JP2000021423A - Separator for fuel cell and manufacture thereof - Google Patents

Separator for fuel cell and manufacture thereof

Info

Publication number
JP2000021423A
JP2000021423A JP10188801A JP18880198A JP2000021423A JP 2000021423 A JP2000021423 A JP 2000021423A JP 10188801 A JP10188801 A JP 10188801A JP 18880198 A JP18880198 A JP 18880198A JP 2000021423 A JP2000021423 A JP 2000021423A
Authority
JP
Japan
Prior art keywords
fuel cell
less
separator
groove
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10188801A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
義雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP10188801A priority Critical patent/JP2000021423A/en
Publication of JP2000021423A publication Critical patent/JP2000021423A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for fuel cell, capable of improving battery performance by improving the adhesiveness between cells so as to lower the contact electrical resistance, and eliminating generation of cracks of a groove for gas passage at assembling of a battery so as to eliminate the troubles of gas leakage. SOLUTION: This separator 1 is formed with plural grooves 2 for gas passage in one surface or both surfaces thereof, and a bottom part of the groove for gas flow is preferably formed into a curved surface having a curvature at 1/10-1/100 of the groove width. This separator preferably has 0.5 mm or less of bow, 100 or less of Shore hardness, 200 kgf/mm2 or less of bending elastic modulus, and ±0.05 mm or less of thickness accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池用、とくに自
動車および小型分散型電源などに使用される固体高分子
型燃料電池用のセパレータおよびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator for a fuel cell, particularly for a polymer electrolyte fuel cell used for automobiles and small distributed power sources, and a method for producing the same.

【0002】[0002]

【従来の技術】燃料電池は、燃料エネルギーを直接電気
エネルギーに変換するものであり、固体高分子型燃料電
池の各セルは、図3に示すように、例えばフッ素系樹脂
により形成されたイオン交換膜からなる電解質膜7を挟
んで配置される一対の電極5、6(アノード6、カソー
ド5)と、これをさらに両側から挟む緻密質のカーボン
材からなるセパレータ1により構成される。電極は白金
などの触媒を担持させた炭素短繊維からなる多孔質体あ
るいはカーボンブラックを樹脂で結着したものなどから
形成される。
2. Description of the Related Art A fuel cell directly converts fuel energy into electric energy. Each cell of a polymer electrolyte fuel cell is, as shown in FIG. It is composed of a pair of electrodes 5 and 6 (anode 6 and cathode 5) arranged with an electrolyte membrane 7 made of a membrane interposed therebetween, and a separator 1 made of a dense carbon material sandwiching the electrodes 5 and 6 from both sides. The electrode is formed of a porous material made of short carbon fibers carrying a catalyst such as platinum or a material obtained by binding carbon black with a resin.

【0003】セパレータ1には、直線状または格子状に
延びる複数の溝2が形成され、溝2とカソード5の表面
の間に形成される空間を酸素含有ガス流路とし、溝2と
アノード6の表面の間に形成される空間を燃料ガス(例
えば水素ガスや、水素ガスを主成分とする混合ガスな
ど)流路として、酸素含有ガスと燃料ガスとが電極に接
触して起こる化学反応を利用して、電極間から電気を取
り出すようになっている。
A plurality of grooves 2 extending linearly or in a lattice are formed in the separator 1, and a space formed between the grooves 2 and the surface of the cathode 5 is used as an oxygen-containing gas flow path. The space formed between the surfaces of the electrodes serves as a flow path for a fuel gas (for example, hydrogen gas or a mixed gas containing hydrogen gas as a main component) so that the chemical reaction that occurs when the oxygen-containing gas and the fuel gas come into contact with the electrode is performed. Utilization is used to extract electricity from between the electrodes.

【0004】電池性能を確保するためには、セル間が十
分に密着していなければならず、そのためにはセパレー
タの寸法精度が重要となるが、従来の固体高分子型燃料
電池においては、セル間の密着性が不十分なことに起因
して接触電気抵抗が増加し、そのために、内部電気抵抗
の上昇による電池性能の低下の問題を生じることが少な
くない。
In order to ensure the cell performance, the cells must be in close contact with each other. For this purpose, the dimensional accuracy of the separator is important. Insufficient adhesion between the electrodes causes an increase in contact electric resistance, which often causes a problem of a decrease in battery performance due to an increase in internal electric resistance.

【0005】また、固体高分子型燃料電池は、各セルを
積層し、通常1〜10kg/cm2程度の締付け圧力
で、周囲をボルト締めすることにより組立てられるが、
セパレータの寸法精度不良などの要因により、セル組立
てにおける締付け時に偏加重が生じて、セパレータのガ
ス流路用溝部の底部端縁部に割れが発生し、ガスリーク
を起こすことも経験されている。ガスリークが生じる
と、電気化学的反応が阻害されるので電池性能の低下が
起こるほか、水素と酸素が混合するので爆発のおそれが
でてくる。
[0005] A polymer electrolyte fuel cell is assembled by stacking each cell and bolting the periphery thereof with a tightening pressure of usually about 1 to 10 kg / cm 2 .
It has also been experienced that due to factors such as poor dimensional accuracy of the separator, a biased load is generated at the time of tightening in cell assembly, cracks are generated at the bottom edge of the gas flow channel groove of the separator, and gas leakage is caused. When a gas leak occurs, the electrochemical reaction is inhibited, so that the performance of the battery is reduced. In addition, since hydrogen and oxygen are mixed, an explosion may occur.

【0006】[0006]

【発明が解決しようとする課題】本発明は、燃料電池、
とくに固体高分子型燃料電池における上記従来の問題点
を解消するために、セル間の密着性とセパレータの素材
特性、形状、寸法などの各因子、さらにセパレータの製
造条件との関係について検討を加えた結果としてなされ
たものであり、その目的は、セル間の密着性が改善され
て接触電気抵抗の増加の問題を解消するとともに、電池
組立て時におけるガス流路用溝部の割れをなくしてガス
リークの問題を解消し、電池性能の向上を可能とする燃
料電池用セパレータおよびその製造方法を提供すること
にある。
SUMMARY OF THE INVENTION The present invention relates to a fuel cell,
In order to solve the above-mentioned conventional problems especially in polymer electrolyte fuel cells, we examined the relationship between the adhesion between cells and each factor such as the material properties, shape, and dimensions of the separator, and the relationship between separator production conditions. The purpose was to improve the adhesion between the cells, eliminate the problem of increased contact electric resistance, and eliminate the cracks in the gas flow channel grooves during battery assembly to reduce gas leakage. An object of the present invention is to provide a fuel cell separator capable of solving the problem and improving the cell performance, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による燃料電池用セパレータは、片面または
両面に複数のガス流路用溝部を形成してなる燃料電池用
セパレータにおいて、該ガス流通用溝部の底部を曲面状
としたことを第1の特徴とする。
According to the present invention, there is provided a fuel cell separator according to the present invention, wherein a plurality of gas flow channel grooves are formed on one surface or both surfaces. A first feature is that the bottom of the distribution groove is curved.

【0008】また、上記のセパレータにおいて、ガス流
通用溝部の曲面状底部の曲率が溝部の幅の1/10〜1
/100であることを第2の特徴とする。
In the above separator, the curvature of the curved bottom of the gas flow groove is 1/10 to 1 to 1 of the width of the groove.
/ 100 is a second feature.

【0009】さらに、上記のセパレータにおいて、反り
が0.5mm以下、ショア硬度(Hs)が100以下、
曲げ弾性率が2000kgf/mm2 以下、厚さ精度が
±0.05mm以下であること、および曲げ強度が30
0kgf/cm2 以上であることを本発明の第3および
第4の特徴とする。
Further, in the above separator, the warp is 0.5 mm or less, the Shore hardness (Hs) is 100 or less,
The flexural modulus is 2000 kgf / mm 2 or less, the thickness accuracy is ± 0.05 mm or less, and the bending strength is 30
The third and fourth features of the present invention are that the pressure is 0 kgf / cm 2 or more.

【0010】本発明による燃料電池用セパレータの製造
方法は、炭素粉末とバインダー樹脂の混合物粉末を金型
に装入して加圧成形する燃料電池用セパレータの製造方
法において、混合物粉末中のバインダー樹脂の割合を4
0重量%以下とし、混合物粉末を40メッシュ以下に粉
砕、篩分けした後、該混合粉末を、溝部を形成するため
の突条部を備え、該突条部が曲面状に形成された金型に
装入して予圧し、予圧後に金型を開放して揮発分および
残留空気を除いた後、所定圧で成形を行い、予圧工程お
よび成形工程中における金型内の温度差を10℃以内に
制御することを第1の特徴とし、成形後、さらに1g/
cm2 以上の圧力下で熱処理を行うことを第2の特徴と
する。
The method for producing a fuel cell separator according to the present invention is directed to a method for producing a fuel cell separator in which a mixture powder of a carbon powder and a binder resin is charged into a mold and press-molded. The ratio of 4
0% by weight or less, the mixture powder is pulverized to 40 mesh or less and sieved, and then the mixed powder is provided with a ridge for forming a groove, and the ridge is formed into a curved surface. After the preload, the mold is opened to remove volatile components and residual air after the preload, and then molded at a predetermined pressure. The temperature difference in the mold during the preload step and the molding step is within 10 ° C. The first feature is that after molding, an additional 1 g /
The second feature is that the heat treatment is performed under a pressure of 2 cm 2 or more.

【0011】[0011]

【発明の実施の形態】本発明においては、図1に示すよ
うに、片面または両面に複数のガス流路用溝部を形成し
てなる燃料電池用セパレータにおいて、ガス流通用溝部
の底部を、図1、図2に示すように曲面状に形成する。
図1は、溝部2の形状を直線部4に連続して曲面部3を
設けたものであり、図3は、直線部を形成することなく
曲面部3を設けたものである。いずれの形状のもので
も、本発明の効果を達成することが可能である。曲面部
の曲率Rは、溝の幅Wの1/10〜1/100に設定す
るのが望ましい。なお、図1、図2においては、片面に
ガス流用用溝部を形成したセパレータのみが例示されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as shown in FIG. 1, in a fuel cell separator having a plurality of gas flow channel grooves formed on one or both surfaces, the bottom of the gas flow groove is illustrated. 1. Formed into a curved surface as shown in FIG.
FIG. 1 shows a configuration in which a curved portion 3 is provided so that the shape of a groove 2 is continuous with a straight portion 4, and FIG. 3 shows a configuration in which the curved portion 3 is provided without forming a straight portion. Any shape can achieve the effects of the present invention. It is desirable to set the curvature R of the curved surface portion to 1/10 to 1/100 of the width W of the groove. 1 and 2 illustrate only a separator having a gas flow groove formed on one surface.

【0012】また、セパレータは、片面または両面に複
数のガス流路用溝部を形成したカーボンの板状体である
が、セル間の密着性を改善するためには、その反りが
0.5mm以下、厚さ精度(厚さのバラツキ)が±0.
05mm以下であることが好ましく、反り、厚さ精度が
上記の範囲を越えると、セル間の密着性が不十分とな
り、ガスリークが生じ易くなる。
The separator is a carbon plate-like body having a plurality of gas flow channel grooves formed on one or both sides. In order to improve the adhesion between cells, the warp is 0.5 mm or less. , Thickness accuracy (thickness variation) is ± 0.
When the warpage and the thickness accuracy exceed the above-mentioned ranges, the adhesion between cells becomes insufficient and gas leakage easily occurs.

【0013】さらに、セパレータを構成するカーボン材
料の特性として、2000kgf/cm2 以下の曲げ弾
性率、100以下のショア硬度、さらには300kgf
/cm2 以上の曲げ強度をそなえたものであることが好
ましい。曲げ弾性率、ショア硬度が上記の値を越えた場
合、曲げ強度が上記の値未満の場合には、ボルト締付け
によるセルの組立て時に、セル間の密着性が不十分とな
ることがある。
[0013] Further, the characteristics of the carbon material constituting the separator include a flexural modulus of 2000 kgf / cm 2 or less, a Shore hardness of 100 or less, and 300 kgf / cm 2 or less.
/ Cm 2 or more. When the flexural modulus and the Shore hardness exceed the above-mentioned values, and when the bending strength is less than the above-mentioned values, the adhesion between the cells may be insufficient at the time of assembling the cells by bolting.

【0014】以下、上記の特性を得るための燃料電池用
セパレータの製造方法について説明する。セパレータ
は、炭素粉末とバインダー樹脂の混合物粉末を金型に装
入し、加圧成形することにより製造されるが、本発明に
おいては、混合物粉末中のバインダー樹脂の割合を40
重量%以下とする。バインダー樹脂の割合が40重量%
を越えると、得られるセパレータの曲げ弾性率、ショア
硬度が高くなる。
Hereinafter, a method of manufacturing a fuel cell separator for obtaining the above characteristics will be described. The separator is manufactured by charging a mixture powder of the carbon powder and the binder resin into a mold and pressing the mixture. In the present invention, the ratio of the binder resin in the mixture powder is 40%.
% By weight or less. 40% by weight of binder resin
When the ratio exceeds the above, the flexural modulus and the Shore hardness of the obtained separator are increased.

【0015】炭素粉末としては、人造黒鉛、天然黒鉛、
膨張黒鉛、コークス粉、カーボンブラックおよびこれら
の混合物が使用でき、バインダー樹脂としては、フェノ
ール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリサルフ
ォン樹脂など、耐食性に優れた合成樹脂が使用できる。
As the carbon powder, artificial graphite, natural graphite,
Expanded graphite, coke powder, carbon black and a mixture thereof can be used. As the binder resin, a synthetic resin having excellent corrosion resistance such as a phenol resin, an epoxy resin, a polyimide resin, and a polysulfone resin can be used.

【0016】炭素粉末とバインダー樹脂との混合は、加
圧型ニーダー、二軸スクリュー式混練機、V型混合機な
どの装置を使用して行う。なお、溶剤などの揮発分を含
むバインダー樹脂を用いる場合は、必要に応じて混合物
粉末の乾燥処理を行う。
The mixing of the carbon powder and the binder resin is carried out using a device such as a pressure kneader, a twin screw kneader or a V-type mixer. When a binder resin containing a volatile component such as a solvent is used, a drying process of the mixture powder is performed as necessary.

【0017】混合粉末は、大粒度のものを多量に含んで
おり、本発明においては、混合物粉末を40メッシュ以
下に粉砕、篩分けすることが必要である。粉砕には、奈
良式粉砕機、ジェットミルなど適宜の粉砕機を使用し、
必要に応じて篩分けを行う。40メッシュ以下にするこ
とによって緻密な成形を行うことができる。
The mixed powder contains a large amount of large-sized powder. In the present invention, it is necessary to pulverize the mixed powder to 40 mesh or less and to sieve the powder. For crushing, use an appropriate crusher such as a Nara crusher, jet mill,
Screen if necessary. Dense molding can be performed by setting the mesh size to 40 mesh or less.

【0018】得られた混合粉末を、金型に装入して予圧
し、予圧後に金型を開放する。予圧後に金型を開放する
ことによって、内在する揮発分および残留空気が除去さ
れ、内在欠陥の発生がなく所望の気体不透過特性が得ら
れ、反り発生も防止される。
The obtained mixed powder is charged into a mold and pre-pressed. After the pre-press, the mold is opened. By opening the mold after the preloading, the volatile components and residual air present therein are removed, the desired gas impermeability is obtained without the occurrence of intrinsic defects, and the occurrence of warpage is also prevented.

【0019】金型は、溝部を形成するための突条部を備
え、溝部の底部を曲面状とするために、突条部が曲面状
に形成されたものを使用する。ついで、金型を閉じ、所
定圧で成形を行う。成形圧力および成形温度は、混合物
粉末の特性や成形性を考慮して決定されるが、通常、3
00〜3000kgf/cm2 の圧力、室温〜250℃
の温度が適用される。
The mold is provided with a ridge for forming a groove, and in order to make the bottom of the groove a curved surface, a die having a curved surface is used. Next, the mold is closed and molding is performed at a predetermined pressure. The molding pressure and molding temperature are determined in consideration of the properties and moldability of the mixture powder.
Pressure of 00 to 3000 kgf / cm 2 , room temperature to 250 ° C
Of temperature apply.

【0020】本発明においては、予圧工程を含む成形工
程中、金型内の温度差を10℃以内に制御することが重
要であり、この温度制御によって、成形中に均一な硬化
状態が達成される。温度差が10℃を越えると、成形中
の硬化状態が部分的に変化して熱歪みが生じ、成形され
た板状セパレータに反りが生じ易くなる。
In the present invention, it is important to control the temperature difference in the mold within 10 ° C. during the molding step including the preloading step, and by this temperature control, a uniform cured state is achieved during molding. You. If the temperature difference exceeds 10 ° C., the cured state during molding is partially changed to cause thermal distortion, and the molded plate-like separator tends to be warped.

【0021】成形後、型抜きを行い、使用条件により、
厳密な平坦度が要求される場合には、さらに黒鉛板、ア
ルミニウム板など、表面が平滑で且つ熱伝導性が良好な
平板に挟み、1kgf/cm2 以上の圧力下で、150
〜250℃の温度域において熱処理を行う。設計条件に
よっては、フライス加工、サーフェス加工などの表面平
滑化処理、外周加工処理を施す。
After molding, the mold is removed, and depending on the use conditions,
When strict flatness is required, the sheet is further sandwiched between flat plates having a smooth surface and good thermal conductivity, such as a graphite plate and an aluminum plate, under a pressure of 1 kgf / cm 2 or more.
Heat treatment is performed in a temperature range of up to 250 ° C. Depending on design conditions, surface smoothing processing such as milling and surface processing, and peripheral processing are performed.

【0022】なお、本発明においては、金型として、溝
部を形成するための突条部を備え、溝部の底部を曲面状
とするために、突条部が曲面状に形成されたものを使用
するが、溝部を形成するための突条部にテーパ角が10
度以上となる抜き代と、突条部の端縁部に0.2mm以
上のアールの角部を持つ金型を使用し、離型する際の不
良の発生を防止することが提案されており(特開昭10
−40937号公報)、この金型を使用して、成形した
場合には、底部の端縁部にアール部を有する溝部が形成
できる。
In the present invention, a mold provided with a ridge for forming a groove, and having a curved ridge in order to make the bottom of the groove a curved surface is used as the mold. However, the ridge for forming the groove has a taper angle of 10
It has been proposed to use a mold with a punching margin of more than degrees and a corner with a round corner of 0.2 mm or more at the edge of the ridge to prevent the occurrence of defects when releasing. (JP 10
In the case where molding is performed using this mold, a groove having a rounded portion at the bottom edge can be formed.

【0023】しかしながら、この溝形状では、燃料電池
のセルを積層して締付け、組立る場合における溝部の割
れの発生を防止するには十分でなく、割れの発生を確実
に回避するためには、本発明のように、底部全体を曲面
状に形成することが必要である。
However, this groove shape is not enough to prevent the generation of cracks in the grooves when stacking and tightening and assembling the cells of the fuel cell, and in order to reliably avoid the occurrence of cracks, As in the present invention, it is necessary to form the entire bottom into a curved surface.

【0024】[0024]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 真比重2.18、平均粒径45μmの炭素粉末と、フェ
ノール樹脂メタノール溶液(住友デュレス(株)製PR
940)を、両者の混合割合を変えて、二軸ニーダーを
用いて混合し、得られた混合物粉末を、室温、大気中で
乾燥した後、奈良式粉砕機を使用して粉砕、ついで篩分
けを行い、40メッシュ以下の粉末を採取した。40メ
ッシュより大きい粉末は再度粉砕し、篩分けした。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 A carbon powder having a true specific gravity of 2.18 and an average particle diameter of 45 μm, and a phenol resin methanol solution (PR manufactured by Sumitomo Durres Co., Ltd.)
940) was mixed using a twin-screw kneader while changing the mixing ratio of the two, and the resulting mixed powder was dried at room temperature in the air, pulverized using a Nara pulverizer, and then sieved. And powder having a size of 40 mesh or less was collected. Powders larger than 40 mesh were ground again and sieved.

【0025】使用した金型は、上型と下型からなり、上
型と下型の合せ部に形成される金型の成形部は、縦15
0mm、横150mm、厚さ3mmで、厚さのバラツキ
は±0.04mmであり、図2に示す形状のガス流通用
溝部(幅1.5mm、高さ1mmで底部の曲率半径0.
1mm)が、成形されるセパレータの片面に33本づつ
両面に設けられるようになっている。
The mold used is composed of an upper mold and a lower mold, and the molding section of the mold formed at the joint of the upper mold and the lower mold has a length of 15 mm.
0 mm, width 150 mm, thickness 3 mm, thickness variation is ± 0.04 mm, and a gas flow groove (width 1.5 mm, height 1 mm, bottom radius of curvature 0.
1 mm) is provided on each side of the separator to be formed, 33 lines on each side.

【0026】得られた40メッシュ以下の混合物粉末を
金型に充填し、成形温度を180℃とし、金型内の温度
差(最高温度と最低温度との差)を8℃に調整して、成
形を行った。まず、100kgf/cm2 で予圧を行っ
て金型を開放した。ついで、350kgf/cm2 の圧
力を加えて3分間保持した。
The resulting mixture powder having a mesh size of 40 mesh or less is filled in a mold, the molding temperature is set to 180 ° C., and the temperature difference (the difference between the maximum temperature and the minimum temperature) in the mold is adjusted to 8 ° C. Molding was performed. First, the mold was opened by preloading at 100 kgf / cm 2 . Then, a pressure of 350 kgf / cm 2 was applied and maintained for 3 minutes.

【0027】型抜きして得られたセパレータ(試験材)
について以下に示す試験を行った。 (接触電気抵抗測定試験)セパレータを10枚積層し、
10kgf/cm2 の締付け圧力を負荷して固定した
後、10Aの直流電流を通電し、積層されたセパレータ
間の接触電気抵抗を測定した。
Separator obtained by die cutting (test material)
The following tests were conducted for (Contact electric resistance measurement test) Ten separators were laminated,
After fixing by applying a tightening pressure of 10 kgf / cm 2 , a direct current of 10 A was applied, and the contact electric resistance between the stacked separators was measured.

【0028】(ガスリーク試験)接触電気抵抗測定後、
積層されたセパレータを解体し、各セパレータに窒素ガ
スで1kgf/cm2 の圧力を加え、ガスリークの有無
を調べた。結果を表1に示す。本発明に従う試験材はい
ずれも接触電気抵抗が低く、ガスリークも生じていな
い。
(Gas leak test) After measuring the contact electric resistance,
The laminated separators were disassembled, and a pressure of 1 kgf / cm 2 was applied to each separator with nitrogen gas to check for gas leak. Table 1 shows the results. All the test materials according to the present invention have low contact electric resistance and no gas leakage.

【0029】表1において、反り量は、定盤上にセパレ
ータを置いて基準位置でダイヤルゲージをゼロセット
し、全体で9点について反り量を測定し、最大値を採用
した。厚さ精度は、セパレータの9個所について厚さを
マイクロメータで測定し、平均値、最大値、最小値を検
出して厚さ精度を求める。曲げ強度および曲げ弾性率は
JIS K6911に準じて測定した。接触電気抵抗
は、全体の電気抵抗より素材分を引いた値を接触電気抵
抗とし、JIS R7202に準じて測定した。
In Table 1, as for the amount of warpage, the separator was placed on the surface plate, the dial gauge was set to zero at the reference position, the amount of warpage was measured at nine points in total, and the maximum value was adopted. The thickness accuracy is obtained by measuring the thickness at nine locations of the separator with a micrometer and detecting the average value, the maximum value, and the minimum value to obtain the thickness accuracy. Flexural strength and flexural modulus were measured according to JIS K6911. The contact electric resistance was measured according to JIS R7202 by using a value obtained by subtracting a material component from the entire electric resistance as a contact electric resistance.

【0030】[0030]

【表1】 [Table 1]

【0031】比較例1 実施例と同じく、真比重2.18、平均粒径45μmの
炭素粉末と、フェノール樹脂メタノール溶液(住友デュ
レス(株)製PR940)を、両者の混合割合を変え
て、二軸ニーダーを用いて混合し、得られた混合物粉末
を、室温、大気中で乾燥した後、奈良式粉砕機を使用し
て粉砕、ついで篩分けを行い、40メッシュ以下の粉末
を採取した。40メッシュより大きい粉末は再度粉砕
し、篩分けした。
COMPARATIVE EXAMPLE 1 As in the example, carbon powder having a true specific gravity of 2.18 and an average particle size of 45 μm, and a phenol resin methanol solution (PR940, manufactured by Sumitomo Durres Co., Ltd.) were mixed at different mixing ratios. After mixing using an axis kneader and drying the resulting mixture powder in the air at room temperature, the mixture was pulverized using a Nara-type pulverizer and then sieved to collect powder having a size of 40 mesh or less. Powders larger than 40 mesh were ground again and sieved.

【0032】使用した金型は、上型と下型からなり、上
型と下型の合せ部に形成される金型の成形部は、縦15
0mm、横150mm、厚さ3mmで、厚さのバラツキ
は±0.05〜0.08mmであり、図2に示す形状の
ガス流通用溝部(幅1.5mm、高さ1mmで、底部の
曲率半径0.02〜0.1mmおよび曲率を有しないも
の)が、成形されるセパレータの片面に33本づつ両面
に設けられるようになっている。
The mold used is composed of an upper mold and a lower mold, and the molding section of the mold formed at the joint of the upper mold and the lower mold has a length of 15 mm.
0 mm, 150 mm in width, 3 mm in thickness, the thickness variation is ± 0.05 to 0.08 mm, and the gas flow groove (width 1.5 mm, height 1 mm, bottom curvature in the shape shown in FIG. 2) A separator having a radius of 0.02 to 0.1 mm and having no curvature) is provided on each side of the separator to be formed, 33 pieces on each side.

【0033】得られた40メッシュ以下の混合物粉末を
金型に充填し、実施例1と同じ条件で成形を行い、型抜
き後に得られたセパレータについて、実施例1と同じ試
験を実施した。結果を表2に示す。
The obtained mixture powder having a mesh size of 40 mesh or less was filled in a mold, molded under the same conditions as in Example 1, and the same test as in Example 1 was performed on the separator obtained after the die cutting. Table 2 shows the results.

【0034】[0034]

【表2】 《表注》ガスリーク:試験材10個中、ガスリークが生じた試験材数[Table 2] << Table Note >> Gas Leakage: Number of test materials with gas leak out of 10 test materials

【0035】表2に示すように、試験材No.3は反り
量が大きく、また溝底部の曲率も小さいため、接触電気
抵抗が大きくガスリークも生じた。試験材No.4は、
試験材No.3と炭素粉末とフェノール樹脂メタノール
溶液との混合割合が同じもので、成形された試験材を、
表面が平滑な黒鉛板に挟み、1kgf/cm2 以上の圧
力下で、200℃の温度で熱処理を行うことにより反り
量を減少させたものであり、溝底部の曲率が十分に大き
いためガスリークは認められず、接触電気抵抗も改善さ
れてはいるが、曲げ強度が低いため接触電気抵抗の低下
が十分に行われていない。
As shown in Table 2, the test material No. Sample No. 3 had a large amount of warpage and a small curvature at the bottom of the groove, so that the contact electric resistance was large and gas leakage occurred. Test material No. 4 is
Test material No. 3, the mixing ratio of the carbon powder and the methanol solution of the phenol resin is the same, and the molded test material is
The amount of warpage was reduced by heat treatment at a temperature of 200 ° C. under a pressure of 1 kgf / cm 2 or more, sandwiched between graphite plates with smooth surfaces, and the curvature of the groove bottom was sufficiently large. Although not recognized, the contact electric resistance was improved, but the contact electric resistance was not sufficiently reduced due to low bending strength.

【0036】試験材No.5は厚さのバラツキが大きい
ため接触電気抵抗が大きい。試験材No.6は曲げ弾性
率が大きいため、積層された試験材の密着性が劣り、接
触電気抵抗が大きくなっている。試験材No.7、N
o.8は、溝底部が曲面状でなく、積層時に溝底の端縁
部に割れが発生したため ガスリークが生じた。試験材
No.9は硬度が大きいため、接触電気抵抗が大きい。
Test material No. No. 5 has large contact electric resistance because of large thickness variation. Test material No. Sample No. 6 has a large flexural modulus, so that the adhesion of the laminated test materials is poor and the contact electric resistance is large. Test material No. 7, N
o. In No. 8, a gas leak occurred because the groove bottom was not curved and a crack occurred at the edge of the groove bottom during lamination. Test material No. 9 has a high hardness, and thus has a large contact electric resistance.

【0037】[0037]

【発明の効果】本発明によれば、セル間の密着性が改善
されて接触電気抵抗が低く、電池組立て時におけるガス
流路用溝部の割れをなくしてガスリークの問題を解消
し、電池性能を向上させることができる燃料電池用セパ
レータおよびその製造方法が提供される。
According to the present invention, the adhesion between cells is improved, the contact electric resistance is low, the crack of the gas flow channel groove during battery assembly is eliminated, and the problem of gas leakage is eliminated, and the battery performance is improved. Provided are a fuel cell separator that can be improved and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子型燃料電池の構造を示す一部断面図
である。
FIG. 1 is a partial cross-sectional view showing a structure of a polymer electrolyte fuel cell.

【図2】本発明のセパレータの溝形状の一実施例を示す
断面図である。
FIG. 2 is a cross-sectional view showing one embodiment of a groove shape of the separator of the present invention.

【図3】本発明のセパレータの溝形状の他の実施例を示
す断面図である。
FIG. 3 is a sectional view showing another embodiment of the groove shape of the separator of the present invention.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 ガス流路用溝部 3 曲面部 4 直線部 5 カソード 6 アノード 7 電解質膜 R 曲面部の曲率半径 W 溝部の幅 DESCRIPTION OF SYMBOLS 1 Separator 2 Gas channel groove part 3 Curved surface part 4 Linear part 5 Cathode 6 Anode 7 Electrolyte membrane R Curvature radius of curvature part W Width of groove part

【手続補正書】[Procedure amendment]

【提出日】平成11年7月27日(1999.7.2
7)
[Submission date] July 27, 1999 (July 7, 1999
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】成形後、型抜きを行い、使用条件により、
厳密な平坦度が要求される場合には、さらに黒鉛板、ア
ルミニウム板など、表面が平滑で且つ熱伝導性が良好な
平板に挟み、1g/cm2 以上の圧力下で、150〜2
50℃の温度域において熱処理を行う。設計条件によっ
ては、フライス加工、サーフェス加工などの表面平滑化
処理、外周加工処理を施す。
After molding, the mold is removed, and depending on the use conditions,
When strict flatness is required, it is further sandwiched between flat plates having a smooth surface and good thermal conductivity, such as a graphite plate and an aluminum plate, and placed under a pressure of 1 g / cm 2 or more under a pressure of 150 to 2 g / cm 2.
Heat treatment is performed in a temperature range of 50 ° C. Depending on design conditions, surface smoothing processing such as milling and surface processing, and peripheral processing are performed.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0035】表2に示すように、試験材No.3は反り
量が大きく、また溝底部の曲率も小さいため、接触電気
抵抗が大きくガスリークも生じた。試験材No.4は、
試験材No.3と炭素粉末とフェノール樹脂メタノール
溶液との混合割合が同じもので、成形された試験材を、
表面が平滑な黒鉛板に挟み、1g/cm2 以上の圧力下
で、200℃の温度で熱処理を行うことにより反り量を
減少させたものであり、溝底部の曲率が十分に大きいた
めガスリークは認められず、接触電気抵抗も改善されて
はいるが、曲げ強度が低いため接触電気抵抗の低下が十
分に行われていない。
As shown in Table 2, the test material No. Sample No. 3 had a large amount of warpage and a small curvature at the bottom of the groove, so that the contact electric resistance was large and gas leakage occurred. Test material No. 4 is
Test material No. 3, the mixing ratio of the carbon powder and the methanol solution of the phenol resin is the same, and the molded test material is
The amount of warpage was reduced by performing a heat treatment at a temperature of 200 ° C. under a pressure of 1 g / cm 2 or more, sandwiched between graphite plates having a smooth surface, and the curvature at the bottom of the groove was sufficiently large. Although not recognized, the contact electric resistance was improved, but the contact electric resistance was not sufficiently reduced due to low bending strength.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】本発明のセパレータの溝形状の一実施例を示す
断面図である。
FIG. 1 is a sectional view showing one embodiment of a groove shape of a separator of the present invention.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】本発明のセパレータの溝形状の他の実施例を示
す断面図である。
FIG. 2 is a sectional view showing another embodiment of the groove shape of the separator of the present invention.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】固体高分子型燃料電池の構造を示す一部断面図
である。
FIG. 3 is a partial cross-sectional view showing a structure of a polymer electrolyte fuel cell.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 片面または両面に複数のガス流路用溝部
を形成してなる燃料電池用セパレータにおいて、該ガス
流通用溝部の底部を曲面状としたことを特徴とする燃料
電池用セパレータ。
1. A fuel cell separator having a plurality of gas flow channel grooves formed on one or both surfaces thereof, wherein the bottom of the gas flow groove is curved.
【請求項2】 ガス流通用溝部の曲面状底部の曲率が溝
部の幅の1/10〜1/100であることを特徴とする
請求項1記載の燃料電池用セパレータ。
2. The fuel cell separator according to claim 1, wherein the curvature of the curved bottom of the gas flow groove is 1/10 to 1/100 of the width of the groove.
【請求項3】 反りが0.5mm以下、ショア硬度が1
00以下、曲げ弾性率が2000kgf/mm2 以下、
厚さ精度が±0.05mm以下であることを特徴とする
請求項1または2記載の燃料電池用セパレータ。
3. A warp of 0.5 mm or less and a Shore hardness of 1
00 or less, flexural modulus 2000 kgf / mm 2 or less,
3. The fuel cell separator according to claim 1, wherein the thickness accuracy is ± 0.05 mm or less.
【請求項4】 曲げ強度が300kgf/cm2 以上で
あることを特徴とする請求項1〜3のいずれかに記載の
燃料電池用セパレータ。
4. The fuel cell separator according to claim 1, wherein the separator has a bending strength of 300 kgf / cm 2 or more.
【請求項5】 炭素粉末とバインダー樹脂の混合物粉末
を金型に装入して加圧成形する燃料電池用セパレータの
製造方法において、混合物粉末中のバインダー樹脂の割
合を40重量%以下とし、混合物粉末を40メッシュ以
下に粉砕、篩分けした後、該混合粉末を、溝部を形成す
るための突条部を備え、該突条部が曲面状に形成された
金型に装入して予圧し、予圧後に金型を開放して揮発分
および残留空気を除いた後、所定圧で成形を行い、予圧
工程および成形工程中における金型内の温度差を10℃
以内に制御することを特徴とする燃料電池用セパレータ
の製造方法。
5. A method for producing a separator for a fuel cell, wherein a mixture powder of carbon powder and a binder resin is charged into a mold and press-molded, wherein the proportion of the binder resin in the mixture powder is set to 40% by weight or less. After pulverizing and sieving the powder to 40 mesh or less, the mixed powder is provided with a ridge for forming a groove, and the ridge is charged into a mold having a curved surface and pre-pressed. After the pre-press, the mold is opened to remove volatile components and residual air, and then molded at a predetermined pressure, and the temperature difference in the mold during the pre-press step and the molding step is reduced by 10 ° C.
A method for producing a fuel cell separator, characterized in that the control is performed within the following range.
【請求項6】 成形後に1g/cm2 以上の圧力下で熱
処理を行うことを特徴とする請求項5記載の燃料電池用
セパレータの製造方法。
6. The method for producing a fuel cell separator according to claim 5, wherein heat treatment is performed after molding under a pressure of 1 g / cm 2 or more.
JP10188801A 1998-07-03 1998-07-03 Separator for fuel cell and manufacture thereof Pending JP2000021423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188801A JP2000021423A (en) 1998-07-03 1998-07-03 Separator for fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188801A JP2000021423A (en) 1998-07-03 1998-07-03 Separator for fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000021423A true JP2000021423A (en) 2000-01-21

Family

ID=16230051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188801A Pending JP2000021423A (en) 1998-07-03 1998-07-03 Separator for fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000021423A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043217A1 (en) * 1999-12-06 2001-06-14 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP2004006432A (en) * 2003-10-02 2004-01-08 Nippon Pillar Packing Co Ltd Separator for fuel cell
KR100627373B1 (en) 2005-04-08 2006-09-22 삼성에스디아이 주식회사 Stack for fuel cell
JP2007157725A (en) * 2006-12-18 2007-06-21 Ntn Corp Conductive resin molding, and its manufacturing method
JP2010269572A (en) * 2009-05-25 2010-12-02 Idemitsu Kosan Co Ltd Manufacturing process for molding, mold and molding
JP2014525988A (en) * 2011-07-21 2014-10-02 プランゼー エスエー Molding
JP2015092492A (en) * 2014-12-24 2015-05-14 パナソニックIpマネジメント株式会社 Molding material for fuel battery separators

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043217A1 (en) * 1999-12-06 2001-06-14 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
US6794078B1 (en) 1999-12-06 2004-09-21 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP2004006432A (en) * 2003-10-02 2004-01-08 Nippon Pillar Packing Co Ltd Separator for fuel cell
KR100627373B1 (en) 2005-04-08 2006-09-22 삼성에스디아이 주식회사 Stack for fuel cell
JP2007157725A (en) * 2006-12-18 2007-06-21 Ntn Corp Conductive resin molding, and its manufacturing method
JP4733008B2 (en) * 2006-12-18 2011-07-27 Ntn株式会社 Conductive resin molded body and method for producing the same
JP2010269572A (en) * 2009-05-25 2010-12-02 Idemitsu Kosan Co Ltd Manufacturing process for molding, mold and molding
JP2014525988A (en) * 2011-07-21 2014-10-02 プランゼー エスエー Molding
US9472816B2 (en) 2011-07-21 2016-10-18 Plansee Se Molded part
KR101880787B1 (en) * 2011-07-21 2018-07-20 플란제 에스이 Molded part
JP2015092492A (en) * 2014-12-24 2015-05-14 パナソニックIpマネジメント株式会社 Molding material for fuel battery separators

Similar Documents

Publication Publication Date Title
EP2192644B1 (en) Molding material for fuel cell separator
US20070164483A1 (en) Method for manufacturing a separator plate for PEM fuel cells
KR100528010B1 (en) Polymer electrolyte type fuel cell
Hentall et al. New materials for polymer electrolyte membrane fuel cell current collectors
EP2348564B1 (en) Gas diffusion layer for fuel cell, manufacturing method therefor, membrane electrode assembly, and fuel cell
EP2343762A1 (en) Membrane electrode assembly and fuel cell
JPWO2002078108A1 (en) Polymer electrolyte fuel cell
US20040048126A1 (en) Polymer electrolyte fuel cell and production method of separator plate thereof
US6815112B2 (en) Fuel cell separator and polymer electrolyte fuel cell
US20050104047A1 (en) Fuel cell-use separator
JP2000021423A (en) Separator for fuel cell and manufacture thereof
JP6560621B2 (en) Electrochemical reaction single cell, interconnector-electrochemical reaction single cell complex, and electrochemical reaction cell stack
US7172829B2 (en) Fuel cell and process for the production of same
JP3807708B2 (en) Method for producing separator member for polymer electrolyte fuel cell
US11984607B2 (en) Gas diffusion layer, membrane electrode assembly, fuel cell, and manufacturing method of gas diffusion layer
JP5295554B2 (en) Fuel cell and fuel cell separator
JP4781333B2 (en) Polymer electrolyte fuel cell
JP2003151574A (en) Separator for fuel cell and its manufacturing method
KR100758773B1 (en) Polymer electrolyte fuel cell
JP4455810B2 (en) Method for producing separator for polymer electrolyte fuel cell
JP7466095B2 (en) Fuel cell, fuel cell, and method for manufacturing fuel cell
JP2008010431A5 (en)
JP2002208411A (en) Separator material for solid polymer fuel cell and method of manufacturing it
KR20230139229A (en) Composite separator for hydrogen fuel cell comprising stainless powder and manufacturing method thereof
Hung et al. The Fuel Cell Flow channel design on Metallic Bipolar plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003