JP4455810B2 - Method for producing separator for polymer electrolyte fuel cell - Google Patents

Method for producing separator for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4455810B2
JP4455810B2 JP2002288521A JP2002288521A JP4455810B2 JP 4455810 B2 JP4455810 B2 JP 4455810B2 JP 2002288521 A JP2002288521 A JP 2002288521A JP 2002288521 A JP2002288521 A JP 2002288521A JP 4455810 B2 JP4455810 B2 JP 4455810B2
Authority
JP
Japan
Prior art keywords
separator
water absorption
resin
phenol resin
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002288521A
Other languages
Japanese (ja)
Other versions
JP2004127646A (en
Inventor
俊雄 中澤
武志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2002288521A priority Critical patent/JP4455810B2/en
Publication of JP2004127646A publication Critical patent/JP2004127646A/en
Application granted granted Critical
Publication of JP4455810B2 publication Critical patent/JP4455810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車をはじめ小型分散型電源などに使用される固体高分子型燃料電池用セパレータの製造方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、リン酸型燃料電池などの燃料電池に比較して低温でかつ高出力の発電が可能であるので、自動車の電源をはじめ、小型の移動型電源や定置型電源として期待されている。固体高分子型燃料電池は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給するガス供給用の凹凸を設けたセパレータなどからなる単セルを積層したスタック、およびその外側に設けた2つの集電体から構成されている。
【0003】
単セルの構造は、図1に示すように、例えばフッ素系樹脂により形成されたイオン交換膜からなる電解質膜5を挟んで配置される一対の電極3、4(アノード4、カソード3)と、これをさらに両側から挟む緻密質のカーボン材からなるセパレータ1、セパレータの端部にはガス溝と平行方向に設置されたシール材6とから構成されている。電極3、4は白金などの触媒を担持させた炭素短繊維からなる多孔質体あるいは触媒担持したカーボンブラックを樹脂で結着したものなどから形成される。
【0004】
セパレータ1には複数の凹凸形状の溝2が形成され、溝2とカソード3との間に形成される空間を酸化剤ガス(空気などの酸素含有ガス)流路とし、溝2とアノード4との間に形成される空間を燃料ガス(例えば水素ガスや水素ガスを主成分とする混合ガスなど)流路として、燃料ガスと酸化剤ガスとが電極に接触して起こる化学反応を利用して、電極間から電流を取り出すようになっている。そして、通常、この単セルを数十層〜数百層に積層して電池スタックが組み立てられている。
【0005】
このセパレータには、燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給するために高度のガス不透過性が要求され、また、発電効率を高くするために電池の内部抵抗を小さくすること、すなわち低抵抗であることが必要である。更に、材質強度が充分でないとセパレータの破損や欠損が生じ、電池性能が低下するばかりではなく、ガスリークによる爆発の危険性もある。特に、電池の作動温度である100℃程度の高温においても充分な材質強度を備えるとともに耐食性にも優れていることなどが必要とされている。
【0006】
また、燃料電池性能の向上を図るためには、スタック中の各単セル間が密着するように組立て、かつ発電中も良好な接触状態が維持されてセパレータと電極との接触電気抵抗を最小にするとともに、単セル間のガスリークや単セル外へのガスリークを防止することが重要となる。すなわち、セパレータには反りがなく、平面性が高いことが要求される。
【0007】
このような材質性状が要求されるセパレータ材には、従来から炭素質系の材料が用いられており、黒鉛などの炭素粉末と熱硬化性樹脂を結合材として成形した炭素/樹脂硬化成形体が好適に使用されている。
【0008】
例えば、本出願人は平均粒子径50μm 以下、最大粒子径100μm 以下の粒度分布を有する黒鉛粉末60〜85重量%と熱硬化性樹脂15〜40重量%とからなる板状成形体であって、その面方向の固有抵抗が300×10-4Ωcm以下、厚さ方向/面方向の固有抵抗の比が7以下、曲げ強度が300 kgf/cm2 以上の材質性状を備える黒鉛−樹脂硬化成形体から形成された固体高分子型燃料電池用セパレータ部材(特許文献1)を開発、提案した。
【0009】
【特許文献1】
特開2000−21421号公報
【0010】
【発明が解決しようとする課題】
結合材となる樹脂成分には、電池稼働時の使用環境下、例えば100℃程度の高温下で十分な強度および耐食性を有していることが必要であり、通常、価格的に安価なフェノール樹脂が使用されることが多い。
【0011】
しかしながら、フェノール樹脂は吸水性で、飽和吸水率が5%程度あり、吸水すると体積膨張を起こすため、炭素/樹脂硬化成形体中の樹脂成分が膨張を起こしてセパレータ自体に伸びが発生する。また、セパレータは電池稼働時には、常時80℃以上の温度において電池反応に伴って生成する水および冷却水に曝されており、吸水し易い環境下にある。
【0012】
更に、セパレータは、集電/冷却面とその外周のシール面で構成されており、集電/冷却面の方が外周シール部よりも吸水速度が速いため、吸水による伸びにバラツキが生じ、不均一な伸びの発生によりセパレータに亀裂、割損が発生する危険がある。
【0013】
また、亀裂、割損が生じないまでも、吸水速度差に基づく膨張の不均一化によって、セパレータに反りが発生する難点がある。セパレータに反りが発生すると単セルを積層して電池スタックを組み立てる際に、各単セルを密着させることが難しく、接触電気抵抗が増大して電池性能の低下をもたらす問題がある。また、単セル間にガスリークが発生する危険もあり、セル外周部に設置したシール材が充分に機能しなくなり、セル外へのガスリークが生じ、長期間安定して発電操業ができなくなる問題がある。更に、単セルを積層して電池スタックを組み立てる際に、セパレータに偏加重が掛かり易くセパレータが割損する問題もある。
【0014】
また、炭素/樹脂硬化成形体からなるセパレータが吸水すると、樹脂部の膨張によりセパレータ全体の固有抵抗が大きくなり、結果的に電池の内部抵抗が増大するため電池出力の低下を招き、長期発電において電池性能が低下する問題もある。
【0015】
このように、フェノール樹脂の吸水性が電池組立および電池性能に大きな影響を与えることから、本発明者らは、結合材としてフェノール樹脂を用いた炭素/樹脂硬化成形体からなる固体高分子型燃料電池用のセパレータとして好適なフェノール樹脂の性状として吸水性について鋭意検討した結果、フェノール樹脂を変性して、硬化物の飽和吸水率を低減化することにより、上記の問題を改善、抑制できることを確認した。
【0016】
すなわち、本発明の目的は、反りの発生が少なく、電池スタック組立て時のセル間の密着性を維持して接触電気抵抗および内部抵抗の増大化を抑止して、電池性能の低下を防止し、更に、セル間およびセル外へのガスリークを抑止して長期間安定して発電操業が可能な固体高分子型燃料電池用セパレータの製造方法を提供することにある。
【0017】
【課題を解決するための手段】
上記の目的を達成するための本発明による固体高分子型燃料電池用セパレータの製造方法は、硬化物の飽和吸水率が3%以下のオイル変性またはアルキルベンゼン変性したフェノール樹脂溶液と平均粒子径が50μm以下の黒鉛粉末を、樹脂固形分10〜25重量%、黒鉛粉末90〜75重量%の重量比に混合して混練し、混練物を乾燥した後粉砕し、粉砕粒を成形型に充填して熱圧成形することを構成上の特徴とする。
【0019】
【発明の実施の形態】
本発明の固体高分子型燃料電池用セパレータは、黒鉛粉末がフェノール樹脂を結合材として一体化した黒鉛/フェノール樹脂硬化成形体からなる板状成形体で形成されており、黒鉛粉末には人造黒鉛、天然黒鉛、膨張黒鉛あるいはこれらの混合物が用いられ、適宜な粉砕機により粉砕し、篩い分けして所定の粒度に調整して使用に供される。
【0020】
セパレータは、通常、厚さ1〜3mm程度のその表裏両面に燃料ガスあるいは酸化剤ガスの流路となる深さ約0.5〜1mmのガス溝が形成された板状体である。ガス溝を形成する方法としては、ガス溝をセパレータの成形時に付設し、さらに仕上げ加工するか、平板状に成形後に機械加工によって設ける方法がある。このようなガス溝がある構造のため、黒鉛粉末の粒径が大きいと、前記のガス溝の形成時に黒鉛粒子の脱落ないしは粒子間クラックが発生する関係でガス不透過性が低下し、電池性能が損なわれることになる。そのため、黒鉛粉末の粒度として、好ましくは平均粒子径が50μm 以下、最大粒子径が100μm 以下の粒度特性に調整した黒鉛粉末が用いられる。
【0021】
黒鉛粉末の結合材となるフェノール樹脂には、硬化物の飽和吸水率が3%以下のフェノール樹脂が用いられる。飽和吸水率が3%を越えるフェノール樹脂を用いて黒鉛/フェノール樹脂硬化成形体を作製してセパレータとした場合には、吸水によるセパレータ板の伸びや反りを十分に抑制することが困難となる。したがって、セパレータの固有抵抗が高くなり電池の内部抵抗の増大をもたらし、電池性能の低下を招くこととなる。また、反りの発生により単セル間の密着性が損なわれるため、電池スタック組立て時に単セル間の接触抵抗が増大して電池スタックの内部抵抗の増大を招き、電池性能が低下する。なお、飽和吸水率は、フェノール樹脂の硬化成形体からサンプルを切り出し、80℃の温水中に10日間浸漬した時の重量変化を測定して、飽和吸水率とした。
【0022】
飽和吸水率が3%以下のフェノール樹脂は、具体的にはフェノール樹脂を合成する際にオイル変性あるいはアルキルベンゼン変性することにより調製することができる。
【0023】
例えば、オイル変性は、フェノール樹脂を合成する際にオレイン酸などの不飽和脂肪酸を添加して、脂肪酸の二重結合をフェノール樹脂官能基と反応させると脂肪酸がフェノール樹脂中の取り込まれて、吸水の原因となるメチロール基やフェノール水酸基が相対的に減少する。更に、取り込まれた脂肪酸が吸水した水の移動を抑えるので、結果的に樹脂硬化物の吸水性が低下し、飽和吸水率を3%以下にすることができる。
【0024】
アルキルベンゼン変性したフェノール樹脂も、オイル変性と同様にメチロール基やフェノール水酸基量が相対的に減少するので、吸水率が低下する。
【0025】
このフェノール樹脂と黒鉛粉末は、フェノール樹脂溶液中の樹脂固形分を10〜25重量%、黒鉛粉末を90〜75重量%の重量比になるように混合して混練する。混練はニーダー、加圧型ニーダー、二軸スクリュー式混練機などの適宜な混練機により混練する。なお、混練時に揮発性成分が除去されるように、混練は減圧脱気下に行うことが望ましい。この場合、黒鉛粉末とフェノール樹脂溶液とを均一に混合するために、フェノール樹脂初期縮合物をアルコールやエーテルなどの適宜な有機溶媒に溶解した低粘度のフェノール樹脂溶液を用いて混練し、次いで有機溶媒を除去する方法を採ることもできる。
【0026】
混合比として、フェノール樹脂溶液中の樹脂固形分が10重量%未満、黒鉛粉末が90重量%を越える重量比では、混練物の流動性が低下するので熱圧成形により形状精度の高い板状成形体を作製することが困難となり、成形性の悪化によりガス不透過性や強度が低下する。一方、樹脂固形分が25重量%を越え、黒鉛粉末が75重量%を下回ると電気抵抗の増大が著しく、電池性能が低下することになる。なお、オイル変性フェノール樹脂やアルキルベンゼン変性フェノール樹脂は、未変性フェノール樹脂に比べて黒鉛粉末との濡れ性が良いために混練物の流動性が向上し、成形性が良好となる利点もある。
【0027】
混練物は、乾燥して揮発性物質を除去したのち、粉砕機により適宜な粒度に粉砕して、粉砕粒を成形型に充填して熱圧成形することにより板状成形体が製造される。混練物は表面が樹脂被膜で覆われているので導電性が低くなるが、混練物を粉砕して黒鉛部を露出させることにより低下した導電性を回復させることができ、更に、材質性状の異方性の是正を図ることもでき、板状成形体の厚さ方向の電気抵抗を低くすることができる。
【0028】
なお、セパレータとしてガス流路となる板状体の片面もしくは両面に形成する溝部は、この成形時に形成するか、または機械加工により板面に溝加工を施すなどの方法により形成される。次いで、150〜200℃の温度で200kg/cm2以上の圧力で熱圧成形して固体高分子型燃料電池用のセパレータが製造される。
【0029】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。
【0030】
実施例1〜3、比較例2〜3
オイル変性フェノール樹脂〔住友ベークライト(株)製、PR−13349、硬化物の飽和吸水率2.4%〕を固形分が70重量%になるようにメタノールに溶解し、樹脂固形分100に対し7の重量比となるようにヘキサミンを添加して、フェノール樹脂溶液を調製した。このフェノール樹脂溶液に平均粒径50μm の人造黒鉛粉末を重量比を変えて混合し、ニーダーによって30分間混練した。混練物を乾燥した後、粉砕して所定数の溝形状を彫った金型に充填して、圧力300kg/cm2、温度170℃で熱圧成形した。このようにして、縦150mm、横150mm、厚さ3mmで、ガス流路となる溝部(幅1.5mm、高さ1mm)を、片面に33本づつ形成したセパレータ材を製造した。
【0031】
比較例1
オイル変性フェノール樹脂に変えて未変性のフェノール樹脂〔住友ベークライト(株)製、PR−311、硬化物の飽和吸水率5.2%〕を使用した他は、全て実施例2と同じ条件でセパレータ材を製造した。
【0032】
これらのセパレータについて、下記の方法により材質特性を測定し、得られた結果を製造条件と対比して表1に示した。
▲1▼曲げ強度(室温、MPa );
JISK6911に準じて測定した。
▲2▼飽和吸水率(%);
80℃の温水に10日間浸漬した後の吸水率を測定した。
▲3▼飽和伸び率(%);
80℃の温水に10日間浸漬した後の伸び率を測定した。
▲4▼体積固有抵抗(Ωm);
乾燥時と80℃の温水に10日間浸漬した後の体積固有抵抗を測定した。
▲5▼接触抵抗(Ωm2 );
乾燥時と80℃の温水に10日間浸漬した後の接触抵抗を測定した。
▲6▼反り量(mm);
湿度85%、温度35℃の多湿雰囲気中に10日間放置した後のセパレータを定盤上に置いて、基準位置でダイヤルゲージをゼロセットし、全体で9点について反り量を測定し、最大値を採用した。
【0033】
【表1】

Figure 0004455810
【0034】
実施例4〜6
フェノール樹脂としてアルキルベンゼン変性フェノール樹脂〔住友ベークライト(株)製、PR−51992、硬化物の飽和吸水率2.5%〕、黒鉛粉末に平均粒径35μm の天然黒鉛粉末を用いた他は、実施例1〜3と同じ方法によりセパレータ材を製造した。これらのセパレータについて、実施例1〜3と同じ方法により材質特性を測定し、得られた結果を製造条件と対比して表2に示した。
【0035】
比較例4
黒鉛粉末に平均粒径35μm の天然黒鉛粉末を用いた他は、比較例1と同じ方法でセパレータ材を製造して材質特性を測定し、得られた結果を製造条件と対比して表2に示した。
【0036】
比較例5〜6
黒鉛粉末に平均粒径35μm の天然黒鉛粉末を用いた他は、比較例2〜3と同じ方法でセパレータ材を製造して材質特性を測定し、得られた結果を製造条件と対比して表2に示した。
【0037】
【表2】
Figure 0004455810
【0038】
表1〜2の結果から、硬化物の飽和吸水率が2.4%のオイル変性フェノール樹脂および2.5%のアルキルベンゼン変性フェノール樹脂を用いた実施例1〜6のセパレータは、吸水による伸び率が小さく、反りの増加も小さい。また、80℃の温水に10日間浸漬した後の電気抵抗の変化も少なく、発電時の内部抵抗の増加も極めて小さいことが分かる。したがって、長期に亘って安定した電池性能を維持することが可能である。
【0039】
これに対して、硬化物の飽和吸水率が5.2%と高いフェノール樹脂を使用した比較例1および4では、吸水による伸び率、反り量とも大きく、また、吸水による電気抵抗の増加が大きく、経時的な電池性能の低下が大きいことが認められる。
【0040】
また、樹脂分の混合重量比が多い比較例2および5では電気抵抗が高く、初期電池性能が劣り、一方、樹脂分の混合重量比が少ない比較例3、6では曲げ強度が低く、電池の耐久性に劣ることが認められる。
【0041】
【発明の効果】
以上のとおり、本発明の固体高分子型燃料電池用セパレータの製造方法によれば、吸水率の低いフェノール樹脂を用いることにより、反りの発生が少なく、また吸水に伴う電気抵抗の増加も殆どない黒鉛/硬化樹脂成形体からなるセパレータを製造することができ、このセパレータを使用することにより長期間、安定して発電操業が可能な固体高分子型燃料電池を提供することにある。
【図面の簡単な説明】
【図1】固体高分子型燃料電池の概略構造を示す一部断面図である。
【符号の説明】
1 セパレータ
2 ガス流路用溝
3 カソード
4 アノード
5 電解質膜
6 シール材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a separator for a polymer electrolyte fuel cell used in, for example, automobiles and small distributed power sources.
[0002]
[Prior art]
Compared to fuel cells such as phosphoric acid fuel cells, polymer electrolyte fuel cells can generate electricity at a low temperature and with high output, so they can be used as power sources for automobiles, small mobile power sources, and stationary power sources. Expected. A polymer electrolyte fuel cell is generally composed of an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, a catalyst electrode carrying a platinum catalyst on both sides thereof, From a stack in which single cells made of separators and the like provided with gas supply irregularities for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air to the electrode, and two current collectors provided on the outside thereof It is configured.
[0003]
As shown in FIG. 1, the unit cell has a pair of electrodes 3 and 4 (anode 4 and cathode 3) disposed with an electrolyte membrane 5 made of an ion exchange membrane formed of, for example, a fluorine-based resin interposed therebetween, The separator 1 is formed of a dense carbon material sandwiched between both sides, and a sealing material 6 is provided at the end of the separator in a direction parallel to the gas groove. The electrodes 3 and 4 are formed of a porous body made of short carbon fibers carrying a catalyst such as platinum, or a carbon black carrying a catalyst bound with a resin.
[0004]
A plurality of concave and convex grooves 2 are formed in the separator 1, and a space formed between the grooves 2 and the cathode 3 is used as an oxidant gas (oxygen-containing gas such as air) flow path. Using the chemical reaction that occurs when the fuel gas and oxidant gas are in contact with the electrodes, the space formed between the electrodes is used as a fuel gas (for example, hydrogen gas or mixed gas containing hydrogen gas as a main component) The current is taken out from between the electrodes. In general, the battery stack is assembled by stacking the single cells in several tens to several hundreds.
[0005]
This separator is required to have a high degree of gas impermeability in order to supply the fuel gas and oxidant gas to the electrode in a completely separated state, and to reduce the internal resistance of the battery in order to increase power generation efficiency. It is necessary to have a low resistance. Further, if the material strength is not sufficient, the separator is damaged or lost, and not only battery performance is deteriorated, but there is also a risk of explosion due to gas leak. In particular, it is necessary to have sufficient material strength and excellent corrosion resistance even at a high temperature of about 100 ° C., which is the operating temperature of the battery.
[0006]
In order to improve fuel cell performance, the unit cells in the stack are assembled so that they are in close contact with each other, and a good contact state is maintained even during power generation to minimize the contact electrical resistance between the separator and the electrode. At the same time, it is important to prevent gas leakage between single cells and gas leakage outside the single cells. That is, the separator is required to have no flatness and high flatness.
[0007]
A carbonaceous material has been conventionally used as a separator material that requires such material properties, and a carbon / resin cured molded body obtained by molding carbon powder such as graphite and a thermosetting resin as a binder is used. It is preferably used.
[0008]
For example, the present applicant is a plate-like molded body composed of graphite powder 60 to 85% by weight and thermosetting resin 15 to 40% by weight having a particle size distribution with an average particle size of 50 μm or less and a maximum particle size of 100 μm or less, the resistivity of the surface direction is 300 × 10 -4 Ωcm or less, the ratio of the resistivity in the thickness direction / plane direction of 7 or less, flexural strength comprises the 300 kgf / cm 2 or more material properties graphite - cured resin molded product The separator member for a polymer electrolyte fuel cell (Patent Document 1) formed from
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-21421
[Problems to be solved by the invention]
The resin component used as a binder is required to have sufficient strength and corrosion resistance under a use environment during battery operation, for example, at a high temperature of about 100 ° C. Is often used.
[0011]
However, the phenol resin is water-absorbing and has a saturated water absorption rate of about 5%. When water is absorbed, volume expansion occurs, so that the resin component in the carbon / resin cured molded body expands and elongation occurs in the separator itself. Further, the separator is always exposed to water and cooling water generated in association with the battery reaction at a temperature of 80 ° C. or higher when the battery is in operation, and is in an environment where water is easily absorbed.
[0012]
Furthermore, the separator is composed of a current collecting / cooling surface and a sealing surface on the outer periphery thereof, and the current collecting / cooling surface has a higher water absorption speed than the outer peripheral seal portion, resulting in variations in elongation due to water absorption. There is a risk of cracks and breakage in the separator due to the uniform elongation.
[0013]
In addition, even if cracks and cracks do not occur, there is a difficulty in warping of the separator due to non-uniform expansion based on the difference in water absorption speed. When the separator is warped, when assembling the battery stack by stacking the single cells, it is difficult to bring the single cells into close contact with each other, and there is a problem that the contact electric resistance increases and the battery performance is lowered. In addition, there is a risk of gas leakage between single cells, and the sealing material installed on the outer periphery of the cell does not function sufficiently, causing gas leakage to the outside of the cell, which makes it impossible to stably generate power for a long time. . Furthermore, when assembling a battery stack by stacking single cells, there is also a problem that the separator is easily subjected to partial load, and the separator is damaged.
[0014]
Moreover, if the separator made of a carbon / resin cured molded body absorbs water, the specific resistance of the separator as a whole increases due to the expansion of the resin part. As a result, the internal resistance of the battery increases, leading to a decrease in battery output and long-term power generation. There is also a problem that the battery performance deteriorates.
[0015]
As described above, since the water absorption of the phenol resin has a great influence on the battery assembly and the battery performance, the present inventors have made a solid polymer fuel comprising a carbon / resin cured molded body using a phenol resin as a binder. As a result of diligent studies on water absorption as a property of a phenolic resin suitable as a battery separator, it was confirmed that the above problems can be improved and suppressed by modifying the phenolic resin and reducing the saturated water absorption rate of the cured product. did.
[0016]
That is, the object of the present invention is less warping, maintaining the adhesion between cells when assembling the battery stack, suppressing the increase in contact electrical resistance and internal resistance, to prevent the deterioration of battery performance, It is another object of the present invention to provide a method for producing a separator for a polymer electrolyte fuel cell capable of stably generating power for a long period of time by suppressing gas leakage between cells and outside the cell.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a polymer electrolyte fuel cell separator according to the present invention comprises a solution of an oil-modified or alkylbenzene-modified phenol resin having a saturated water absorption of 3% or less and an average particle size of a cured product. A graphite powder of 50 μm or less is mixed and kneaded at a weight ratio of 10 to 25% by weight of resin solids and 90 to 75% by weight of graphite powder, the kneaded product is dried and pulverized, and the pulverized particles are filled in a mold. Therefore, it is a structural feature that hot pressing is performed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The separator for a polymer electrolyte fuel cell of the present invention is formed of a plate-like molded body made of a graphite / phenolic resin cured molded body in which graphite powder is integrated with a phenol resin as a binder. Natural graphite, expanded graphite, or a mixture thereof is used, and is pulverized with an appropriate pulverizer, sieved, adjusted to a predetermined particle size, and used.
[0020]
The separator is usually a plate-like body having a thickness of about 1 to 3 mm and gas grooves having a depth of about 0.5 to 1 mm that serve as fuel gas or oxidant gas flow paths on both front and back surfaces. As a method for forming the gas groove, there is a method in which the gas groove is attached at the time of molding the separator and further processed, or is formed by machining after forming into a flat plate shape. Because of the structure with such gas grooves, if the particle size of the graphite powder is large, the gas impermeability decreases due to the dropping of the graphite particles or the generation of cracks between the particles when the gas grooves are formed. Will be damaged. Therefore, as the particle size of the graphite powder, graphite powder adjusted to particle size characteristics with an average particle size of preferably 50 μm or less and a maximum particle size of 100 μm or less is used.
[0021]
As the phenol resin used as the binder for the graphite powder, a phenol resin having a saturated water absorption of 3% or less is used. When a graphite / phenolic resin cured molded body is produced using a phenol resin having a saturated water absorption rate exceeding 3% to obtain a separator, it is difficult to sufficiently suppress the elongation and warpage of the separator plate due to water absorption. Therefore, the specific resistance of the separator is increased, resulting in an increase in the internal resistance of the battery and a decrease in battery performance. In addition, since the adhesion between the single cells is impaired due to the warpage, the contact resistance between the single cells is increased when the battery stack is assembled, leading to an increase in the internal resistance of the battery stack and the battery performance is lowered. The saturated water absorption was determined by measuring a change in weight when a sample was cut out from a cured molded product of a phenolic resin and immersed in warm water at 80 ° C. for 10 days to obtain a saturated water absorption.
[0022]
Specifically, the phenol resin having a saturated water absorption of 3% or less can be prepared by oil modification or alkylbenzene modification when the phenol resin is synthesized.
[0023]
For example, in oil modification, unsaturated fatty acids such as oleic acid are added when synthesizing a phenol resin, and when a fatty acid double bond is reacted with a phenol resin functional group, the fatty acid is taken into the phenol resin and absorbs water. Methylol groups and phenolic hydroxyl groups that cause the above are relatively reduced. Furthermore, since the taken-in fatty acid suppresses the movement of the absorbed water, the water absorption of the cured resin is consequently reduced, and the saturated water absorption can be reduced to 3% or less.
[0024]
Alkylbenzene-modified phenolic resins also have a relatively low amount of methylol groups and phenolic hydroxyl groups, as in oil modification, and therefore the water absorption rate decreases.
[0025]
The phenol resin and the graphite powder are mixed and kneaded so that the resin solid content in the phenol resin solution is 10 to 25% by weight and the graphite powder is 90 to 75% by weight. The kneading is performed by an appropriate kneader such as a kneader, a pressure kneader, or a twin screw kneader. The kneading is desirably performed under reduced pressure deaeration so that volatile components are removed during the kneading. In this case, in order to uniformly mix the graphite powder and the phenol resin solution, the phenol resin initial condensate is kneaded using a low viscosity phenol resin solution dissolved in an appropriate organic solvent such as alcohol or ether, and then organically mixed. A method of removing the solvent can also be employed.
[0026]
When the mixing ratio is less than 10% by weight of the resin solid content in the phenol resin solution and more than 90% by weight of the graphite powder, the fluidity of the kneaded product is lowered, so that plate molding with high shape accuracy is achieved by hot pressing. It becomes difficult to produce a body, and gas impermeability and strength decrease due to deterioration of moldability. On the other hand, when the resin solid content exceeds 25% by weight and the graphite powder is less than 75% by weight, the electrical resistance is remarkably increased and the battery performance is deteriorated. Note that the oil-modified phenol resin and the alkylbenzene-modified phenol resin have an advantage that the fluidity of the kneaded material is improved and the moldability is good because the wettability with the graphite powder is better than that of the unmodified phenol resin.
[0027]
The kneaded product is dried to remove volatile substances, and then pulverized to an appropriate particle size by a pulverizer, filled with the pulverized particles in a mold and hot-pressed to produce a plate-shaped molded body. Since the surface of the kneaded material is covered with a resin film, the conductivity is lowered. However, the reduced conductivity can be recovered by crushing the kneaded material to expose the graphite portion, and further, the material properties are different. It is possible to correct the directionality, and to reduce the electric resistance in the thickness direction of the plate-like molded body.
[0028]
In addition, the groove part formed in the single side | surface or both surfaces of the plate-shaped body used as a gas flow path as a separator is formed at the time of this shaping | molding, or is formed by methods, such as giving a groove process to a plate surface by machining. Next, a separator for a polymer electrolyte fuel cell is manufactured by hot pressing at a temperature of 150 to 200 ° C. and a pressure of 200 kg / cm 2 or more.
[0029]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
[0030]
Examples 1-3, Comparative Examples 2-3
Oil-modified phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-13349, saturated water absorption 2.4% of cured product) was dissolved in methanol so that the solid content was 70% by weight. Hexamine was added so that the weight ratio was as follows to prepare a phenol resin solution. Artificial graphite powder having an average particle size of 50 μm was mixed with this phenol resin solution at different weight ratios, and kneaded for 30 minutes with a kneader. After drying the kneaded product, it was pulverized and filled into a mold having a predetermined number of groove shapes, and hot-press molded at a pressure of 300 kg / cm 2 and a temperature of 170 ° C. In this way, a separator material having a length of 150 mm, a width of 150 mm, a thickness of 3 mm, and 33 groove portions (width 1.5 mm, height 1 mm) serving as a gas flow path was formed on one side.
[0031]
Comparative Example 1
A separator was used under the same conditions as in Example 2 except that an unmodified phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-311, saturated water absorption of 5.2% of cured product) was used instead of the oil-modified phenol resin. The material was manufactured.
[0032]
The material properties of these separators were measured by the following method, and the obtained results are shown in Table 1 in comparison with the manufacturing conditions.
(1) Bending strength (room temperature, MPa);
It measured according to JISK6911.
(2) Saturated water absorption (%);
The water absorption after being immersed in warm water of 80 ° C. for 10 days was measured.
(3) Saturation elongation (%);
The elongation after immersion in hot water at 80 ° C. for 10 days was measured.
(4) Volume resistivity (Ωm);
Volume resistivity was measured at the time of drying and after being immersed in warm water at 80 ° C. for 10 days.
(5) Contact resistance (Ωm 2 );
Contact resistance was measured at the time of drying and after being immersed in warm water of 80 ° C. for 10 days.
(6) Warpage (mm);
Place the separator after leaving it in a humid atmosphere with a humidity of 85% and a temperature of 35 ° C for 10 days on a surface plate, zero-set the dial gauge at the reference position, and measure the amount of warping at a total of 9 points. It was adopted.
[0033]
[Table 1]
Figure 0004455810
[0034]
Examples 4-6
Examples are as follows except that alkylbenzene-modified phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-51992, saturated water absorption of 2.5% of cured product) is used as the phenolic resin, and natural graphite powder having an average particle size of 35 μm is used as the graphite powder The separator material was manufactured by the same method as 1-3. About these separators, the material characteristic was measured by the same method as Examples 1-3, and the obtained result was shown in Table 2 by contrast with manufacturing conditions.
[0035]
Comparative Example 4
The separator material was manufactured by the same method as Comparative Example 1 except that natural graphite powder having an average particle size of 35 μm was used as the graphite powder, and the material properties were measured. The obtained results were compared with the manufacturing conditions in Table 2. Indicated.
[0036]
Comparative Examples 5-6
Except for using natural graphite powder having an average particle size of 35 μm as the graphite powder, a separator material was produced by the same method as in Comparative Examples 2 and 3, and the material properties were measured. The results obtained were compared with the production conditions. It was shown in 2.
[0037]
[Table 2]
Figure 0004455810
[0038]
From the results of Tables 1 and 2, the separators of Examples 1 to 6 using the oil-modified phenol resin with a saturated water absorption rate of 2.4% and the alkylbenzene-modified phenol resin with 2.5% of the cured product showed an elongation rate due to water absorption. Is small and the increase in warpage is small. It can also be seen that there is little change in electrical resistance after immersion in warm water at 80 ° C. for 10 days, and the increase in internal resistance during power generation is extremely small. Therefore, it is possible to maintain stable battery performance over a long period of time.
[0039]
On the other hand, in Comparative Examples 1 and 4 using a phenol resin having a high saturated water absorption rate of 5.2%, the cured product has a large elongation and warpage due to water absorption, and a large increase in electrical resistance due to water absorption. It can be seen that the deterioration of the battery performance over time is large.
[0040]
In Comparative Examples 2 and 5 having a high resin mixing weight ratio, the electric resistance is high and the initial battery performance is inferior. On the other hand, in Comparative Examples 3 and 6 having a low resin mixing weight ratio, the bending strength is low. Inferior durability.
[0041]
【The invention's effect】
As described above, according to the method for producing a polymer electrolyte fuel cell separator of the present invention, by using a phenol resin having a low water absorption rate, the occurrence of warpage is small and there is almost no increase in electrical resistance due to water absorption. It is an object of the present invention to provide a polymer electrolyte fuel cell capable of producing a separator made of a graphite / cured resin molded body and capable of stably performing power generation for a long period of time by using this separator.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a schematic structure of a polymer electrolyte fuel cell.
[Explanation of symbols]
1 Separator 2 Gas Channel Groove 3 Cathode 4 Anode 5 Electrolyte Membrane 6 Sealing Material

Claims (1)

硬化物の飽和吸水率が3%以下のオイル変性またはアルキルベンゼン変性したフェノール樹脂溶液と平均粒子径が50μm以下の黒鉛粉末を、樹脂固形分10〜25重量%、黒鉛粉末90〜75重量%の重量比に混合して混練し、混練物を乾燥した後粉砕し、粉砕粒を成形型に充填して熱圧成形することを特徴とする固体高分子型燃料電池用セパレータの製造方法。 A solution of an oil-modified or alkylbenzene-modified phenol resin having a saturated water absorption of 3% or less and a graphite powder having an average particle size of 50 μm or less having a solid content of 10 to 25% by weight and a graphite powder of 90 to 75% by weight. A method for producing a separator for a polymer electrolyte fuel cell, comprising mixing at a weight ratio and kneading, drying and kneading the kneaded material, filling the pulverized particles into a mold and hot pressing.
JP2002288521A 2002-10-01 2002-10-01 Method for producing separator for polymer electrolyte fuel cell Expired - Fee Related JP4455810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288521A JP4455810B2 (en) 2002-10-01 2002-10-01 Method for producing separator for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288521A JP4455810B2 (en) 2002-10-01 2002-10-01 Method for producing separator for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004127646A JP2004127646A (en) 2004-04-22
JP4455810B2 true JP4455810B2 (en) 2010-04-21

Family

ID=32280996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288521A Expired - Fee Related JP4455810B2 (en) 2002-10-01 2002-10-01 Method for producing separator for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4455810B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200623492A (en) * 2004-11-08 2006-07-01 Tokai Carbon Kk Separator material for solid polymer fuel cell and process for producing the same
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
JP5880649B1 (en) 2014-09-08 2016-03-09 日清紡ケミカル株式会社 Fuel cell separator

Also Published As

Publication number Publication date
JP2004127646A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP5019195B2 (en) Method for producing separator material for fuel cell
JP2001325967A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP4702670B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
US6815112B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP4455810B2 (en) Method for producing separator for polymer electrolyte fuel cell
KR20080074455A (en) Bipolar plate for fuel cell
JP2008016307A (en) Fuel cell separator
CN114976086B (en) Composite graphite bipolar plate for fuel cell and preparation method
JP2003297385A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid high polymer fuel cell
JP3807708B2 (en) Method for producing separator member for polymer electrolyte fuel cell
CN1299372C (en) Guide plate for proton exchange film fuel cell and its manufacture
EP2091100B1 (en) Method for producing separator material for solid polymer fuel cell
JP4430962B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
JP4339582B2 (en) Fuel cell separator and method for producing the same
JP2000021423A (en) Separator for fuel cell and manufacture thereof
JP2002208411A (en) Separator material for solid polymer fuel cell and method of manufacturing it
JP2009140849A (en) Fuel cell and fuel cell separator
JP2006252905A (en) Separator material for fuel cell, and manufacturing method of the same
KR20200099332A (en) Sealing composition for separator of fuel cell
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
JP4725872B2 (en) Separator for polymer electrolyte fuel cell
JP4236248B2 (en) Method for producing separator material for polymer electrolyte fuel cell
JP3980229B2 (en) Separator member for polymer electrolyte fuel cell
JP4702118B2 (en) Manufacturing method of fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees