JP4454774B2 - Semiconductor chip resin sealing method and release film for semiconductor chip resin sealing - Google Patents

Semiconductor chip resin sealing method and release film for semiconductor chip resin sealing Download PDF

Info

Publication number
JP4454774B2
JP4454774B2 JP2000090202A JP2000090202A JP4454774B2 JP 4454774 B2 JP4454774 B2 JP 4454774B2 JP 2000090202 A JP2000090202 A JP 2000090202A JP 2000090202 A JP2000090202 A JP 2000090202A JP 4454774 B2 JP4454774 B2 JP 4454774B2
Authority
JP
Japan
Prior art keywords
porous layer
resin
release film
semiconductor chip
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000090202A
Other languages
Japanese (ja)
Other versions
JP2001284378A (en
Inventor
俊光 橘
憲兼 名畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000090202A priority Critical patent/JP4454774B2/en
Publication of JP2001284378A publication Critical patent/JP2001284378A/en
Application granted granted Critical
Publication of JP4454774B2 publication Critical patent/JP4454774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、端子または電極が配設された被封止面と金型内面との間に離型フィルムを介在させつつ、半導体チップを配置した金型内に樹脂を注入・硬化させる半導体チップの樹脂封止方法、及びそれに用いる半導体チップ樹脂封止用離型フィルムに関する。
【0002】
【従来の技術】
近年、LSIの実装技術においてCSP (Chip Scale/Size Package) 技術が注目されている。この技術の内、QFN (Quad Flat Non−leaded package) 、SON (Small Outline Non−leaded package) に代表されるリード端子がパッケージ内部に取りこまれた形態のパッケージについては、端子が封止樹脂面より露出した形状となる。またこれらのパッケージに関しては小型化が要求される為、封止樹脂の使用量もより少なくする技術開発が進んでおり、それに伴い封止性の信頼性を向上さるため封止樹脂中に配合される離型剤量を減少させる傾向が見られる。このため、端子を確実に露出させる事と、樹脂と金型との離型性を確保する対策として、端子等が配設された被封止面と金型内面との間に離型フィルムを介在させた状態で樹脂封止が行われていた。
【0003】
即ち、CSP製造のための半導体チップの樹脂封止方法は、図4(イ)〜(ハ)に示すように、半導体チップ2の電極とリードフレーム21のリード端子22との間をワイヤ23でボンディングしたものを、下金型3のキャビティ31内に配置し、離型フィルム1を介して上金型4で型閉し、トランスファー成形によりキャビティ31内に樹脂5を注入・硬化させ、次いで型開した後、リード端子22を残してリードフレーム21をトリミングによりカットしている。
【0004】
その際、金型が150〜200℃程度に保たれた状態で封止が行われる為、離型フィルムにはこの温度に耐えうる耐熱性および封止樹脂に対する離型性が要求され、これよりポリテトラフルオロエチレン(以下PTFEと略する)、テトラフルオロエチレン−エチレン共重合体(以下ETFEと略する)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(以下FEPと略する)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(以下PFAと略する)が用いられていた。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の離型フィルムの場合、上記のように離型フィルムを介在させた状態で樹脂封止を行う際、図5に示すように、金型の型締め圧力により離型フィルム1が変形し、特にリード端子部においてはリード端子22により圧縮され変形した離型フィルム1aがリード端子22間に押し出される場合があった。この状態で樹脂封止を行った場合、樹脂が完全にリード端子22間に充填されず、リード端子22間に溝が形成された状態となり、結果としてリードカット時にリード端子22間の封止樹脂5が欠けるという問題が生じていた。
【0006】
一方、上記のような問題は、離型フィルムの厚みを薄くすることにより、幾らか改善することができるが、その場合、リード端子と離型フィルムとの密着力等が低下するため、封止樹脂の被りが生じ易くなり、リード端子を確実に露出させるのが困難になる。
【0007】
そこで、本発明の目的は、離型フィルムにより端子等の露出を好適に行いながら、端子等の間に樹脂を良好に充填することができる半導体チップの樹脂封止方法及び半導体チップ樹脂封止用離型フィルムを提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究したところ、離型フィルムとして、少なくとも厚さ方向の一部分が多孔質層である複層フィルムを使用することにより上記目的が達成できることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明の樹脂封止方法は、端子または電極が配設された被封止面と金型内面との間に離型フィルムを介在させつつ、半導体チップを配置した金型内に樹脂を注入・硬化させる半導体チップの樹脂封止方法において、前記離型フィルムとして、片方の表面にフッ素系樹脂からなる多孔質層が設けられるとともに、他方の表面にフッ素系樹脂からなる非多孔質層が設けられた複層フィルムであって、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である複層フィルムを、前記多孔質層を前記金型内面に接するように配置して使用する事を特徴とする。
また、本発明の離型フィルムは、上記の半導体チップの樹脂封止方法に使用する離型フィルムであって、片方の表面にフッ素系樹脂からなる多孔質層が設けられるとともに、他方の表面にフッ素系樹脂からなる非多孔質層が設けられ、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である。
【0010】
また、本発明の樹脂封止方法は、端子または電極が配設された被封止面と金型内面との間に、樹脂封止後に樹脂から剥離される離型フィルムを介在させつつ、半導体チップを配置した金型内に樹脂を注入・硬化させる半導体チップの樹脂封止方法において、前記離型フィルムとして、片方の表面に多孔質層が設けられるとともに、他方の表面に非多孔質層が設けられた複層フィルムであって、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である複層フィルムを、前記多孔質層を前記金型内面に接するように配置して使用する事を特徴とする。
また、本発明の離型フィルムは、上記の半導体チップの樹脂封止方法に使用する離型フィルムであって、片方の表面に多孔質層が設けられるとともに、他方の表面に非多孔質層が設けられ、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である。
【0011】
上記において、前記多孔質層及び前記非多孔質層がフッ素系樹脂からなることが好ましい。
【0012】
[作用効果]
本発明の樹脂封止方法によると、前記離型フィルムとして少なくとも厚さ方向の一部分が多孔質層である複層フィルムを使用するため、金型の型締め時の変形が多孔質層の空隙部の圧縮により吸収されるので、複層フィルムが変形してリード端子間に押出されにくく、結果として封止樹脂がリード端子間に良好に充填され、溝が形成されなくなる。また成型圧力によりリード端子等と接触している部分の多孔質層は完全に押し漬されることにより、リード端子面とフィルムの密着性が維持される為、リード端子面への樹脂被りが起こりにくい。その結果、離型フィルムにより端子等の露出を好適に行いながら、端子等の間に樹脂を良好に充填して、リードカットも好適に行うことができるようになる。
【0013】
一方、本発明の離型フィルムによると、上記の如き作用効果により、半導体チップの樹脂封止に用いる際に、離型フィルムにより端子等の露出を好適に行いながら、端子等の間に樹脂を良好に充填することができるようになる。
【0014】
離型フィルムが少なくとも片方の表面に非多孔質層を有する場合、非多孔質層を被封止面側に配置することで、離型フィルムと端子等との間に封止樹脂が浸入するのをより確実に防止することができる。
【0015】
前記多孔質層及び前記非多孔質層がフッ素系樹脂からなる場合、封止樹脂との離型性が高くなり、また半導体パッケージの一般的な封止温度である175℃での耐熱性が優れたものとなる。
【0016】
前記多孔質層の気孔率が20%以上80%以下である場合、金型の型締め時の変形の吸収量が適度になり、また離型フィルムと端子等との密着力を適度に維持することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、半導体チップ樹脂封止用離型フィルム、半導体チップの樹脂封止方法の順で説明する。
【0018】
〔半導体チップ樹脂封止用離型フィルム〕
本発明の半導体チップ樹脂封止用離型フィルムは、少なくとも厚さ方向の一部分に多孔質層を有するものであり、全体が多孔質層で形成されていてもよい。但し、非多孔質層を端子または電極が配設された被封止面に配置すべく、少なくとも片方の表面に非多孔質層を有するものが好ましい。
【0019】
離型フィルムの非多孔質層としては、封止樹脂との離型性および半導体パッケージの一般的な封止温度である175℃での耐熱性という点でフッ素系樹脂が好ましい。フッ素樹脂に関しては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA) 、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等を適宜用いることが出来るが、離型性という点でPTFEが最も好ましい。
【0020】
また多孔質層としては、上記の通り封止加工時耐熱性が必要となることより、フッ素系樹脂である事が好ましい。中でも、PTFEファインパウダーを用いた場合、ペースト押出しにより成形体を得た後、圧延、延伸することにより容易に多孔質体を得られ、また圧延および延伸条件を制御することにより容易に多孔質層の設計を行えることより、これを多孔質層に用いることが好ましい。
【0021】
また非多孔質層の厚さに関しては20μm以下、更には10μm以下である事が好ましい。20μmを超えると従来技術と同様に封止金型の型締めによりフィルムの変形が起き易くなる傾向がある。また多孔質層の厚さに関しては10μm以上150μm以下である事が好ましい。10μm未満では多孔質層の変形量が少なく、型締め時の応力の吸収量が小さくなり、またリード端子上への封止樹脂被りを起し易い傾向があり、150μmを超えると型締め時の多孔質層の変形量が大きくなりすぎ、結果としてリード端子間に注入される樹脂量が少なくなる傾向がある。
【0022】
多孔質層の気孔率は20%以上80%以下であることが好ましい。20%未満では、金型の型締め時の変形の吸収量が不十分になる傾向があり、80%を超えると離型フィルムと端子等との密着力を維持しにくくなる傾向がある。
【0023】
多孔質層と非多孔質層との積層一体化は、熱融着や接着等により行うことができ、また、多孔質層を予め形成したものに、非多孔質層の原料となる分散液を塗布・焼結等する方法も可能である。
【0024】
〔半導体チップの樹脂封止方法〕
本発明の半導体チップの樹脂封止方法は、端子または電極が配設された被封止面と金型内面との間に離型フィルムを介在させつつ、半導体チップを配置した金型内に樹脂を注入・硬化させる半導体チップの樹脂封止方法において、前記離型フィルムとして、以上のような複層フィルムを使用する事を特徴とする。本実施形態では、樹脂封止によってQFNを製造する場合を例示する。
【0025】
図1(イ)〜(ハ)は、本発明の半導体チップの樹脂封止方法の一例の工程を示すものである。封止の対象となる半導体チップ2は、通常、図2(イ)に示すようなリードフレーム内の複数のユニット(図2(ロ)は1ユニットを示す)に、半導体チップ2が各々ワイヤボンディング等されたものを使用する。図1(イ)〜(ハ)は、理解を容易にすべく、1ユニット分について図示してある。
【0026】
まず、図1(イ)に示すように、半導体チップ2の電極とリードフレーム21のリード端子22との間を金等のワイヤ23でボンディングしたものを、下金型3のキャビティ31内に配置する。リード端子22の配置は、図2(ロ)のように全周に間隔をおいて配置する場合に限られず、全面に配置したり、対辺のみに配置してももよい。
【0027】
次に、図1(ロ)に示すように、本発明の離型フィルムFを介して上金型4で型閉し、トランスファー成形によりキャビティ31内に樹脂5を注入・硬化させる。かかるトランスファー成形は、通常、温度175℃、成形圧力490N/cm2 程度で行われる。なお、通常、エポキシ樹脂等の熱硬化性樹脂等が使用される。
【0028】
その際、図1(ロ)のI−I断面を示した図3に示すように、離型フィルムFの多孔質層11は、リード端子22の部分だけが押しつぶされて変形しており、また非多孔質層12はリード端子22に接する部分だけが変形している。このため、リード端子22間で離型フィルムFが変形して押出されにくいので、封止樹脂5がリード端子22間に良好に充填されると共に、リード端子22面と非多孔質層12の密着性が維持される為、リード端子22面への封止樹脂5の被りが起こりにくい。
【0029】
その後、図1(ハ)に示すように型開する。その後、必要により脱型及びアフターキュアを行った後、リード端子22を残してリードフレーム21をトリミングによりカットすればよい。
【0030】
また本発明の離型フィルムの特性上、QFNに限らず、例えばウエハレベルCSPに代表されるはんだボール等の外部接続端子と接触する端子が、封止樹脂面より露出した構造を持つパッケージにおいて、端子を封止樹脂面より安定して露出させる事が出来、良好に封止加工を行なう事が出来る。つまり露出させる端子についてはリードフレームに含まれていても、ウエハ、チップ面に形成されていても、本発明の離型フィルムを用いれば良好な樹脂封止加工を行なう事が出来る。
【0031】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0032】
(実施例1)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを円筒状の金型に充填し加圧する事により成形体を得、これをラム押出しする。次いでこれを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。そしてこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム1を得た。得られた離型フィルム1の多孔質層は、厚さ50μm気孔率45%であった。
【0033】
(実施例2)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを円筒状の金型に充填し加圧する事により成形体を得、これをラム押出しする。次いでこれを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。そしてこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム2を得た。得られた離型フィルム2の多孔質層は、厚さ50μm気孔率23%であった。
【0034】
(実施例3)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを円筒状の金型に充填し加圧する事により成形体を得、これをラム押出しする。次いでこれを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。そしてこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム3を得た。得られた離型フィルム3の多孔質層は、厚さ50μm気孔率76%であった。
【0035】
(実施例4)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを円筒状の金型に充填し加圧する事により成形体を得、これをラム押出しする。次いでこれを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。そしてこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム4を得た。得られた離型フィルム4の多孔質層は、厚さ12μm気孔率45%であった。
【0036】
(実施例5)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを円筒状の金型に充填し加圧する事により成形体を得、これをラム押出しする。次いでこれを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。そしてこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム5を得た。得られた離型フィルム5の多孔質層は、厚さ140μm気孔率45%であった。
【0037】
(比較例1)
キャスト法により作製した非多孔質フィルムであり、厚さ40μmのPTFEフィルムを離型フィルム6として使用した。
【0038】
(比較例2)
キャスト法により作製した非多孔質フィルムであり、厚さ10μmのPTFEフィルムを離型フィルム7として使用した。
【0039】
(参考例1)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。次いでこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム11を得た。得られた離型フィルム11の多孔質層は、厚さ50μm気孔率17%であった。
【0040】
(参考例2)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。次いでこのフィルムを370℃の雰囲気下で2軸延伸した後、10μmのPTFEフィルムを熱融着させる事により離型フィルム12を得た。得られた離型フィルム12の多孔質層は、厚さ50μm気孔率85%であった。
【0041】
(参考例3)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。次いでこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ22μmのPTFEフィルムを熱融着させる事により離型フィルム13を得た。得られた離型フィルム13の多孔質層は、厚さ50μm気孔率45%であった。
【0042】
(参考例4)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。次いでこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム14を得た。得られた離型フィルム14の多孔質層は、厚さ8μm気孔率45%であった。
【0043】
(参考例5)
PTFEファインパウダーに押出助剤としてゴム揮発油18重量%を配合し混合する。これを圧延し、フィルム化した後、トルエンを用いて押出し助剤の抽出を行う。次いでこのフィルムを370℃の雰囲気下で2軸延伸した後、厚さ10μmのPTFEフィルムを熱融着させる事により離型フィルム15を得た。得られた離型フィルム15の多孔質層は、厚さ160μm気孔率45%であった。
【0044】
(評価試験例)
次に樹脂封止による評価について説明する。図1(イ)〜(ハ)に示したように、175℃に加熱された樹脂封止用金型内にチップをワイヤボンディングした状態のリードフレームと封止用フィルムを配置した。ここで、封止樹脂面から露出させるべき端子についてはリードフレームに含まれている。次いで金型を閉じて175℃の加熱条件下で成形圧力490N/cm2 で加圧した状態でトランスファー成形を行なった。なお成形時間120秒で樹脂を硬化させた。そして上金型および封止用フィルムを持ち上げパッケージの自重により封止用フィルムを剥離させることにより、リードフレームの端子部が露出した状態で封止されたパッケージを得た。
【0045】
この様にして封止加工を行なった後、加工品中から50個のパッケージを抜き取り端子部の露出状態を検査した。更に得られた半導体パッケージについてアフターキュアを行った後、リードカットを行い、端子部の樹脂欠けの状態の検査を行った。結果を表1にまとめる。
【0046】
【表1】

Figure 0004454774
表1の結果が示すように、実施例1〜5の離型フィルムを用いた場合、ほぼ全てのパッケージの端子部が露出しており、またリードカット時のリード端子間の樹脂欠けもほぼ発生せず良好に加工が行なえた。これについては図3に示す様に、型締め圧力により多孔質層の空隙が変形する事により、リード端子を始めとするリードフレームの凹凸に追従した為である。
【0047】
これに対し、非多孔質の離型フィルムを用いた比較例1の場合、50個中10個でリード端子間の樹脂欠けが発生した。これは金型型締め時にフィルムの変形を吸収する多孔質層が存在しないため、図5に示す様に離型フィルムのリード端子間への食込みが大きくなったものである。また、比較例1より薄い離型フィルムを用いた比較例2の場合、リード端子間の樹脂欠けは改善されたが、密着性、シール性の低下により、50個中10個の端子の露出不良が発生した
なお、参考例1については50個中5個でリード端子間の樹脂欠けが発生したが、多孔質層の気孔率が小さすぎる為である。参考例2については50個中6個の端子の露出不良が発生したが、多孔質層の気孔率が大きすぎる為である。参考例3については50個中6個でリード端子間の樹脂欠けが発生したが、非多孔質層の厚さが厚すぎた為である。参考例4については50個中4個で端子の露出不良が発生したが、多孔質層の厚さが薄すぎた為である。参考例5については50個中4個でリード端子間の樹脂欠けが発生したが、多孔質層の厚さが厚すぎた為である。
【図面の簡単な説明】
【図1】本発明の樹脂封止方法の一例を示す工程図
【図2】本発明に用いるリードフレームの一例を示す図
【図3】図1(ロ)のI−I断面を示す断面図
【図4】従来の樹脂封止方法の一例を示す工程図
【図5】従来の樹脂封止方法において型締めした状態を示す断面図
【符号の説明】
2 半導体チップ
3 金型(下型)
4 金型(上型)
5 封止樹脂
11 多孔質層
12 非多孔質層
22 リード端子
F 離型フィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor chip in which a resin is injected and cured in a mold in which a semiconductor chip is disposed while a release film is interposed between a surface to be sealed on which terminals or electrodes are disposed and an inner surface of the mold. The present invention relates to a resin sealing method and a release film for semiconductor chip resin sealing used therefor.
[0002]
[Prior art]
In recent years, CSP (Chip Scale / Size Package) technology has attracted attention in LSI mounting technology. Of these technologies, QFN (Quad Flat Non-Leaded Package), SON (Small Outline Non-Leaded Package), and the like, in which the lead terminal is incorporated in the package, the terminal is the sealing resin surface. It becomes a more exposed shape. In addition, since these packages are required to be miniaturized, technological development is progressing to reduce the amount of sealing resin used, and accordingly, it is blended in the sealing resin to improve the reliability of sealing performance. There is a tendency to reduce the amount of release agent. For this reason, as a measure to ensure that the terminals are exposed and to ensure releasability between the resin and the mold, a release film is provided between the sealed surface where the terminals are disposed and the inner surface of the mold. Resin sealing was performed in an intervening state.
[0003]
That is, the resin sealing method of the semiconductor chip for manufacturing the CSP is performed by using the wire 23 between the electrode of the semiconductor chip 2 and the lead terminal 22 of the lead frame 21 as shown in FIGS. The bonded product is placed in the cavity 31 of the lower mold 3, the mold is closed with the upper mold 4 through the release film 1, the resin 5 is injected and cured into the cavity 31 by transfer molding, and then the mold is molded. After opening, the lead frame 21 is cut by trimming, leaving the lead terminals 22.
[0004]
At that time, since the mold is sealed in a state where the mold is kept at about 150 to 200 ° C., the release film is required to have heat resistance that can withstand this temperature and mold releasability with respect to the sealing resin. Polytetrafluoroethylene (hereinafter abbreviated as PTFE), tetrafluoroethylene-ethylene copolymer (hereinafter abbreviated as ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter abbreviated as FEP), tetrafluoroethylene- A perfluoroalkyl vinyl ether copolymer (hereinafter abbreviated as PFA) has been used.
[0005]
[Problems to be solved by the invention]
However, in the case of the conventional release film, when performing resin sealing with the release film interposed as described above, the release film 1 is deformed by the mold clamping pressure as shown in FIG. However, particularly in the lead terminal portion, the release film 1 a compressed and deformed by the lead terminal 22 may be pushed out between the lead terminals 22. When resin sealing is performed in this state, the resin is not completely filled between the lead terminals 22, and a groove is formed between the lead terminals 22. As a result, the sealing resin between the lead terminals 22 at the time of lead cutting. There was a problem that 5 was missing.
[0006]
On the other hand, the above problems can be somewhat improved by reducing the thickness of the release film, but in this case, the adhesive force between the lead terminal and the release film is reduced, so that the sealing Resin covering tends to occur, making it difficult to reliably expose the lead terminals.
[0007]
Accordingly, an object of the present invention is to provide a semiconductor chip resin sealing method and a semiconductor chip resin sealing method that can satisfactorily fill a resin between terminals and the like while suitably exposing the terminals and the like with a release film. It is to provide a release film.
[0008]
[Means for Solving the Problems]
The present inventors have intensively studied to achieve the above object, and found that the above object can be achieved by using a multilayer film in which at least a part in the thickness direction is a porous layer as a release film, The present invention has been completed.
[0009]
That is, in the resin sealing method of the present invention, the resin is placed in the mold in which the semiconductor chip is disposed while the release film is interposed between the surface to be sealed on which the terminal or the electrode is disposed and the inner surface of the mold. In the resin sealing method of the semiconductor chip to be injected / cured, the release film is provided with a porous layer made of a fluorine-based resin on one surface and a non-porous layer made of a fluorine-based resin on the other surface. The multilayer film is provided , wherein the porous layer has a thickness of 10 μm or more and 150 μm or less, the non-porous layer has a thickness of 10 μm or more and 20 μm or less, and the porosity of the porous layer is 20 % Or more and 80% or less , wherein the porous layer is arranged so as to be in contact with the inner surface of the mold.
Moreover, the release film of the present invention is a release film used in the above-described resin sealing method of a semiconductor chip, and a porous layer made of a fluorine-based resin is provided on one surface and the other surface is provided. A non-porous layer made of a fluororesin is provided , the thickness of the porous layer is 10 μm or more and 150 μm or less, the thickness of the non-porous layer is 10 μm or more and 20 μm or less, and the pores of the porous layer The rate is 20% or more and 80% or less .
[0010]
In addition, the resin sealing method of the present invention provides a semiconductor with a release film that is peeled off from the resin after resin sealing between the surface to be sealed on which the terminals or electrodes are disposed and the inner surface of the mold. In a resin sealing method of a semiconductor chip in which resin is injected and cured in a mold in which a chip is arranged, a porous layer is provided on one surface as the release film, and a non-porous layer is provided on the other surface. The multilayer film is provided , wherein the porous layer has a thickness of 10 μm or more and 150 μm or less, the non-porous layer has a thickness of 10 μm or more and 20 μm or less, and the porosity of the porous layer is 20 % Or more and 80% or less , wherein the porous layer is arranged so as to be in contact with the inner surface of the mold.
Moreover, the release film of the present invention is a release film used in the above-described resin sealing method of a semiconductor chip, and a porous layer is provided on one surface and a non-porous layer is provided on the other surface. Provided , the thickness of the porous layer is from 10 μm to 150 μm, the thickness of the non-porous layer is from 10 μm to 20 μm, and the porosity of the porous layer is from 20% to 80% .
[0011]
In the above, it is preferable to pre-Symbol porous layer and the non-porous layer is made of fluororesin.
[0012]
[Function and effect]
According to the resin sealing method of the present invention, since a multilayer film in which at least a part in the thickness direction is a porous layer is used as the release film, the deformation at the time of mold clamping is a void portion of the porous layer. Therefore, the multilayer film is deformed and is not easily extruded between the lead terminals, and as a result, the sealing resin is satisfactorily filled between the lead terminals, and no groove is formed. In addition, the porous layer in the part that is in contact with the lead terminal, etc. by the molding pressure is completely squeezed so that the adhesion between the lead terminal surface and the film is maintained. Hateful. As a result, the resin is satisfactorily filled between the terminals and the like, and lead cutting can be suitably performed while suitably exposing the terminals and the like with the release film.
[0013]
On the other hand, according to the release film of the present invention, due to the effects as described above, when used for resin sealing of a semiconductor chip, the resin is interposed between the terminals while suitably exposing the terminals by the release film. It becomes possible to fill well.
[0014]
When the release film has a non-porous layer on at least one surface, the sealing resin infiltrates between the release film and the terminal by arranging the non-porous layer on the surface to be sealed. Can be prevented more reliably.
[0015]
When the porous layer and the non-porous layer are made of a fluororesin, the releasability from the sealing resin is high, and the heat resistance at 175 ° C., which is a general sealing temperature for semiconductor packages, is excellent. It will be.
[0016]
When the porosity of the porous layer is 20% or more and 80% or less, the amount of deformation absorbed when the mold is clamped is moderate, and the adhesion between the release film and the terminal is moderately maintained. be able to.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in the order of a release film for sealing a semiconductor chip and a resin sealing method for a semiconductor chip.
[0018]
[Release film for semiconductor chip resin encapsulation]
The release film for encapsulating a semiconductor chip resin of the present invention has a porous layer at least in a part in the thickness direction, and the whole may be formed of a porous layer. However, in order to dispose the non-porous layer on the surface to be sealed on which terminals or electrodes are disposed, it is preferable to have the non-porous layer on at least one surface.
[0019]
The non-porous layer of the release film is preferably a fluorine-based resin from the viewpoint of releasability from the sealing resin and heat resistance at 175 ° C., which is a general sealing temperature for semiconductor packages. Regarding fluororesin, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVdF), fluorine Although rubber etc. can be used suitably, PTFE is the most preferable at the point of mold release property.
[0020]
Moreover, as a porous layer, it is preferable that it is a fluorine resin from heat resistance at the time of a sealing process as above-mentioned. In particular, when PTFE fine powder is used, a porous body can be easily obtained by rolling and stretching after obtaining a molded body by paste extrusion, and easily by controlling the rolling and stretching conditions. Therefore, it is preferable to use this for the porous layer.
[0021]
The thickness of the non-porous layer is preferably 20 μm or less, more preferably 10 μm or less. When the thickness exceeds 20 μm, the film tends to be easily deformed by clamping the sealing mold as in the prior art. The thickness of the porous layer is preferably 10 μm or more and 150 μm or less. If the thickness is less than 10 μm, the amount of deformation of the porous layer is small, the amount of stress absorbed during clamping is small, and the sealing resin is likely to be covered on the lead terminals. The amount of deformation of the porous layer tends to be too large, and as a result, the amount of resin injected between the lead terminals tends to decrease.
[0022]
The porosity of the porous layer is preferably 20% or more and 80% or less. If it is less than 20%, the amount of deformation absorbed at the time of mold clamping tends to be insufficient, and if it exceeds 80%, the adhesion between the release film and the terminal tends to be difficult to maintain.
[0023]
Lamination and integration of the porous layer and the non-porous layer can be performed by heat fusion, adhesion, or the like. In addition, a dispersion liquid that is a raw material for the non-porous layer is added to the porous layer formed in advance. Application and sintering methods are also possible.
[0024]
[Resin sealing method for semiconductor chip]
In the resin sealing method of a semiconductor chip of the present invention, a resin is placed in a mold in which a semiconductor chip is disposed while a release film is interposed between a surface to be sealed on which terminals or electrodes are disposed and an inner surface of the mold. In the resin sealing method of a semiconductor chip in which is injected and cured, the multilayer film as described above is used as the release film. In this embodiment, the case where QFN is manufactured by resin sealing is illustrated.
[0025]
1A to 1C show steps of an example of a resin sealing method for a semiconductor chip of the present invention. The semiconductor chip 2 to be sealed is usually bonded to a plurality of units in the lead frame as shown in FIG. 2 (a) (FIG. 2 (b) shows one unit). Use an equalized one. 1A to 1C are shown for one unit for easy understanding.
[0026]
First, as shown in FIG. 1 (a), an electrode in which the electrode of the semiconductor chip 2 and the lead terminal 22 of the lead frame 21 are bonded with a wire 23 such as gold is placed in the cavity 31 of the lower mold 3. To do. The arrangement of the lead terminals 22 is not limited to the case where the lead terminals 22 are arranged at intervals around the entire circumference as shown in FIG. 2B, but may be arranged on the entire surface or only on the opposite side.
[0027]
Next, as shown in FIG. 1B, the mold 5 is closed with the upper mold 4 through the release film F of the present invention, and the resin 5 is injected and cured into the cavity 31 by transfer molding. Such transfer molding is usually performed at a temperature of 175 ° C. and a molding pressure of about 490 N / cm 2 . Usually, a thermosetting resin such as an epoxy resin is used.
[0028]
At that time, as shown in FIG. 3 showing the II cross section of FIG. 1 (b), the porous layer 11 of the release film F is deformed by crushing only the portion of the lead terminal 22, Only the portion of the non-porous layer 12 that is in contact with the lead terminal 22 is deformed. For this reason, since the release film F is not easily deformed and extruded between the lead terminals 22, the sealing resin 5 is satisfactorily filled between the lead terminals 22, and the surface of the lead terminals 22 and the nonporous layer 12 are in close contact with each other. Therefore, the sealing resin 5 is hardly covered on the surface of the lead terminal 22.
[0029]
Thereafter, the mold is opened as shown in FIG. Thereafter, after removing the mold and after-curing as necessary, the lead frame 21 may be cut by trimming while leaving the lead terminals 22.
[0030]
Further, on the characteristics of the release film of the present invention, not limited to QFN, for example, in a package having a structure in which a terminal that contacts an external connection terminal such as a solder ball represented by a wafer level CSP is exposed from the sealing resin surface, The terminal can be stably exposed from the sealing resin surface, and the sealing process can be performed satisfactorily. That is, even if the exposed terminal is included in the lead frame, or formed on the wafer or chip surface, good resin sealing can be performed by using the release film of the present invention.
[0031]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0032]
Example 1
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is filled in a cylindrical mold and pressed to obtain a molded body, which is ram extruded. Next, this is rolled to form a film, and then the extrusion aid is extracted using toluene. The film was biaxially stretched in an atmosphere of 370 ° C., and then a release film 1 was obtained by thermally fusing a 10 μm thick PTFE film. The porous layer of the obtained release film 1 had a thickness of 50 μm and a porosity of 45%.
[0033]
(Example 2)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is filled in a cylindrical mold and pressed to obtain a molded body, which is ram extruded. Next, this is rolled to form a film, and then the extrusion aid is extracted using toluene. And after releasing this film biaxially in an atmosphere of 370 ° C., a release film 2 was obtained by thermally fusing a 10 μm thick PTFE film. The porous layer of the obtained release film 2 had a thickness of 50 μm and a porosity of 23%.
[0034]
(Example 3)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is filled in a cylindrical mold and pressed to obtain a molded body, which is ram extruded. Next, this is rolled to form a film, and then the extrusion aid is extracted using toluene. And after releasing this film biaxially in an atmosphere of 370 ° C., a release film 3 was obtained by thermally fusing a 10 μm thick PTFE film. The porous layer of the obtained release film 3 had a thickness of 50 μm and a porosity of 76%.
[0035]
Example 4
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is filled in a cylindrical mold and pressed to obtain a molded body, which is ram extruded. Next, this is rolled to form a film, and then the extrusion aid is extracted using toluene. And after releasing this film biaxially in an atmosphere of 370 ° C., a release film 4 was obtained by thermally fusing a 10 μm thick PTFE film. The porous layer of the obtained release film 4 had a thickness of 12 μm and a porosity of 45%.
[0036]
(Example 5)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is filled in a cylindrical mold and pressed to obtain a molded body, which is ram extruded. Next, this is rolled to form a film, and then the extrusion aid is extracted using toluene. And after releasing this film biaxially in an atmosphere of 370 ° C., a release film 5 was obtained by thermally fusing a 10 μm thick PTFE film. The porous layer of the obtained release film 5 had a thickness of 140 μm and a porosity of 45%.
[0037]
(Comparative Example 1)
A PTFE film having a thickness of 40 μm, which is a non-porous film produced by a casting method, was used as the release film 6.
[0038]
(Comparative Example 2)
A PTFE film having a thickness of 10 μm, which was a non-porous film produced by a casting method, was used as the release film 7.
[0039]
(Reference Example 1)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is rolled and formed into a film, and then the extrusion aid is extracted using toluene. Next, the film was biaxially stretched in an atmosphere of 370 ° C., and then a PTFE film having a thickness of 10 μm was thermally fused to obtain a release film 11. The porous layer of the obtained release film 11 had a thickness of 50 μm and a porosity of 17%.
[0040]
(Reference Example 2)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is rolled and formed into a film, and then the extrusion aid is extracted using toluene. Next, the film was biaxially stretched in an atmosphere of 370 ° C., and then a release film 12 was obtained by thermally fusing a 10 μm PTFE film. The porous layer of the obtained release film 12 had a thickness of 50 μm and a porosity of 85%.
[0041]
(Reference Example 3)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is rolled and formed into a film, and then the extrusion aid is extracted using toluene. Next, the film was biaxially stretched in an atmosphere of 370 ° C., and then a release film 13 was obtained by thermally fusing a PTFE film having a thickness of 22 μm. The porous layer of the obtained release film 13 had a thickness of 50 μm and a porosity of 45%.
[0042]
(Reference Example 4)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is rolled and formed into a film, and then the extrusion aid is extracted using toluene. Next, the film was biaxially stretched in an atmosphere of 370 ° C., and then a release film 14 was obtained by thermally fusing a 10 μm thick PTFE film. The porous layer of the obtained release film 14 had a thickness of 8 μm and a porosity of 45%.
[0043]
(Reference Example 5)
A PTFE fine powder is mixed with 18% by weight of volatile rubber oil as an extrusion aid. This is rolled and formed into a film, and then the extrusion aid is extracted using toluene. Next, the film was biaxially stretched in an atmosphere of 370 ° C., and then a release film 15 was obtained by thermally fusing a 10 μm thick PTFE film. The porous layer of the obtained release film 15 had a thickness of 160 μm and a porosity of 45%.
[0044]
(Evaluation test example)
Next, evaluation by resin sealing will be described. As shown in FIGS. 1A to 1C, a lead frame and a sealing film in which a chip is wire-bonded are placed in a resin sealing mold heated to 175 ° C. As shown in FIGS. Here, the terminals to be exposed from the sealing resin surface are included in the lead frame. Next, the mold was closed, and transfer molding was performed under a heating condition of 175 ° C. with a molding pressure of 490 N / cm 2 . The resin was cured with a molding time of 120 seconds. Then, the upper mold and the sealing film were lifted and the sealing film was peeled off by the weight of the package, thereby obtaining a package sealed with the terminal portion of the lead frame exposed.
[0045]
After sealing processing in this way, 50 packages were extracted from the processed products, and the exposed state of the terminal portions was inspected. Further, the obtained semiconductor package was after-cured and then lead-cut to inspect the terminal portion for lack of resin. The results are summarized in Table 1.
[0046]
[Table 1]
Figure 0004454774
As shown in the results of Table 1, when the release films of Examples 1 to 5 were used, almost all package terminal portions were exposed, and almost no resin chipping occurred between the lead terminals during lead cutting. It was possible to process well without doing. This is because, as shown in FIG. 3, the voids of the porous layer are deformed by the clamping pressure, thereby following the irregularities of the lead frame including the lead terminals.
[0047]
On the other hand, in the case of Comparative Example 1 using a non-porous release film, 10 pieces out of 50 pieces lacked resin between the lead terminals. This is because there is no porous layer that absorbs deformation of the film when the mold is clamped, so that the bite between the lead terminals of the release film is increased as shown in FIG. Further, in Comparative Example 2 using a release film thinner than Comparative Example 1, the resin chipping between the lead terminals was improved, but the exposure of 10 out of 50 terminals was poor due to a decrease in adhesion and sealability. In Reference Example 1, five of the fifty pieces had resin chipping between the lead terminals, but this was because the porosity of the porous layer was too small. In Reference Example 2, 6 out of 50 terminals had poor exposure, but the porosity of the porous layer was too large. In Reference Example 3, resin chipping between the lead terminals occurred in 6 out of 50, because the non-porous layer was too thick. In Reference Example 4, 4 out of 50 terminals had poor exposure, but the porous layer was too thin. In Reference Example 5, resin chipping between the lead terminals occurred in 4 out of 50, because the porous layer was too thick.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an example of a resin sealing method of the present invention. FIG. 2 is a diagram showing an example of a lead frame used in the present invention. FIG. 3 is a cross-sectional view showing a II cross section of FIG. FIG. 4 is a process diagram showing an example of a conventional resin sealing method. FIG. 5 is a cross-sectional view showing a state in which a mold is clamped in a conventional resin sealing method.
2 Semiconductor chip 3 Mold (lower mold)
4 Mold (upper mold)
5 Sealing resin 11 Porous layer 12 Non-porous layer 22 Lead terminal F Release film

Claims (5)

端子または電極が配設された被封止面と金型内面との間に離型フィルムを介在させつつ、半導体チップを配置した金型内に樹脂を注入・硬化させる半導体チップの樹脂封止方法において、
前記離型フィルムとして、片方の表面にフッ素系樹脂からなる多孔質層が設けられるとともに、他方の表面にフッ素系樹脂からなる非多孔質層が設けられた複層フィルムであって、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である複層フィルムを、前記多孔質層を前記金型内面に接するように配置して使用する事を特徴とする半導体チップの樹脂封止方法。
A resin sealing method for a semiconductor chip, in which a resin film is injected and cured in a mold in which a semiconductor chip is disposed while a release film is interposed between a surface to be sealed in which terminals or electrodes are disposed and an inner surface of the mold In
The release film is a multilayer film in which a porous layer made of a fluorine-based resin is provided on one surface and a non-porous layer made of a fluorine-based resin is provided on the other surface, the porous film A multilayer film having a layer thickness of 10 μm to 150 μm, a thickness of the non-porous layer of 10 μm to 20 μm, and a porosity of the porous layer of 20% to 80% , A resin sealing method for a semiconductor chip, wherein a porous layer is used so as to be in contact with the inner surface of the mold.
請求項1に記載の半導体チップの樹脂封止方法に使用する離型フィルムであって、片方の表面にフッ素系樹脂からなる多孔質層が設けられるとともに、他方の表面にフッ素系樹脂からなる非多孔質層が設けられ、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である半導体チップ樹脂封止用離型フィルム。A release film for use in the resin sealing method for a semiconductor chip according to claim 1, wherein a porous layer made of a fluorine resin is provided on one surface and a non-fluorine resin is made on the other surface. A porous layer is provided , the thickness of the porous layer is 10 μm or more and 150 μm or less, the thickness of the non-porous layer is 10 μm or more and 20 μm or less, and the porosity of the porous layer is 20% or more and 80 % Release film for sealing a semiconductor chip resin. 端子または電極が配設された被封止面と金型内面との間に、樹脂封止後に樹脂から剥離される離型フィルムを介在させつつ、半導体チップを配置した金型内に樹脂を注入・硬化させる半導体チップの樹脂封止方法において、
前記離型フィルムとして、片方の表面に多孔質層が設けられるとともに、他方の表面に非多孔質層が設けられた複層フィルムであって、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である複層フィルムを、前記多孔質層を前記金型内面に接するように配置して使用する事を特徴とする半導体チップの樹脂封止方法。
Resin is injected into the mold in which the semiconductor chip is placed, with a release film that is peeled off from the resin after sealing the resin between the sealed surface where the terminals or electrodes are placed and the inner surface of the mold. In the resin sealing method of the semiconductor chip to be cured,
The release film is a multilayer film in which a porous layer is provided on one surface and a non-porous layer is provided on the other surface, and the thickness of the porous layer is 10 μm or more and 150 μm or less. A multilayer film in which the thickness of the non-porous layer is 10 μm or more and 20 μm or less, and the porosity of the porous layer is 20% or more and 80% or less, and the porous layer is in contact with the inner surface of the mold A semiconductor chip resin sealing method characterized by being arranged and used as described above.
請求項3に記載の半導体チップの樹脂封止方法に使用する離型フィルムであって、片方の表面に多孔質層が設けられるとともに、他方の表面に非多孔質層が設けられ、前記多孔質層の厚さが10μm以上150μm以下であり、前記非多孔質層の厚さが10μm以上20μm以下であり、前記多孔質層の気孔率が20%以上80%以下である半導体チップ樹脂封止用離型フィルム。A release film used for the resin sealing method of a semiconductor chip according to claim 3 , wherein a porous layer is provided on one surface and a non-porous layer is provided on the other surface, For semiconductor chip resin encapsulation , wherein the layer has a thickness of 10 μm to 150 μm, the non-porous layer has a thickness of 10 μm to 20 μm, and the porosity of the porous layer is 20% to 80% Release film. 前記多孔質層及び前記非多孔質層がフッ素系樹脂からなる請求項4に記載の半導体チップ樹脂封止用離型フィルム。  The mold release film for semiconductor chip resin sealing according to claim 4, wherein the porous layer and the non-porous layer are made of a fluororesin.
JP2000090202A 2000-03-29 2000-03-29 Semiconductor chip resin sealing method and release film for semiconductor chip resin sealing Expired - Fee Related JP4454774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090202A JP4454774B2 (en) 2000-03-29 2000-03-29 Semiconductor chip resin sealing method and release film for semiconductor chip resin sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090202A JP4454774B2 (en) 2000-03-29 2000-03-29 Semiconductor chip resin sealing method and release film for semiconductor chip resin sealing

Publications (2)

Publication Number Publication Date
JP2001284378A JP2001284378A (en) 2001-10-12
JP4454774B2 true JP4454774B2 (en) 2010-04-21

Family

ID=18605838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090202A Expired - Fee Related JP4454774B2 (en) 2000-03-29 2000-03-29 Semiconductor chip resin sealing method and release film for semiconductor chip resin sealing

Country Status (1)

Country Link
JP (1) JP4454774B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392527B2 (en) * 2008-04-04 2014-01-22 日立化成株式会社 Release sheet for mold and manufacturing method thereof
JP5543084B2 (en) 2008-06-24 2014-07-09 ピーエスフォー ルクスコ エスエイアールエル Manufacturing method of semiconductor device
KR100944501B1 (en) 2008-07-31 2010-03-03 (주)에이씨티 Rubber sheet for coating of semiconductor mold

Also Published As

Publication number Publication date
JP2001284378A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
TW201232674A (en) Method and apparatus of compression molding for reducing viods in molding compound
TWI596713B (en) Semiconductor device
JP4268389B2 (en) Resin sealing molding method and apparatus for electronic parts
JP4326786B2 (en) Resin sealing device
JP4607429B2 (en) Semiconductor device manufacturing method and semiconductor device
TWI393621B (en) Release film for encapsulation of semiconductor chip
US20030207498A1 (en) Partially patterned lead frames and methods of making and using the same in semiconductor packaging
JP4443715B2 (en) Semiconductor resin sealing method and semiconductor resin sealing release film
TW200903756A (en) Semiconductor chip package, semiconductor package including semiconductor chip package, and method of fabricating semiconductor package
JP4454774B2 (en) Semiconductor chip resin sealing method and release film for semiconductor chip resin sealing
JP3207286B2 (en) Resin-sealed semiconductor device
TWI332694B (en) Chip package structure and process for fabricating the same
JP3485513B2 (en) Method for manufacturing semiconductor device
JP2000195883A (en) Method of sealing semiconductor wafer with resin
JPH09129659A (en) Sheetlike resin for sealing semiconductor
JP5642312B1 (en) Semiconductor device and manufacturing method thereof
JP5308107B2 (en) Circuit device manufacturing method
JP4790750B2 (en) Manufacturing method of resin-encapsulated semiconductor device
WO2008088291A1 (en) Method of semiconductor packaging and/or a semiconductor package
JPH10214925A (en) Sealing label for sealing semiconductor device
JP4059764B2 (en) Manufacturing method of semiconductor device
JP2785770B2 (en) Method and apparatus for manufacturing resin-encapsulated semiconductor device
TWI229909B (en) Lead frame and semiconductor package using the same
JP4653608B2 (en) Manufacturing method of surface mount type resin hollow package
JP4090021B2 (en) Capacitor element in solid electrolytic capacitor, method for manufacturing the capacitor element, and solid electrolytic capacitor using the capacitor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees