JP4457238B2 - Heat dissipating structure of heat generating parts in equipment cabinet - Google Patents

Heat dissipating structure of heat generating parts in equipment cabinet Download PDF

Info

Publication number
JP4457238B2
JP4457238B2 JP25920897A JP25920897A JP4457238B2 JP 4457238 B2 JP4457238 B2 JP 4457238B2 JP 25920897 A JP25920897 A JP 25920897A JP 25920897 A JP25920897 A JP 25920897A JP 4457238 B2 JP4457238 B2 JP 4457238B2
Authority
JP
Japan
Prior art keywords
wind tunnel
cabinet
heat
heat generating
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25920897A
Other languages
Japanese (ja)
Other versions
JPH1168362A (en
Inventor
久輝 赤地
Original Assignee
アクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクトロニクス株式会社 filed Critical アクトロニクス株式会社
Priority to JP25920897A priority Critical patent/JP4457238B2/en
Publication of JPH1168362A publication Critical patent/JPH1168362A/en
Application granted granted Critical
Publication of JP4457238B2 publication Critical patent/JP4457238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は機器キャビネット内における実装部品群の放熱構造に関するもので、特に実装部品群の放熱構造を小型化し且つ部品群の一括放熱に際し必然的に発生する対流の上流下流間の温度差を縮小することを可能にする機器キャビネット内発熱部品群の放熱構造に関する。
【0002】
【従来の技術】
従来例(1)…従来の機器キャビネット内における発熱部品群の一括放熱の構造は、一般的に図7に例示の如く発熱部品群13−nはプリント基板11−1、11−2の平面上に展開実装している例が多く、風洞の配設が困難であり、実装基板平面11−1、11−2の間の間隙空間をそのまま対流の流路として、即ちこの間隙空間を放熱空間または風洞代替として適用する例が多い。またそれらの発熱部品群13−nの上には夫々に放熱フィン群17−nが装着されて風洞代替の放熱空間内に展開配置されてあることが通例であった。
【0003】
従来例(2)…従来の機器キャビネット内における発熱部品群13−nの一括放熱の他の一例としては図8に例示の如く大型のアルミヒートシンク18の外周に発熱部品群13−nを搭載し、このアルミヒートシンク18に冷却ファン19と風洞21−1,21−2を連結して強制対流放熱を実施する例もあった。
【0004】
【発明が解決しようとする課題】
従来例(1)の如き場合は図7の如く機器キャビネット内に送入または吸入される対流15の全量の中で、放熱フィン群17−nの夫々のフィン間隙内に侵入して実際に放熱に寄与する空気量の割合が少なく、冷却効率が極めて悪い点が大きな問題であった。これは空気の流れはキャビネット内の流体抵抗の少ない部分に多くが流れ、流体抵抗の大きな放熱フィン群17−nの夫々のフィン間隙内に侵入し、通過する空気量が減少する必然的な現象によるものであった。またこの様にしてキャビネット内に分散した対流は分散流相互間の干渉が大きく対流の利用効率を低下せしめていた。その為に対流発生用ファンとしては必要以上に大型なものが使用され、機器の大型化の原因ともなっていた。また従来例(2)の如き場合は図8における対流の下流側放熱部品群13−nは上流側で加熱された空気により放熱されるため、また上流側を通過して高温になった対流15の全てが下流側に導入されるので、上流側に比較して下流側の冷却効率が大幅に低下し、発熱部品温度が下流ほど高くなることが避けられずこの点が最も大きな問題であった。更に従来例(2)の場合はアルミヒートシンク18が大きい為に機器が大型化しかつ重量が大きくなる点も大きな問題点であった。
【0005】
【課題を解決する為の手段】
課題を解決する為の手段としての本発明の機器キャビネット内発熱部品群の放熱構造の基本構造を図1、図2に例示する。
キャビネット6内に実装された発熱部品群3−nが発生する熱量を一括的に吸収してキャビネット外雰囲気中に移送廃棄する為の放熱構造であって、キャビネット6の外気を一端の外気吸入口4−1から吸入し、他端の外気排出口4−2から排出する、対流の流路である方形断面の風洞4を第一の構成要素とし、風洞4には複数の小型強力な放熱器が直列に配設されてあり、それらの放熱器群またはその放熱部群1−nの夫々は風洞内をほぼ充満せしめる形状と大きさであり、それらの受熱板2−nの群の夫々の受熱面は、風洞壁を介して間接的に発熱部品3−nを実装することが出来るか、または直接放熱部品を実装することが出来るか何れかであるように配設されてある配設構造を第二の構成要素とし、風洞4内を貫流する自然対流または強制対流8の発生手段を第三の構成要素とし、風洞には直列に配設された複数の放熱器の各放熱器の対流流入口の周辺付近には、風洞内に新鮮な冷風を補充する外気補充手段7−nが夫々に設けられてあり、これを第四の構成要素とし、これら四構成要素の総てを含んで構成されてあることを特徴としている。
【0006】
図1は基本構造の縦断面略図であり、図2はその風洞部分付近の部分横断面略図である。図1においては補助風洞5−1、5−2は図示不可能なので90度転回して図示してある。風洞4における補助風洞5−1、5−2の正しい相対位置は図2に例示の通りであり、発熱部品群3−nがキャビネット内に露出して受熱板2−nに実装されている状態が正しい構成である。
【0007】
【作用】
上記の四構成要素を要約すると以下の各項の通りになる。(1)風洞4には複数の小型強力な放熱器またはその放熱部1−nが風洞をほぼ充満する大きさ及び形状に配設されてあり、それらの複数の放熱器は風洞内に直列に配設されてある。(2)放熱器は発熱部品群3−nが出来るだけ放熱器の受熱板2−nに直接搭載出来る様配設されてある。(3)対流は自然対流または強制対流の何れかである。(4)各放熱器に流入する対流には放熱器毎に新鮮冷風が補充される。
以下に各項の構成要素毎にその作用について述べる。
【0008】
(1)小型強力な放熱器は風洞を小型化せしめる。また放熱器の直列配設も風洞を小型化せしめ、且つ風洞の配設本数を最少ならしめる。放熱器またはその放熱部1−nは風洞4を充満する大きさであるから対流は分散すること無く、流れの全てが無駄なく熱交換され放熱効率が向上する。放熱器として受熱板2−nを両面に有するステレオ型放熱器を採用する場合は、風洞4を中心とした機器内発熱部品3−nの立体的実装(3次元実装)が可能になり、機器内発熱部品3−nが効率的に実装される。ここに云う立体的実装とは単に放熱器の両面実装を意味するものではない。風洞の両面に且つ直列に複数組の発熱部品群3−nが配置され更にその風洞は水平、垂直何れの方向にも配設することが可能となる。このような発熱部品群3−nの立体的実装は実装設計の自由度を大きくするだけでなく、機器キャビネットの小型化にも大きく貢献する。
【0009】
(2)放熱器を風洞4と組合わせ配設するに際して、受熱板2−nをキャビネット6内に露出せしめて配設するなど、放熱器は発熱部品3−nを出来るだけ受熱板2−nに直接搭載出来る構造にしてあるから、これに因る熱抵抗の減少と(1)項による放熱効率の向上と相俟って、全体的に熱抵抗が減少し放熱性能が大幅に向上する。
【0010】
(3)対流は自然対流、強制対流8−1のいずれか一方を選択することが出来る。(1)項の効果の一つとして熱吸収後の対流8−1がキャビネット内に散逸することの無い構成にすることが出来ると共に、風洞4内とキャビネット6内を完全に気密に遮断出来るから、キャビネット6を完全密閉構造として、強制対流8−1であってもキャビネット6内をクリーンに保ち実装部品の信頼性を向上せしめることが出来る。軸流ファンなどに依る従来の強制対流手段の場合は気密性が悪く、外部の汚染雰囲気を吸収したりキャビネット6内に塵埃を取り込んだりして内部を汚染するケースが多かった。またファンに替えて風洞4の煙突効果を自然対流発生手段とする場合は従来極めて困難とされてきた機器の密閉キャビネット内の自然対流放熱を効果的に実施することが可能となる。
【0011】
(4)風洞4には直列配設された各放熱器に対して夫々に新鮮冷風を補充する手段7−nが設けられるから、下流側放熱器が上流側放熱器から排出される高温対流の影響を受けることが少なく直列配設であるにも拘らず全放熱器に効果的な放熱をさせることが出来る。更にこの外気補充手段7−nは放熱器に供給される対流を下流側放熱器ほど対流8の流量を増加せしめ流速を早める特徴があり、下流側放熱器の放熱効率を増加せしめ、下流側放熱器の温度上昇を防ぐ効果がある。
【0012】
本発明に係る機器キャビネット内発熱部品群の放熱構造の四構成要素の総合的作用は次の如くである。
従来の放熱構造はキャビネット6内における冷却対流の流れは分散流であり、分散流相互間の干渉が大きく、流れの有効利用が不十分であった。本発明の構造において流れを集中化せしめ効率的に活用することの可能な放熱構造に改善し、同時に部品群間の相互熱干渉を減少せしめ、直列実装、三次元実装、を可能にし、キャビネット内実装を高密度化せしめ、機器全体の小型化軽量化に貢献する。
【0013】
【実施例】
[第一実施例]図3は本発明に係るキャビネット内発熱部品群の放熱構造の第一実施例の一例を示す。本実施例においては第一の構成要素である方形断面形状の風洞4はキャビネット6の壁体内に内接して配設され、三側面がキャビネット6内に露出して配設されてあり、その他の一側面はキャビネットの一側面の一部と共通化されて配設されてあり、第二の構成要素に適用される放熱器は放熱ピン群かフィン群が両側面の受熱板2−nで挟持して構成されたステレオ型放熱器であり、その二枚の受熱板2−nは受熱面がキャビネット内に露出せしめられて風洞4内に配設されてあり、受熱板2−nの群に実装された放熱部品群3−nは風洞の両側外面に直列に且つ全体として立体的に配置されてあり、また第四の構成要素における外気補充手段7−nは風洞の一側面と共通化されてあるキャビネット6の一側面の部分に設けられてあり、低温新鮮外気を直接取り入れることが可能になっていることを特徴としている。図における9は対流の中に放熱部1−nを充満せしめて放熱効率を向上せしめる為のスペーサーである。また5−1は総ての外気補充手段7−nに外気を強制送入する為の補助風洞である。図は風洞4が垂直に保持されてある状態の横断面図で図示されてあるから、複数の放熱部1−nは一個のみ、多数の受熱板2−n、発熱部品群3−n等は夫々2個のみが図示されてあるが、それらが直列に多数個配置された状態は図1に例示されてあると同様ある。
【0014】
図3からは風洞4の内外に放熱器、発熱部品群3−n等が直列に、且つ立体的に配設実装されてある、本発明に係る機器キャビネット内発熱部品群の放熱構造がキャビネット内に占める部品実装面積及び容積を大幅に減少せしめている事が良く分かる。特に風洞4の一側壁とキャビネットの一側壁の一部分とが共通化されてある点は風洞4によるデッドスペースの発生を減少せしめ、キャビネット内の空間を有効に利用出来る効果と、キャビネット外の新鮮冷気の取り入れが容易になる効果がある。本実施例においては対流の下流側放熱器に対するに導入されるキャビネット外の冷気が効率よく導入されるから、補助風洞5−1は省略される場合もある。
【0015】
[第二実施例] 図4は本発明に係るキャビネット内発熱部品群の放熱構造の第二実施例の一例を示す。本実施例では第一の構成要素の方形断面形状の風洞4はキャビネット6の壁体外に外接して配設され、三側面がキャビネット6の外に露出して配設された方形風洞4であり、その他の一側面はキャビネット6の一側面の一部と共通化されて配設されてあり、第二の構成要素に適用される放熱器の放熱部1−nは放熱ピン群か放熱フィン群が一枚の受熱板2−nの片面上に配設されて構成されてある放熱部1−nであり、その受熱板2−nは風洞4の一側面がキャビネットの一側面の一部と共通化されてある部分において、キャビネット壁を介して間接的に発熱部品3−nを実装することが出来るか、または直接発熱部品3−nを実装することが出来るか、何れかであるように配設されてある配設構造であり、第四の構成要素における外気補充手段7−nは風洞4がキャビネット6の外に露出せしめられてある三側面に設けられてあることを特徴としてい
【0016】
本実施例ではキャビネット6内の空間が風洞4により占有されることが無いからキャビネット6内の空間が他の目的に広く利用出来る利点があるがその半面受熱板2−nの枚数が半減し発熱部品群3−nの実装可能数量が減少する。然し外気補充手段7−nの配設箇所は第一実施例の3倍にも増加し、キャビネット外の新鮮冷気が大量に導入されるから補助風洞5−1を省略することが可能になる。図4においては補助風洞5−1を省略してあるが、必要によっては補助風洞5−1をも併設して強制対流を外気補充手段7−n内に導入して、更に冷却効果を向上させても良い。
【0017】
[第三実施例] 各実施例図に例示の第四の構成要素である風洞4内及び、またはキャビネット6の壁に設けられる外気補充手段7−nとしては各種の手段があるが、本実施例においては、風洞壁及び、またはキャビネット壁に設けられる各下流側放熱器の配設位置直前付近に設けられた所定の構造のルーバー群か貫通孔群であることを特徴としている。これらの外気補充手段7−nは構造が単純で且つ形成が容易であり、風洞4内を貫流する強制対流の流速により発生する負圧により風洞外気を容易に流通せしめ、複数の各下流側放熱器に外気を補充供給する。これにより風洞4内に直列に配置された複数の放熱器が対流の下流に至るほど温度上昇する現象の、温度上昇を緩和せしめる。
【0018】
[第四実施例] 第四実施例は風洞4内及び、またはキャビネット6の壁に設けられる外気補充手段7−nの外気補充能力を強制対流によって大幅に強化する為の手段であって、その一例は図1及び図3に図示されてある。図示されてある補助風洞5−1、5−2は風洞4に並列して設けられてあり、各外気補充手段7−nである各所定の構造のルーバー群か貫通孔群に共通の強制対流導入流路及び加圧室をを形成している。その一端は最下流放熱器の下流側付近で閉鎖封止されてあり、他の一端は風洞4の強制対流発生用ファン8−2が発生する強制対流内に開口されてある。このように構成されてあるから、補助風洞5−1、5−2内は加圧室となり全てのルーバー群、貫通孔群から新鮮な強制対流が風洞4内に均一に送入されるようになる。この新鮮な強制対流は風洞4内を流れる強制対流の主流に合流して各放熱器を通過する毎の強制対流の温度上昇を緩和せしめる。この合流した強制対流は下流側の放熱器に至るほど順次増量増速されるから、下流側放熱器に至る程熱交換効率が高くなる。このことは対流風の多少の温度上昇にも拘らず各下流側の発熱部品群3−nの温度上昇を確実に防止する。
【0019】
[第五実施例] 本実施例は本発明に係る放熱構造を自然対流により実施する応用例である。図5、図6、はその断面略図であって、図5はその縦断面略図であり、図6はその横断面略図である。図5において補助風洞5−1、5−2及び外気補充手段(ルーバー)7−nは縦断面図では図示出来ないので取り付け位置を90度転回せしめて示してある。即ち風洞4に対する補助風洞5−1、5−2及び外気補充手段(ルーバー)7−nの取り付け位置は図6に例示してある位置が正規の位置である。本実施例において第一の構成要素である風洞4のキャビネット外気の吸入口4−1はキャビネットの底面床部6−1を貫通して設けられてあり、その排出口4−2はキャビネットの頂面天井部6−2を貫通して設けられてあり、方形断面形状の風洞4を貫流する対流は自然体流である。第三の構成要素である対流発生手段は風洞4が垂直に保持せしめられてあることにより発生する煙突効果であることを特徴としている。
【0020】
放熱器はその受熱板2−nの群がその受熱面上に実装された発熱部品群3−nがキャビネット6の中に露出するよう配設されてある。放熱器の放熱部1−nとしては、風洞4の中に複数個が直列配置されるので、自然対流を効果的に風洞4内を貫流させる必要があるから、放熱部1−nを構成する自然対流用のフィン配列が粗で圧力損失の小さなものが適用される。外気補充手段(ルーバー)7−nは各放熱部1−nの対流吸入部付近に設けられてある。補助風洞5−1、5−2はその吸入口4−3、4−4から新鮮な低温外気を煙突効果で吸入し、全ての外気補充手段(ルーバー)7−nに均一に供給する。風洞4内には吸入口4−1から吸入された外気が強力な煙突効果により各放熱部1−nの熱量を吸収しながら貫流するが、その対流には各外気補充手段(ルーバー)7−nから新鮮外気が各放熱部1−n毎に補充され、対流流量が増加し、流速も増加し、下流側ほど熱交換効率が増加し、各発熱部品3−nは上流下流に亙り比較的均一に冷却される。
【0021】
本実施例においては熱交換後の対流排気が一切キャビネット6内に散逸することが無いからキャビネット6を完全密閉にすることが出来る点は大きな効果である。従来密閉キャビネット6内における発熱部品群3−nの自然対流に依る直接冷却は、熱交換後の対流排気が密閉キャビネット6内に散逸し、キャビネット6内の空気温度を上昇せしめ、これにより冷却効率が低下するので、実効が少なく密閉キャビネット6内の発熱部品群3−nの自然体流冷却は殆ど不可能とされていた。現在の機器の密閉キャビネット6内の発熱部品群3−nの冷却は密閉キャビネット6の内外に強制対流発生手段を設けた熱交換機に依りキャビネット6内外空気を熱交換して、キャビネット内空気を冷却して、間接的に発熱部品群3−nを冷却する極めて効率の悪い冷却手段を適用することが一般的であった。
【0022】
【発明の効果】
小型強力な放熱器が小型風洞内に直列配置されてあることに依り、機器キャビネット内における発熱部品群の実装面積が縮小され、風洞に設けられた外気補充手段と補助風洞の作用に依り、対流の上流下流間における発熱部品群間の温度差が大幅に縮小され、発熱部品群の立体的実装が容易になり機器キャビネットが小型化された。また冷却対流のキャビネット内散逸が無くなることに依り、キャビネットの密閉化が可能になり特に密閉キャビネット内の発熱部品群の自然対流冷却も可能になった。
【図面の簡単な説明】
【図1】 本発明の機器キャビネット内発熱部品群の放熱構造の基本構造を示す縦断面図の略図。
【図2】 本発明の機器キャビネット内発熱部品群の放熱構造の基本構造をを示す風洞部分の横断面略図。
【図3】 本発明の機器キャビネット内発熱部品群の放熱構造の第一実施例を示す横断面略図。
【図4】 本発明の機器キャビネット内発熱部品群の放熱構造の第二実施例を示す横断面略図。
【図5】 本発明の機器キャビネット内発熱部品群の放熱構造の第五実施例を示す縦断面図の略図。
【図6】 本発明の機器キャビネット内発熱部品群の放熱構造の第五実施例を示す横断面略図。
【図7】 機器キャビネット内発熱部品群の放熱構造の従来構造の一例の説明図。
【図8】 機器キャビネット内発熱部品群の放熱構造の従来構造の他の一例の説明図。
【符号の説明】
1−n 放熱器放熱部
2−n 放熱器受熱板
3−n 発熱部品
4 風洞
4−1 外気吸入口
4−2 外気排出口
4−3 補助風洞吸入口
4−4 補助風洞吸入口
5−1 補助風洞
5−2 補助風洞
6 キャビネット
6−1 キャビネット底面床部
6−2 キャビネット頂面天井部
7−n 外気補充手段(ルーバー)
8−1 強制対流
8−2 強制対流発生手段(ファン)
9 スペーサー
11−1 プリント基板
11−2 プリント基板
13−n 発熱部品
14−1 支持板
14−2 支持板
15 強制対流
17−n 放熱フィン
18 大型ヒートシンク
19 冷却ファン
20 キャビネット
21−1 風洞
21−2 風洞
[0001]
[Industrial application fields]
The present invention relates to a heat dissipation structure for a mounting component group in an equipment cabinet, and particularly reduces the heat dissipation structure of the mounting component group and reduces the temperature difference between the upstream and downstream of the convection that is inevitably generated when the component group collectively dissipates heat. The present invention relates to a heat dissipation structure for a heat generating component group in an equipment cabinet.
[0002]
[Prior art]
Conventional Example (1): The heat radiation structure of a heat generating component group in a conventional equipment cabinet generally has a heat generating component group 13-n on the plane of the printed boards 11-1 and 11-2 as illustrated in FIG. It is difficult to dispose the wind tunnel, and the gap space between the mounting substrate planes 11-1 and 11-2 is used as a convection flow path as it is. There are many examples of application as a wind tunnel alternative. In addition, it is customary that a radiation fin group 17-n is mounted on each of the heat generating component groups 13-n and deployed in a heat radiation space instead of the wind tunnel.
[0003]
Conventional Example (2): As another example of collective heat dissipation of the heat generating component group 13-n in the conventional equipment cabinet, the heat generating component group 13-n is mounted on the outer periphery of a large aluminum heat sink 18 as illustrated in FIG. There is also an example in which the cooling fan 19 and the wind tunnels 21-1, 21-2 are connected to the aluminum heat sink 18 to perform forced convection heat radiation.
[0004]
[Problems to be solved by the invention]
In the case of the conventional example (1), in the entire amount of the convection 15 that is sent or sucked into the equipment cabinet as shown in FIG. 7, it enters the fin gaps of the radiating fin group 17-n and actually radiates heat. The major problem is that the ratio of the amount of air that contributes to the temperature is small and the cooling efficiency is extremely poor. This is due to the fact that the flow of air mostly flows in the portion of the cabinet where the fluid resistance is low, enters the fin gaps of the heat radiation fin group 17-n having a high fluid resistance, and the amount of air passing therethrough is reduced. It was due to. In addition, the convection dispersed in the cabinet in this way has a large interference between the dispersed flows, which reduces the efficiency of convection utilization. Therefore, a fan larger than necessary was used as a fan for generating convection, which caused an increase in equipment size. Further, in the case of the conventional example (2), the convection downstream heat radiation component group 13-n in FIG. 8 is radiated by the air heated on the upstream side, and the convection 15 that has passed through the upstream side and has become a high temperature. Since all of these are introduced to the downstream side, the cooling efficiency on the downstream side is greatly reduced compared to the upstream side, and it is inevitable that the temperature of the heat generating component becomes higher as the downstream side. This is the biggest problem. . Further, in the case of the conventional example (2), since the aluminum heat sink 18 is large, the size of the apparatus is increased and the weight is increased.
[0005]
[Means for solving the problems]
The basic structure of the heat dissipation structure of the heat generating component group in the equipment cabinet of the present invention as means for solving the problems is illustrated in FIGS.
A heat dissipation structure that collectively absorbs the heat generated by the heat generating component group 3-n mounted in the cabinet 6 and transfers and discards the heat into the atmosphere outside the cabinet. A wind tunnel 4 having a rectangular cross-section, which is a convection flow path, is sucked from the 4-1 and discharged from the outside air outlet 4-2 at the other end, and the wind tunnel 4 has a plurality of small and powerful radiators. Are arranged in series, and each of the radiator group or the radiator part group 1-n has a shape and a size that substantially fills the inside of the wind tunnel, and each of the groups of the heat receiving plates 2-n. The heat receiving surface is disposed so that either the heat generating component 3-n can be indirectly mounted through the wind tunnel wall or the heat radiating component can be directly mounted. As a second component, natural convection flowing through the wind tunnel 4 The means for generating the forced convection 8 is a third component, and fresh cold air is replenished in the wind tunnel in the vicinity of the convection inlet of each radiator of a plurality of radiators arranged in series in the wind tunnel. An outside air replenishing means 7-n is provided for each of the four components, and is characterized by including all of these four components.
[0006]
FIG. 1 is a schematic vertical cross-sectional view of the basic structure, and FIG. 2 is a schematic partial cross-sectional view near the wind tunnel portion. In FIG. 1, the auxiliary wind tunnels 5-1 and 5-2 are not shown in the figure, and are therefore turned 90 degrees. The correct relative positions of the auxiliary wind tunnels 5-1 and 5-2 in the wind tunnel 4 are as illustrated in FIG. 2, and the heat generating component group 3-n is exposed in the cabinet and mounted on the heat receiving plate 2-n. Is the correct configuration.
[0007]
[Action]
The above four components are summarized as follows. (1) The wind tunnel 4 is provided with a plurality of small and powerful radiators or their heat radiating portions 1-n in such a size and shape as to substantially fill the wind tunnel, and the plurality of radiators are arranged in series in the wind tunnel. It is arranged. (2) The radiator is arranged so that the heat generating component group 3-n can be directly mounted on the heat receiving plate 2-n of the radiator as much as possible. (3) Convection is either natural convection or forced convection. (4) The convection flowing into each radiator is supplemented with fresh cold air for each radiator.
The operation of each item will be described below.
[0008]
(1) A small and powerful heatsink can downsize the wind tunnel. Also, the serial arrangement of radiators can reduce the size of the wind tunnel and minimize the number of wind tunnels. Since the heat radiator or the heat radiating part 1-n fills the wind tunnel 4, the convection is not dispersed, and all of the flow is heat exchanged without waste, and the heat radiation efficiency is improved. When a stereo radiator having heat receiving plates 2-n on both sides is adopted as a radiator, three-dimensional mounting (three-dimensional mounting) of the heat generating component 3-n in the device around the wind tunnel 4 becomes possible. The inner heat generating component 3-n is efficiently mounted. The three-dimensional mounting mentioned here does not simply mean a double-sided mounting of the radiator. A plurality of sets of heat generating component groups 3-n are arranged in series on both sides of the wind tunnel, and the wind tunnel can be arranged in both horizontal and vertical directions. Such three-dimensional mounting of the heat generating component group 3-n not only increases the degree of freedom in mounting design, but also greatly contributes to downsizing of the equipment cabinet.
[0009]
(2) When disposing the heat sink in combination with the wind tunnel 4, the heat dissipator is arranged such that the heat receiving plate 2-n is exposed in the cabinet 6. Since the structure can be directly mounted on the board, the reduction of the thermal resistance caused by this and the improvement of the heat radiation efficiency according to the item (1) reduce the overall thermal resistance and greatly improve the heat radiation performance.
[0010]
(3) As the convection, either natural convection or forced convection 8-1 can be selected. As one of the effects of the item (1), the convection 8-1 after heat absorption can be configured not to be dissipated in the cabinet, and the inside of the wind tunnel 4 and the inside of the cabinet 6 can be completely sealed. The cabinet 6 has a completely sealed structure, and even in the forced convection 8-1, the cabinet 6 can be kept clean and the reliability of the mounted components can be improved. In the case of the conventional forced convection means using an axial fan or the like, the airtightness is poor, and there are many cases in which the inside is contaminated by absorbing an external contaminated atmosphere or taking in dust into the cabinet 6. Further, when the chimney effect of the wind tunnel 4 is used as a natural convection generating means instead of the fan, it is possible to effectively carry out natural convection heat radiation in a sealed cabinet of equipment which has been extremely difficult in the past.
[0011]
(4) Since the wind tunnel 4 is provided with means 7-n for replenishing each of the radiators arranged in series with fresh cool air, the high-temperature convection of the downstream radiator discharged from the upstream radiator It is less affected and can effectively dissipate heat to all radiators despite the series arrangement. Further, the outside air replenishing means 7-n is characterized in that the convection supplied to the radiator increases the flow rate of the convection 8 as the downstream radiator increases, thereby increasing the flow rate. There is an effect to prevent the temperature rise of the vessel.
[0012]
The overall action of the four components of the heat dissipation structure of the heat generating component group in the equipment cabinet according to the present invention is as follows.
In the conventional heat dissipation structure, the cooling convection flow in the cabinet 6 is a distributed flow, and the interference between the distributed flows is large, so that the effective use of the flow is insufficient. In the structure of the present invention, the flow is concentrated to improve the heat dissipation structure that can be used efficiently, and at the same time, the mutual thermal interference between the parts group is reduced, enabling serial mounting and three-dimensional mounting, and in the cabinet Higher mounting density contributes to reducing the overall size and weight of the equipment.
[0013]
【Example】
[First Embodiment] FIG. 3 shows an example of the first embodiment of the heat dissipating structure of the heat generating component group in the cabinet according to the present invention. In this embodiment, the air channel 4 having a square cross-sectional shape, which is the first component, is disposed inscribed in the wall of the cabinet 6, and three side surfaces are exposed in the cabinet 6. One side is arranged to be shared with a part of one side of the cabinet, and the heat radiator applied to the second component is sandwiched by the heat receiving plates 2-n of the heat radiating pins or fins on both sides. The two heat receiving plates 2-n are arranged in the wind tunnel 4 with their heat receiving surfaces exposed in the cabinet, and are arranged in groups of the heat receiving plates 2-n. The mounted heat dissipating component group 3-n is three-dimensionally arranged in series on both sides of the wind tunnel in series and as a whole, and the outside air replenishing means 7-n in the fourth component is shared with one side of the wind tunnel. It is provided on one side of the cabinet 6 I am characterized in that it has become possible to incorporate a gas 鮮外 directly. In the figure, reference numeral 9 denotes a spacer for filling the radiant portion 1-n in the convection and improving the radiating efficiency. Reference numeral 5-1 denotes an auxiliary wind tunnel for forcibly sending outside air into all the outside air replenishing means 7-n. Since the figure is shown in a cross-sectional view in a state where the wind tunnel 4 is held vertically, only one heat radiating portion 1-n, many heat receiving plates 2-n, heat generating component groups 3-n, etc. Only two of them are shown, but the state in which a large number of them are arranged in series is the same as that illustrated in FIG.
[0014]
From FIG. 3, the heat dissipation structure of the heat generating component group in the equipment cabinet according to the present invention, in which the radiator, the heat generating component group 3-n and the like are arranged in series and three-dimensionally inside and outside the wind tunnel 4, is shown in FIG. It can be clearly seen that the component mounting area and the volume occupied by are greatly reduced. In particular, the fact that one side wall of the wind tunnel 4 and a part of one side wall of the cabinet are made common reduces the generation of dead space by the wind tunnel 4, and the effect that the space in the cabinet can be used effectively and the fresh cool air outside the cabinet. This has the effect of making it easier to incorporate. In the present embodiment, since the cold air outside the cabinet introduced into the convection downstream radiator is efficiently introduced, the auxiliary wind tunnel 5-1 may be omitted.
[0015]
[Second Embodiment] FIG. 4 shows an example of a second embodiment of the heat dissipating structure of the heat generating component group in the cabinet according to the present invention. In this embodiment, the square cross-sectional wind tunnel 4 of the first component is a square wind tunnel 4 that is disposed outside the wall of the cabinet 6 and three sides are exposed outside the cabinet 6. The other side surface is disposed in common with a part of one side surface of the cabinet 6, and the heat radiating portion 1-n of the radiator applied to the second component is a radiating pin group or a radiating fin group. Is a heat dissipating part 1-n arranged on one side of one heat receiving plate 2-n, and the heat receiving plate 2-n has one side of the wind tunnel 4 as a part of one side of the cabinet. In the common part, either the heat generating component 3-n can be mounted indirectly through the cabinet wall, or the heat generating component 3-n can be mounted directly. It is an arrangement structure that is arranged, and external air replenishment in the fourth component The stage 7-n are characterized by wind tunnel 4 are provided on the three sides are provided brought exposed to the outside of the cabinet 6 [0016]
In this embodiment, since the space in the cabinet 6 is not occupied by the wind tunnel 4, there is an advantage that the space in the cabinet 6 can be widely used for other purposes. However, the number of the half-surface heat receiving plates 2-n is reduced by half and heat is generated. The mountable quantity of the component group 3-n decreases. However, the number of places where the outside air replenishing means 7-n is arranged increases three times that of the first embodiment, and a large amount of fresh cold air outside the cabinet is introduced, so that the auxiliary wind tunnel 5-1 can be omitted. Although the auxiliary wind tunnel 5-1 is omitted in FIG. 4, if necessary, the auxiliary wind tunnel 5-1 is also provided to introduce forced convection into the outside air replenishing means 7-n to further improve the cooling effect. May be.
[0017]
[Third embodiment] There are various means as the outside air replenishing means 7-n provided in the wind tunnel 4 and / or the wall of the cabinet 6, which is the fourth component illustrated in each embodiment diagram. The example is characterized in that it is a louver group or a through-hole group having a predetermined structure provided in the vicinity of the position where the respective downstream side radiators provided on the wind tunnel wall and / or cabinet wall are provided. These outside air replenishing means 7-n have a simple structure and are easy to form, and allow the outside air to be easily circulated by the negative pressure generated by the flow velocity of forced convection flowing through the inside of the wind tunnel 4. Supply external air to the vessel. Thereby, the temperature rise of the phenomenon in which the temperature rises as the plurality of radiators arranged in series in the wind tunnel 4 reaches the downstream of the convection is alleviated.
[0018]
[Fourth Embodiment] The fourth embodiment is a means for greatly enhancing the outside air replenishment capability of the outside air replenishing means 7-n provided in the wind tunnel 4 and / or on the wall of the cabinet 6 by forced convection. An example is illustrated in FIGS. The auxiliary wind tunnels 5-1 and 5-2 shown in the figure are provided in parallel with the wind tunnel 4 and are forced convection common to the louver group or the through hole group of each predetermined structure which is each outside air replenishing means 7-n. An introduction channel and a pressurizing chamber are formed. One end thereof is closed and sealed near the downstream side of the most downstream radiator, and the other end is opened in the forced convection generated by the fan 8-2 for generating forced convection in the wind tunnel 4. Since it is configured in this manner, the auxiliary wind tunnels 5-1 and 5-2 are pressurized chambers so that fresh forced convection is uniformly fed into the wind tunnel 4 from all louver groups and through-hole groups. Become. This fresh forced convection merges with the main flow of forced convection flowing in the wind tunnel 4 to mitigate the temperature rise of forced convection every time it passes through each radiator. The combined forced convection is gradually increased and increased as it reaches the downstream radiator, so that the heat exchange efficiency increases as it reaches the downstream radiator. This surely prevents the temperature rise of the heat generating component group 3-n on the downstream side despite the slight temperature rise of the convection air.
[0019]
Fifth Example This example is an application example in which the heat dissipation structure according to the present invention is implemented by natural convection. 5 and 6 are schematic cross-sectional views thereof, FIG. 5 is a schematic vertical cross-sectional view thereof, and FIG. 6 is a schematic cross-sectional view thereof. In FIG. 5, the auxiliary wind tunnels 5-1 and 5-2 and the outside air replenishing means (louver) 7-n cannot be shown in the longitudinal sectional view, so the attachment positions are shown rotated 90 degrees. That is, the positions illustrated in FIG. 6 are the normal positions of the auxiliary wind tunnels 5-1, 5-2 and the outside air replenishing means (louver) 7-n attached to the wind tunnel 4. In this embodiment, the outside air inlet 4-1 of the cabinet of the wind tunnel 4 as the first component is provided through the bottom floor 6-1 of the cabinet, and the outlet 4-2 is the top of the cabinet. The convection that is provided through the surface ceiling 6-2 and flows through the wind tunnel 4 having a square cross-sectional shape is a natural body flow. The third component, the convection generating means, is characterized by a chimney effect generated when the wind tunnel 4 is held vertically.
[0020]
The radiator is arranged so that the heat generating component group 3-n in which the group of the heat receiving plates 2-n is mounted on the heat receiving surface is exposed in the cabinet 6. As the heat radiating part 1-n of the radiator, a plurality of the heat radiating parts 1-n are arranged in series in the wind tunnel 4, so that natural convection needs to flow through the wind tunnel 4 effectively. A natural convection fin arrangement with a low pressure loss is applied. The outside air replenishing means (louver) 7-n is provided in the vicinity of the convection suction portion of each heat radiation portion 1-n. The auxiliary wind tunnels 5-1 and 5-2 suck fresh fresh outside air from the suction ports 4-3 and 4-4 by the chimney effect, and uniformly supply them to all the outside air replenishing means (louvers) 7-n. The outside air sucked from the suction port 4-1 flows through the wind tunnel 4 while absorbing the amount of heat of each heat radiating part 1-n due to a strong chimney effect, but each outside air replenishing means (louver) 7- n, fresh outside air is replenished for each heat radiation part 1-n, the convection flow rate is increased, the flow velocity is also increased, the heat exchange efficiency is increased toward the downstream side, and each heat generating component 3-n is relatively upstream and downstream. Cools uniformly.
[0021]
In the present embodiment, since no convective exhaust after heat exchange is dissipated in the cabinet 6, it is a great effect that the cabinet 6 can be completely sealed. In the conventional direct cooling by the natural convection of the heat generating component group 3-n in the closed cabinet 6, the convective exhaust after the heat exchange is dissipated in the closed cabinet 6 and the air temperature in the cabinet 6 is raised, thereby cooling efficiency. As a result, the natural body flow cooling of the heat generating component group 3-n in the sealed cabinet 6 is almost impossible. Cooling of the heat generating component group 3-n in the sealed cabinet 6 of current equipment is performed by heat exchange between the inside and outside air of the cabinet 6 by a heat exchanger provided with forced convection generating means inside and outside the sealed cabinet 6 to cool the air inside the cabinet. Thus, it has been common to apply an extremely inefficient cooling means for indirectly cooling the heat generating component group 3-n.
[0022]
【The invention's effect】
Due to the fact that small and powerful radiators are arranged in series in the small wind tunnel, the mounting area of the heat generating components in the equipment cabinet is reduced, and convection depends on the action of the outside air replenishment means and the auxiliary wind tunnel provided in the wind tunnel. The temperature difference between the heat generating component groups between the upstream and the downstream is greatly reduced, and the three-dimensional mounting of the heat generating component groups becomes easy, and the equipment cabinet is miniaturized. Further, since the dissipation of cooling convection in the cabinet is eliminated, the cabinet can be hermetically sealed, and in particular, natural convection cooling of the heat generating components in the sealed cabinet is also possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a longitudinal sectional view showing a basic structure of a heat dissipation structure of a heat generating component group in an equipment cabinet of the present invention.
FIG. 2 is a schematic cross-sectional view of a wind tunnel portion showing a basic structure of a heat dissipation structure of a heat generating component group in an equipment cabinet of the present invention.
FIG. 3 is a schematic cross-sectional view showing a first embodiment of a heat dissipation structure for a heat generating component group in an equipment cabinet of the present invention.
FIG. 4 is a schematic cross-sectional view showing a second embodiment of the heat dissipation structure of the heat generating component group in the equipment cabinet of the present invention.
FIG. 5 is a schematic cross-sectional view showing a fifth embodiment of the heat dissipation structure for the heat generating component group in the equipment cabinet of the present invention.
FIG. 6 is a schematic cross-sectional view showing a fifth embodiment of the heat dissipation structure of the heat generating component group in the equipment cabinet of the present invention.
FIG. 7 is an explanatory diagram of an example of a conventional structure of a heat dissipation structure of a heat generating component group in an equipment cabinet.
FIG. 8 is an explanatory view of another example of the conventional structure of the heat dissipation structure of the heat generating component group in the equipment cabinet.
[Explanation of symbols]
1-n Heat radiator heat sink 2-n Heat sink heat receiving plate 3-n Heat generating component 4 Wind tunnel 4-1 Outside air inlet 4-2 Outside air outlet 4-3 Auxiliary wind tunnel inlet 4-4 Auxiliary wind tunnel inlet 5-1 Auxiliary wind tunnel 5-2 Auxiliary wind tunnel 6 Cabinet 6-1 Cabinet bottom floor 6-2 Cabinet top ceiling 7-n Outside air replenishing means (louver)
8-1 Forced convection 8-2 Forced convection generation means (fan)
9 Spacer 11-1 Printed circuit board 11-2 Printed circuit board 13-n Heat generation component 14-1 Support plate 14-2 Support plate 15 Forced convection 17-n Heat radiation fin 18 Large heat sink 19 Cooling fan 20 Cabinet 21-1 Wind tunnel 21-2 Wind tunnel

Claims (1)

機器キャビネット内に実装された発熱部品群が発生する熱量を一括的に吸収して機器キャビネット外雰囲気中に移送廃棄する為の放熱構造であって、
キャビネット外気の吸入口はキャビネットの底面床部を貫通して設けられてありその排出口はキャビネットの頂面天井部を貫通して設けられてあり、前記キャビネット外気を前記吸入口から吸入し、前記排出口から排出する対流の流路である方形断面の風洞を第一の構成要素とし、
前記風洞には複数の小型強力な放熱器が直列に配設されてあり、該複数の放熱器のそれぞれ前記風洞の方形断面をほぼ充満せしめる形状と大きさであり、複数の放熱器の各受熱面は風洞壁を介して発熱部品を間接的に実装することができるか又は直接に発熱部品を実装することができ前記発熱部品が前記キャビネット内に露出している状態で、前記風洞内と前記キャビネット内を完全に気密
Figure 0004457238
前記風洞内を貫流する強制対流の発生手段を第三の構成要素とし、
前記風洞に直列に配設された該複数の放熱器の各下流側放熱器の配設位置の上流側直前付近の風洞壁には、前記風洞内に新鮮な冷風を補充するために設けられた所定の構造のルーパー群又は貫通孔群である外気補充手段がそれぞれ設けられてあり、この外気補充手段を第四の構成要素とし、
これら四構成要素の総てを含んで構成されてあるとともに、
さらに、前記風洞に並列して設けられてあり、一端は最下流放熱器の下流側付近で閉鎖封止され、他の一端は前記強制対流の発生手段が発生する強制対流内に開口され、所定の構造のルーパー群又は貫通孔群である前記外気補充手段に共通の強制対流導入流路及び加圧室を形成している補助風洞を構成要素とする
ことを特徴とする機器キャビネット内発熱部品群の放熱構造。
A heat dissipation structure that collectively absorbs the amount of heat generated by the heat generating parts mounted in the equipment cabinet and transfers it to the atmosphere outside the equipment cabinet.
Cabinet outside air inlet port Yes provided through the bottom floor of the cabinet, the outlet Yes provided through the top surface ceiling of the cabinet, sucks the cabinet outside air from the inlet, A square cross-section wind tunnel that is a convection flow path that discharges from the discharge port as a first component,
Wherein the wind tunnel Yes plurality of small strong radiator is arranged in series, each of said plurality of radiator has a shape and size which allowed to substantially fill the rectangular cross section of the wind tunnel, of the plurality of radiators each heat-receiving surface, the heat generating component through the wind tunnel wall indirectly can implement a heat generating component can or directly to be implemented, in a state in which the heat generating component is exposed within said cabinet, said Completely airtight in the wind tunnel and the cabinet
Figure 0004457238
A means for generating forced convection flowing through the wind tunnel is a third component,
The wind tunnel wall in the vicinity of the upstream side immediately before the position where each downstream side radiator of the plurality of radiators arranged in series in the wind tunnel is provided to replenish fresh cold air in the wind tunnel. Outside air replenishing means that is a looper group or a through hole group having a predetermined structure is provided, and this outside air replenishing means is a fourth component,
It is configured to include all these four components,
Further, it is provided in parallel with the wind tunnel, one end is closed and sealed near the downstream side of the most downstream radiator, and the other end is opened into the forced convection generated by the means for generating forced convection, A heat generating component group in the equipment cabinet, characterized in that the auxiliary wind tunnel forming a forced convection introduction flow path and a pressurizing chamber common to the outside air replenishing means which is a looper group or a through hole group having the structure of Heat dissipation structure.
JP25920897A 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet Expired - Fee Related JP4457238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25920897A JP4457238B2 (en) 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25920897A JP4457238B2 (en) 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet

Publications (2)

Publication Number Publication Date
JPH1168362A JPH1168362A (en) 1999-03-09
JP4457238B2 true JP4457238B2 (en) 2010-04-28

Family

ID=17330901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25920897A Expired - Fee Related JP4457238B2 (en) 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet

Country Status (1)

Country Link
JP (1) JP4457238B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049106A1 (en) * 2000-12-11 2002-06-20 Fujitsu Limited Electronic device unit
JP2008187136A (en) * 2007-01-31 2008-08-14 Densei Lambda Kk Heat dissipating structure
JP6678608B2 (en) * 2016-07-26 2020-04-08 三菱電機株式会社 Electronic equipment cooling device
CN110248519B (en) * 2019-04-28 2024-01-16 北京广利核系统工程有限公司 Nuclear safety grade cabinet with natural convection air duct heat dissipation function

Also Published As

Publication number Publication date
JPH1168362A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
US9818671B2 (en) Liquid-cooled heat sink for electronic devices
KR100608958B1 (en) Cooling device and electronic appliance internally mounting the same
JP5409933B2 (en) Panel for electrical equipment
US7804687B2 (en) Liquid-cooled rack with pre-cooler and post-cooler heat exchangers used for EMI shielding
US20080135211A1 (en) Heat-Exchanger Device and Cooling System
TWI722195B (en) Electronic device and heat radiation structure of electronic device
CN109673139B (en) Heat dissipation system and aircraft with same
JP2005167102A (en) Electronic unit and its heat radiation structure
JP6228730B2 (en) Radiator, electronic device and cooling device
JP2004363525A (en) Cooling structure for electronic equipment
JP2008060515A (en) Cooling device for electronic control device
JP3364764B2 (en) Sealed equipment housing cooling device
KR100939992B1 (en) Cooling Apparatus, and Electric-Electronic Equipment with the Cooling Apparatus
JP2017005010A (en) Electronic device
JP2004293833A (en) Cooling device
JP4603783B2 (en) Liquid cooling system and radiator
JP4457238B2 (en) Heat dissipating structure of heat generating parts in equipment cabinet
CN112882983A (en) Heat dissipation device and server with same
JP4679643B2 (en) Radiation unit, radiator and electronic device
JP3947797B2 (en) Three-dimensional mounting type heat dissipation module
JP2003008274A (en) Electronic apparatus system
JP2004269244A (en) Control device of elevator
CN219536639U (en) Heat radiation structure, heat radiation air duct and power electronic equipment of power electronic equipment
KR102232902B1 (en) Electronic equipment device having cooling module and electronic equipment device assembly
CN214409983U (en) Heat dissipation device and server with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071204

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees