JP4457555B2 - Water-soluble polyuronic acid - Google Patents

Water-soluble polyuronic acid Download PDF

Info

Publication number
JP4457555B2
JP4457555B2 JP2002360524A JP2002360524A JP4457555B2 JP 4457555 B2 JP4457555 B2 JP 4457555B2 JP 2002360524 A JP2002360524 A JP 2002360524A JP 2002360524 A JP2002360524 A JP 2002360524A JP 4457555 B2 JP4457555 B2 JP 4457555B2
Authority
JP
Japan
Prior art keywords
water
solution
acid
reaction
polyuronic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002360524A
Other languages
Japanese (ja)
Other versions
JP2004189924A (en
Inventor
純一 神永
友美子 加藤
龍吉 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2002360524A priority Critical patent/JP4457555B2/en
Publication of JP2004189924A publication Critical patent/JP2004189924A/en
Application granted granted Critical
Publication of JP4457555B2 publication Critical patent/JP4457555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高分子量で構造が均一な水溶性ポリウロン酸の提供に関する。
【0002】
【従来の技術】
天然に存在するウロン酸としては、グルクロン酸、マンヌロン酸、ガラクツロン酸が主であり、ペクチンやアルギン酸等として植物の構造多糖類として存在したり、また動物体内にも存在し、生理的な重要な機能も果たしている。前記したペクチンは、主にα−D−ガラクツロン酸からなるポリウロン酸であり、アルギン酸はβ−(1,4)−D−マンヌロン酸とα−(1,4)−L−グルロン酸からなるポリウロン酸である。これらは、食品添加物、増粘剤、安定剤等として工業的に利用されている。
【0003】
また最近では、ポリウロン酸の安全性、生分解性、生体適合性、及びその生理的な機能など機能性を生かして、さらに、化学的・物理的修飾、誘導体化、他材料との複合化等、二次修飾することにより、高機能な新規材料を開発しようという検討も行われている。しかし、前記の天然に存在するポリウロン酸類は、殆どがヘテロ多糖類であり、不均一な構造ゆえに、機能に影響する化学構造の解析や、材料設計、及び材料物性の制御が困難であり、このような検討原料としては好ましくない。
【0004】
一方で安価なでんぷんやセルロース等の多糖類を酸化してポリウロン酸類を得る試みもなされている。ピラノース環のC6位の1級水酸基のみを選択的に酸化する手法は少なく、現在提案されている有効な酸化手法としては、二酸化窒素による酸化、及び2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(以下TEMPOと称する場合もある)等のN−オキシル化合物触媒による酸化が挙げられる。しかし、二酸化窒素による酸化では、ピラノース環のC6位の1級水酸基を全て酸化しようとすると、C2位やC3位の2級水酸基も酸化されてしまったり、重合度低下が大きいことが報告されている。
【0005】
またTEMPO触媒による酸化では、原料が、デンプンやアミロース、アミロペクチン等であれば、選択的にC6位の1級水酸基を殆ど全て酸化することができる(非特許文献1参照)が、約数万以上の高分子量を保ったままの酸化については明らかになっていない。
一方で多糖類をTEMPO酸化して、高分子量の高吸収性材料を得ることも報告されているが、この場合は、C6位の1級水酸基全てが酸化されている訳ではなく、水溶性の構造が均一なポリウロン酸が得られている訳ではない(特許文献1参照)。また、C6位の1級水酸基を選択に全て酸化して、かつ高分子量を維持するのは困難であった。
【0006】
さらに、前記したように、水溶性ポリウロン酸類を化学修飾して、高機能な新規材料を合成しようとするとき、原料のポリウロン酸は、解析と材料設計のために化学構造が明確・均一であることが重要であるとともに、修飾反応における低分子量化が避けられない場合もあり、できるだけ高分子量であることが求められている。またポリウロン酸の水溶液はガスバリア性コーティング剤としても利用できる。しかしこの場合も、材料の化学構造の均一性は、コーティング膜のガスバリア性に大きく影響し、材料の重合度(分子量)は、コーティング膜の耐湿性や保存安定性に大きく影響する(例えば、特許文献2参照)。
【0007】
【非特許文献1】
Carbohydrate Polymers 39(1999)361−367。
【特許文献1】
特開2002−226502号公報。
【特許文献2】
特開2001−334600号公報。
【0008】
【発明が解決しようとする課題】
本発明の課題は、生体適合性、生分解性等の安全性に優れ、かつ機能性材料としての物性にも優れ、さらに、食品、医療・医薬、化粧品等、各種機能材料の合成原料としても有用な、構造が明確・均一であり高分子量の水溶性ポリウロン酸を提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、アミロースまたはでんぷんと、N−オキシル化合物と、水とを含む溶液を調製する工程と、前記溶液の温度を5℃以下にし、前記溶液のpHを10から11.5の範囲にし、前記溶液に酸化反応の進行具合に応じて量を調整しながら酸化剤を滴下し、ガスバリア用コーティング剤に用いられる水溶性ポリウロン酸を得る工程とを具備することを特徴とする水溶性ポリウロン酸の製造方法である。
【0010】
請求項2の発明は、前記溶液は臭化アルカリ金属を含み、前記N−オキシル化合物が2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルであり、前記酸化剤が次亜塩素酸ナトリウムであることを特徴とする請求項1に記載の水溶性ポリウロン酸の製造方法である。
【0015】
【発明の実施の形態】
本発明における水溶性ポリウロン酸は、下記化学式(1)に示す構造からなるもので、D−グルクロン酸(或いはD−グルクロン酸のアルカリ金属塩)が、多数α−(1,4)−結合したもので、化学構造が明確・均一であり、二次修飾する場合の合成原料として特に好ましい。また、化学式(1)中のXが、水素またはナトリウムであれば、25℃の蒸留水に対して、10%以上の溶解性を示すため、水系での反応原料として、及び水系のコーティング材料として有用であり、コーティング膜は高いガスバリア性を有する。
【0016】
【化3】

Figure 0004457555
【0017】
(式中、Xは水素又はアルカリ金属を示す)
【0018】
さらに本発明の水溶性ポリウロン酸は、その重量平均分子量が30,000以上、より好ましくは50,000以上であることを特徴とし、上記したように、化学構造が明確・均一であり、且つ高分子量である点が大きな特徴である。そのため、本発明のポリウロン酸水溶液をコーティング材料として用いる場合には、塗工性が向上し、コーティング膜の耐湿性や膜物性の向上に寄与できる。さらに本発明のポリウロン酸を原料に化学修飾する場合も、生成物の物性向上、及び物性の安定化が期待できる。
【0019】
ここに記載した重量平均分子量とは、標準物質としてプルランを用いて、サイズ排除クロマトグラフィー法により測定した、プルラン換算重量平均分子量である。
【0020】
さらに本発明の水溶性ポリウロン酸は、α−(1,4)−D−グルコースを主鎖とする多糖類を原料として、N−オキシル化合物触媒による酸化手法を用いることにより得られるが、本発明の特徴である均一な構造を有して且つ高分子量のポリウロン酸を得るためには、穏やかな反応条件下で、選択的な反応の進行に必要な薬剤が必要量だけ随時供給され、かつ出来るだけ短時間で酸化することが重要となる。つまり、N−オキシル化合物の触媒の存在下、臭化アルカリ金属と酸化剤を用いて、5℃以下の低温、水系で、pHを10〜11.5の範囲で一定に保ちながら酸化することにより、本発明のポリウロン酸が得られる。ここでN−オキシル化合物としては、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(TEMPO)が、臭化アルカリ金属としては臭化ナトリウムが、酸化剤としては次亜塩素酸ナトリウムが特に好ましい。
【0021】
ここで上記酸化手法は、例えば、水に原料を溶解或いは均一に分散させて、TEMPOと臭化ナトリウムを溶解した水溶液を加え、系内を5℃以下に冷却、pHを10に調整する。ここに先ず少量の次亜塩素酸ナトリウム溶液を加えると、一時pHは上昇するが、攪拌を続けると、系内のpHは徐々に低下してくるので、水酸化ナトリウム水溶液を滴下して、系内のpHを10〜11.5の範囲で一定に保つ。さらに酸化剤である次亜塩素酸ナトリウム溶液を反応の進行具合に応じて調整しながら滴下することで、余剰の酸化剤が系内に存在し、副反応に作用することを抑える。また反応中は系内の温度を5℃以下に維持する。反応の進行に伴い、系内は均一な溶液となる。この反応条件においては、添加される水酸化ナトリウムの量は、ほぼ酸化により導入されたカルボキシル基の量に対応しており、原料のグルコース残基量と当モルの添加量に達した時点で、エタノールを添加して過剰の酸化剤を失活させ、過剰量のエタノール中で再沈させる。生成物はアセトンと水の混合溶液を用いて十分洗浄後、アセトンで脱水してから減圧乾燥することにより、本発明のポリウロン酸のナトリウム塩が得られる。
【0022】
なお上記により得られたポリウロン酸のナトリウム塩を水溶後酸処理し、上記のエタノールで再沈、洗浄、乾燥の操作を繰り返すことで、脱塩したポリウロン酸を得ることができる。
【0023】
この酸化反応の原料としては、α−(1,4)−D−グルコースからなるアミロースが好ましく用いられるが、1,6結合を含むアミロペクチン部分も含有するでんぷんを原料としても、同様にα−(1,4)−ポリグルクロン酸を得ることができる。つまり本酸化反応では、ピラノース環のC6位を選択的に酸化するだけではなく、機構はまだ明確ではないが、でんぷんの1,6結合部分を切断して、均一な構造のα−(1,4)−ポリグルクロン酸を生成することができる。この点も本発明の特徴の一つであり、原料として、でんぷんは極めて安価なため、工業的に利用する上では非常に好ましい。
【0024】
さらに、本発明のポリウロン酸は、構造が均一な、β−(1、4)−ポリウロン酸であるため、重水に溶解させて13C−NMRを測定すると、ピラノース環C6位の水酸基を持つ炭素に由来するピーク(δ=60〜65ppm付近)は見られず、カルボキシル基に由来するピーク(δ=170〜180ppm付近)を有し、さらに、C3位の2級水酸基の酸化により生じるケトンなどのピーク(δ=200〜210ppm付近)は検出されないことを特徴とする。
【0025】
【実施例】
以下実施例により、本発明についてさらに詳しく説明する。
【0026】
<実施例1>
とうもろこしでんぷん由来のアミロース(関東化学(株)製)1.0gを、5%濃度で蒸留水に均一に分散させた。ここに、TEMPO 19mg、臭化ナトリウム 0.25gを溶解させた水溶液を加え、アミロースの固形分濃度が約2wt%になるよう調製した。反応系を冷却し、11%次亜塩素酸ナトリウム水溶液3.0gを添加し、酸化反応を開始する。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整するとともに、さらに11%次亜塩素酸ナトリウム水溶液8.0gを反応の進行に応じて調整しながら滴下した。グルコース残基の全モル数に対し、100%のモル数に対応するアルカリ添加量に近づくと、次亜塩素酸ナトリウム水溶液の滴下に関係なく、アルカリの添加速度は遅くなり、系内は完全に溶解して、黄色の均一な溶液となる。アルカリ添加量が前記の100%(12.34ml)に達した時点で、エタノールを添加して反応を停止させた。反応時間は2時間であった。この反応溶液は、濾過により不溶の不純物を除いてから、過剰量のエタノール中に投入して、生成物を再沈させた。さらに水:アセトン=1:7の溶液により充分洗浄した後、アセトンで脱水して、40℃減圧乾燥して、白色粉末状のポリウロン酸のナトリウム塩1.1gを得た。
【0027】
<実施例2>
水溶性でんぷん(ACROS社製)5.0gを、5%濃度で蒸留水に加熱溶解してから、溶液を冷却した。ここに、TEMPO 96mg、臭化ナトリウム 1.27gを溶解させた水溶液を加え、でんぷんの固形分濃度が約2wt%になるよう調製した。反応系を冷却し、11%次亜塩素酸ナトリウム水溶液17gを添加し、酸化反応を開始する。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整するとともに、さらに11%次亜塩素酸ナトリウム水溶液40gを反応の進行に応じて調整しながら滴下した。グルコース残基の全モル数に対し、100%のモル数に対応するアルカリ添加量に近づくと、次亜塩素酸ナトリウム水溶液の滴下に関係なく、アルカリの添加速度は遅くなった。アルカリ添加量が前記の100%(61.68ml)に達した時点で、エタノールを添加して反応を停止させた。反応時間は1時間40分であった。この反応溶液は、濾過により不溶の不純物を除いてから、過剰量のエタノール中に投入して、生成物を再沈させた。さらに水:アセトン=1:7の溶液により充分洗浄した後、アセトンで脱水して、40℃減圧乾燥して、白色粉末状のポリウロン酸のナトリウム塩5.7gを得た。
【0028】
<実施例3>
実施例1の原料をとうもろこしでんぷん(関東化学(株)製)に代えた以外、実施例1と同様に酸化処理を行い、白色粉末状のポリウロン酸のナトリウム塩1.1gを得た。反応時間は2時間であった。
【0029】
<実施例4>
実施例2のポリウロン酸のナトリウム塩2.0gを80mlの蒸留水に溶解し、攪拌しながら、pH1になるまで2N−塩酸を添加した。溶液は透明な溶液のままであった。この溶液を過剰量のエタノール中に投入し、生成物を再沈させた。さらに水:アセトン=1:7の溶液により充分洗浄した後、アセトンで脱水して、40℃減圧乾燥して、白色粉末状の脱塩したポリウロン酸1.6gを得た。
【0030】
<比較例1>
水溶性でんぷん(ACROS社製)5.0gを、5%濃度で蒸留水に加熱溶解してから、溶液を冷却した。ここに、TEMPO 96mg、臭化ナトリウム 1.27gを溶解させた水溶液を加え、でんぷんの固形分濃度が約2wt%になるよう調製した。反応系を冷却し、11%次亜塩素酸ナトリウム水溶液45gを添加し、酸化反応を開始する。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。アルカリ添加量が、グルコース残基の全モル数に対し、80%のモル数に対応する添加量(49.34ml)に達した時点で、エタノールを添加して反応を停止させた。反応時間は50分であった。この反応溶液は、濾過により不溶の不純物を除いてから、過剰量のエタノール中に投入して、生成物を再沈させた。さらに水:アセトン=1:7の溶液により充分洗浄した後、アセトンで脱水して、40℃減圧乾燥して、比較例1の白色粉末状のポリウロン酸ナトリウム塩5.5gを得た。
【0031】
<比較例2>
水溶性でんぷん(ACROS社製)5.0gを、5%濃度で蒸留水に加熱溶解してから、溶液を冷却した。ここに、TEMPO 96mg、臭化ナトリウム 1.27gを溶解させた水溶液を加え、でんぷんの固形分濃度が約2wt%になるよう調製した。11%次亜塩素酸ナトリウム水溶液57gを添加し、酸化反応を開始する。反応温度は常に10℃〜20℃に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。アルカリ添加量が、グルコース残基の全モル数に対し、100%のモル数に対応する添加量(61.68ml)に達した時点で、エタノールを添加して反応を停止させた。反応時間は45分であった。この反応溶液は、濾過により不溶の不純物を除いてから、過剰量のエタノール中に投入して、生成物を再沈させた。さらに水:アセトン=1:7の溶液により充分洗浄した後、アセトンで脱水して、40℃減圧乾燥して、比較例2の白色粉末状のポリウロン酸ナトリウム塩5.6gを得た。
【0032】
<比較例3>
未酸化の水溶性でんぷん(ACROS社製)を比較例3として用いた。
【0033】
<評価>
(水溶性)
実施例1〜4、比較例1〜3のポリウロン酸(或いはでんぷん)1.0gを、25℃の蒸留水10mlに溶解させた。比較例3以外は、全て完全に溶解し、さらに高濃度での溶解も可能であった。
【0034】
(NMRによる構造分析)
実施例1、2、4、比較例1、3のサンプルを重水に溶解させ、13C−NMRを測定した。その結果を図1に示す。NMRスペクトルから、実施例のポリウロン酸は、ピラノース環C6位の水酸基をもつ炭素に由来するピーク(δ=60〜65ppm付近)が完全に消えて、カルボキシル基(δ=170〜180ppm付近)に変換しており、2位、3位の炭素に由来するピークは変化せず、ケトンなどのピーク(δ=200〜210ppm付近)は確認されなかった。従って、本発明のポリウロン酸は、ほぼ構造が均一な、α−(1,4)−ポリグルクロン酸であると言える。一方で、比較例1のポリウロン酸では、δ=170〜180ppm付近にカルボキシル基の炭素由来のピークが確認されているが、δ=60〜65ppm付近にピラノース環C6位の水酸基をもつ炭素に由来するピークが残存しており、均一なα−(1,4)−ポリグルクロン酸とはなっていない。
【0035】
(重量平均分子量の測定)
実施例1〜4、比較例1〜3のポリウロン酸(或いはでんぷん)の重量平均分子量(Mw)を、GPC法により測定した。カラムはTSK−gelG6000PWXL、TSK−gelG3000PWXLを用い、0.1M−NaClを溶離液とし、RI検出器を用い測定した。分子量既知の標準プルランから検量線を作成し、プルラン換算の重量平均分子量を算出した。その結果、実施例のポリウロン酸は、実施例1から順にMw=42,000、65,000、58,000、66,000といずれも分子量30,000以上のポリウロン酸であった。なお比較例のサンプルについては、比較例1から順にMw=92,000、22,000、134,000であった。
【0036】
(ガスバリア性の測定)
ウレタン系のアンカーコート層を設けた厚さ20μmの二軸延伸ポリプロピレンフィルムを基材として、実施例1、2、3、及び比較例1、2、3のポリウロン酸(或いはでんぷん)の5%水溶液を、それぞれバーコーターによりコーティングして、80℃オーブン中で乾燥し、乾燥膜厚1.5μmの被膜を形成した。これらポリウロン酸類のコーティングフィルムの酸素透過度を以下の様にして測定した。なお、40℃90%RH雰囲気下に1ヶ月保存後にも同様の測定を行った。結果を表1に示す。
(酸素透過度の測定方法)
酸素透過度測定装置(モダンコントロール社製、OXTRAN 10/40A)を用いて30℃70%RH雰囲気下、及び、30℃100%RH雰囲気下で測定した。
【0037】
【表1】
Figure 0004457555
【0038】
【発明の効果】
以上より、本発明の水溶性ポリウロン酸は、構造が明確、均一かつ高分子量で水溶性が良好なことから、水系の反応原料として、及び水系のコーティング材料として好ましく用いることができる。特にガスバリア性コーティング剤とした場合には、高いガスバリア性とともに、耐湿性や保存安定性が向上する。さらに、食品、医療・医薬、化粧品等、様々な機能性材料としての応用も期待できる。
【0039】
【図面の簡単な説明】
【図1】実施例1、2のポリウロン酸ナトリウム塩、及び実施例4のポリウロン酸、及び比較例1のポリウロン酸ナトリウム塩、及び比較例3のでんぷんを重水に溶解して測定した13C−NMRスペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the provision of water-soluble polyuronic acid having a high molecular weight and a uniform structure.
[0002]
[Prior art]
Naturally occurring uronic acids are mainly glucuronic acid, mannuronic acid, and galacturonic acid, and are present as plant structural polysaccharides such as pectin and alginic acid, etc. It also plays a function. The aforementioned pectin is a polyuronic acid mainly composed of α-D-galacturonic acid, and alginic acid is a polyuronic composed of β- (1,4) -D-mannuronic acid and α- (1,4) -L-guluronic acid. It is an acid. These are used industrially as food additives, thickeners, stabilizers and the like.
[0003]
In recent years, taking advantage of the functionality of polyuronic acid, such as safety, biodegradability, biocompatibility, and its physiological functions, chemical and physical modification, derivatization, compounding with other materials, etc. Studies are also underway to develop new high-performance materials by secondary modification. However, most of the naturally occurring polyuronic acids are heteropolysaccharides, and because of their heterogeneous structure, it is difficult to analyze the chemical structure affecting the function, design the material, and control the material properties. Such a raw material is not preferable.
[0004]
On the other hand, attempts have been made to obtain polyuronic acids by oxidizing inexpensive polysaccharides such as starch and cellulose. There are few methods for selectively oxidizing only the primary hydroxyl group at the C6 position of the pyranose ring, and effective oxidation methods currently proposed include oxidation with nitrogen dioxide and 2,2,6,6-tetramethyl-1 Examples include oxidation with an N-oxyl compound catalyst such as -piperidine-N-oxyl (hereinafter sometimes referred to as TEMPO). However, it has been reported that in the oxidation with nitrogen dioxide, if all the primary hydroxyl groups at the C6 position of the pyranose ring are oxidized, the secondary hydroxyl groups at the C2 position and the C3 position are also oxidized, and the degree of polymerization is greatly reduced. Yes.
[0005]
Further, in the oxidation with a TEMPO catalyst, if the raw material is starch, amylose, amylopectin or the like, almost all primary hydroxyl groups at the C6 position can be selectively oxidized (see Non-Patent Document 1), but about tens of thousands or more. Oxidation while maintaining the high molecular weight is not clear.
On the other hand, TEMPO oxidation of polysaccharides has also been reported to obtain a high molecular weight superabsorbent material, but in this case, not all the primary hydroxyl groups at the C6 position are oxidized, Polyuronic acid having a uniform structure has not been obtained (see Patent Document 1). Further, it is difficult to selectively oxidize all primary hydroxyl groups at the C6 position and maintain a high molecular weight.
[0006]
Furthermore, as described above, when chemically modifying water-soluble polyuronic acids to synthesize new highly functional materials, the raw polyuronic acids have a clear and uniform chemical structure for analysis and material design. In addition, it is important to reduce the molecular weight in the modification reaction, and the molecular weight is required to be as high as possible. An aqueous solution of polyuronic acid can also be used as a gas barrier coating agent. However, even in this case, the uniformity of the chemical structure of the material greatly affects the gas barrier property of the coating film, and the degree of polymerization (molecular weight) of the material greatly affects the moisture resistance and storage stability of the coating film (for example, patents). Reference 2).
[0007]
[Non-Patent Document 1]
Carbohydrate Polymers 39 (1999) 361-367.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-226502.
[Patent Document 2]
JP 2001-334600 A.
[0008]
[Problems to be solved by the invention]
The object of the present invention is excellent in safety such as biocompatibility and biodegradability, and also excellent in physical properties as a functional material, and further as a raw material for synthesizing various functional materials such as foods, medical / pharmaceuticals and cosmetics. The object is to provide a water-soluble polyuronic acid that is useful and has a clear and uniform structure and a high molecular weight.
[0009]
[Means for Solving the Problems]
The invention of claim 1 includes a step of preparing a solution containing amylose or starch, an N-oxyl compound, and water, the temperature of the solution is 5 ° C. or less, and the pH of the solution is 10 to 11.5. Water-soluble polyuronic acid used in a gas barrier coating agent by adding an oxidizing agent dropwise to the solution while adjusting the amount according to the progress of the oxidation reaction. This is a method for producing polyuronic acid.
[0010]
According to a second aspect of the present invention, the solution contains an alkali metal bromide, the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl, and the oxidizing agent is hypochlorous acid. It is sodium chlorate, The manufacturing method of the water-soluble polyuronic acid of Claim 1 characterized by the above-mentioned.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The water-soluble polyuronic acid in the present invention has a structure represented by the following chemical formula (1), and a large number of α- (1,4) -bonded D-glucuronic acids (or alkali metal salts of D-glucuronic acid). However, the chemical structure is clear and uniform, and is particularly preferable as a synthetic raw material in the case of secondary modification. Further, when X in the chemical formula (1) is hydrogen or sodium, it exhibits a solubility of 10% or more in distilled water at 25 ° C., so that it is used as an aqueous reaction material and as an aqueous coating material. Useful, the coating film has a high gas barrier property.
[0016]
[Chemical 3]
Figure 0004457555
[0017]
(Wherein X represents hydrogen or an alkali metal)
[0018]
Furthermore, the water-soluble polyuronic acid of the present invention is characterized in that its weight average molecular weight is 30,000 or more, more preferably 50,000 or more, and as described above, the chemical structure is clear and uniform, and high A major feature is the molecular weight. Therefore, when the polyuronic acid aqueous solution of the present invention is used as a coating material, the coating property is improved, which can contribute to the improvement of moisture resistance and film properties of the coating film. In addition, when the polyuronic acid of the present invention is chemically modified as a raw material, improvement in physical properties and stabilization of physical properties can be expected.
[0019]
The weight average molecular weight described here is a weight average molecular weight in terms of pullulan measured by size exclusion chromatography using pullulan as a standard substance.
[0020]
Furthermore, the water-soluble polyuronic acid of the present invention can be obtained by using a polysaccharide having α- (1,4) -D-glucose as the main chain and using an oxidation method using an N-oxyl compound catalyst. In order to obtain a high molecular weight polyuronic acid having a uniform structure, which is characteristic of the present invention, a necessary amount of a drug necessary for the progress of a selective reaction can be supplied as needed under mild reaction conditions. It is important to oxidize in only a short time. That is, by using an alkali metal bromide and an oxidizing agent in the presence of an N-oxyl compound catalyst and oxidizing at a low temperature of 5 ° C. or lower and in an aqueous system while keeping the pH constant within a range of 10 to 11.5. The polyuronic acid of the present invention is obtained. Here, the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO), the alkali metal bromide is sodium bromide, and the oxidizing agent is hypochlorous acid. Sodium acid is particularly preferred.
[0021]
In this oxidation method, for example, a raw material is dissolved or uniformly dispersed in water, an aqueous solution in which TEMPO and sodium bromide are dissolved is added, the system is cooled to 5 ° C. or lower, and the pH is adjusted to 10. When a small amount of sodium hypochlorite solution is added here, the pH temporarily rises, but if the stirring is continued, the pH in the system gradually decreases. The pH is kept constant in the range of 10 to 11.5. Further, by dropping the sodium hypochlorite solution, which is an oxidizing agent, while adjusting according to the progress of the reaction, it is possible to suppress the presence of excess oxidizing agent in the system and acting on the side reaction. During the reaction, the temperature in the system is maintained at 5 ° C. or lower. As the reaction proceeds, the system becomes a homogeneous solution. Under these reaction conditions, the amount of sodium hydroxide added corresponds approximately to the amount of carboxyl groups introduced by oxidation, and when the amount of glucose residues in the raw material and the amount added in an equimolar amount are reached, Ethanol is added to quench excess oxidant and reprecipitate in excess ethanol. The product is sufficiently washed with a mixed solution of acetone and water, dehydrated with acetone, and then dried under reduced pressure to obtain the sodium salt of polyuronic acid of the present invention.
[0022]
The sodium salt of polyuronic acid obtained as described above is subjected to acid treatment after water treatment, and the desalted polyuronic acid can be obtained by repeating the reprecipitation, washing and drying operations with the above ethanol.
[0023]
As a raw material for this oxidation reaction, amylose composed of α- (1,4) -D-glucose is preferably used. Similarly, a starch that also contains an amylopectin part containing 1,6 bonds may be α- ( 1,4) -polyglucuronic acid can be obtained. That is, in this oxidation reaction, not only the C6 position of the pyranose ring is selectively oxidized, but the mechanism is not yet clear, but the 1,6-bonded portion of starch is cleaved to form α- (1,1 having a uniform structure. 4)-Polyglucuronic acid can be produced. This point is also one of the features of the present invention. As a raw material, starch is extremely inexpensive, and is very preferable for industrial use.
[0024]
Furthermore, since the polyuronic acid of the present invention is β- (1,4) -polyuronic acid having a uniform structure, it is a carbon having a hydroxyl group at the C6-position of the pyranose ring when 13 C-NMR is measured by dissolving in heavy water. There is no peak derived from (δ = 60 to 65 ppm), there is a peak derived from a carboxyl group (δ = 170 to 180 ppm), and a ketone produced by oxidation of the secondary hydroxyl group at the C3 position A peak (around δ = 200 to 210 ppm) is not detected.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0026]
<Example 1>
1.0 g of amylose derived from corn starch (manufactured by Kanto Chemical Co., Ltd.) was uniformly dispersed in distilled water at a concentration of 5%. To this, an aqueous solution in which 19 mg of TEMPO and 0.25 g of sodium bromide were dissolved was added to prepare a solid content concentration of amylose of about 2 wt%. The reaction system is cooled, and 3.0 g of 11% aqueous sodium hypochlorite solution is added to start the oxidation reaction. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system decreases, but 0.5N-NaOH aqueous solution is sequentially added to adjust the pH to around 10.8, and 8.0 g of 11% sodium hypochlorite aqueous solution is further added according to the progress of the reaction. It was added dropwise while adjusting. When approaching the amount of alkali added corresponding to 100% of the total number of moles of glucose residues, the rate of alkali addition becomes slow regardless of the dropping of the sodium hypochlorite aqueous solution, and the system is completely removed. Dissolves to a yellow uniform solution. When the amount of alkali added reached 100% (12.34 ml), ethanol was added to stop the reaction. The reaction time was 2 hours. This reaction solution was filtered to remove insoluble impurities, and then poured into an excess amount of ethanol to reprecipitate the product. Furthermore, after thoroughly washing with a solution of water: acetone = 1: 7, dehydration with acetone and drying under reduced pressure at 40 ° C., 1.1 g of sodium salt of polyuronic acid in the form of white powder was obtained.
[0027]
<Example 2>
After dissolving 5.0 g of water-soluble starch (manufactured by ACROS) in distilled water at a concentration of 5%, the solution was cooled. To this, an aqueous solution in which 96 mg of TEMPO and 1.27 g of sodium bromide were dissolved was added to prepare a solid content concentration of starch of about 2 wt%. The reaction system is cooled, 17 g of 11% sodium hypochlorite aqueous solution is added, and the oxidation reaction is started. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system decreases, but 0.5N-NaOH aqueous solution is sequentially added to adjust the pH to around 10.8, and further, 40 g of 11% sodium hypochlorite aqueous solution is adjusted according to the progress of the reaction. While dripping. When approaching the amount of alkali added corresponding to 100% of the total number of moles of glucose residues, the rate of alkali addition slowed regardless of the dropping of the aqueous sodium hypochlorite solution. When the amount of alkali added reached 100% (61.68 ml), ethanol was added to stop the reaction. The reaction time was 1 hour 40 minutes. This reaction solution was filtered to remove insoluble impurities, and then poured into an excess amount of ethanol to reprecipitate the product. Further, after sufficiently washing with a solution of water: acetone = 1: 7, dehydration with acetone and drying under reduced pressure at 40 ° C., a white powdery sodium salt of polyuronic acid 5.7 g was obtained.
[0028]
<Example 3>
Oxidation treatment was carried out in the same manner as in Example 1 except that corn starch (manufactured by Kanto Chemical Co., Ltd.) was used as the raw material of Example 1, and 1.1 g of sodium salt of polyuronic acid in the form of white powder was obtained. The reaction time was 2 hours.
[0029]
<Example 4>
2.0 g of sodium polyuronic acid of Example 2 was dissolved in 80 ml of distilled water, and 2N hydrochloric acid was added to pH 1 while stirring. The solution remained a clear solution. This solution was poured into an excess amount of ethanol to reprecipitate the product. Further, it was sufficiently washed with a solution of water: acetone = 1: 7, dehydrated with acetone, and dried under reduced pressure at 40 ° C. to obtain 1.6 g of desalted polyuronic acid as a white powder.
[0030]
<Comparative Example 1>
After dissolving 5.0 g of water-soluble starch (manufactured by ACROS) in distilled water at a concentration of 5%, the solution was cooled. To this, an aqueous solution in which 96 mg of TEMPO and 1.27 g of sodium bromide were dissolved was added to prepare a solid content concentration of starch of about 2 wt%. The reaction system is cooled, 45 g of 11% aqueous sodium hypochlorite solution is added, and the oxidation reaction is started. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system was lowered, but 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. When the alkali addition amount reached the addition amount (49.34 ml) corresponding to the number of moles of 80% with respect to the total number of moles of glucose residues, ethanol was added to stop the reaction. The reaction time was 50 minutes. This reaction solution was filtered to remove insoluble impurities, and then poured into an excess amount of ethanol to reprecipitate the product. Furthermore, after thoroughly washing with a solution of water: acetone = 1: 7, dehydration with acetone and drying under reduced pressure at 40 ° C., 5.5 g of sodium polyuronic acid salt in the form of white powder of Comparative Example 1 was obtained.
[0031]
<Comparative example 2>
After dissolving 5.0 g of water-soluble starch (manufactured by ACROS) in distilled water at a concentration of 5%, the solution was cooled. To this, an aqueous solution in which 96 mg of TEMPO and 1.27 g of sodium bromide were dissolved was added to prepare a solid content concentration of starch of about 2 wt%. Add 57 g of 11% sodium hypochlorite aqueous solution and start the oxidation reaction. The reaction temperature was always maintained between 10 ° C and 20 ° C. During the reaction, the pH in the system was lowered, but 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. When the alkali addition amount reached the addition amount (61.68 ml) corresponding to 100% of the total number of moles of glucose residues, ethanol was added to stop the reaction. The reaction time was 45 minutes. This reaction solution was filtered to remove insoluble impurities, and then poured into an excess amount of ethanol to reprecipitate the product. Furthermore, after sufficiently washing with a solution of water: acetone = 1: 7, it was dehydrated with acetone and dried under reduced pressure at 40 ° C. to obtain 5.6 g of sodium polyuronic acid salt in the form of white powder of Comparative Example 2.
[0032]
<Comparative Example 3>
Unoxidized water-soluble starch (manufactured by ACROS) was used as Comparative Example 3.
[0033]
<Evaluation>
(Water soluble)
1.0 g of polyuronic acid (or starch) of Examples 1 to 4 and Comparative Examples 1 to 3 was dissolved in 10 ml of distilled water at 25 ° C. Except for Comparative Example 3, all dissolved completely, and dissolution at a higher concentration was possible.
[0034]
(Structural analysis by NMR)
The samples of Examples 1, 2, and 4 and Comparative Examples 1 and 3 were dissolved in heavy water, and 13C-NMR was measured. The result is shown in FIG. From the NMR spectrum, in the polyuronic acid of the example, the peak derived from carbon having a hydroxyl group at the C6-position of the pyranose ring (δ = 60 to 65 ppm) completely disappears and converted to a carboxyl group (δ = 170 to 180 ppm). The peaks derived from the carbons at the 2nd and 3rd positions were not changed, and the peaks of ketone and the like (around δ = 200 to 210 ppm) were not confirmed. Therefore, it can be said that the polyuronic acid of the present invention is α- (1,4) -polyglucuronic acid having a substantially uniform structure. On the other hand, in the polyuronic acid of Comparative Example 1, a peak derived from the carbon of the carboxyl group was confirmed in the vicinity of δ = 170 to 180 ppm, but derived from the carbon having a hydroxyl group at the C6-position of the pyranose ring in the vicinity of δ = 60 to 65 ppm. Peak remains and is not uniform α- (1,4) -polyglucuronic acid.
[0035]
(Measurement of weight average molecular weight)
The weight average molecular weight (Mw) of the polyuronic acid (or starch) of Examples 1-4 and Comparative Examples 1-3 was measured by GPC method. TSK-gelG6000PWXL and TSK-gelG3000PWXL were used as columns, and 0.1M NaCl was used as an eluent, and measurement was performed using an RI detector. A calibration curve was prepared from a standard pullulan having a known molecular weight, and a weight average molecular weight in terms of pullulan was calculated. As a result, the polyuronic acids of the examples were polyuronic acids having Mw = 42,000, 65,000, 58,000, 66,000 in order from Example 1 and molecular weights of 30,000 or more. In addition, about the sample of the comparative example, they were Mw = 92,000, 22,000, 134,000 in order from the comparative example 1.
[0036]
(Measurement of gas barrier properties)
5% aqueous solution of polyuronic acid (or starch) of Examples 1, 2, 3 and Comparative Examples 1, 2, 3 using a biaxially stretched polypropylene film having a thickness of 20 μm provided with a urethane anchor coat layer as a base material Each was coated with a bar coater and dried in an oven at 80 ° C. to form a film having a dry film thickness of 1.5 μm. The oxygen permeability of these polyuronic acid coating films was measured as follows. The same measurement was performed after storage for 1 month in an atmosphere of 40 ° C. and 90% RH. The results are shown in Table 1.
(Measurement method of oxygen permeability)
It measured in 30 degreeC70% RH atmosphere and 30 degreeC100% RH atmosphere using the oxygen permeability measuring apparatus (The Modern Control company make, OXTRAN 10 / 40A).
[0037]
[Table 1]
Figure 0004457555
[0038]
【The invention's effect】
As described above, the water-soluble polyuronic acid of the present invention has a clear structure, is uniform, has a high molecular weight, and has good water solubility. Therefore, it can be preferably used as an aqueous reaction raw material and an aqueous coating material. In particular, when a gas barrier coating agent is used, moisture resistance and storage stability are improved as well as high gas barrier properties. Furthermore, application as various functional materials such as food, medicine / medicine and cosmetics can be expected.
[0039]
[Brief description of the drawings]
1 is a 13C-NMR measured by dissolving the polyuronic acid sodium salt of Examples 1 and 2, the polyuronic acid of Example 4, the sodium polyuronic acid salt of Comparative Example 1, and the starch of Comparative Example 3 in heavy water. Spectrum.

Claims (2)

アミロースまたはでんぷんと、N−オキシル化合物と、水とを含む溶液を調製する工程と、
前記溶液の温度を5℃以下にし、前記溶液のpHを10から11.5の範囲にし、前記溶液に酸化反応の進行具合に応じて量を調整しながら酸化剤を滴下し、ガスバリア用コーティング剤に用いられる水溶性ポリウロン酸を得る工程と
を具備することを特徴とする水溶性ポリウロン酸の製造方法。
Preparing a solution comprising amylose or starch, an N-oxyl compound, and water;
The temperature of the solution is 5 ° C. or less, the pH of the solution is in the range of 10 to 11.5, an oxidizing agent is dropped into the solution while adjusting the amount according to the progress of the oxidation reaction , and a coating agent for gas barrier And a step of obtaining a water-soluble polyuronic acid used in the method.
前記溶液は臭化アルカリ金属を含み、前記N−オキシル化合物が2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルであり、前記酸化剤が次亜塩素酸ナトリウムであることを特徴とする請求項1に記載の水溶性ポリウロン酸の製造方法。  The solution contains an alkali metal bromide, the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl, and the oxidizing agent is sodium hypochlorite. The method for producing a water-soluble polyuronic acid according to claim 1, wherein
JP2002360524A 2002-12-12 2002-12-12 Water-soluble polyuronic acid Expired - Fee Related JP4457555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360524A JP4457555B2 (en) 2002-12-12 2002-12-12 Water-soluble polyuronic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360524A JP4457555B2 (en) 2002-12-12 2002-12-12 Water-soluble polyuronic acid

Publications (2)

Publication Number Publication Date
JP2004189924A JP2004189924A (en) 2004-07-08
JP4457555B2 true JP4457555B2 (en) 2010-04-28

Family

ID=32759577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360524A Expired - Fee Related JP4457555B2 (en) 2002-12-12 2002-12-12 Water-soluble polyuronic acid

Country Status (1)

Country Link
JP (1) JP4457555B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205686B2 (en) * 2004-09-10 2013-06-05 凸版印刷株式会社 Polyglucuronic acid and process for producing the same
JP4929581B2 (en) * 2004-11-01 2012-05-09 凸版印刷株式会社 Method for producing water-soluble polyuronic acid
JP5343302B2 (en) * 2005-12-21 2013-11-13 凸版印刷株式会社 Method for producing inclusion complex
WO2009122953A1 (en) 2008-03-31 2009-10-08 花王株式会社 Method for manufacturing polyuronate
JP5666774B2 (en) * 2008-12-17 2015-02-12 花王株式会社 Cleaning composition for clothing
JP5480575B2 (en) * 2009-09-25 2014-04-23 花王株式会社 Anti-darkening stain

Also Published As

Publication number Publication date
JP2004189924A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
Barbosa et al. A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR
Coseri et al. One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate
Cervera et al. Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols
Jejurikar et al. Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde
US6331619B1 (en) Superabsorbent material and method for producing said material
Kato et al. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan
Carbinatto et al. Physical properties of pectin–high amylose starch mixtures cross-linked with sodium trimetaphosphate
Potthast et al. Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles
Balakrishnan et al. Periodate oxidation of sodium alginate in water and in ethanol–water mixture: a comparative study
Rajalaxmi et al. Synthesis of novel water-soluble sulfonated cellulose
Habibi et al. Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp
Brunchi et al. Investigations on the interactions between xanthan gum and poly (vinyl alcohol) in solid state and aqueous solutions
Sharma et al. Functionalized celluloses and their nanoparticles: morphology, thermal properties, and solubility studies
EP2841462B1 (en) Crosslinked hyaluronan derivative, method of preparation thereof, hydrogel and microfibers based thereon
WO2012051035A1 (en) Novel cellulose ethers and their use
JP4457555B2 (en) Water-soluble polyuronic acid
Crescenzi et al. New cross‐linked and sulfated derivatives of partially deacetylated hyaluronan: Synthesis and preliminary characterization
Moran et al. Preparation and characterization of three different derivatized potato starches
JP2005015680A (en) Polyglucuronic acid
Eulalio et al. Characterization and thermal properties of chitosan films prepared with different acid solvents
Tupa et al. Preparation and characterization of modified starches obtained in acetic anhydride/tartaric acid medium
Bukhari et al. Development and characterization of photo-responsive cinnamoly modified alginate
WO2005110430A1 (en) Method of use of carboxylated polysaccharides topically on the eyeball
JP5205686B2 (en) Polyglucuronic acid and process for producing the same
Sen et al. A novel polymeric biomaterial based on carboxymethylstarch and its application in controlled drug release

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4457555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees