JP4456832B2 - Method for producing crystallized aggregate from coal ash - Google Patents
Method for producing crystallized aggregate from coal ash Download PDFInfo
- Publication number
- JP4456832B2 JP4456832B2 JP2003208261A JP2003208261A JP4456832B2 JP 4456832 B2 JP4456832 B2 JP 4456832B2 JP 2003208261 A JP2003208261 A JP 2003208261A JP 2003208261 A JP2003208261 A JP 2003208261A JP 4456832 B2 JP4456832 B2 JP 4456832B2
- Authority
- JP
- Japan
- Prior art keywords
- aggregate
- coal ash
- crystallized
- cao
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010883 coal ash Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000203 mixture Substances 0.000 claims description 20
- 239000002893 slag Substances 0.000 claims description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 12
- 239000002956 ash Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 6
- 239000010801 sewage sludge Substances 0.000 claims description 6
- 238000004056 waste incineration Methods 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 36
- 238000012360 testing method Methods 0.000 description 20
- 239000000292 calcium oxide Substances 0.000 description 18
- 235000012255 calcium oxide Nutrition 0.000 description 18
- 239000002994 raw material Substances 0.000 description 14
- 238000010304 firing Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000004567 concrete Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000004568 cement Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- 229910052661 anorthite Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000010805 inorganic waste Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、新規な結晶化骨材の製造方法に関する。更に詳しくは、火力発電所や石炭焚きボイラーなどから排出される石炭灰(フライアッシュを含む)を主たる原料として容易かつ多量に使用することが出来る結晶化骨材の製造方法を提供するものである。
【0002】
【従来の技術】
地球環境問題の観点から、廃棄物、副産物の有効利用が重要な課題となってきている。火力発電所や石炭焚きボイラーなどから発生する石炭灰の排出量も年々増加する傾向にあり、安全かつ多量に処理できる方法の開発が危急の課題となっている。現状の技術として最も効果的な処理方法はセメント製造原料への適用であり、すでに多くの石炭灰が利用されている。
【0003】
しかしながら、石炭灰はセメントクリンカーに比べてAl2O3の含有量が多いため、その使用量には限界があり、通常のセメントクリンカー原料としての使用量の上限は、原料全体の5〜10%程度にとどまっている。そのため、より多くの石炭灰を有効利用できる技術の開発が望まれている。
【0004】
モルタル、コンクリート等の材料として多量に使用可能な人工骨材の原料としての適用は、新たな有効利用技術として有望である。
【0005】
上記要求に鑑み、石炭灰、ガラス粉末およびセメントを原料として焼成することにより、ウォラストナイトと灰長石を主たる成分とする人工骨材を得る方法が提案されている(特許文献1参照)。
【0006】
また、石炭灰、ガラス粉末を原料として焼成し、焼成過程で生成するアノーサイトで両者を結合した人工骨材も提案されている(特許文献2)。
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の人工骨材は、ウォラストナイトと灰長石の生成により骨材強度を高めているが、原料として使用したガラス粉末がガラス相として残存している。そのため、天然骨材に比べて密度が低く、また、吸水率も比較的高く、モルタル、コンクリート等をポンプ施工する際の施工性の低下や、橋脚、機械基礎コンクリート等の重量が要求される構造物への使用が制限されるといった問題があった。また、ガラス相が残存するため、アルカリ骨材反応が生じるおそれがあり、構造物の耐久性の低下が懸念される。
【0008】
一方、特許文献2に記載の人工骨材は、これを製造する際の焼成時間が短いため、結晶化が十分でなく天然骨材に比べて密度が低く、また、吸水率も高いものとなっている。そのため、前記人工骨材と同様、施工性、構造物への適用性の問題がある。また、生成相としてガラス相を含んでいるため、前記人工骨材と同様に、残存するガラス相によるアルカリ骨材反応の問題が懸念される。
【特許文献1】
特許第3055899号公報
【特許文献2】
特開平2002−255613号公報
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意研究を行ってきた。その結果、石炭灰を主たる原料とし、CaOを含有する無機質物質を混合することにより結晶化骨材のCaO含有量が10〜35重量%、アルカリ含有量(Na2O+K2O)が2.0重量%以下となるよう調整し、調整後の組成物を1000〜1400℃で焼成し、冷却することによりCaO・Al2O3・2SiO2(以下CAS2と略記する)を主成分とする高密度でしかも低吸水率の結晶化骨材を製造する方法を見出した。
【0010】
さらに、CaOを含有する無機質物質として、高炉徐冷スラグ、高炉水砕スラグ、都市ゴミ焼却灰、下水汚泥焼却灰より選ばれた少なくとも1種の無機廃棄物を使用することにより、前記石炭灰と合わせて、より多くの廃棄物、副産物を有効利用できることを見出した。
【0011】
即ち、本発明は、石炭灰と、高炉徐冷スラグ、高炉水砕スラグ、都市ゴミ焼却灰、下水汚泥焼却灰より選ばれた少なくとも1種である、CaOを含有する無機質物質とを混合して、CaO含有量を10〜35重量%、アルカリ含有量(Na 2 O+K 2 O)を2.0重量%以下に調整した組成物を、1000〜1400℃で焼成することを特徴とする、CaO・Al 2 O 3 ・2SiO 2 を主成分とする結晶化骨材の製造方法である。
【0012】
本発明により得られる結晶化骨材は、その高い密度と低い吸水率により、モルタル、コンクリート、建材等の構成材料として広く適用可能であり、石炭灰の安全かつ多量処理を可能とするものである。
【0013】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
【0014】
本発明において、石炭灰は、火力発電所や石炭焚きボイラーなどから排出されるものであれば特に制限なく使用できる。石炭灰の化学成分は特に制限されるものではないが、Al2O3含有量が10重量%以上、特に14〜36重量%のものが好適に用いられる。
【0015】
本発明において、CaOを含有する無機質物質は特に制限無く使用できる。具体的には、石灰石、消石灰、生石灰、高炉徐冷スラグ、高炉水砕スラグ、塩素バイパスダスト、都市ゴミ焼却灰、コンクリート廃材、下水汚泥、下水汚泥焼却灰等が挙げられる。これらのうち、高炉徐冷スラグ、高炉水砕スラグ、都市ゴミ焼却灰、下水汚泥焼却灰より選ばれる少なくとも1種が、廃棄物、副産物の有効利用の観点から、好適に使用できる。
【0016】
本発明において、焼成原料は、石炭灰とCaOを含有する無機質物質とを混合して得られる。焼成原料のCaO含有量は、10〜35重量%、より好適には15〜30重量%に調整されることが必要である。即ち、この範囲外では、CAS2の生成が困難となり、CAS2を主成分とする高密度の結晶化骨材を得ることができない。
【0017】
また、アルカリ含有量(Na2O+K2O)は、得られる結晶化骨材中におけるガラス相の生成を抑制し、該結晶化骨材の密度を高め、また、吸水率を抑えるため、2.0重量%以下、特に、1.5重量%以下に調整される必要がある。
【0018】
尚、焼成原料の混合時に、本発明の効果を阻害しない範囲で、CaOを含有しない無機質物質を混合しても構わない。
【0019】
本発明において、前記石炭灰とCaOを含有する無機物質との混合物よりなる組成物を焼成し、結晶化骨材を生成せしめる方法は、該組成物を1000〜1400℃、より好ましくは1000〜1300℃で焼成し、自然冷却あるいは徐冷する方法が採用される。即ち、上記焼成温度が1000℃より低い場合は、CAS2の生成が不十分となり、また、1400℃より高い場合は、原料が溶融、ガラス化するため、結晶化が困難となり、高密度な結晶化骨材を得ることが出来ず、本発明の目的を達成することができない。
【0020】
また、上記焼成時間は特に制限されるものではないが、1時間以上とすることが望ましい。1時間未満では、結晶化が十分行われない場合がある。
【0021】
更に、前記焼成を行なうための焼成装置は特に制限されないが、電気炉、回転式キルンタイプの結晶化炉等が好適に用いられる。
【0022】
本発明の方法によって得られる結晶化骨材は、CAS2を主成分とするものであり、該CAS2の含有量は、原料となる前記組成物中のCaOの量、焼成条件等により、50重量%以上、特に、70重量%以上となるように調整されている。
【0023】
本発明において、上記CAS2を主成分とする結晶化骨材には、前記組成物の構成に使用する原料に応じて、CaO、Al2O3及びSiO2等の酸化物、CaO、Al2O3及びSiO2の2種以上からなる化合物、あるいはこれら以外の化合物が含有される場合があるが、本発明の効果を阻害しない範囲であれば特に問題とならない。これら化合物は、具体的には、2CaO・Al2O3・SiO2、CaO・SiO2、3CaO・SiO2、2CaO・SiO2、CaO・Al2O3、3CaO・Al2O3、3Al2O3・2SiO2、2CaO・Fe2O3、3CaO・Fe2O3、Na2O・Al2O3・6SiO2、K2O・Al2O3・6SiO2等が挙げられる。また、CaO、Al2O3、SiO2、MgO、Fe2O3、Na2O、K2O等を成分とするガラス相を前記アルカリ含有量の範囲内で含有しても構わない。
【0024】
本発明の結晶化骨材の用途は特に制限されない。モルタル用の細骨材、コンクリート用の細骨材ならびに粗骨材、インターロッキングブロック用の骨材、テラゾータイル用の骨材等が代表的な用途である。
【0025】
【実施例】
以下、実施例により本発明の構成および効果を説明するが、本発明はこれらの実施例に限定されるものではない。
【0026】
尚、実施例、比較例における各種試験は、下記の方法に準じて行なった。
【0027】
(1)骨材試験
結晶化細骨材について、密度及び吸水率をJIS A 1109「細骨材の密度及び吸水率試験方法」により、また、粗粒率はJIS A 1102「骨材のふるい分け試験方法」により試験を行った。
【0028】
(2)結晶化細骨材を使用したモルタルの圧縮強さ試験
JIS R 5201「セメントの物理試験方法」に定められた圧縮強さ試験用標準砂の70重量%を結晶化骨材で置換し、上記試験方法に従い圧縮強さを測定した。セメントは、普通ポルトランドセメントを使用した。
【0029】
参考例1
石炭灰と石灰石とを表1の配合割合で混合した表1に示す組成の組成物を、電気炉により1200℃で2時間焼成し、その後自然冷却し結晶物を得た。得られた結晶物をクラッシャーにより破砕し、結晶化細骨材を得た。
【0030】
得られた結晶化骨材中のCAS2の含量を表1に併せて示す。
【0031】
また、骨材試験の結果を表3に、圧縮強さ試験の結果を表4にそれぞれ示す。
【0032】
実施例1
石炭灰と徐冷スラグとを表1の配合割合で混合した表1に示す組成の組成物を、参考例1と同様の条件で焼成し、結晶化細骨材を得た。
【0033】
得られた結晶化骨材中のCAS2の含量を表1に併せて示す。
【0034】
また、骨材試験の結果を表3に、圧縮強さ試験の結果を表4にそれぞれ示す。
【0035】
参考例2
参考例として、コンクリート用細骨材として一般的に使用されている玄海産海砂について、骨材試験を行った結果を表2に、また、圧縮強さ試験を行なった結果を表3にそれぞれ示す。
【0036】
比較例1
石炭灰と石灰石とを表1に示す配合割合で混合した表1に示す組成の組成物を、電気炉により1300℃で2時間焼成した以外は、参考例1と同様に結晶化細骨材を得た。
【0037】
得られた結晶化骨材中のCAS2の含量を表1に併せて示す。
【0038】
また、骨材試験の結果を表3に、圧縮強さ試験の結果を表4にそれぞれ示す。
【0039】
比較例2
参考例1において、焼成温度を900℃とした以外は、同様にして結晶化骨材を製造した。
【0040】
得られた結晶化骨材中のCAS2の含量を表1に併せて示す。
【0041】
また、骨材試験の結果を表3に、圧縮強さ試験の結果を表4にそれぞれ示す。
【0042】
実施例2、比較例3
実施例1において、石炭灰と徐冷スラグとを表1に示す配合割合で混合した表1に示す組成の組成物を使用した以外は、実施例1と同様にして結晶化細骨材を得た。
【0043】
得られた結晶化骨材中のCAS2の含量を表1に併せて示す。
【0044】
また、骨材試験の結果を表3に、圧縮強さ試験の結果を表4にそれぞれ示す。
【0045】
比較例4
石炭灰と徐冷スラグとガラス粉末とを表2に示す配合割合で混合した表2に示す組成の組成物を、電気炉により1100℃で2時間焼成した以外は、参考例1と同様に結晶化細骨材を得た。
【0046】
得られた結晶化骨材中のCAS2の含量を表1に併せて示す。
【0047】
また、骨材試験の結果を表3に、圧縮強さ試験の結果を表4にそれぞれ示す。
【0048】
【表1】
【表2】
【表3】
【表4】
【発明の効果】
以上の説明より理解されるように、本発明は、石炭灰の安全かつ多量処理を可能とする新規な結晶化骨材の製造方法及び結晶化骨材を提供するものである。石炭灰のみならず、多量の廃棄物、副産物の処理を可能とする本発明は、工業的見地のみならず、地球環境問題の観点からも極めて価値の高いものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a novel crystallized aggregate. More specifically, the present invention provides a method for producing a crystallized aggregate that can be used easily and in large quantities as coal ash (including fly ash) discharged from a thermal power plant or a coal-fired boiler. .
[0002]
[Prior art]
From the viewpoint of global environmental problems, effective use of waste and by-products has become an important issue. The amount of coal ash emitted from thermal power plants and coal-fired boilers is also increasing year by year, and the development of safe and large-scale treatment methods is an urgent issue. The most effective treatment method as the current technology is the application to raw materials for cement production, and many coal ash has already been used.
[0003]
However, since coal ash has a higher content of Al 2 O 3 than cement clinker, its use amount is limited, and the upper limit of the use amount as a normal cement clinker raw material is 5 to 10% of the entire raw material. It remains to the extent. Therefore, the development of technology that can effectively use more coal ash is desired.
[0004]
Application as a raw material for artificial aggregates that can be used in large quantities as materials such as mortar and concrete is promising as a new effective utilization technology.
[0005]
In view of the above requirements, there has been proposed a method of obtaining an artificial aggregate mainly composed of wollastonite and anorthite by firing from coal ash, glass powder and cement as raw materials (see Patent Document 1).
[0006]
In addition, an artificial aggregate in which coal ash and glass powder are fired as raw materials and both are combined with anorthite generated in the firing process has also been proposed (Patent Document 2).
[0007]
[Problems to be solved by the invention]
However, although the artificial aggregate described in Patent Document 1 increases the strength of the aggregate by generating wollastonite and anorthite, the glass powder used as a raw material remains as a glass phase. Therefore, the density is lower than that of natural aggregate, the water absorption rate is relatively high, and the workability when pumping mortar, concrete, etc. is reduced, and the weight of piers, machine foundation concrete, etc. is required. There was a problem that the use to things was restricted. Moreover, since a glass phase remains, there exists a possibility that alkali-aggregate reaction may arise and we are anxious about the fall of durability of a structure.
[0008]
On the other hand, since the artificial aggregate described in Patent Document 2 has a short firing time when it is produced, crystallization is not sufficient, and the density is low compared to natural aggregate, and the water absorption rate is also high. ing. Therefore, like the artificial aggregate, there are problems of workability and applicability to structures. Moreover, since the glass phase is included as a production | generation phase, like the said artificial aggregate, there is a concern about the problem of the alkali aggregate reaction by the remaining glass phase.
[Patent Document 1]
Japanese Patent No. 3055899 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-255613 [Means for Solving the Problems]
The present inventors have conducted intensive research to solve the above problems. As a result, by using coal ash as a main raw material and mixing an inorganic substance containing CaO, the crystallized aggregate has a CaO content of 10 to 35% by weight and an alkali content (Na 2 O + K 2 O) of 2.0. adjusted to a weight% or less, the composition after the adjustment and fired at 1000 to 1400 ° C., as a main component CaO · Al 2 O 3 · 2SiO 2 ( hereinafter abbreviated as CAS 2) by cooling high The present inventors have found a method for producing a crystallized aggregate having a density and low water absorption.
[0010]
Furthermore, by using at least one kind of inorganic waste selected from blast furnace slow cooling slag, blast furnace granulated slag, municipal waste incineration ash, and sewage sludge incineration ash as an inorganic substance containing CaO, In addition, we found that more waste and by-products can be used effectively.
[0011]
That is, the present invention mixes coal ash with an inorganic substance containing CaO, which is at least one selected from blast furnace slow-cooled slag, blast furnace granulated slag, municipal waste incineration ash, and sewage sludge incineration ash. The composition prepared by adjusting the CaO content to 10 to 35% by weight and the alkali content (Na 2 O + K 2 O) to 2.0% by weight or less is calcined at 1000 to 1400 ° C. This is a method for producing a crystallized aggregate mainly composed of Al 2 O 3 .2SiO 2 .
[0012]
The crystallized aggregate obtained by the present invention is widely applicable as a constituent material for mortar, concrete, building materials, etc. due to its high density and low water absorption, and enables safe and large-scale treatment of coal ash. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0014]
In the present invention, coal ash can be used without particular limitation as long as it is discharged from a thermal power plant or a coal-fired boiler. The chemical components of coal ash are not particularly limited, but those having an Al 2 O 3 content of 10% by weight or more, particularly 14 to 36% by weight, are preferably used.
[0015]
In the present invention, the inorganic substance containing CaO can be used without any particular limitation. Specific examples include limestone, slaked lime, quicklime, blast furnace slow-cooled slag, blast furnace granulated slag, chlorine bypass dust, municipal waste incineration ash, concrete waste, sewage sludge, sewage sludge incineration ash, and the like. Among these, at least one selected from blast furnace slow-cooled slag, blast furnace granulated slag, municipal waste incineration ash, and sewage sludge incineration ash can be suitably used from the viewpoint of effective utilization of waste and by-products.
[0016]
In the present invention, the firing raw material is obtained by mixing coal ash and an inorganic substance containing CaO. The CaO content of the firing raw material needs to be adjusted to 10 to 35% by weight, more preferably 15 to 30% by weight. That is, in this range, generation of CAS 2 becomes difficult, it is impossible to obtain a dense crystallized aggregate composed mainly of CAS 2.
[0017]
In addition, since the alkali content (Na 2 O + K 2 O) suppresses generation of a glass phase in the obtained crystallized aggregate, increases the density of the crystallized aggregate, and suppresses the water absorption rate. It is necessary to adjust to 0% by weight or less, particularly 1.5% by weight or less.
[0018]
In addition, you may mix the inorganic substance which does not contain CaO in the range which does not inhibit the effect of this invention at the time of mixing of a baking raw material.
[0019]
In the present invention, a method of firing a composition comprising a mixture of the coal ash and an inorganic substance containing CaO to produce a crystallized aggregate is preferably performed at 1000 to 1400 ° C., more preferably 1000 to 1300. A method of firing at 0 ° C. and natural cooling or slow cooling is employed. That is, when the firing temperature is lower than 1000 ° C., the production of CAS 2 is insufficient, and when it is higher than 1400 ° C., the raw material melts and vitrifies, so that crystallization becomes difficult and high-density crystal The aggregate cannot be obtained and the object of the present invention cannot be achieved.
[0020]
The firing time is not particularly limited, but is preferably 1 hour or longer. If it is less than 1 hour, crystallization may not be performed sufficiently.
[0021]
Furthermore, the baking apparatus for performing the baking is not particularly limited, but an electric furnace, a rotary kiln type crystallization furnace, or the like is preferably used.
[0022]
The crystallized aggregate obtained by the method of the present invention contains CAS 2 as a main component, and the content of CAS 2 is 50 depending on the amount of CaO in the composition as a raw material, firing conditions, and the like. It is adjusted to be at least wt%, particularly at least 70 wt%.
[0023]
In the present invention, the crystallization aggregate as a main component the above CAS 2, depending on the raw materials used in the construction of the composition, CaO, Al 2 O 3 and oxides such as SiO 2, CaO, Al 2 A compound composed of two or more of O 3 and SiO 2 or a compound other than these may be contained, but there is no particular problem as long as the effect of the present invention is not impaired. These compounds are specifically, 2CaO · Al 2 O 3 · SiO 2, CaO · SiO 2, 3CaO · SiO 2, 2CaO · SiO 2, CaO · Al 2 O 3, 3CaO · Al 2 O 3, 3Al 2 O 3 · 2SiO 2, 2CaO · Fe 2 O 3, 3CaO · Fe 2 O 3, Na 2 O · Al 2 O 3 · 6SiO 2, K 2 O · Al 2 O 3 · 6SiO 2 and the like. Further, it may also contain CaO, Al 2 O 3, SiO 2, MgO, Fe 2 O 3, Na 2 O, the glass phase to component K 2 O or the like within the scope of the alkali content.
[0024]
The use of the crystallized aggregate of the present invention is not particularly limited. Typical applications include fine aggregates for mortar, fine aggregates for concrete and coarse aggregates, aggregates for interlocking blocks, aggregates for terrazzo tiles, and the like.
[0025]
【Example】
Hereinafter, although an example explains composition and an effect of the present invention, the present invention is not limited to these examples.
[0026]
Various tests in Examples and Comparative Examples were performed according to the following methods.
[0027]
(1) Aggregate test For crystallized fine aggregate, the density and water absorption rate were measured according to JIS A 1109 “Test method for fine aggregate density and water absorption rate”, and the coarse particle ratio was measured according to JIS A 1102 “Aggregate screening test. The test was conducted according to “Method”.
[0028]
(2) Compressive strength test of mortar using crystallized fine aggregate 70% by weight of standard sand for compressive strength test defined in JIS R 5201 “Cement physical test method” was replaced with crystallized aggregate. The compressive strength was measured according to the above test method. As the cement, ordinary Portland cement was used.
[0029]
Reference example 1
A composition having a composition shown in Table 1 in which coal ash and limestone were mixed at a blending ratio shown in Table 1 was fired at 1200 ° C. for 2 hours in an electric furnace, and then naturally cooled to obtain a crystal. The obtained crystal was crushed with a crusher to obtain a crystallized fine aggregate.
[0030]
The content of CAS 2 in the obtained crystallized aggregate is also shown in Table 1.
[0031]
Table 3 shows the results of the aggregate test, and Table 4 shows the results of the compressive strength test.
[0032]
Example 1
A composition having the composition shown in Table 1 in which coal ash and slowly cooled slag were mixed at the blending ratio shown in Table 1 was fired under the same conditions as in Reference Example 1 to obtain crystallized fine aggregate.
[0033]
The content of CAS 2 in the obtained crystallized aggregate is also shown in Table 1.
[0034]
Table 3 shows the results of the aggregate test, and Table 4 shows the results of the compressive strength test.
[0035]
Reference example 2
As a reference example, Table 2 shows the results of the aggregate test and Table 3 shows the results of the compressive strength test for the Genkai sea sand generally used as fine aggregate for concrete. Show.
[0036]
Comparative Example 1
A crystallized fine aggregate was prepared in the same manner as in Reference Example 1 except that the composition having the composition shown in Table 1 in which coal ash and limestone were mixed at the blending ratio shown in Table 1 was fired at 1300 ° C. for 2 hours in an electric furnace. Obtained.
[0037]
The content of CAS 2 in the obtained crystallized aggregate is also shown in Table 1.
[0038]
Table 3 shows the results of the aggregate test, and Table 4 shows the results of the compressive strength test.
[0039]
Comparative Example 2
In Reference Example 1, a crystallized aggregate was produced in the same manner except that the firing temperature was 900 ° C.
[0040]
The content of CAS 2 in the obtained crystallized aggregate is also shown in Table 1.
[0041]
Table 3 shows the results of the aggregate test, and Table 4 shows the results of the compressive strength test.
[0042]
Example 2 and Comparative Example 3
In Example 1 , a crystallized fine aggregate was obtained in the same manner as in Example 1 except that the composition having the composition shown in Table 1 in which coal ash and slowly cooled slag were mixed at the blending ratio shown in Table 1 was used. It was.
[0043]
The content of CAS 2 in the obtained crystallized aggregate is also shown in Table 1.
[0044]
Table 3 shows the results of the aggregate test, and Table 4 shows the results of the compressive strength test.
[0045]
Comparative Example 4
The composition of the composition shown in Table 2 in which coal ash, slow-cooled slag and glass powder are mixed at the blending ratio shown in Table 2 is the same as in Reference Example 1 except that the composition is baked at 1100 ° C. for 2 hours in an electric furnace. A fine aggregate was obtained.
[0046]
The content of CAS 2 in the obtained crystallized aggregate is also shown in Table 1.
[0047]
Table 3 shows the results of the aggregate test, and Table 4 shows the results of the compressive strength test.
[0048]
[Table 1]
[Table 2]
[Table 3]
[Table 4]
【The invention's effect】
As will be understood from the above description, the present invention provides a novel method for producing a crystallized aggregate and a crystallized aggregate that enable safe and large-scale treatment of coal ash. The present invention capable of processing not only coal ash but also a large amount of waste and by-products is extremely valuable not only from an industrial standpoint but also from the viewpoint of global environmental problems.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208261A JP4456832B2 (en) | 2003-08-21 | 2003-08-21 | Method for producing crystallized aggregate from coal ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208261A JP4456832B2 (en) | 2003-08-21 | 2003-08-21 | Method for producing crystallized aggregate from coal ash |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005067906A JP2005067906A (en) | 2005-03-17 |
JP4456832B2 true JP4456832B2 (en) | 2010-04-28 |
Family
ID=34401617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003208261A Expired - Lifetime JP4456832B2 (en) | 2003-08-21 | 2003-08-21 | Method for producing crystallized aggregate from coal ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4456832B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4728829B2 (en) * | 2006-02-09 | 2011-07-20 | 宇部興産株式会社 | Hydraulic composition and method for producing the same |
KR100997136B1 (en) | 2010-04-26 | 2010-11-29 | 삼표이앤씨 주식회사 | Lightweight aggregate composite using industrial waste & lightweight aggregate manufacturing method |
JP5701141B2 (en) * | 2011-04-28 | 2015-04-15 | 株式会社トクヤマ | Method for producing fired product containing CaO · Al 2 O 3 · 2SiO 2 |
JP5751923B2 (en) * | 2011-05-11 | 2015-07-22 | 株式会社トクヤマ | Effective use of shells |
JP2012236731A (en) * | 2011-05-11 | 2012-12-06 | Tokuyama Corp | Method for manufacturing fired material containing anorthite |
JP2013023422A (en) * | 2011-07-25 | 2013-02-04 | Tokuyama Corp | Method of manufacturing burned product |
JP6306919B2 (en) * | 2013-10-31 | 2018-04-04 | 太平洋セメント株式会社 | Cement additive and cement composition |
JP2015145319A (en) * | 2014-02-03 | 2015-08-13 | 株式会社トクヤマ | fired product containing anorthite |
-
2003
- 2003-08-21 JP JP2003208261A patent/JP4456832B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005067906A (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5665638B2 (en) | Method for producing cement clinker | |
JP5818579B2 (en) | Neutralization suppression type early strong cement composition | |
JP5800387B2 (en) | Soil improvement material | |
JP2018087111A (en) | Cement composition | |
JP2004292285A (en) | Concrete | |
JP2009190904A (en) | Solidifying material | |
JP4456832B2 (en) | Method for producing crystallized aggregate from coal ash | |
JP2006143990A (en) | Solidifying material | |
JP2013023422A (en) | Method of manufacturing burned product | |
JP4494743B2 (en) | Method for producing cement composition | |
Seco et al. | Assessment of the ability of MGO based binary binders for the substitution of Portland cement for mortars manufacturing | |
JP6980552B2 (en) | Cement composition | |
JP7181355B1 (en) | Cement admixture, method for producing cement admixture, and cement composition | |
WO2003080532A1 (en) | Cement admixture | |
WO2022039035A1 (en) | Cement admixture, and cement composition | |
JP2009035451A (en) | Cement additive and cement composition | |
JP2010168256A (en) | Cement additive and cement composition | |
JP2008290926A (en) | Fired product, cement additive, and cement composition | |
JP2008222475A (en) | Fired product, cement additive and cement composition | |
JP2010195601A (en) | Cement composition | |
JP6867801B2 (en) | Cement composition | |
JP7450826B2 (en) | Hydraulic composition and its manufacturing method | |
JP2011084413A (en) | Cement additive and cement composition | |
JP2011079710A (en) | Cement additive and cement composition | |
JP2011230949A (en) | Cement additive and cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4456832 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160212 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |