JP4455271B2 - Polishing method and apparatus - Google Patents

Polishing method and apparatus Download PDF

Info

Publication number
JP4455271B2
JP4455271B2 JP2004309747A JP2004309747A JP4455271B2 JP 4455271 B2 JP4455271 B2 JP 4455271B2 JP 2004309747 A JP2004309747 A JP 2004309747A JP 2004309747 A JP2004309747 A JP 2004309747A JP 4455271 B2 JP4455271 B2 JP 4455271B2
Authority
JP
Japan
Prior art keywords
polishing
polished
relative
center
relative angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004309747A
Other languages
Japanese (ja)
Other versions
JP2006116678A (en
Inventor
尚之 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004309747A priority Critical patent/JP4455271B2/en
Publication of JP2006116678A publication Critical patent/JP2006116678A/en
Application granted granted Critical
Publication of JP4455271B2 publication Critical patent/JP4455271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、光学素子などの被研磨物の表面仕上げを行う研磨方法及び装置に係り、熟練した技能を必要とせずに被研磨物及び研磨皿を安定運動させながら高い形状精度を得られるようにした研磨方法及び装置に関する。   The present invention relates to a polishing method and apparatus for performing surface finishing of an object to be polished such as an optical element so that high shape accuracy can be obtained while stably moving the object to be polished and a polishing dish without requiring skilled skills. The present invention relates to a polishing method and apparatus.

一般にレンズ、プリズム、ミラーなどの光学素子の表面仕上げを行う手法としては、被研磨物と研磨用の弾性工具(以降、研磨皿と称する)とを互いに摺動運動させ、界面に介在する研磨用砥粒で被研磨物を除去する研磨加工法が用いられる。このような研磨加工方法では、研磨面の精度を確保するために人の技能に依存する製造形態が多い。その中で、摺動運動による研磨皿の揺動幅を研磨加工中に変化させ、被研磨物が研磨皿からはみ出す量を変化させることで、被研磨物の外周部に生じる形状精度の低下(以降、面クセと称する) を軽減させている。また、被研磨物の面全体の形状精度確保に対しては、揺動運動中に被研磨物と研磨皿の回転数比を変化させることで得ている。(例えば、特許文献1参照。) As a method of performing general lens, a prism, a surface finish of an optical element such as a mirror, for polishing the elastic tool (hereinafter, referred to as the polishing dish) for polishing a polishing object and the slide motion to each other, interposed interface A polishing method is used in which an object to be polished is removed with abrasive grains. In such a polishing method, there are many manufacturing forms that depend on human skills in order to ensure the accuracy of the polished surface. Among them, the swinging width of the polishing dish due to the sliding motion is changed during the polishing process, and the amount of protrusion of the polishing object from the polishing dish is changed, thereby reducing the shape accuracy generated on the outer periphery of the polishing object ( Hereinafter, this is referred to as “face habit”. Further, ensuring the shape accuracy of the entire surface of the object to be polished is obtained by changing the rotation speed ratio between the object to be polished and the polishing dish during the swinging motion. (For example, refer to Patent Document 1.)

ところで、上記特許文献1の技術である揺動幅を変化させながら面クセを軽減させることは、被研磨物が研磨皿からはみ出す領域だけで効果があり、研磨面全体での面クセ、特に被研磨物の回転中心部分に生じる面クセである中高(なかだか)や中落ちに関しては効果が期待できない。すなわち被研磨物が研磨皿からはみ出す領域で生じる面クセを軽減させるために、研磨中に揺動幅を変化させてはみ出す境界位置を分散させ、摩擦量を分散及び変化させることで面クセを目立たないようにしているため、被研磨物の回転中心に生じる中高及び中落ちの軽減には効果がない。   By the way, reducing the wrinkle while changing the swinging width, which is the technique of the above-mentioned Patent Document 1, is effective only in the region where the object to be polished protrudes from the polishing dish. No effect can be expected with respect to medium to high (Nakanaka) and dropouts, which are surface defects that occur at the center of rotation of the polished article. In other words, in order to reduce the surface nuisance generated in the region where the object to be polished protrudes from the polishing dish, the boundary position that protrudes by dispersing the swing width during polishing is dispersed, and the amount of friction is dispersed and changed to make the surface nuisance conspicuous. Therefore, there is no effect in reducing the middle height and middle drop generated at the center of rotation of the workpiece.

また上記特許文献1の技術では、中高及び中落ちを含めた被研磨物の研磨面全体の形状精度を確保するために、被研磨物と研磨皿の回転数の比をその両者の位置に応じて変化させることで得ている。しかし両者の位置が揺動幅の変化に伴って常に変化するため、その位置に応じて両者の回転数比を常に変化させることは揺動位置の条件、被研磨物の回転数、及び研磨皿の回転数と3つの因子を同時に制御する複雑な制御・加工システムとなってしまう。同時に被研磨物及び研磨皿の位置及び回転数が常に変化することで、研磨作用による研磨力が常に変動を繰り返し、研磨皿が被研磨物の加工面に倣うことで安定した研磨作用を発揮することが困難となり、安定した研磨加工を行うことが難しくなる。特に、研磨力の大きさ、方向が運動とともに大きく変動するため、被研磨物の研磨面で微小な振動が発生しやすくなり、被研磨物に細かな凹凸を有する面クセを発生させる懸念がある。   Moreover, in the technique of the said patent document 1, in order to ensure the shape precision of the whole grinding | polishing surface of a to-be-polished object including medium height and drop-down, the ratio of the rotation speed of a to-be-polished object and a grinding | polishing dish is according to the position of both. It is obtained by changing. However, since the positions of the two always change with the change of the swing width, changing the rotation speed ratio according to the position always changes the conditions of the swing position, the rotational speed of the object to be polished, and the polishing dish. It becomes a complicated control and processing system that simultaneously controls the rotation speed and three factors. At the same time, the position and rotation speed of the object to be polished and the polishing dish constantly change, so that the polishing force due to the polishing action constantly fluctuates, and the polishing dish follows the processing surface of the object to be polished and exhibits a stable polishing action. This makes it difficult to perform stable polishing. In particular, since the magnitude and direction of the polishing force greatly vary with the movement, minute vibrations are likely to occur on the polishing surface of the object to be polished, and there is a concern of generating surface defects having fine irregularities on the object to be polished. .

また摺動運動による研磨加工方法で、熟練技術者は、被研磨物の形状及び精度を得るために、機械に対してはカンザシの前後の出し入れ、揺動距離、及び軸回転数の変更の手段により研磨条件の調整を行うが、特にカンザシの前後出し入れが大きな変化と形状調整(修正)能力を有している。ここでのカンザシの前後出し入れとは、被研磨物と研磨皿との相対位置の変化及び調整を示しており、この作業自体を自動化することが高い形状精度を確保できることになる。   In addition, in the polishing method by sliding motion, skilled engineers can change the swinging distance and shaft rotation speed of the machine in order to obtain the shape and accuracy of the workpiece. The polishing conditions are adjusted by the above-mentioned method. In particular, the front and rear loading / unloading of the Kanzashi has a great change and the ability to adjust (correct) the shape. The front and rear loading / unloading of the kanzashi here indicates the change and adjustment of the relative position between the object to be polished and the polishing dish, and automating this operation itself can ensure high shape accuracy.

本発明の課題は、上記従来の実情に鑑み、熟練した技能を必要とせずに被研磨物と研磨皿を安定運動させながら、高い形状精度を得る研磨方法及び装置を提供することである。   An object of the present invention is to provide a polishing method and apparatus that obtains high shape accuracy while stably moving an object to be polished and a polishing dish without requiring skilled skills in view of the above-described conventional situation.

本発明の第一の態様は、被研磨物の研磨面に研磨工具の研磨面を当て付け、上記被研磨物と上記研磨工具との相対すべりにより上記被研磨物を研磨する研磨方法において、上記被研磨物及び上記研磨工具を各々独立に回転駆動させ、上記被研磨物及び上記研磨工具のうちの一方の揺動を一定幅で行い、該揺動の中心における両回転軸間で形成される基準相対角度、又は、上記揺動の中心における一方の回転駆動体接触点と他方の回転駆動体の中心位置とで形成される基準相対位置のいずれかを、上記相対角度/位置が最小である最小相対角度/位置と上記相対角度/位置が最大である最大相対角度/位置との間で連続的に変化させる工程を有することを特徴とする、研磨方法である。 A first aspect of the present invention is a polishing method in which the polishing surface of an object to be polished is applied to the polishing surface of the object to be polished, and the object to be polished is polished by relative sliding between the object to be polished and the polishing tool. The object to be polished and the polishing tool are driven to rotate independently, and one of the object to be polished and the polishing tool is swung with a constant width, and is formed between both rotating shafts at the center of the rocking. Either the reference relative angle or the reference relative position formed by the contact point of one rotary drive at the center of the swing and the center position of the other rotary drive , the relative angle / position is the smallest. It characterized in that it has a minimum relative angular / position and the relative angle / position is continuously changed between the maximum relative angular / position which is the maximum step, a polishing method.

本発明の第二の態様は、上記第一の態様において、上記揺動の方向は、上記相対角度/位置を連続的に変化させる方向に沿っていることを特徴とする、研磨方法である。 A second aspect of the present invention is the polishing method according to the first aspect, wherein the swinging direction is along a direction in which the relative angle / position is continuously changed.

本発明の第三の態様は、被研磨物の研磨面に研磨工具の研磨面を当て付け、上記被研磨物と上記研磨工具との相対すべりにより前記被研磨物を研磨する研磨装置において、上記被研磨物及び上記研磨工具を各々独立に回転駆動させる手段と、上記被研磨物及び上記研磨工具のうちの一方の揺動を一定幅で行う手段と、上記揺動の中心における両回転軸間で形成される基準相対角度、又は、上記揺動の中心における一方の回転駆動体接触点と他方の回転駆動体の中心位置とで形成される基準相対位置のいずれかを、上記相対角度/位置が最小である最小相対角度/位置と上記相対角度/位置が最大である最大相対角度/位置との間で連続的に変化させる制御手段と、を備えて構成される。 According to a third aspect of the present invention, there is provided a polishing apparatus that applies a polishing surface of a polishing tool to a polishing surface of an object to be polished, and polishes the object to be polished by relative sliding between the object to be polished and the polishing tool. A means for independently rotating the object to be polished and the polishing tool, a means for swinging one of the object to be polished and the polishing tool with a constant width, and both rotation shafts at the center of the swing reference relative angle in the formed, or, one of the reference relative position formed at the center position of the one rotary drive member contact points and the other rotary drive member at the center of the swing, the relative angle / position There configured and control means for continuously changing between the maximum relative angular / position minimum relative angular / position and the relative angle / position is the smallest is the largest.

本発明によれば、被研磨物に対する研磨工具の揺動幅を一定に保ったまま、被研磨物と研磨工具の相対位置を連続的に変化させるようにしており、これは、詳しくは後述するが、熟練した技能者が行うカンザシの出し入れ作業を連続的に行うこととほぼ同等な動作であり、その結果、熟練した技能を必要とせずに被研磨物と研磨皿を安定運動させながら、高い形状精度を得ることが可能である。 According to the present invention, while keeping constant the swing width of the polishing tool against the object to be polished, and so as to continuously change the relative position of the polishing tool and the object to be polished, which is described later in detail However, the operation is almost equivalent to the continuous operation of the loading and unloading of Kanzashi performed by skilled technicians, and as a result, it is high while stably moving the object to be polished and the polishing dish without requiring skilled skills. Shape accuracy can be obtained.

光学素子の研磨を行う際の時間と位置の関係を横軸に時間、縦軸に調整作業・動作に伴う位置とし、図1(a)〜(c)に示した。図1(a)は技能者が被研磨物の形状精度を確保するために行うカンザシの前後出し入れ作業を、図1(b)は特許文献1(特開平9−300191)の調整方法を、図1(c)は本発明の相対位置調整を示したものである。 The relationship between time and position at the time of polishing the optical element is shown in FIGS. 1A to 1C, with the horizontal axis representing time and the vertical axis representing the position associated with the adjustment work / operation. FIG. 1 (a) shows the front / rear loading / unloading work of a Kanzashi performed by a technician to ensure the shape accuracy of the workpiece, and FIG. 1 (b) shows the adjustment method of Patent Document 1 (Japanese Patent Laid-Open No. 9-300191). 1 (c) shows the relative position adjustment of the present invention.

図1(a)に示した技能者の作業を分析すると、機械の調整を行っている時間は同図に示すように機械動作が停止しているが、それを除く領域ではカンザシの出し入れにより研磨皿回転軸位置を変え、その位置で揺動を行い研磨作業が行われていることがわかる。すなわち研磨皿又は被研磨物を揺動運動させる揺動幅(振幅)は変わらず、その振り幅の中心位置つまり相対位置を変化させることになる。   When the work of the technician shown in FIG. 1A is analyzed, the machine operation is stopped as shown in the figure during the time when the machine is adjusted. It can be seen that the polishing operation is performed by changing the position of the dish rotation axis and swinging at that position. That is, the swinging width (amplitude) for swinging the polishing dish or the workpiece is not changed, and the center position, that is, the relative position of the swinging width is changed.

図1(b)に示した特許文献1(特開平9−300191)の調整方法は、摺動運動による研磨皿の揺動幅を研磨加工中に変化させ、被研磨物が研磨皿からはみ出す量を変化させることで、被研磨物の外周部に生じる面クセを軽減させている。   In the adjusting method of Patent Document 1 (Japanese Patent Laid-Open No. 9-300191) shown in FIG. 1B, the amount by which the object to be polished protrudes from the polishing dish by changing the rocking width of the polishing dish by the sliding motion during the polishing process. By changing, surface defects generated on the outer peripheral portion of the object to be polished are reduced.

図1(c)に示した本発明の相対位置調整では、被研磨物と研磨皿の寸法などの情報から、あらかじめ算出設定された研磨皿の回転中心軸位置に対して、それぞれの上限下限値(同図の破線で示す位置)が求められ、その範囲内で設定された揺動幅(振幅)を保ったまま移動しながら研磨を行う方法であり、被研磨物と研磨皿の相対位置を研磨中に連続的に変化させている。これは図1(a)に示した熟練した技能者が行うカンザシの出し入れ作業を連続的に行っていることと同じような動作を得ており、経験作業を基本とした形状修正方法であり、非常に高い研磨面精度を得ることができる。   In the relative position adjustment of the present invention shown in FIG. 1 (c), the upper and lower limit values for the rotation center axis position of the polishing dish calculated and set in advance from information such as the dimensions of the object to be polished and the polishing dish. (Position indicated by broken lines in the figure) is obtained, and polishing is performed while moving while maintaining the oscillation width (amplitude) set within the range, and the relative position between the object to be polished and the polishing dish is determined. It is continuously changed during polishing. This is a shape correction method based on experience work, which is similar to that of performing the Kanzashi taking in and out work continuously performed by the skilled technician shown in FIG. Very high polished surface accuracy can be obtained.

ここで相対位置を変化させる作業の重要性に関して、理論的な裏付けを行うために研磨加工の磨耗メカニズムを代表するプレストンの経験則をベースに、シミュレーションによる試算を行い、その結果を図2及び図3に示す。   Here, in order to provide a theoretical support for the importance of the work of changing the relative position, a trial calculation based on Preston's empirical rule representing the abrasion mechanism of the polishing process was performed, and the results are shown in FIGS. 3 shows.

図2に示す5つのグラフは、各研磨条件で研磨加工を行った際の研磨摩擦量の誤差量を示している。グラフA2、B2及びC2が相対位置を変化させた場合で、グラフB1、B2及びB3が揺動幅を変化させた場合である。グラフの破線で示す横軸は被研磨物の回転中心軸を中心に径方向の位置を示し、同様に破線の縦軸は被研磨物が研磨の摺り合わせで磨耗する量の誤差量を示す。すなわちグラフ中の曲線が被研磨物の回転軸を中心とした磨耗誤差量の分布を示しており、上記曲線のうねりが大きいほど被研磨物の位置による磨耗量の誤差が大きくなり、研磨面の高い形状精度を得られないことになる。逆に高い形状精度を得るためには、この曲線のうねりが小さくなり、理想は水平線になることである。   The five graphs shown in FIG. 2 indicate the amount of error in the amount of polishing friction when polishing is performed under each polishing condition. The graphs A2, B2, and C2 are when the relative position is changed, and the graphs B1, B2, and B3 are when the swinging width is changed. The horizontal axis indicated by the broken line in the graph indicates the radial position around the rotation center axis of the object to be polished, and similarly, the vertical axis of the broken line indicates the error amount of the amount by which the object is worn by the friction of polishing. That is, the curve in the graph shows the distribution of the wear error amount around the rotation axis of the object to be polished, and the larger the waviness of the curve, the greater the error in the amount of wear due to the position of the object to be polished, High shape accuracy cannot be obtained. On the other hand, in order to obtain high shape accuracy, the undulation of this curve is reduced and the ideal is to become a horizontal line.

ここでグラフB1、B2及びB3が揺動幅を変化させた場合でB1、B2、B3の順で揺動幅が大きくなっている。B1よりもB3が揺動幅を増すことで誤差量が小さくなっていることがわかる。これは、特許文献1(特開平9−300191)の技術にも通ずるところで、揺動幅の増加によって被研磨物と研磨皿の回転軸間距離、及び、研磨皿からのはみ出し量の位置変化が大きく生じるために、境界位置が分散され誤差量が小さくなっている。   Here, when the graphs B1, B2, and B3 change the swing width, the swing width increases in the order of B1, B2, and B3. It can be seen that the error amount is smaller as B3 increases the swinging width than B1. This is also in accordance with the technique of Patent Document 1 (Japanese Patent Laid-Open No. Hei 9-300191). As the swinging width increases, the distance between the rotation axis of the object to be polished and the polishing dish and the position change of the amount of protrusion from the polishing dish are changed. Due to the large occurrence, the boundary position is dispersed and the error amount is small.

これに対してグラフA2、B2及びC2は、相対位置を変化させた結果であるが、相対位置を変化させると上述した揺動幅の増減で見られるような誤差量の大きな増減は観察されず、むしろ誤差量の曲線形態が大きく変化することがわかる。グラフA2では相対位置が小さい、つまり被研磨物と研磨皿の回転軸の距離が近いため、被研磨物の外周部分での摺り運動が大きくなり外周部の磨耗が進行し、同図に示すように外周部分の誤差が大きくなるような誤差分布となる。逆にグラフC2では、被研磨物と研磨皿の回転軸の距離が遠く、同時に被研磨物が研磨皿からはみ出す量も大きくなるので、被研磨物の回転中心軸付近での摺り運動が大きくなり、上記回転中心軸付近で磨耗誤差が大きい分布となる。   On the other hand, graphs A2, B2 and C2 are the results of changing the relative position. However, when the relative position is changed, a large increase or decrease in the error amount as seen in the above-described increase or decrease in the swing width is not observed. Rather, it can be seen that the curve form of the error amount greatly changes. In the graph A2, the relative position is small, that is, the distance between the rotating shaft of the object to be polished and the polishing dish is short, so that the sliding movement at the outer peripheral part of the object to be polished increases and the wear of the outer peripheral part proceeds, as shown in FIG. Thus, the error distribution is such that the error in the outer peripheral portion increases. On the contrary, in graph C2, the distance between the rotating shaft of the object to be polished and the polishing dish is long, and at the same time, the amount of the object to be protruded from the polishing dish increases, so that the sliding motion of the object to be polished near the rotation center axis increases. The distribution of wear error is large in the vicinity of the rotation center axis.

ここで本発明の相対位置を変化させる手段は、図1(C)に示したように、この相対位置を連続的に変化させているので、図2で示したグラフA2、B2及びC2の各誤差量曲線の合成パターンになる。すなわちグラフA2では外周部の誤差量が大きいが、グラフC2では中心部の誤差量が大きくなるといった相反する誤差量パターンでの研磨を行うことができ、誤差量分布を相殺することができる。図3に、図2で示したグラフA2、B2及びC2を合成した結果の誤差量分布を示す。同図からわかるように、各誤差量の分布パターンの位相差が重なり合って、誤差量が最小のパターンを形成していることがわかる。   Here, the means for changing the relative position of the present invention continuously changes the relative position as shown in FIG. 1C, so each of the graphs A2, B2 and C2 shown in FIG. It becomes a composite pattern of the error amount curve. That is, in the graph A2, the error amount in the outer peripheral portion is large, but in the graph C2, the polishing can be performed with a conflicting error amount pattern in which the error amount in the central portion is large, and the error amount distribution can be offset. FIG. 3 shows an error amount distribution as a result of combining the graphs A2, B2, and C2 shown in FIG. As can be seen from the figure, the phase differences of the distribution patterns of the respective error amounts overlap to form a pattern with the smallest error amount.

よって、相対位置を連続的に変化させることで、研磨による誤差量分布の形態(位相)を変化させることができ、高い形状精度を得ることができる。
また、図2に示したグラフA2及びC2の位置がわかれば、磨耗の誤差量を最小にすることが可能である。以下に述べる最小相対位置及び最大相対位置は、磨耗誤差を最小にするための相反する位相を得られる位置になり、最小相対位置と最大相対位置を合成することで、誤差量が最小となる位置のことである。
Therefore, by continuously changing the relative position, the form (phase) of the error amount distribution by polishing can be changed, and high shape accuracy can be obtained.
Further, if the positions of the graphs A2 and C2 shown in FIG. 2 are known, it is possible to minimize the amount of wear error. The minimum relative position and maximum relative position described below are positions where the opposite phases for minimizing the wear error can be obtained, and the position where the error amount is minimized by combining the minimum relative position and the maximum relative position. That is.

また、高い形状精度を得るための相対位置変化は、回転軸を傾斜又はずらすことで得る。例えば、レンズ研磨で用いられる球心研磨機、すなわち被研磨物であるレンズの研磨面である球面の曲率半径の中心点である球心を中心に揺動(移動)する装置、であればその球心を中心に傾斜させることでレンズと研磨皿の相対位置を変化させることができる。逆に、オスカー方式などのように被研磨物であるレンズの球心と無関係に揺動(移動)運動を行うような研磨機であれば、レンズの回転軸と研磨皿の回転軸をずらすことで相対位置を変えることができる。相対位置を変化させるために、装置の構造から球心方式であれば傾斜させることになり、球心方式ではない研磨装置であれば被研磨物と研磨皿のそれぞれの回転軸位置をずらせば良いことになる。   Further, the relative position change for obtaining high shape accuracy can be obtained by tilting or shifting the rotation axis. For example, a spherical center polishing machine used in lens polishing, that is, a device that swings (moves) around the spherical center that is the center point of the radius of curvature of the spherical surface that is the polishing surface of the lens that is the object to be polished. The relative position of the lens and the polishing dish can be changed by inclining the ball center. On the other hand, if the polishing machine performs a swinging (moving) movement independently of the lens center of the lens, such as the Oscar method, the lens rotation axis and the polishing dish rotation axis are shifted. The relative position can be changed with. In order to change the relative position, the structure of the apparatus is inclined if it is a spherical center system, and if the polishing apparatus is not a spherical center system, the rotational axis positions of the object to be polished and the polishing dish may be shifted. It will be.

また、一般の研磨加工装置では研磨皿をモーターなどの駆動源を介して回転させ、被研磨物であるレンズは、研磨加工による摺れ力によって従属的に回転するが、本装置では被研磨物及び研磨皿の両軸に駆動源を備え、強制的に回転運動を行わせる構造となっている。高い形状精度を得るために両回転軸の相対位置を変化させる場合、両回転軸の距離が遠ざかると、研磨皿から伝わる摺れ力による回転運動の伝達が悪くなり被研磨物の安定した回転を得ることができなくなる。両者の回転運動によって研磨を行う本手段において、回転数が安定しないことは形状精度を確保することができなくなるため、本装置では両軸とも駆動源を介して、安定した回転を与える構成となっている。   Further, in a general polishing apparatus, a polishing dish is rotated via a driving source such as a motor, and a lens that is an object to be polished is dependently rotated by a sliding force caused by the polishing process. In addition, a drive source is provided on both shafts of the polishing dish, and the rotary motion is forcibly performed. When changing the relative position of both rotary shafts to obtain high shape accuracy, if the distance between the two rotary shafts is increased, the transmission of the rotational motion due to the sliding force transmitted from the polishing dish will deteriorate, and the object to be polished will rotate stably. You can't get it. In this means for polishing by the rotational movement of both, since the accuracy of the shape cannot be ensured if the rotational speed is not stable, this apparatus is configured to give stable rotation to both shafts via the drive source. ing.

以下、本発明の実施例を、図面を参照しながら説明する。
図4は、本発明の実施例1における研磨装置の内部構成を説明する断面図である。本実施例は球心研磨機による手法であり、熟練技能者が行うカンザシの出し入れ作業に着目して新規に得られた研磨方法及び装置を示す。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 4 is a cross-sectional view illustrating the internal configuration of the polishing apparatus according to Embodiment 1 of the present invention. The present embodiment is a technique using a ball center polishing machine, and shows a polishing method and apparatus newly obtained by paying attention to the loading and unloading work of a Kanzashi performed by a skilled technician.

ホルダー3は研磨加工中に、その片側が開口した状態で中に被研磨物となる凹レンズ1を挿入して保持する。レンズ1及びホルダー3の間には、ポリウレタンやシリコーンゴムなどのシート状の緩衝材3aを介してレンズ1を保持する構造となっている。レンズ1の研磨面には、ポリウレタンなどの研磨シート2aを介して、研磨面と近似形状を有する研磨皿2が当接されている。ここで研磨シート2aは、研磨皿2の表面に接着剤などで貼り付けられ成形されている。この研磨皿2は、レンズ1の研磨面である球面の球心10を中心に、レンズ1及び研磨皿2の形状から定まる傾斜角度である基準相対角度12の位置に、その回転軸19を傾斜させて配置されている。ここで基準相対角度12は、レンズ回転軸18及び研磨皿回転軸19の成す角度であり、レンズ1の球面の曲率半径値、径寸法、及び研磨皿2の径寸法によって経験的に、又は計算により定まる角度で、レンズ1の球面形状及びその精度を最も安定して得られる角度である。基準相対角度12に研磨皿2を移動させるために、研磨皿2には揺動モーター11が接続され、球心10を中心に旋回、揺動運動可能に構成されている。揺動モーター11には、基準相対角度12の位置を定める制御、及び、基準相対角度又は他の相対角度を中心に揺動角度15で研磨皿2を揺動運動させるための制御、を行う制御装置16が接続されている。研磨皿2には、レンズ1との摺りあわせ運動による研磨作用を発揮させるために、下軸モーター9が取り付けられ、回転するように構成されている。 During the polishing process, the holder 3 inserts and holds the concave lens 1 serving as an object to be polished while one side is open. Between the lens 1 and the holder 3, the lens 1 is held via a sheet-like cushioning material 3a such as polyurethane or silicone rubber. A polishing dish 2 having an approximate shape to the polishing surface is in contact with the polishing surface of the lens 1 via a polishing sheet 2a such as polyurethane. Here, the polishing sheet 2a is formed by being attached to the surface of the polishing dish 2 with an adhesive or the like. The polishing pan 2, mainly the spherical balls heart 10 of a polished surface of the lens 1, the position of the reference relative angle 12 is the tilt angle determined from the shape of the lens 1 and the polishing disc 2, tilting the rotary shaft 19 Are arranged. Here, the reference relative angle 12 is an angle formed by the lens rotating shaft 18 and the polishing dish rotating shaft 19 and is calculated empirically or according to the radius of curvature of the spherical surface of the lens 1, the diameter dimension, and the diameter dimension of the polishing dish 2. Is an angle at which the spherical shape of the lens 1 and its accuracy can be obtained most stably. In order to move the polishing dish 2 to the reference relative angle 12, a swing motor 11 is connected to the polishing dish 2, and is configured to be capable of turning and swinging about the ball core 10. The swing motor 11 performs control for determining the position of the reference relative angle 12 and control for causing the polishing dish 2 to swing at a swing angle 15 around the reference relative angle or another relative angle. A device 16 is connected. A lower shaft motor 9 is attached to the polishing dish 2 in order to exert a polishing action by a sliding motion with the lens 1 and is configured to rotate.

またホルダー3は、レンズ1を保持する開口部の反対側に凹部20を有し、凹部20と嵌合する球体を先端に有するカンザシ4によりレンズ1を介して研磨皿2に押圧されている。カンザシ4がホルダー3を押圧した状態でカンザシ4の回転動力がホルダー3に伝達されるように、カンザシ4の先端部には伝達ピン5が装着され、ホルダー3の切り欠け部分と嵌合している。カンザシ4は空気圧で非接触に保持するエアー軸受けなどのブッシュ7を介して研磨機の上軸21に上下回転可能に取り付けられている。カンザシ4の上部には、カンザシ4を回転駆動させる上軸モーター8が、上下方向に移動可能なスライダー22を介して上軸21に取り付けられている。またカンザシ4の上端部には、レンズ1を研磨加工するための研磨荷重を付加する重り6が取り付けられている。   Further, the holder 3 has a recess 20 on the opposite side of the opening for holding the lens 1 and is pressed against the polishing dish 2 via the lens 1 by a kanzashi 4 having a spherical body fitted to the recess 20 at the tip. A transmission pin 5 is attached to the tip of the kanzashi 4 so that the rotational power of the kanzashi 4 is transmitted to the holder 3 while the kanzashi 4 presses the holder 3. Yes. The Kanzashi 4 is attached to the upper shaft 21 of the polishing machine via a bush 7 such as an air bearing that is held in a non-contact manner by air pressure so as to be vertically rotatable. An upper shaft motor 8 that rotationally drives the Kanzashi 4 is attached to the upper shaft 21 via a slider 22 that can move in the vertical direction. A weight 6 for applying a polishing load for polishing the lens 1 is attached to the upper end portion of the Kanzashi 4.

上述した研磨装置を用いて研磨加工を行う際の作用に関して以下に説明する。基準相対角度12に、制御装置16からの信号(命令)で揺動モーター11を動作させ、研磨皿2が傾斜移動する。傾斜移動した研磨皿2に、レンズ1をホルダー3内に装着して当接させる。当接したレンズ1は、ホルダー3を介して上下動するカンザシ4により押圧される。このときの押圧力はカンザシ4、その回転駆動源である上軸モーター8、及び重り6である。ここで本実施例の装置では、研磨荷重として重り6のみでなくカンザシ4及び上軸モーター8の自重も付加される構造となっているが、低圧での研磨が必要な場合は、これらの自重を無くすべくカンザシ4が上方に引っ張られるように構成してもよいが、本実施例の内容には必須の要件ではないため省略しているだけである。 The operation when performing polishing using the above-described polishing apparatus will be described below. The oscillating motor 11 is operated at a reference relative angle 12 by a signal (command) from the control device 16, and the polishing dish 2 is tilted. The lens 1 is mounted in the holder 3 and brought into contact with the polishing dish 2 that has been inclined. The abutting lens 1 is pressed by a Kanzashi 4 that moves up and down via a holder 3. The pressing force at this time is the Kanzashi 4, the upper shaft motor 8 that is the rotational drive source, and the weight 6. Here the apparatus of the present embodiment, if it has a structure in which its own weight also added Hairpin 4 and the upper shaft motor 8 not only the weight 6 as polishing load, the required polishing at low pressure, these self-weight In order to eliminate this, the structure 4 may be pulled upward, but is omitted because it is not an essential requirement for the contents of the present embodiment.

上述のように、レンズ1に重り6の研磨荷重がカンザシ4及びホルダー3を介して付加された状態で、制御装置16から基準相対角度12と同様に経験値又は計算値によって揺動モーター11に動作信号が伝達され、揺動角度15による研磨皿2の揺動運動が行われる。このときの揺動角度(の幅)は一定値であり、基準相対角度12を中心として対称に揺動運動を行うものである。この状態で制御装置16から徐々に基準相対角度12を変化させる指示が出るため、相対角度位置が変化し、同図中の最小相対角度13と最大相対角度14の間で連続的にその角度を変化させながらレンズ1を研磨する。このとき揺動角度15は常に一定値に保たれ、相対角度のみが変化するため、図1(c)に示したような位置変化を生じながらレンズ1を研磨皿2が研磨していく。また説明の便宜上、相対角度を基準相対角度12、最小相対角度13、及び最大相対角度14の3種類で示したが、研磨の揺動運動中に変化する相対角度の範囲が明確になれば実施することができるため、基準相対角度12は必ずしも必要な位置情報とはならず、最小相対角度13及び最大相対角度14の2つの位置がわかれば実施することができる。 As described above, when the polishing load of the weight 6 is applied to the lens 1 via the Kanzashi 4 and the holder 3, the control device 16 applies the oscillating motor 11 according to the empirical value or the calculated value similarly to the reference relative angle 12. An operation signal is transmitted, and the rocking movement of the polishing dish 2 is performed at the rocking angle 15. The rocking angle (width) at this time is a constant value, and the rocking motion is performed symmetrically around the reference relative angle 12. In this state, an instruction to gradually change the reference relative angle 12 is issued from the control device 16, so that the relative angle position changes, and the angle is continuously changed between the minimum relative angle 13 and the maximum relative angle 14 in FIG. The lens 1 is polished while changing. In this case the swing angle 15 is always kept constant, since only the relative angle is changed, FIG. 1 polisher 2 lens 1 while generating a position change as shown in (c) is gradually polished. The convenience of explanation embodiment, the reference relative angle 12 relative angle, minimum relative angle 13, and is shown in three different maximum relative angle 14, if the clear range of relative angular change during the swinging motion of the polishing Therefore, the reference relative angle 12 does not necessarily become necessary position information, and can be implemented if two positions of the minimum relative angle 13 and the maximum relative angle 14 are known.

ここで揺動角度15を一定に保ったまま相対角度のみを変化させるので、被研磨物であるレンズ1の磨耗誤差の分布パターンは図2で示すグラフA2、B2、及びC2のパターン、すなわち最小相対角度13の位置で生じる磨耗誤差の分布パターングラフA2と、最大相対角度14の位置で生じる分布パターングラフC2との間で変化することになる。このため相対角度が研磨中に変化することで、グラフA2、B2、及びC2を合成した状態で研磨加工が完了することになる。この合波は図3のようになるため、レンズ1の回転中心から外周部にかけての研磨による磨耗誤差が小さくなり、高い形状精度を得ることができる。 Here, since only the relative angle is changed while the rocking angle 15 is kept constant, the distribution pattern of the wear error of the lens 1 as the object to be polished is the pattern of graphs A2, B2, and C2 shown in FIG. It changes between the distribution pattern graph A2 of the wear error occurring at the position of the relative angle 13 and the distribution pattern graph C2 occurring at the position of the maximum relative angle 14. For this reason, when the relative angle changes during polishing , the polishing process is completed in a state where the graphs A2, B2, and C2 are combined. Since this multiplexing is as shown in FIG. 3, a wear error due to polishing from the rotation center of the lens 1 to the outer peripheral portion is reduced, and high shape accuracy can be obtained.

図5は、本発明の実施例2における研磨装置の内部構成を説明する断面図である。同図は、実施例1で示した球心揺動方式ではない、旧来からのオスカー方式の研磨機などの研磨装置での実施例を示したものである。基本的な考えは実施例1と同じであり、実施例1が球心揺動方式であったためにレンズ及び研磨皿の位置関係を相対角度での調整で行ったのに対して、本実施例では相対角度ではなく相対位置での調整になる点が異なるだけであり、同様な部分に関しては同一の番号を付して説明を省略する。 FIG. 5 is a cross-sectional view illustrating the internal configuration of the polishing apparatus according to Embodiment 2 of the present invention. This figure shows an embodiment in a polishing apparatus such as a conventional Oscar type polishing machine, which is not the ball center swinging system shown in the first embodiment. The basic idea is the same as that of the first embodiment. Since the first embodiment is a ball center swinging method, the positional relationship between the lens and the polishing dish is adjusted by a relative angle. However, the only difference is that the adjustment is based on the relative position, not the relative angle, and the same parts are denoted by the same reference numerals and the description thereof is omitted.

研磨摩皿2を回転させる機構は保有するが、下軸である研磨皿2の軸は鉛直位置又は傾斜位置で固定となり、本実施例では鉛直位置で示した。被研磨物であるレンズ1の球心での揺動運動を行わないため装置上軸21が2体構造となっており、研磨装置の土台である装置ベース32の上に、レンズ1を研磨皿2に対して相対的に移動させるため同図中で左右方向に移動可能な相対用スライダー30を介して、相対軸31が設置されている。相対軸31は土台となる装置ベース32と上軸21との間に、同図中で左右方向に移動可能で挟まれるような状態で設置されている。相対軸31の一端には、相対軸31を研磨皿2に対して相対的に移動させるための相対用モーター28からの動力を伝達するボールネジ33などが接続されている。ボールネジ33には装置ベース32に固定された相対用モーター28が接続され、相対用モーター28は位置の演算処理やモーターの動作制御を行う制御装置16が接続されている。さらに相対軸21には上軸21、及び実施例1で示した付属する装置構造が、同図中で左右方向に移動可能な揺動用スライダー29を介して取り付けられている。ここで上軸21にはクランクシャフトであるクランク27が接続され、その一端は相対軸31に固定された揺動用モーター11に接続されている。 Although a mechanism for rotating the polishing dish 2 is possessed, the axis of the polishing dish 2, which is the lower shaft, is fixed at the vertical position or the inclined position, and is shown in the vertical position in this embodiment. Device on the shaft 21 for not perform rocking motion in the spherical center of the lens 1 to be polished has a two-body structure, on the apparatus base 32 is a base of the polishing apparatus, the polishing dish lens 1 In order to move relative to 2, a relative shaft 31 is installed via a relative slider 30 that can move in the left-right direction in the figure. The relative shaft 31 is installed between the device base 32 serving as a base and the upper shaft 21 so as to be sandwiched so as to be movable in the left-right direction in FIG. One end of the relative shaft 31 is connected to a ball screw 33 for transmitting power from a relative motor 28 for moving the relative shaft 31 relative to the polishing dish 2. A relative motor 28 fixed to the apparatus base 32 is connected to the ball screw 33, and the relative motor 28 is connected to a control device 16 that performs position calculation processing and motor operation control. Further, the upper shaft 21 and the attached device structure shown in the first embodiment are attached to the relative shaft 21 via a swinging slider 29 that can move in the left-right direction in FIG. Here, a crank 27 which is a crankshaft is connected to the upper shaft 21, and one end thereof is connected to the swinging motor 11 fixed to the relative shaft 31.

上述した実施例2の研磨装置を用いて研磨加工を行う際の作用に関して以下に説明する。実施例1と同様に、レンズ1の研磨すべき球面の曲率半径値、径寸法、及び研磨皿2の径寸法より、経験的に又は計算により求められる基準相対位置24に、制御構造16からの信号(命令)で相対用モーター28を動作させ、相対軸21より上部のユニットが移動する。移動したカンザシ4の先端部にレンズ1をホルダー3内に装着して、上下動するカンザシ4により押圧され研磨皿2に当接される。 The operation when performing polishing using the polishing apparatus of Example 2 described above will be described below. Similar to the first embodiment, the control structure 16 is moved from the control structure 16 to the reference relative position 24 empirically or calculated from the radius of curvature of the spherical surface of the lens 1 to be polished , the diameter dimension, and the diameter dimension of the polishing dish 2. The relative motor 28 is operated by a signal (command), and the unit above the relative shaft 21 moves. The lens 1 is mounted in the holder 3 at the tip of the moved Kanzashi 4 and is pressed by the Kanzashi 4 moving up and down to come into contact with the polishing dish 2.

制御装置16から基準相対位置24と同様に経験値又は計算値によって相対用モーター28に動作信号が伝達され、最大相対位置25と最小相対位置26との間で移動運動を行う。このときの揺動幅23は、揺動用モーター11の回転運動がクランク27を介して上軸21に伝達され、相対軸21に対して常に一定値で揺動運動を行う。クランク27の長さや取り付け位置を変更すれば揺動幅23は変化するが、研磨加工中は変更することなく設定したクランク27の長さで揺動運動を伝達するため、揺動幅23は変化しない。これによりオスカー方式の研磨機であっても、揺動幅23は常に一定値に保たれ相対位置のみが変化するため、実施例1又は図1(c)に示したような位置変化を生じながらレンズ1を研磨皿2が研磨を進めていき、実施例1と同様に、レンズ1の回転中心から外周部にかけての研磨による磨耗誤差が小さくなり、高い形状精度を得ることができる。 Similarly to the reference relative position 24, an operation signal is transmitted from the control device 16 to the relative motor 28 by an empirical value or a calculated value, and a moving motion is performed between the maximum relative position 25 and the minimum relative position 26. As for the swinging width 23 at this time, the rotational motion of the swinging motor 11 is transmitted to the upper shaft 21 via the crank 27 and the swinging motion is always performed at a constant value with respect to the relative shaft 21. If the length or mounting position of the crank 27 is changed, the swinging width 23 changes. However, during the polishing process, the swinging motion 23 is transmitted with the set length of the crank 27 without being changed. do not do. As a result, even in the case of an Oscar type polishing machine, the swinging width 23 is always maintained at a constant value and only the relative position changes, so that the position change as shown in Example 1 or FIG. The polishing dish 2 advances the polishing of the lens 1, and the wear error due to the polishing from the rotation center of the lens 1 to the outer peripheral portion becomes small as in the first embodiment, and high shape accuracy can be obtained.

なお、上記実施例では被研磨物として凹レンズを用いた場合について説明したが、本発明は、例えば凸レンズ、プリズム、ミラー等その他の光学素子の研磨にも、その被研磨面の形状等を考慮しつつ、同様に適用可能である。 In the above embodiment, the case where a concave lens is used as an object to be polished has been described. However, the present invention also takes into account the shape of the surface to be polished in polishing other optical elements such as a convex lens, a prism, and a mirror. However, it can be similarly applied.

光学素子の研磨を行う際の研磨時間と調整作業・動作に伴う位置の関係を、(a)はカンザシの前後出し入れ作業を伴う場合、(b)は特許文献1の場合、(c)は本発明の場合、について示す特性図である。The relationship between the position associated with the polishing time and adjustment work and operation when performing the polishing of the optical element, (a) shows the case with the loading and unloading operations before and after the hairpin, (b) in the case of Patent Document 1, (c) this In the case of invention, it is a characteristic view shown. 各研磨条件で研磨加工を行った際の研磨磨耗量の誤差量を示した図である。It is the figure which showed the error amount of the grinding | polishing wear amount at the time of polishing process on each grinding | polishing condition. 図2で示したグラフA2、B2及びC2を合成した特性図である。FIG. 3 is a characteristic diagram obtained by synthesizing the graphs A2, B2, and C2 illustrated in FIG. 本発明の実施例1における研磨装置の内部構成を説明する断面図である。It is sectional drawing explaining the internal structure of the grinding | polishing apparatus in Example 1 of this invention. 本発明の実施例2における研磨装置の内部構成を説明する断面図である。It is sectional drawing explaining the internal structure of the grinding | polishing apparatus in Example 2 of this invention.

符号の説明Explanation of symbols

1 レンズ
研磨
2a 研磨シート
3 ホルダー
3a 緩衝材
4 カンザシ
5 伝達ピン
6 重り
7 ブッシュ
8 上軸モーター
9 下軸モーター
10 球心
11 揺動モーター
12 基準相対角度
13 最小相対角度
14 最大相対角度
15 揺動角度
16 制御装置
18 レンズ回転軸
19 研磨皿回転軸
20 凹部
21 上軸
22 スライダー
23 揺動幅
24 基準相対位置
25 最大相対位置
26 最小相対位置
27 クランク
28 相対用モーター
29 揺動用スライダー
30 相対用スライダー
31 相対軸
32 装置ベース
33 ボールネジ
DESCRIPTION OF SYMBOLS 1 Lens 2 Polishing dish 2a Polishing sheet 3 Holder 3a Buffer material 4 Kanzashi 5 Transmission pin 6 Weight 7 Bush 8 Upper shaft motor 9 Lower shaft motor 10 Ball center 11 Oscillating motor 12 Reference relative angle 13 Minimum relative angle 14 Maximum relative angle 15 Oscillating angle 16 Control device 18 Lens rotating shaft 19 Polishing dish rotating shaft 20 Recess 21 Upper shaft 22 Slider 23 Oscillating width 24 Reference relative position 25 Maximum relative position 26 Minimum relative position 27 Crank 28 Relative motor 29 Oscillating slider 30 Relative Slider 31 Relative shaft 32 Device base 33 Ball screw

Claims (3)

被研磨物の研磨面に研磨工具の研磨面を当て付け、前記被研磨物と前記研磨工具との相対すべりにより前記被研磨物を研磨する研磨方法において、
前記被研磨物及び前記研磨工具を各々独立に回転駆動させ、該被研磨物及び該研磨工具のうちの一方の揺動を一定幅で行い、該揺動の中心における両回転軸間で形成される基準相対角度、又は、該揺動の中心における一方の回転駆動体接触点と他方の回転駆動体の中心位置とで形成される基準相対位置のいずれかを、該相対角度/位置が最小である最小相対角度/位置と該相対角度/位置が最大である最大相対角度/位置との間で連続的に変化させる工程を有することを特徴とする、研磨方法。
In a polishing method in which a polishing surface of a polishing tool is applied to a polishing surface of an object to be polished, and the object to be polished is polished by relative sliding between the object to be polished and the polishing tool,
The object to be polished and the polishing tool are driven to rotate independently, and one of the object to be polished and the polishing tool is swung with a constant width, and is formed between both rotating shafts at the center of the rocking. The reference relative angle or the reference relative position formed by the contact point of one rotary drive member at the center of the swing and the center position of the other rotary drive member is the minimum relative angle / position. It characterized in that it has a certain minimum relative angular / position and said relative angular / position is continuously changed between the maximum relative angular / position which is the maximum step polishing method.
請求項1記載の研磨方法において、
前記揺動の方向は、前記相対角度/位置を連続的に変化させる方向に沿っていることを特徴とする、研磨方法。
The polishing method according to claim 1,
The polishing method according to claim 1, wherein the swinging direction is along a direction in which the relative angle / position is continuously changed.
被研磨物の研磨面に研磨工具の研磨面を当て付け、前記被研磨物と前記研磨工具との相対すべりにより前記被研磨物を研磨する研磨装置において、
前記被研磨物及び前記研磨工具を各々独立に回転駆動させる手段と、
前記被研磨物及び前記研磨工具のうちの一方の揺動を一定幅で行う手段と、
前記揺動の中心における両回転軸間で形成される基準相対角度、又は、前記揺動の中心における一方の回転駆動体接触点と他方の回転駆動体の中心位置とで形成される基準相対位置のいずれかを、該相対角度/位置が最小である最小相対角度/位置と該相対角度/位置が最大である最大相対角度/位置との間で連続的に変化させる制御手段と、
を備えたことを特徴とする、研磨装置。
In a polishing apparatus that applies a polishing surface of a polishing tool to a polishing surface of an object to be polished, and polishes the object to be polished by relative sliding between the object to be polished and the polishing tool,
Means for independently rotating and driving the object to be polished and the polishing tool;
Means for swinging one of the object to be polished and the polishing tool with a constant width;
A reference relative angle formed between the two rotation shafts at the center of the swing, or a reference relative position formed by a contact point of one rotation drive body and the center position of the other rotation drive body at the center of the swing. one of the smallest relative angle / position and said relative angle / control means for the position, the user continuously changes between the maximum relative angular / position which is the maximum is said relative angular / position minimum,
A polishing apparatus comprising:
JP2004309747A 2004-10-25 2004-10-25 Polishing method and apparatus Expired - Fee Related JP4455271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309747A JP4455271B2 (en) 2004-10-25 2004-10-25 Polishing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309747A JP4455271B2 (en) 2004-10-25 2004-10-25 Polishing method and apparatus

Publications (2)

Publication Number Publication Date
JP2006116678A JP2006116678A (en) 2006-05-11
JP4455271B2 true JP4455271B2 (en) 2010-04-21

Family

ID=36535038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309747A Expired - Fee Related JP4455271B2 (en) 2004-10-25 2004-10-25 Polishing method and apparatus

Country Status (1)

Country Link
JP (1) JP4455271B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385093B2 (en) * 2009-10-29 2014-01-08 株式会社春近精密 Lens rough grinding method and lens rough grinding machine
JP5914138B2 (en) * 2012-04-25 2016-05-11 オリンパス株式会社 Lens manufacturing method and lens manufacturing apparatus
CN103722465B (en) * 2014-01-21 2017-01-18 南通天盛实验器材有限公司 Glass substrate surface bath polishing device for biochips

Also Published As

Publication number Publication date
JP2006116678A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
CN101786262B (en) Apparatus for dressing a polishing pad, chemical mechanical polishing apparatus and method
JP3883773B2 (en) Lens peripheral grinding machine
US7281967B2 (en) Machine for grinding optical lenses
JP2000005988A (en) Polishing device
JP5453459B2 (en) Grinding method of lens spherical surface using dish-shaped grinding wheel
JP2003151935A (en) Polishing pad conditioner of chemical mechanical polisher, and method of conditioning polishing pad
CA2930515A1 (en) Polishing device for polishing concave lens faces of optical lenses, and method for operation thereof
JP4521359B2 (en) Polishing method and polishing apparatus
JP3630958B2 (en) Lens holding device
JP4455271B2 (en) Polishing method and apparatus
JP4996964B2 (en) Polishing equipment
JP5074015B2 (en) Surface processing method and surface processing apparatus
JP6453228B2 (en) Polishing tool, polishing method and polishing apparatus
JP3990205B2 (en) Polishing equipment
JP3718934B2 (en) Curved surface polishing method and curved surface polishing apparatus
JP5852596B2 (en) Grinding apparatus and grinding method
JPH0752015A (en) Grinding device for lens of eyeglasses
JPH09300191A (en) Polishing device
JP2747419B2 (en) Grinding method for ultra-fine stepped shaft and grinding machine
CN110774168B (en) Coupling mechanism provided with spherical bearing, method for determining bearing radius of spherical bearing, and substrate polishing device
KR101273938B1 (en) Polishing method using pad tool with a lower position
JP2001170856A (en) Curved surface finishing device
JP4326507B2 (en) Lens peripheral processing equipment
JPS63232957A (en) Profile polisher
JP2003109923A (en) Device for polishing semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4455271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees