JP4430962B2 - Separator material for polymer electrolyte fuel cell and manufacturing method thereof - Google Patents

Separator material for polymer electrolyte fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP4430962B2
JP4430962B2 JP2004058583A JP2004058583A JP4430962B2 JP 4430962 B2 JP4430962 B2 JP 4430962B2 JP 2004058583 A JP2004058583 A JP 2004058583A JP 2004058583 A JP2004058583 A JP 2004058583A JP 4430962 B2 JP4430962 B2 JP 4430962B2
Authority
JP
Japan
Prior art keywords
resin
weight
less
separator
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004058583A
Other languages
Japanese (ja)
Other versions
JP2005251501A (en
Inventor
俊雄 中澤
聡 日向野
武志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2004058583A priority Critical patent/JP4430962B2/en
Publication of JP2005251501A publication Critical patent/JP2005251501A/en
Application granted granted Critical
Publication of JP4430962B2 publication Critical patent/JP4430962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、黒鉛/樹脂硬化成形体からなる固体高分子形燃料電池用セパレータ材とその製造方法に関する。   The present invention relates to a separator material for a polymer electrolyte fuel cell comprising a graphite / resin cured molded body and a method for producing the same.

燃料電池は、燃料が有する化学エネルギーを直接電気エネルギーに変換するもので、電気エネルギーへの変換効率が高く、特に固体高分子形燃料電池はリン酸形燃料電池に比較して低温でかつ高出力の発電が可能であるため、自動車の電源をはじめ小型の移動型電源や定置型電源として期待されている。   A fuel cell directly converts chemical energy of fuel into electrical energy, and has high conversion efficiency to electrical energy. Especially, polymer electrolyte fuel cells have lower temperatures and higher output than phosphoric acid fuel cells. Therefore, it is expected as a small mobile power source and a stationary power source including an automobile power source.

固体高分子形燃料電池は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金などの触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給するガス供給用の凹凸(溝)を設けたセパレータなどからなる単セルを積層したスタック、及びその外側に設けた2つの集電体から構成されている。   The polymer electrolyte fuel cell is usually an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode carrying a catalyst such as platinum on both sides thereof, A stack in which a single cell composed of a separator or the like provided with gas supply irregularities (grooves) for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air is stacked on each electrode, and 2 provided outside the stack. It consists of two current collectors.

単セルの構造は、図1に示すように、例えばフッ素系樹脂により形成されたイオン交換膜からなる電解質膜5を挟んで配置される一対の電極3、4(カソード3、アノード4)と、これをさらに両側から挟む緻密質のカーボン材からなるセパレータ1、セパレータの端部にはガス溝と平行方向に設置されたシール材6とから構成されている。電極3、4は白金などの触媒を担持させた炭素短繊維からなる多孔質体あるいは触媒を担持したカーボンブラックを樹脂で結着したものなどから形成される。   As shown in FIG. 1, the unit cell has a pair of electrodes 3, 4 (cathode 3, anode 4) disposed with an electrolyte membrane 5 made of an ion exchange membrane formed of, for example, a fluorine-based resin interposed therebetween, The separator 1 is formed of a dense carbon material sandwiched between both sides, and a sealing material 6 is provided at the end of the separator in a direction parallel to the gas groove. The electrodes 3 and 4 are formed of a porous body made of short carbon fibers carrying a catalyst such as platinum, or carbon black carrying a catalyst bound with a resin.

セパレータ1には複数の凹凸形状の溝2が形成され、溝2とカソード3との間に形成される空間を酸化剤ガス(空気などの酸素含有ガス)流路とし、溝2とアノード4との間に形成される空間を燃料ガス(例えば水素ガスや水素ガスを主成分とする混合ガス)流路として、燃料ガスと酸化剤ガスとが電極に接触して起こる化学反応を利用して、電極間から電流を取り出すようになっている。そして、通常、この単セルを数十層から数百層に積層して電池スタックが組み立てられている。   A plurality of concave and convex grooves 2 are formed in the separator 1, and a space formed between the grooves 2 and the cathode 3 is used as an oxidant gas (oxygen-containing gas such as air) flow path. The space formed between the fuel gas (for example, hydrogen gas or a mixed gas containing hydrogen gas as a main component) flow path, using the chemical reaction that occurs when the fuel gas and the oxidant gas contact the electrode, An electric current is taken out between the electrodes. In general, the battery stack is assembled by laminating the single cells into tens to hundreds.

したがって、セパレータには燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給する必要があるために高度のガス不透過性が要求される。また、発電効率を高くするために電池の内部抵抗を小さくすることが有効であり、セパレータの板厚を薄くするとともに高い導電性が必要となる。   Therefore, since the separator needs to supply the fuel gas and the oxidant gas to the electrode in a completely separated state, a high degree of gas impermeability is required. In addition, it is effective to reduce the internal resistance of the battery in order to increase the power generation efficiency, and it is necessary to reduce the plate thickness of the separator and to have high conductivity.

また、電池性能の向上を図るためにはスタック中の各単セル間を密着するように組み立て、かつ発電中も良好な接触状態が維持されてセパレータと電極との接触電気抵抗の増大を防止するとともに、単セル間のガスリークや単セル外へのガスリークを防止することが重要となる。すなわち、組み立て時に破損や欠損が生じないように材質強度が高いこと、また電池の作動温度である100℃程度の温度においても充分な材質強度を備えていることが重要である。更に、大気中で吸湿による寸法変化が生じないように耐湿性が高いことなども要求される。   In order to improve battery performance, the single cells in the stack are assembled so that they are in close contact with each other, and a good contact state is maintained even during power generation to prevent an increase in the contact electrical resistance between the separator and the electrode. At the same time, it is important to prevent gas leakage between single cells and gas leakage outside the single cells. That is, it is important that the material strength is high so that no breakage or chipping occurs during assembly, and that the material strength is sufficient even at a temperature of about 100 ° C., which is the operating temperature of the battery. Furthermore, it is required to have high moisture resistance so that no dimensional change due to moisture absorption occurs in the atmosphere.

このような材質特性が要求されるセパレータ材には、従来から炭素質系の材料が用いられており、黒鉛などの炭素粉末を熱硬化性樹脂を結合材として結着し、成形した炭素/樹脂硬化成形体が好適に使用されている。   A carbonaceous material has been conventionally used as a separator material that requires such material characteristics, and a carbon / resin formed by binding a carbon powder such as graphite with a thermosetting resin as a binder. A cured molded body is preferably used.

例えば、特許文献1には、平均粒子径50μm以下、最大粒子径100μm以下の粒度分布を有する黒鉛粉末60〜85重量%と熱硬化性樹脂15〜45重量%とからなる板状成形体であって、その面方向の固有抵抗が300×10-4Ωcm以下、厚さ方向/面方向の固有抵抗の比が7以下、曲げ強度が300kgf/cm2 以上の材質性状を備える黒鉛−樹脂硬化成形体から形成されたことを特徴とする固体高分子形燃料電池用セパレータ部材およびその製造方法が開示されている。 For example, Patent Document 1 discloses a plate-like molded body composed of 60 to 85% by weight of graphite powder having a particle size distribution with an average particle size of 50 μm or less and a maximum particle size of 100 μm or less and a thermosetting resin of 15 to 45% by weight. Graphite-resin curable molding having a material property of a specific resistance in the plane direction of 300 × 10 −4 Ωcm or less, a ratio of specific resistance in the thickness direction / plane direction of 7 or less, and a bending strength of 300 kgf / cm 2 or more A separator member for a polymer electrolyte fuel cell and a method for producing the same are disclosed.

特許文献2には、平均粒子径50μm以下、最大粒子径250μm以下の黒鉛粉末100重量部と数平均分子量100〜400のフェノール樹脂15〜30重量部とを混合し、混合物を粉砕、篩分けして調製した粒度0.1〜5mmの整粒を30〜180℃の温度に調整しながら、100〜200℃の温度に加熱された金型に射出成形し、成形体を加熱硬化することを特徴とする燃料電池用セパレータの製造方法が開示されている。   In Patent Document 2, 100 parts by weight of graphite powder having an average particle size of 50 μm or less and a maximum particle size of 250 μm or less and 15 to 30 parts by weight of phenol resin having a number average molecular weight of 100 to 400 are mixed, and the mixture is pulverized and sieved. While adjusting the sized particle size of 0.1 to 5 mm prepared to 30 to 180 ° C., injection molding is performed on a mold heated to a temperature of 100 to 200 ° C., and the molded body is heat-cured. A method for producing a fuel cell separator is disclosed.

また、本出願人は硬化物の飽和吸水率が3%以下のフェノール樹脂溶液と黒鉛粉末を、樹脂固形分10〜25重量%、黒鉛粉末90〜75重量%の重量比に混合して混練し、混練物を乾燥した後粉砕し、粉砕粒を成形型に充填して熱圧成形することを特徴とする固体高分子型燃料電池用セパレータの製造方法(特許文献3)を開発、提案した。   Further, the present applicant mixed and kneaded a phenol resin solution having a saturated water absorption of 3% or less and a graphite powder in a weight ratio of 10 to 25% by weight of resin solids and 90 to 75% by weight of graphite powder. The present inventors have developed and proposed a method for producing a separator for a polymer electrolyte fuel cell, characterized in that the kneaded product is dried and then pulverized, and the pulverized particles are filled in a mold and hot-press molded.

特許文献3によれば、吸水率の低いフェノール樹脂を用いることにより、反りの発生が少なく、吸水に伴う電気抵抗の増加も殆どないセパレータの製造が可能となる。   According to Patent Document 3, by using a phenol resin having a low water absorption rate, it is possible to manufacture a separator with little warpage and little increase in electrical resistance due to water absorption.

更に、本出願人は熱硬化性樹脂としてノボラック型フェノール樹脂の性状に着目して研究を進め、黒鉛粉末をモノマー量が5重量%以下、ダイマー量が20重量%以下、125℃におけるプレートフローが150mm以上のノボラック型フェノール樹脂を結合材として結着した、黒鉛/樹脂硬化成形体からなる固体高分子形燃料電池用セパレータ材とその製造方法(特許文献4)を開発した。   Furthermore, the present applicant has advanced research focusing on the properties of a novolak type phenolic resin as a thermosetting resin. Graphite powder has a monomer amount of 5% by weight or less, a dimer amount of 20% by weight or less, and a plate flow at 125 ° C. A separator for a polymer electrolyte fuel cell made of a graphite / resin-cured molded body, in which a novolac type phenol resin of 150 mm or more is bound as a binder, and a manufacturing method thereof (Patent Document 4) have been developed.

特許文献4によれば、モノマーおよびダイマーの含有量が少なく、溶融粘度の低い成形性に優れたノボラック型フェノール樹脂を用いることにより緻密でガス不透過性に優れ、低電気抵抗で機械的強度や耐湿性が高く、優れた材質性状を備えた固体高分子形燃料電池用のセパレータ材とその製造方法が提供される。
特開2000−021421号公報 特開2000−331690号公報 特願2002−288521号 特願2003−399296号
According to Patent Document 4, by using a novolac type phenol resin having a low monomer and dimer content and a low melt viscosity and excellent moldability, it is dense and excellent in gas impermeability, and has low electrical resistance and mechanical strength. A separator material for a polymer electrolyte fuel cell having high moisture resistance and excellent material properties and a method for producing the same are provided.
JP 2000-021421 A JP 2000-331690 A Japanese Patent Application No. 2002-288521 Japanese Patent Application No. 2003-399296

しかし、ノボラック型フェノール樹脂は、通常硬化剤としてヘキサミン(ヘキサメチレテトラミン)が用いられるため、硬化反応時にヘキサミンの分解ガスとしてアンモニアガスが発生し、発生したアンモニアガスの一部は樹脂硬化物中に残留してくるため、黒鉛/樹脂硬化成形体中にも微量のアンモニアが残留する。   However, since novolak-type phenol resin usually uses hexamine (hexamethyltetramine) as a curing agent, ammonia gas is generated as a decomposition gas of hexamine during the curing reaction, and a part of the generated ammonia gas is contained in the cured resin. Since it remains, a trace amount of ammonia also remains in the graphite / resin cured molded body.

固体高分子形燃料電池は、運転時にガスの加湿や電池反応に伴い生成する水あるいは冷却水などの水分の多い環境下に曝されるため、セパレータ中に残留したアンモニアは、アンモニウムイオンとなって電池セル内に溶出していき、アンモニウムイオンが電解質膜中のプロトンの移動を妨害したり、電極の触媒機能を低下させることとなり、結果的に電池性能の低下を招く問題がある。また、TOC(全有機炭素)溶出量が多くなると、電池反応を引き起こす触媒表面を被覆して触媒活性を低下させたり、電解質膜に付着して汚染し電解質膜の水分保持に変化を及ぼし、プロトン移動を阻害することになる。   Since the polymer electrolyte fuel cell is exposed to a moisture-rich environment such as water generated by gas humidification or cell reaction during operation or cooling water, the ammonia remaining in the separator becomes ammonium ions. The ammonium ions are eluted in the battery cell, and the ammonium ions hinder the movement of protons in the electrolyte membrane or lower the catalytic function of the electrode. As a result, there is a problem that the battery performance is lowered. In addition, when the amount of TOC (total organic carbon) elution increases, the catalyst surface that causes the battery reaction is covered to reduce the catalytic activity, or adhere to the electrolyte membrane and contaminate it, changing the water retention of the electrolyte membrane, It will inhibit the movement.

更に、ノボラック型フェノール樹脂を使用した場合には、例えば電池作動中の環境を模擬した90℃熱水中の吸水伸び率が大きく、セパレータ内で不均一な伸びが生じて亀裂が発生したり、割損する問題がある。また、冷却水に不凍液であるエチレングリコールを添加した場合にはその吸液による伸び率がより大きくなることもある。   Furthermore, when a novolac type phenol resin is used, for example, the water absorption elongation rate in 90 ° C. hot water simulating the environment during battery operation is large, and non-uniform elongation occurs in the separator, causing cracks, There is a problem to break. In addition, when ethylene glycol, which is an antifreeze solution, is added to the cooling water, the elongation rate due to the liquid absorption may be larger.

すなわち、固体高分子型燃料電池のセパレータ材には、従来から言われているガス不透過性に優れ、電気抵抗が低く、機械的強度が高いなどの材質性状に加えて、電池性能を低下させるアンモニアや有機質分の溶出が少なく、吸水時の伸び率が小さいことなどが必要となる。   In other words, the separator material of the polymer electrolyte fuel cell is excellent in gas impermeability, low electrical resistance, high mechanical strength, and the like, which are conventionally known, and lowers the battery performance. It is necessary that the elution of ammonia and organic substances is small and the elongation at the time of water absorption is small.

そこで、本発明者らはこれらの問題を解決するために鋭意研究を行った結果、ジメチレンエーテル結合を有するベンジリックエーテル型のフェノール樹脂を併用することにより窒素分を含む硬化剤を使用することなく加熱のみにより硬化が可能であり、アンモニアの発生および残留を抑止して、更にTOC(全有機炭素)の溶出を低減化して、これらの問題が解消できることを確認した。すなわち、本発明の目的は、これらの問題を解消した優れた性能を有する固体高分子型燃料電池用セパレータ材とその製造方法を提供することにある。   Therefore, as a result of intensive studies to solve these problems, the present inventors have used a curing agent containing nitrogen by using a benzylic ether type phenol resin having a dimethylene ether bond in combination. It was confirmed that curing can be achieved only by heating, generation and residue of ammonia was suppressed, and elution of TOC (total organic carbon) was further reduced to solve these problems. That is, an object of the present invention is to provide a separator for a polymer electrolyte fuel cell having excellent performance that solves these problems and a method for producing the same.

上記の目的を達成するための本発明による固体高分子形燃料電池用セパレータ材は、黒鉛粉末を、ベンジリックエ−テル型フェノール樹脂とモノマー量5重量%以下、ダイマー量20重量%以下であるノボラック型フェノール樹脂の樹脂固形分の重量比が90:10〜40:60の混合樹脂を結合材として結着してなる黒鉛/樹脂硬化成形体からなることを構成上の特徴とする。 In order to achieve the above object, a separator for a polymer electrolyte fuel cell according to the present invention is composed of a novolac type graphite powder having a benzylic ether type phenol resin and a monomer amount of 5% by weight or less and a dimer amount of 20% by weight or less. the weight ratio of the resin solids of the phenolic resin is 90: 10 to 40: characterized in construction in that it consists formed by sintering wearing graphite / cured resin molded product 60 mixed resin as a binder.

また、混合樹脂の樹脂固形分と黒鉛粉末の重量比は10:90〜35:65であることが好ましい。   The weight ratio of the resin solid content of the mixed resin to the graphite powder is preferably 10:90 to 35:65.

本発明による固体高分子形燃料電池用セパレータ材の製造方法は、本発明の固体高分子形燃料電池用セパレータ材を製造する方法であって、ベンジリックエ−テル型フェノール樹脂とモノマー量5重量%以下、ダイマー量20重量%以下であるノボラック型フェノール樹脂の樹脂固形分の重量比を90:10〜40:60に調整して有機溶剤に溶解した混合樹脂溶液と、黒鉛粉末を混練したのち有機溶剤を揮散除去し、次いで混練物を粉砕して得られた成形粉を予備成形型に充填し、上型を載せて1〜10MPaに加圧して予備成形したプリフォームを成形型に挿入し、圧力20〜50MPa、温度150〜250℃で熱圧成形することを構成上の特徴とする。 The method for producing a separator for a polymer electrolyte fuel cell according to the present invention is a method for producing a separator for a polymer electrolyte fuel cell according to the present invention, wherein the amount of benzylic ether type phenol resin and monomer is 5% by weight or less. The mixed resin solution in which the weight ratio of the resin solid content of the novolak-type phenolic resin having a dimer amount of 20% by weight or less is adjusted to 90:10 to 40:60, and the organic solvent after kneading the graphite powder with the mixed resin solution The preformed mold is filled with a molding powder obtained by volatilizing and then pulverizing the kneaded product, and the preform is inserted into the molding mold by pressing the upper mold and pressurizing to 1 to 10 MPa. It is structurally characterized by hot pressing at a temperature of 20-50 MPa and a temperature of 150-250 ° C.

また、混合樹脂の樹脂固形分と黒鉛粉末の重量比は10:90〜35:65であることが好ましい。   The weight ratio of the resin solid content of the mixed resin to the graphite powder is preferably 10:90 to 35:65.

また、ノボラック型フェノール樹脂は、モノマー量が5重量%以下、ダイマー量が20重量%以下、125℃でのプレートフローが150mm以上であることが好ましい。   The novolac type phenol resin preferably has a monomer amount of 5% by weight or less, a dimer amount of 20% by weight or less, and a plate flow at 125 ° C. of 150 mm or more.

黒鉛粉末の結合樹脂としてベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂の混合樹脂を用い、その樹脂固形分の重量比、混合樹脂の樹脂固形分と黒鉛粉末の重量比を特定し、電池稼働時の環境を模擬した90℃の熱水中に500時間浸漬した時の吸水伸び率、50時間浸漬後のアンモニウムイオン溶出量およびTOC(全有機炭素)溶出量が少ない黒鉛/樹脂硬化成形体から形成した本発明の固体高分子形燃料電池用セパレータ材によれば、電池性能が優れ、長期発電後の出力低下も少なく、安定した発電が可能となる。   Using a mixed resin of benzylic ether type phenolic resin and novolac type phenolic resin as the binder resin of graphite powder, and specifying the weight ratio of the resin solids, the resin solids content of the mixed resin and the graphite powder, Formed from a graphite / resin-cured molded article with low water absorption elongation when immersed in hot water at 90 ° C. for 500 hours, ammonium ion elution and TOC (total organic carbon) elution after 50 hours. According to the separator material for a polymer electrolyte fuel cell of the present invention, the battery performance is excellent, the output decrease after long-term power generation is small, and stable power generation is possible.

また、黒鉛粉末の結合樹脂としてベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂の混合樹脂を用い、その樹脂固形分の重量比、混合樹脂の樹脂固形分と黒鉛粉末の重量比を特定した混練物を粉砕して得られた成形粉で予めプリフォームを作製し、次いでこのプリフォームを成形型に挿入して熱圧成形することにより、上記セパレータ材を製造することが可能となる。   Also, a kneaded product in which a mixed resin of benzylic ether type phenolic resin and novolac type phenolic resin is used as a binding resin of graphite powder, and the weight ratio of the resin solid content, the resin solid content of the mixed resin and the weight ratio of graphite powder is specified. The above separator material can be manufactured by preparing a preform in advance from a molding powder obtained by pulverizing and then inserting the preform into a mold and hot pressing.

本発明の固体高分子形燃料電池用セパレータ材は、黒鉛粉末をベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂との混合樹脂を結合材として結着し、一体化した黒鉛/樹脂硬化成形体からなり、この黒鉛/樹脂硬化成形体を厚さ1〜3mm程度の板状に成形し、その表裏両面あるいは片面に燃料ガス及び酸化剤ガスの流路となる深さ0.5〜1mm程度の溝が多数形成されたものである。   The solid polymer fuel cell separator material of the present invention is a graphite / resin cured molded body obtained by binding graphite powder with a mixed resin of benzylic ether type phenolic resin and novolac type phenolic resin as a binder. The graphite / resin cured molded body is formed into a plate shape having a thickness of about 1 to 3 mm, and a groove having a depth of about 0.5 to 1 mm serving as a flow path for fuel gas and oxidant gas on both the front and back surfaces or one surface Are formed in large numbers.

そして、本発明はこの黒鉛/樹脂硬化成形体を90℃の熱水中に浸漬した場合に、
(1) 500時間浸漬後の吸水伸び率が0.20%以下、
(2) 50時間浸漬後のアンモニウムイオン溶出量が2μg/g以下、
(3) 50時間浸漬後のTOC(全有機炭素)溶出量が100μg/g以下、
の性状を有していることを特徴とする。
And this invention, when this graphite / resin hardening molded object is immersed in 90 degreeC hot water,
(1) The water absorption elongation after immersion for 500 hours is 0.20% or less,
(2) Ammonium ion elution amount after immersion for 50 hours is 2 μg / g or less,
(3) TOC (total organic carbon) elution amount after immersion for 50 hours is 100 μg / g or less,
It is characterized by having the following properties.

黒鉛粉末には人造黒鉛、天然黒鉛、膨張黒鉛、あるいは、これらの混合物などが用いられ、適宜な粉砕機により粉砕し、篩分けして粒度調整した黒鉛粉末が使用される。黒鉛粉末の粒度は、セパレータにガス溝を設ける際に黒鉛粉末粒子の脱落や粒子間クラックの発生を防止するために、例えば平均粒子径は50μm以下に、最大粒子径は100μm以下に粒度調整することが好ましい。   Artificial graphite, natural graphite, expanded graphite, or a mixture thereof is used as the graphite powder, and graphite powder that has been pulverized by an appropriate pulverizer and sieved to adjust the particle size is used. The particle size of the graphite powder is adjusted, for example, to an average particle size of 50 μm or less and a maximum particle size of 100 μm or less in order to prevent the dropping of graphite powder particles and the generation of cracks between particles when providing gas grooves in the separator. It is preferable.

本発明の固体高分子型燃料電池用セパレータ材は、この黒鉛粉末がベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂との混合樹脂により結着されて一体化したものであり、この混合樹脂を結合材とすることにより黒鉛/樹脂硬化成形体の吸水による膨潤を小さくすることができるので、電池稼働時の吸水による伸びや大気中に置かれた際の吸湿による経時的伸びを抑えることができる。   The separator for a polymer electrolyte fuel cell according to the present invention is obtained by binding the graphite powder by a mixed resin of a benzylic ether type phenolic resin and a novolac type phenolic resin. By using the material, swelling due to water absorption of the graphite / resin-cured molded article can be reduced, so that elongation due to water absorption during battery operation and elongation over time due to moisture absorption when placed in the atmosphere can be suppressed.

すなわち、電池稼働時の環境を模擬した90℃の熱水中に(1) 500時間浸漬した時の吸水伸び率を0.20%以下とするものである。伸び率が0.20%以下であれば、吸水によるセパレータの反りや、セパレータ内における吸水による不均一な伸びによる亀裂の発生などを抑制できるのでセパレータの割損を防止することができる。なお、伸び率は、90℃の熱水中に500時間浸漬した時の長さ、あるいは、幅の変化から測定される。例えば、伸び率=〔(浸漬後長さ−浸漬前長さ)/(浸漬前長さ)〕×100から算出される。   That is, the water absorption elongation when immersed in hot water at 90 ° C. that simulates the environment during battery operation (1) for 500 hours is 0.20% or less. If the elongation percentage is 0.20% or less, it is possible to prevent the separator from being damaged because warpage of the separator due to water absorption and cracking due to non-uniform elongation due to water absorption in the separator can be suppressed. The elongation percentage is measured from a change in length or width when immersed in hot water at 90 ° C. for 500 hours. For example, elongation percentage = [(length after immersion−length before immersion) / (length before immersion)] × 100.

また、ベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂との混合樹脂を結合材としているので、ノボラック型フェノール樹脂を単独で結合材としたものに比べて硬化時にアンモニアの発生や有機炭素の生成が抑制され、黒鉛/樹脂硬化成形体中に含有されるこれらの成分が極めて少なくなる。その結果、電池稼働時にこれらの成分が電池セル内に溶出していき、固体高分子膜のプロトン移動を妨害したり、電極の触媒機能を低下させる現象を抑制することができる。   Also, since a mixed resin of benzylic ether type phenolic resin and novolak type phenolic resin is used as a binder, generation of ammonia and generation of organic carbon occurs at the time of curing compared to those using novolac type phenolic resin alone as a binder. These components are suppressed, and these components contained in the graphite / resin cured molded body are extremely reduced. As a result, it is possible to suppress the phenomenon that these components are eluted into the battery cell when the battery is in operation, preventing the proton movement of the solid polymer membrane and reducing the catalytic function of the electrode.

すなわち、これらの現象を抑制するために、電池稼働時の環境を模擬した90℃の熱水中に50時間浸漬した後の、(2) アンモニウムイオンの溶出量を2μg/g以下に、(3) TOC(全有機炭素)溶出量を100μg/g以下に抑制することにより、電圧低下、出力低下などの電池性能の低下を効果的に防止することが可能となる。なお、アンモニウムイオンはイオンクロマトグラフィの方法により、またTOC(全有機炭素)はTOC計(JIS K0805)の方法により測定される。   That is, in order to suppress these phenomena, (2) the amount of ammonium ions eluted after immersion in hot water at 90 ° C. that simulates the environment during battery operation for 50 hours is set to 2 μg / g or less (3 ) By suppressing the TOC (total organic carbon) elution amount to 100 μg / g or less, it becomes possible to effectively prevent a decrease in battery performance such as a decrease in voltage and a decrease in output. Ammonium ions are measured by an ion chromatography method, and TOC (total organic carbon) is measured by a TOC meter (JIS K0805).

この場合、混合樹脂中におけるベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂の樹脂固形分の重量比は90:10〜40:60に設定される。ベンジリックエーテル型フェノール樹脂量が90重量%を越え、ノボラック型フェノール樹脂量が10重量%未満の重量比では黒鉛/樹脂硬化成形体の組織が不均一化し、一方、ベンジリックエーテル型フェノール樹脂量が40重量%を下回り、ノボラック型フェノール樹脂量が60重量%を上回る重量比では混合樹脂の硬化速度が遅くなり、成形に時間が掛かり生産性が低下するからである。より好ましい範囲は90:10〜50:50である。   In this case, the weight ratio of the resin solid content of the benzylic ether type phenol resin and the novolac type phenol resin in the mixed resin is set to 90:10 to 40:60. When the amount of benzylic ether type phenolic resin exceeds 90% by weight and the amount of novolac type phenolic resin is less than 10% by weight, the structure of the graphite / resin-cured molded body becomes non-uniform, whereas the amount of benzylic ether type phenolic resin When the weight ratio is less than 40% by weight and the amount of novolak type phenol resin exceeds 60% by weight, the curing rate of the mixed resin is slowed down, and molding takes time and productivity is lowered. A more preferable range is 90:10 to 50:50.

また、好ましくは、本発明の固体高分子形燃料電池用セパレータ材を形成する黒鉛/樹脂硬化成形体は、混合樹脂の樹脂固形分と黒鉛粉末の重量比が10:90〜35:65に設定される。樹脂固形分が10重量%未満で、黒鉛粉末が90重量%を越える重量比では樹脂分が少なく、成形時の流動性も低下するので成形体の組織が不均一化し、一方、樹脂固形分が35重量%を上回り、黒鉛粉末が65重量%を下回る場合には電気抵抗が増大して、電池性能の低下を招くことになる。   Preferably, in the graphite / resin cured molded body forming the solid polymer fuel cell separator material of the present invention, the weight ratio of the resin solid content of the mixed resin to the graphite powder is set to 10:90 to 35:65. Is done. When the resin solid content is less than 10% by weight and the weight ratio of the graphite powder exceeds 90% by weight, the resin content is small and the fluidity at the time of molding is reduced, so that the structure of the molded body becomes non-uniform. If it exceeds 35% by weight and the graphite powder is less than 65% by weight, the electrical resistance increases and the battery performance is lowered.

本発明の固体高分子形燃料電池用セパレータ材の製造方法は、ベンジリックエ−テル型フェノール樹脂とノボラック型フェノール樹脂を有機溶剤に溶解して調製した混合樹脂溶液と、黒鉛粉末を混練したのち有機溶剤を揮散除去し、次いで混練物を粉砕して得られた成形粉を予備成形型に充填し、上型を載せて1〜10MPaに加圧して予備成形したプリフォームを成形型に挿入し、圧力20〜50MPa、温度150〜250℃で熱圧成形することを特徴とする。   The method for producing a separator for a polymer electrolyte fuel cell according to the present invention comprises the steps of kneading a mixed resin solution prepared by dissolving a benzylic ether type phenol resin and a novolac type phenol resin in an organic solvent, and graphite powder. The preformed mold is filled with a molding powder obtained by volatilizing and then pulverizing the kneaded product, and the preform is inserted into the molding mold by pressing the upper mold and pressurizing to 1 to 10 MPa. Hot pressing is performed at a temperature of 20 to 50 MPa and a temperature of 150 to 250 ° C.

この場合、混合樹脂中におけるベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂の樹脂固形分の重量比は90:10〜40:60に設定される。また、好ましくは、混合樹脂の樹脂固形分と黒鉛粉末の重量比は10:90〜35:65に設定される。   In this case, the weight ratio of the resin solid content of the benzylic ether type phenol resin and the novolac type phenol resin in the mixed resin is set to 90:10 to 40:60. Preferably, the weight ratio of the resin solid content of the mixed resin to the graphite powder is set to 10:90 to 35:65.

ベンジリックエ−テル型フェノール樹脂は単独では流動性が低く、黒鉛粉末と均一に混練することが難しく、また成形性が悪化するので、ノボラック型フェノール樹脂を添加、混合して流動性を高めて使用に供される。その際、ベンジリックエ−テル型フェノール樹脂とノボラック型フェノール樹脂は、その樹脂固形分の重量比が90:10〜40:60になるように調整してアルコールやエーテルなどの適宜な有機溶剤に溶解して低粘度の混合樹脂溶液を調製する。   The benzylic ether type phenol resin alone has low fluidity, and it is difficult to uniformly knead with graphite powder, and the moldability deteriorates. Therefore, the novolac type phenol resin is added and mixed to increase the fluidity. Provided. At that time, the benzylic ether type phenolic resin and the novolac type phenolic resin are dissolved in an appropriate organic solvent such as alcohol or ether by adjusting the weight ratio of the resin solids to 90:10 to 40:60. A mixed resin solution having a low viscosity is prepared.

混合樹脂中におけるベンジリックエーテル型フェノール樹脂量が90重量%を越え、ノボラック型フェノール樹脂量が10重量%未満の重量比では混合樹脂の流動性が低くなるので均一に成形することが難しく、黒鉛/樹脂硬化成形体の組織が不均一化してくる。一方、ベンジリックエーテル型フェノール樹脂量が40重量%を下回り、ノボラック型フェノール樹脂量が60重量%を上回る重量比では混合樹脂の硬化速度が遅くなり、成形に時間が掛かり生産性が低下する。より好ましい範囲は90:10〜50:50である。   When the amount of the benzylic ether type phenolic resin in the mixed resin exceeds 90% by weight and the weight ratio of the novolak type phenolic resin is less than 10% by weight, the fluidity of the mixed resin becomes low, and it is difficult to form uniformly. / The structure of the resin-cured molded body becomes non-uniform. On the other hand, when the amount of the benzylic ether type phenolic resin is less than 40% by weight and the amount of the novolac type phenolic resin is more than 60% by weight, the curing speed of the mixed resin becomes slow, and molding takes time and the productivity is lowered. A more preferable range is 90:10 to 50:50.

混合樹脂溶液を黒鉛粉末と混合して均一に混練する。この場合、混合樹脂の樹脂固形分と黒鉛粉末の重量比が10:90〜35:65の割合となるように調整して、ニーダー、加圧型ニーダー、2軸スクリュー式混練機などの適宜な混練機により充分に混練して均一な混練物を調製する。混練後、有機溶剤は真空乾燥あるいは風乾などにより混練物から揮散除去する。なお、用いる黒鉛粉末は平均粒子径が50μm以下に、最大粒子径が100μm以下に粒度調整して使用することが好ましい。   The mixed resin solution is mixed with graphite powder and uniformly kneaded. In this case, adjusting the weight ratio of the resin solid content of the mixed resin and the graphite powder to a ratio of 10:90 to 35:65, and appropriate kneading such as a kneader, a pressure type kneader, or a twin screw kneader A uniform kneaded product is prepared by sufficiently kneading with a machine. After kneading, the organic solvent is volatilized and removed from the kneaded product by vacuum drying or air drying. The graphite powder to be used is preferably used by adjusting the particle size so that the average particle size is 50 μm or less and the maximum particle size is 100 μm or less.

混合樹脂の樹脂固形分と黒鉛粉末の重量比は10:90〜35:65に設定することが好ましく、樹脂固形分が10重量%未満で、黒鉛粉末が90重量%を越える重量比では樹脂分が少ないために成形時の流動性が低下するので成形体の組織が不均一化し、一方、樹脂固形分が35重量%を上回り、黒鉛粉末が65重量%を下回る場合には電気抵抗が増大し、電池性能の低下を招くからである。   The weight ratio of the resin solid content of the mixed resin to the graphite powder is preferably set to 10:90 to 35:65. If the resin solid content is less than 10% by weight and the weight ratio of the graphite powder exceeds 90% by weight, the resin content is Since the flowability during molding is reduced due to the small amount, the structure of the molded body becomes non-uniform. On the other hand, when the resin solid content exceeds 35% by weight and the graphite powder is less than 65% by weight, the electrical resistance increases. This is because the battery performance is degraded.

混練物の表面は樹脂被膜で覆われているため導電性が低くなるので、黒鉛部を露出させることにより導電性の低下を防止するために混練物は粉砕される。粉砕は、予備成形型に均一に充填するために0.1〜1mm程度に粉砕して成形粉が得られる。なお、混練物の粉砕により材質性状の異方性の是正を図ることもでき、セパレータとなる板状成形体の厚さ方向の電気抵抗を低下させ、面方向との異方性を減少させることもできる。   Since the surface of the kneaded material is covered with a resin coating, the conductivity is lowered. Therefore, the kneaded material is pulverized in order to prevent a decrease in conductivity by exposing the graphite portion. The pulverization is performed to pulverize to about 0.1 to 1 mm in order to uniformly fill the preform mold, thereby obtaining a molding powder. It is also possible to correct the material property anisotropy by pulverization of the kneaded material, thereby reducing the electrical resistance in the thickness direction of the plate-like molded body serving as the separator and reducing the anisotropy in the surface direction. You can also.

成形粉を予備成形型のキャビティに均一に充填して、樹脂の融点以上の温度、例えば樹脂融点+10℃程度に加熱した上型を載せて1〜10MPaの圧力で予備成形して板状のプリフォームを作製する。   The molding powder is uniformly filled in the cavity of the preforming mold, and an upper mold heated to a temperature equal to or higher than the melting point of the resin, for example, the resin melting point + 10 ° C., is placed on the preform and preliminarily molded at a pressure of 1 to 10 MPa. Make a renovation.

この板状のプリフォームを、セパレータのガス流路となる溝部を形成する凹凸部が彫られた成形型に、離型剤を塗布して挿入し、圧力20〜50MPa、温度150〜250℃で熱圧成形することにより、樹脂を硬化させて黒鉛粉末を硬化樹脂で結着して一体化した黒鉛/樹脂硬化成形体からなるセパレータ材が製造される。このようにして製造されたセパレータ材は必要に応じて更に機械加工が施される。   This plate-like preform is inserted into a mold having a concavo-convex portion that forms a groove serving as a gas flow path of the separator by applying a release agent, and at a pressure of 20 to 50 MPa and a temperature of 150 to 250 ° C. By hot pressing, a separator material made of a graphite / resin-cured molded body in which the resin is cured and the graphite powder is bound with the cured resin and integrated is manufactured. The separator material thus manufactured is further machined as necessary.

なお、上記の製造プロセスにおいて用いるノボラック型フェノール樹脂はモノマー量が5重量%以下、ダイマー量が20重量%以下、125℃でのプレートフローが150mm以上の性状を備えているものが好ましい。   The novolak type phenolic resin used in the above production process preferably has a monomer amount of 5% by weight or less, a dimer amount of 20% by weight or less, and a plate flow at 125 ° C. of 150 mm or more.

モノマー量が5重量%、ダイマー量が20重量%を越えるとノボラック型フェノール樹脂中の低分子量成分が多くなり、成形、硬化時に低沸点成分がガス化して揮散する量が多くなるため、黒鉛/樹脂硬化成形体中に気孔が形成され易くなり、ガス不透過性が低下することになる。   When the monomer amount exceeds 5% by weight and the dimer amount exceeds 20% by weight, the low molecular weight component in the novolak type phenol resin increases, and the amount of low boiling point components gasified and volatilized during molding and curing increases. The pores are easily formed in the resin cured molded body, and the gas impermeability is lowered.

また、プレートフローはJIS K6909「研削といし用フェノール樹脂試験方法」により測定され、125℃に加熱溶融時のフェノール樹脂の流動性を示すパラメータであり、この値が150mmを下回ると高分子量成分が多くなって成形性が悪化するので、組織が不均一化し易くなる。   The plate flow is a parameter measured by JIS K6909 “Phenolic Resin Test Method for Grinding Wheels” and shows the fluidity of phenolic resin when heated and melted at 125 ° C. When this value is below 150 mm, the high molecular weight component is Since the moldability increases and the formability deteriorates, the structure tends to become non-uniform.

なお、樹脂性状の調整は、例えば減圧加熱によりモノマーやダイマーの低揮発性成分を除去する方法、モノマー、ダイマーとポリマー成分との溶媒への溶解性の違いを利用して分離除去する方法、あるいは樹脂合成時に触媒や反応温度を制御して選択的にモノマー、ダイマーの重合を促進する方法、などにより調整される。   The resin properties can be adjusted by, for example, removing the low-volatile components of the monomer or dimer by heating under reduced pressure, separating and removing the monomer, using the difference in solubility in the solvent between the dimer and the polymer component, or It is adjusted by a method of selectively promoting polymerization of monomers and dimers by controlling the catalyst and reaction temperature during resin synthesis.

以下、本発明の実施例を比較例と対比して具体的に説明する。   Examples of the present invention will be specifically described below in comparison with comparative examples.

実施例1〜4、比較例4
ベンジリックエーテル型フェノール樹脂を樹脂固形分が60重量%になるようにアセトンに溶解して樹脂溶液Aを、また、モノマー量が1重量%未満、ダイマー量が10重量%以下、125℃でのプレートフローが226mmのノボラック型フェノール樹脂を樹脂固形分が70重量%になるようにメタノールに溶解して樹脂溶液Bを作製した。この樹脂溶液AとBを異なる量比で混合して、ベンジリックエーテル型フェノール樹脂とノボラック型フェノール樹脂の樹脂固形分の重量比が異なる混合樹脂溶液を調製した。
Examples 1 to 4 and Comparative Example 4
A benzylic ether type phenolic resin is dissolved in acetone so that the resin solid content is 60% by weight, and the resin solution A is obtained. The monomer amount is less than 1% by weight, the dimer amount is 10% by weight or less, A novolac type phenol resin having a plate flow of 226 mm was dissolved in methanol so that the resin solid content was 70% by weight to prepare a resin solution B. The resin solutions A and B were mixed at different quantitative ratios to prepare mixed resin solutions having different weight ratios of resin solids of benzylic ether type phenol resin and novolac type phenol resin.

黒鉛粉末には平均粒子径40μm、最大粒子径80μm以下に粒度調整した人造黒鉛粉末を使用し、樹脂固形分と黒鉛粉末の重量比が20:80になるように混合樹脂溶液と黒鉛粉末をニーダーに入れて1時間混練した。混練物を室温で24時間通気乾燥し、更に真空乾燥して有機溶剤を揮散除去した。次いで、混練物を粉砕した後、粒度調整して0.1〜0.5mmの成形粉を得た。   For the graphite powder, artificial graphite powder having an average particle size of 40 μm and a particle size adjusted to a maximum particle size of 80 μm or less is used, and the mixed resin solution and the graphite powder are kneaded so that the weight ratio of the resin solid content to the graphite powder is 20:80. And kneaded for 1 hour. The kneaded product was air-dried at room temperature for 24 hours and further vacuum-dried to volatilize and remove the organic solvent. Next, after the kneaded product was pulverized, the particle size was adjusted to obtain a molding powder of 0.1 to 0.5 mm.

成形粉を予備成形型に均等になるように充填し、70℃に加熱した上型を載せて3MPaの圧力で10秒間加圧して、予備成形した板状のプリフォームを作製した。   The molding powder was filled evenly into the preforming mold, and the upper mold heated to 70 ° C. was placed and pressurized at a pressure of 3 MPa for 10 seconds to produce a preformed plate-like preform.

200×200mmの範囲内に幅1mm、深さ0.6mmの溝形状が彫られた外形270×270mmの成形金型にフッ素系の離型剤を塗布して、この成形金型にプリフォームを挿入し、40MPaの圧力、180℃の温度で熱圧成形した。このようにして、黒鉛粉末が硬化樹脂で結着した黒鉛/樹脂硬化成形体からなり、ガス流路となる幅1mm、深さ0.6mmの溝部が形成されたセパレータ材(200×200mm、最薄肉部厚さ0.45mm)を製造した。   Fluorine-based mold release agent is applied to a molding die having an outer shape of 270 × 270 mm in which a groove shape having a width of 1 mm and a depth of 0.6 mm is engraved within a range of 200 × 200 mm, and a preform is applied to the molding die. It was inserted and hot-press molded at a pressure of 40 MPa and a temperature of 180 ° C. In this way, a separator material (200 × 200 mm, maximum thickness) comprising a graphite / resin-cured molded body in which graphite powder is bound with a cured resin and having a gas channel and a groove having a width of 1 mm and a depth of 0.6 mm is formed. A thin part thickness of 0.45 mm) was produced.

これらのセパレータ材から切り出したテストピース(6×30mm)を50mlの蒸留水を入れた密閉容器に浸漬して、90℃の恒温槽に保持した。50時間保持した後のアンモニウムイオン濃度およびTOC(全有機炭素)濃度を測定して、アンモニウムイオン溶出量およびTOC(全有機炭素)溶出量を求めた。   Test pieces (6 × 30 mm) cut out from these separator materials were immersed in a sealed container containing 50 ml of distilled water and held in a thermostat at 90 ° C. The ammonium ion concentration and the TOC (total organic carbon) concentration after holding for 50 hours were measured to determine the ammonium ion elution amount and the TOC (total organic carbon) elution amount.

また、テストピースを50mlの蒸留水を入れた密閉容器に浸漬して、90℃の恒温槽に500時間保持した後の長さの変化を測定して吸水伸び率を求めた。更に、50%エチレングリコール水溶液中に浸漬して90℃の恒温槽に500時間保持した後の長さの変化を測定して吸水伸び率を求めた。   Moreover, the water absorption elongation rate was calculated | required by immersing a test piece in the airtight container containing 50 ml distilled water, and measuring the change of the length after hold | maintaining for 500 hours in a 90 degreeC thermostat. Furthermore, the water absorption elongation rate was calculated | required by measuring the change of the length after immersing in 50% ethylene glycol aqueous solution and hold | maintaining for 500 hours in a 90 degreeC thermostat.

また、テストピースについて下記の方法により材質特性を測定した。
(1)曲げ強度(MPa);
JISR1601により室温および90℃について測定。
(2)固有抵抗率(mΩ・cm);
JISC2525により測定。
(3)接触抵抗(mΩ・cm2 );
テストピース同士を1MPaの圧力で接触させながら、通電量1Aで測定。
(4)ガス透過係数(mol・m・m-2・sec-1・MPa-1);
窒素ガスにより、0.2MPaの差圧をかけた時の単位時間、単位断面積当たりの ガス透過量を測定。
The material properties of the test pieces were measured by the following method.
(1) Bending strength (MPa);
Measured at room temperature and 90 ° C according to JISR1601.
(2) Specific resistivity (mΩ · cm);
Measured according to JISC2525.
(3) Contact resistance (mΩ · cm 2 );
Measured at 1A energization while contacting the test pieces at a pressure of 1 MPa.
(4) Gas permeability coefficient (mol · m · m -2 · sec -1 · MPa -1 );
Measure the gas permeation per unit cross-sectional area when applying a differential pressure of 0.2 MPa with nitrogen gas.

比較例1〜3
結合材樹脂として、ノボラック型フェノール樹脂のみを使用した場合(比較例1)、ベンジリックエーテル型フェノール樹脂のみを使用した場合(比較例2)、レゾール樹脂を使用した場合(比較例3)について、上記実施例と同様にして黒鉛/樹脂硬化成形体を製造し、同じ方法によりその特性を測定した。
Comparative Examples 1-3
When only the novolac type phenol resin is used as the binder resin (Comparative Example 1), when only the benzylic ether type phenol resin is used (Comparative Example 2), when the resol resin is used (Comparative Example 3), A graphite / resin cured molded body was produced in the same manner as in the above Example, and its characteristics were measured by the same method.

得られた結果を表1に示した。   The obtained results are shown in Table 1.

Figure 0004430962
Figure 0004430962

実施例1のセパレータ材を固体高分子膜、ガス拡散電極と組み合わせて10セル分の燃料電池を組み立てた。90℃の温度に上げて、加湿した水素ガスおよび空気をマニホールドから電池の燃料極および空気極に送り、燃料電池反応を起生させて発電させた。24時間経過後の各セルにおける電圧を測定したところ、平均の電圧は0.75Vであった。更に、2000時間まで連続発電させて、2000時間後の各セルの電圧を測定した結果、0.73Vであり、電圧低下率は3%であった。これに対し、比較例1のセパレータ材を用いて同様の電池スタックを組み立てて発電させた結果、24時間経過後の電圧は0.73Vであったが、2000時間経過後の電圧は0.63Vに低下し、電圧低下率は14%であった。   A fuel cell for 10 cells was assembled by combining the separator material of Example 1 with a solid polymer membrane and a gas diffusion electrode. The temperature was raised to 90 ° C., and humidified hydrogen gas and air were sent from the manifold to the fuel electrode and the air electrode of the cell to cause a fuel cell reaction to generate electricity. When the voltage in each cell after the lapse of 24 hours was measured, the average voltage was 0.75V. Furthermore, as a result of continuously generating power up to 2000 hours and measuring the voltage of each cell after 2000 hours, it was 0.73 V and the voltage drop rate was 3%. On the other hand, as a result of assembling a similar battery stack using the separator material of Comparative Example 1 and generating power, the voltage after 24 hours was 0.73 V, but the voltage after 2000 hours was 0.63 V. The voltage drop rate was 14%.

固体高分子型燃料電池の概略構造を示す一部断面図である。1 is a partial cross-sectional view showing a schematic structure of a solid polymer fuel cell.

符号の説明Explanation of symbols

1 セパレータ
2 ガス流路用溝
3 カソード
4 アノード
5 電解質膜
6 シール材
DESCRIPTION OF SYMBOLS 1 Separator 2 Gas channel groove 3 Cathode 4 Anode 5 Electrolyte membrane 6 Sealing material

Claims (5)

黒鉛粉末を、ベンジリックエ−テル型フェノール樹脂とモノマー量5重量%以下、ダイマー量20重量%以下であるノボラック型フェノール樹脂の樹脂固形分の重量比が90:10〜40:60の混合樹脂を結合材として結着してなる黒鉛/樹脂硬化成形体からなることを特徴とする固体高分子形燃料電池用セパレータ材。 The graphite powder is combined with a mixed resin of a benzeric ether type phenolic resin and a novolak type phenolic resin having a monomer amount of 5% by weight or less and a dimer amount of 20% by weight or less in a weight ratio of 90:10 to 40:60. A separator for a polymer electrolyte fuel cell, comprising a graphite / resin-cured molded body bound as a material. 混合樹脂の樹脂固形分と黒鉛粉末の重量比が10:90〜35:65である、請求項1記載の固体高分子形燃料電池用セパレータ材。   The separator material for a polymer electrolyte fuel cell according to claim 1, wherein the weight ratio of the resin solid content of the mixed resin to the graphite powder is 10:90 to 35:65. 請求項1または請求項2記載の固体高分子形燃料電池用セパレータ材を製造する方法であって、
ベンジリックエ−テル型フェノール樹脂とモノマー量5重量%以下、ダイマー量20重量%以下であるノボラック型フェノール樹脂の樹脂固形分の重量比を90:10〜40:60に調整して有機溶剤に溶解した混合樹脂溶液と、黒鉛粉末を混練したのち有機溶剤を揮散除去し、次いで混練物を粉砕して得られた成形粉を予備成形型に充填し、上型を載せて1〜10MPaに加圧して予備成形したプリフォームを成形型に挿入し、圧力20〜50MPa、温度150〜250℃で熱圧成形することを特徴とする固体高分子形燃料電池用セパレータ材の製造方法。
A method for producing a separator for a polymer electrolyte fuel cell according to claim 1 or 2,
The resin solid content weight ratio of the benzylic ether type phenol resin and the novolak type phenol resin having a monomer amount of 5% by weight or less and a dimer amount of 20% by weight or less was adjusted to 90:10 to 40:60 and dissolved in an organic solvent. After kneading the mixed resin solution and the graphite powder, the organic solvent is volatilized and removed, and then the molding powder obtained by pulverizing the kneaded product is filled into a preforming die, and the upper die is placed and pressurized to 1 to 10 MPa. A method for producing a separator material for a polymer electrolyte fuel cell, wherein a preform that has been preformed is inserted into a mold and hot-press molded at a pressure of 20 to 50 MPa and a temperature of 150 to 250 ° C.
混合樹脂の樹脂固形分と黒鉛粉末の重量比を10:90〜35:65に調整して混練する、請求項3記載の固体高分子形燃料電池用セパレータ材の製造方法。   The manufacturing method of the separator material for polymer electrolyte fuel cells of Claim 3 which adjusts the weight ratio of resin solid content of mixed resin and graphite powder to 10: 90-35: 65, and knead | mixes. ノボラック型フェノール樹脂のモノマー量が5重量%以下、ダイマー量が20重量%以下、125℃でのプレートフローが150mm以上である、請求項3又は4記載の固体高分子形燃料電池用セパレータ材の製造方法。   The separator for a polymer electrolyte fuel cell according to claim 3 or 4, wherein the monomer amount of the novolak type phenol resin is 5% by weight or less, the dimer amount is 20% by weight or less, and the plate flow at 125 ° C is 150 mm or more. Production method.
JP2004058583A 2004-03-03 2004-03-03 Separator material for polymer electrolyte fuel cell and manufacturing method thereof Expired - Fee Related JP4430962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058583A JP4430962B2 (en) 2004-03-03 2004-03-03 Separator material for polymer electrolyte fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058583A JP4430962B2 (en) 2004-03-03 2004-03-03 Separator material for polymer electrolyte fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005251501A JP2005251501A (en) 2005-09-15
JP4430962B2 true JP4430962B2 (en) 2010-03-10

Family

ID=35031776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058583A Expired - Fee Related JP4430962B2 (en) 2004-03-03 2004-03-03 Separator material for polymer electrolyte fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4430962B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
JP2007258107A (en) * 2006-03-24 2007-10-04 Asahi Organic Chem Ind Co Ltd Carbonaceous molding material capable of providing excellent molding characteristic, and separator for polymer electrolyte fuel cell provided by using it
JP5517550B2 (en) * 2008-11-13 2014-06-11 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JP2005251501A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4702670B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
JP5057263B2 (en) Separator material for polymer electrolyte fuel cell and method for producing the same
CN102473930B (en) Method for producing a fuel cell separator
CN103117397A (en) Manufacturing technique of bipolar plate for fuel battery
TWI382579B (en) Isolation material for fuel cell and manufacturing method thereof
JP4645790B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP2000040517A (en) Carbonaceous separator member for solid high polymer fuel cell and its manufacture
KR20080074455A (en) Bipolar plate for fuel cell
JP4430962B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
JP2007087864A (en) Separator material for fuel cell, and method for manufacturing same
CN100452484C (en) Separator for fuel cell, method for preparing the same, and fuel cell comprising the same
CN102315458A (en) Production method for graphite bipolar plate of fuel cell
JP4587177B2 (en) Manufacturing method of fuel cell separator
JP4455810B2 (en) Method for producing separator for polymer electrolyte fuel cell
JP2006252905A (en) Separator material for fuel cell, and manufacturing method of the same
JP2005158659A (en) Separator material for solid polymer type fuel cell, and its manufacturing method
JP2002208411A (en) Separator material for solid polymer fuel cell and method of manufacturing it
JP5845458B2 (en) Manufacturing method of fuel cell separator
JP4702118B2 (en) Manufacturing method of fuel cell separator
JP4236248B2 (en) Method for producing separator material for polymer electrolyte fuel cell
JP2004192878A (en) Manufacturing method of separator material for solid polymer type fuel cell
JP2001313044A (en) Separator for fuel cell and manufacturing method of the same
JP2005026137A (en) Method of manufacturing fuel cell separator, fuel cell separator, and solid polymer fuel cell
CN114464833A (en) Ceramic fuel cell bipolar plate and manufacturing method thereof
JP3980229B2 (en) Separator member for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees