and neutralization treatment with alkali and the oxidation reaction at a low temperature of 5 ° C. or less. is there.
[0023]
[Formula 4]
Figure 0004457554
[0024]
Further, chitosan is a substance obtained by deacetylating chitin, and is generally a substance having a higher ratio of n in the chemical formula (2) and is soluble in acid. When acetic anhydride is added to the chitosan solution, it is easily N-acetylated and can be returned to the chemical structure of chitin again. Through this operation, by washing the well-washed product without subjecting it to drying, only the primary hydroxyl group at the C6 position is oxidized with high selectivity as described above to obtain a high molecular weight polyuronic acid of the present invention. be able to. In this case, the m / n ratio can be arbitrarily set.
[0025]
Here, for example, the oxidation method includes, for example, adding the wet raw material to an aqueous solution in which TEMPO and sodium bromide are dissolved, uniformly dispersing the system, cooling the system to 5 ° C. or lower, adjusting the pH to 10, and A sodium hypochlorite solution is added as the reaction proceeds, and an aqueous sodium hydroxide solution is added dropwise to keep the pH of the system in the range of 10 to 11.5. During the reaction, the temperature in the system is maintained at 5 ° C. or lower. As the oxidation proceeds, the system dissolves and becomes a uniform solution. Under these reaction conditions, the amount of sodium hydroxide added almost corresponds to the amount of carboxyl groups introduced by oxidation, and reached the amount of primary hydroxyl group at the C6 position of the raw material and an equivalent amount. At this point, ethanol is added to deactivate excess oxidant and reprecipitate in excess ethanol. The product is sufficiently washed with a mixed solution of acetone and water, dehydrated with acetone, and then dried under reduced pressure to obtain the sodium salt of polyuronic acid of the present invention.
[0026]
The sodium salt of polyuronic acid obtained as described above is subjected to acid treatment after water treatment, and desalted polyuronic acid can be obtained by repeating the reprecipitation, washing and drying operations with the above ethanol.
[0027]
Furthermore, since the polyuronic acid of the present invention is β- (1,4) -polyuronic acid having a uniform structure, it is a carbon having a hydroxyl group at the C6-position of the pyranose ring when 13 C-NMR is measured by dissolving in heavy water. There is no peak derived from (δ = 60 to 65 ppm), there is a peak derived from a carboxyl group (δ = 170 to 180 ppm), and a ketone produced by oxidation of the secondary hydroxyl group at the C3 position A peak (around δ = 200 to 210 ppm) is not detected.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0029]
<Example 1>
Chitin (manufactured by Wako Pure Chemical Industries, Ltd.) was immersed in 5 g of a 45% sodium hydroxide aqueous solution 50 g, and stirred for 2 hours while cooling the periphery of the container with ice water. To this, 175 g of crushed ice was added with stirring. Chitin is almost dissolved by this alkali treatment. While maintaining a low temperature, the solution was neutralized with hydrochloric acid, sufficiently washed with water, and then dried to obtain a 5% alkali-treated chitin suspension. An aqueous solution in which 75 mg of TEMPO and 1.0 g of sodium bromide were dissolved was added thereto to prepare a chitin solid content concentration of about 2 wt%. The reaction system is cooled and 10 g of an 11% aqueous sodium hypochlorite solution is added to initiate the oxidation reaction. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system decreases, but 0.5N-NaOH aqueous solution is sequentially added to adjust the pH to around 10.8, and 35 g of 11% sodium hypochlorite aqueous solution is adjusted according to the progress of the reaction. While dripping. When the alkali addition amount corresponding to 100% of the total number of moles of the primary hydroxyl group at the 6-position is approached, the alkali addition rate (reaction rate) is slow regardless of the dropping of the sodium hypochlorite aqueous solution. Thus, the system is completely dissolved. When the amount of alkali added reached 100% (49.2 ml), ethanol was added to stop the reaction. The reaction time was 2 hours. This reaction solution was filtered to remove insoluble impurities, and then poured into an excess amount of ethanol to reprecipitate the product. Further, after thoroughly washing with a solution of water: acetone = 1: 7, it was dehydrated with acetone and dried under reduced pressure at 40 ° C. to obtain 5.3 g of sodium salt of polyuronic acid in the form of white powder.
[0030]
<Example 2>
Chitosan having a deacetylation degree of 100% (manufactured by Dainichi Seika Kogyo Co., Ltd.) was dissolved in 5 g and 95 g of 10% acetic acid. The insoluble matter was removed by filtration, diluted with 500 ml of methanol, and 4.76 g of acetic anhydride was added with stirring to gel in a few minutes. After standing overnight, it was dispersed in a large amount of methanol with a homogenizer. The solution was thoroughly washed with a solution of methanol and water: acetone = 1: 7, and further washed with water to completely remove methanol and acetone to obtain a 5% concentration suspension of N-acetylated chitosan.
A part of the suspension of N-acetylated chitosan was freeze-dried, and the degree of N-acetylation was determined by elemental analysis. As a result, it was 95% (m: n = 95 in the chemical formula (2): 5).
Further, 100 g of the N-acetylated chitosan suspension having a concentration of 5% was subjected to the same oxidation treatment as in Example 1. The reaction time was 1 hour and 10 minutes, and 5.3 g of sodium salt of polyuronic acid in the form of a white powder was obtained.
[0031]
<Example 3>
2 g of sodium polyuronic acid of Example 1 was dissolved in 40 ml of distilled water, and 2N hydrochloric acid was added to pH 1 while stirring. The solution remained a clear solution. This solution was poured into an excess amount of ethanol to reprecipitate the product. Further, it was sufficiently washed with a solution of water: acetone = 1: 7, dehydrated with acetone, and dried under reduced pressure at 40 ° C. to obtain 1.6 g of desalted polyuronic acid as a white powder.
[0032]
The obtained polyuronic acids of Examples 1 to 3 were evaluated by the following methods.
(Water soluble)
The polyuronic acid 1.0g of Examples 1-3 was dissolved in 10 ml of 25 degreeC distilled water. All were completely dissolved, and dissolution at a higher concentration was possible.
[0033]
(Structural analysis by NMR)
The samples of Examples 1 to 3 were dissolved in heavy water, and 13C-NMR was measured. The results are shown in FIGS. From the NMR spectrum, a peak derived from carbon having a hydroxyl group at the C6 position of the pyranose ring of chitin (δ = 60 to 65 ppm) completely disappears and converted to a carboxyl group (δ = 170 to 180 ppm). The peak derived from carbon at the 3rd and 3rd positions was not changed, and a peak such as ketone (δ = 200 to 210 ppm) was not confirmed. Therefore, it can be said that the polyuronic acid of the present invention is β- (1,4) -N-acetyl-D-glucosamineuronic acid having a substantially uniform structure.
[0034]
(Measurement of weight average molecular weight)
The weight average molecular weights (Mw) of the polyuronic acids of Examples 1 to 3 were measured by the GPC method. TSK-gelG6000PWXL and TSK-gelG3000PWXL were used as columns, and 0.1M NaCl was used as an eluent, and measurement was performed using an RI detector. A calibration curve was prepared from a standard pullulan having a known molecular weight, and a weight average molecular weight in terms of pullulan was calculated. As a result, in order from Example 1, Mw = 62,000, 78,000, 65,000 and all were polyuronic acids having a molecular weight of 30,000 or more. Furthermore, the ratio (Mw / Mn) to the number average molecular weight (Mn) was 3 or less, and the molecular weight dispersion was never wide. Therefore, it can be said that the calculated weight average molecular weight is not high due to the wide molecular weight dispersion.
[0035]
(Measurement of biodegradability)
When the biodegradability of the polyuronic acid of Example 1 was evaluated by the following method, the biodegradation degree after 10 days of the test was 43%, and the biodegradation degree after 20 days of the test was 62%. The microcrystalline cellulose used as a control has a biodegradability of 39% after 10 days of the test and a biodegradability of 60% after the 20 days of the test.
(Evaluation method for biodegradability)
Using a microbial oxidative degradation measuring device (MODA) manufactured by Yawata Bussan Co., Ltd., standard compost (YK-2 manufactured by Yawata Bussan Co., Ltd.) 250 cc adjusted to 60% moisture and adjusted to 18% moisture as test soil. A mixture of 250 cc of sea sand was used. 10 g of the sample was uniformly mixed with the test soil, filled in a column-shaped reaction cylinder, and the temperature in the reaction cylinder was kept constant at 35 ° C. Further, decarboxylated air saturated with water vapor is vented at 40 ml / min from the bottom of the reaction cylinder, and the gas is not leaked from the top of the reaction cylinder, passes through a sulfuric acid bath to remove ammonia gas, and silica gel to remove moisture. And the moisture absorption cylinder filled with calcium chloride, and further led to the absorption cylinder filled with soda talc and soda lime. Since all the carbon dioxide generated by aerobic biodegradation of the sample is absorbed by the absorption cylinder, the amount of carbon dioxide generated by biodegradation can be quantified from the weight change of the absorption cylinder. In addition, the blank test of only the test soil which does not put a sample was performed simultaneously, and the amount of carbon dioxide generated by decomposition was calculated by subtracting the amount of carbon dioxide generated in the blank test. The theoretically generated carbon dioxide amount was calculated from the carbon content in 10 g of the sample, and the ratio of the generated carbon dioxide amount to the theoretical amount was defined as the degree of biodegradation. As a sample, polyuronic acid of Example 1 and as a control, microcrystalline cellulose (Avicel) were used.
[0036]
【The invention's effect】
As mentioned above, the polyuronic acid of this invention is (beta)-(1,4) -polyuronic acid which consists of a structure of (Chemical Formula 1), and the weight average molecular weight has 30,000 or more, and shows high water solubility. In addition, biodegradability is good and safety is excellent. Therefore, since the structure is clear, it is an extremely effective material for analyzing the relationship between various functions and the chemical structure, and can be a synthetic raw material that can be easily designed. Further, since it has a high molecular weight and good water solubility, it can be preferably used as an aqueous coating material and an aqueous reaction raw material. Furthermore, it contributes to the improvement of physical properties of polyuronic acid alone, or secondary modified or compounded materials, and can be expected to be applied as various functional materials such as foods, medical / pharmaceuticals and cosmetics.
[0037]
[Brief description of the drawings]
1 is a 13C-NMR spectrum measured by dissolving polyuronic acid sodium salt of Example 1 in heavy water. FIG.
2 is a 13C-NMR spectrum measured by dissolving polyuronic acid sodium salt of Example 2 in heavy water. FIG.
FIG. 3 is a 13C-NMR spectrum measured by dissolving the polyuronic acid of Example 3 in heavy water.

Claims (3)

アルカリで膨潤または溶解して、下記化学式(2)で表されるm:nの比率が8:2から10:0の範囲にしたキチンを調製する工程と、
前記キチンと、N−オキシル化合物と、水とを含む溶液を調製する工程と、
前記溶液の温度を5℃以下にし、前記溶液のpHを10から11.5の範囲にし、前記溶液に酸化反応の進行具合に応じて量を調整しながら酸化剤を滴下する工程と
を具備することを特徴とするポリウロン酸の製造方法。
Figure 0004457554
A step of preparing chitin which is swollen or dissolved with an alkali and the ratio of m: n represented by the following chemical formula (2) is in the range of 8: 2 to 10: 0;
Wherein the chitin, the method comprising the steps of: preparing a N- oxyl compound, a solution containing water,
The temperature of the solution is 5 ° C. or less, the pH of the solution is in the range of 10 to 11.5, and an oxidizing agent is dropped into the solution while adjusting the amount according to the progress of the oxidation reaction. A method for producing polyuronic acid, which is characterized by the above.
Figure 0004457554
N−アセチル化して、下記化学式(2)で表されるm:nの比率が8:2から10:0の範囲にしたキトサンを調製する工程と、
前記キトサンと、N−オキシル化合物と、水とを含む溶液を調製する工程と、
前記溶液の温度を5℃以下にし、前記溶液のpHを10から11.5の範囲にし、前記溶液に酸化反応の進行具合に応じて量を調整しながら酸化剤を滴下する工程と
を具備することを特徴とするポリウロン酸の製造方法。
Figure 0004457554
A step of N-acetylating to prepare chitosan having a ratio of m: n represented by the following chemical formula (2) in the range of 8: 2 to 10: 0;
The chitosan, and preparing the N- oxyl compound, a solution containing water,
The temperature of the solution is 5 ° C. or less, the pH of the solution is in the range of 10 to 11.5, and an oxidizing agent is dropped into the solution while adjusting the amount according to the progress of the oxidation reaction. A method for producing polyuronic acid, which is characterized by the above.
Figure 0004457554
前記溶液は臭化アルカリ金属を含み、前記N−オキシル化合物が2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルであり、前記酸化剤が次亜塩素酸ナトリウムであることを特徴とする請求項1または2に記載のポリウロン酸の製造方法。  The solution contains an alkali metal bromide, the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl, and the oxidizing agent is sodium hypochlorite. The method for producing polyuronic acid according to claim 1 or 2, characterized in that
JP2002360523A 2002-12-12 2002-12-12 Polyuronic acid Expired - Fee Related JP4457554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360523A JP4457554B2 (en) 2002-12-12 2002-12-12 Polyuronic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360523A JP4457554B2 (en) 2002-12-12 2002-12-12 Polyuronic acid

Publications (2)

Publication Number Publication Date
JP2004189923A JP2004189923A (en) 2004-07-08
JP4457554B2 true JP4457554B2 (en) 2010-04-28

Family

ID=32759576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360523A Expired - Fee Related JP4457554B2 (en) 2002-12-12 2002-12-12 Polyuronic acid

Country Status (1)

Country Link
JP (1) JP4457554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343302B2 (en) * 2005-12-21 2013-11-13 凸版印刷株式会社 Method for producing inclusion complex
CN107880153B (en) * 2017-11-23 2020-05-05 中国科学院海洋研究所 6-carboxyl chitosan aromatic quaternary ammonium salt derivative and preparation and application thereof

Also Published As

Publication number Publication date
JP2004189923A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
Kato et al. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan
DE69724001T2 (en) SUPER ABSORBENT MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
Yoshimura et al. Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride
Huerta-Angeles et al. Synthesis of highly substituted amide hyaluronan derivatives with tailored degree of substitution and their crosslinking via click chemistry
JP4356289B2 (en) Polysaccharide complex and method for producing the same
Paula et al. Swelling studies of chitosan/cashew nut gum physical gels
Benghanem et al. Grafting of oxidized carboxymethyl cellulose with hydrogen peroxide in presence of Cu (II) to chitosan and biological elucidation
Sole et al. Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking
JP4846147B2 (en) Method for producing material coated or impregnated with oxidized polysaccharide material
JP4470410B2 (en) Polysaccharide complex
Thatte Synthesis and antibacterial assessment of water-soluble hydrophobic chitosan derivatives bearing quaternary ammonium functionality
JP2003321398A (en) Polysaccharide complex and its production method
JP2006282926A (en) Water-soluble polyuronic acid and its production method
EP1250359A1 (en) Chitosan condensation products, their preparation and their uses
JP2005015680A (en) Polyglucuronic acid
JP4457554B2 (en) Polyuronic acid
JP5343302B2 (en) Method for producing inclusion complex
Muharam et al. Characterization of superabsorbent hydrogel based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch
JP5110046B2 (en) Polysaccharide complex and method for producing the same
JP4457555B2 (en) Water-soluble polyuronic acid
JP5205686B2 (en) Polyglucuronic acid and process for producing the same
Zuñiga et al. Synthesis, characterization and evaluation of reactional parameters on substitution degree of N-hexyl-N-methylene phosphonic chitosan
JP4310967B2 (en) Method for producing polysaccharide complex
Chen et al. The effect of NaOH and NaClO/NaBr modification on the structural and physicochemical properties of dextran
JP4411847B2 (en) Method for producing polyuronic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4457554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees