JP4453422B2 - Titanium tube for hydrofoam, its manufacturing method and hydrofoam molding - Google Patents

Titanium tube for hydrofoam, its manufacturing method and hydrofoam molding Download PDF

Info

Publication number
JP4453422B2
JP4453422B2 JP2004105275A JP2004105275A JP4453422B2 JP 4453422 B2 JP4453422 B2 JP 4453422B2 JP 2004105275 A JP2004105275 A JP 2004105275A JP 2004105275 A JP2004105275 A JP 2004105275A JP 4453422 B2 JP4453422 B2 JP 4453422B2
Authority
JP
Japan
Prior art keywords
pipe
welded
tube
titanium
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004105275A
Other languages
Japanese (ja)
Other versions
JP2005290448A (en
Inventor
光俊 内田
正康 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004105275A priority Critical patent/JP4453422B2/en
Publication of JP2005290448A publication Critical patent/JP2005290448A/en
Application granted granted Critical
Publication of JP4453422B2 publication Critical patent/JP4453422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、金型内に装着され、管内に内圧をかけ、必要に応じて軸方向に押し込みつつ所定の形状に加工されるハイドロフォーム用チタン管、その製造方法およびそのハイドロフォームによる成形品に関する。   TECHNICAL FIELD The present invention relates to a titanium tube for hydrofoam that is mounted in a mold, applies an internal pressure in the tube, and is processed in a predetermined shape while being pushed in the axial direction as necessary, a method for producing the same, and a molded product using the hydroform. .

純チタン、チタン合金(以下、単にチタンと略称することもある)は比強度に優れるため、航空、軍事、宇宙、自動車、スポーツ用品等の分野で使用されてきた。また、耐食性にも優れるため、化学プラントでの配管部材等にも用いられている。これら分野ではさらなる軽量化、高強度化が望まれている。   Pure titanium and titanium alloys (hereinafter sometimes simply referred to as titanium) are excellent in specific strength, and thus have been used in the fields of aviation, military, space, automobiles, sports equipment and the like. Moreover, since it is excellent also in corrosion resistance, it is used also for the piping member etc. in a chemical plant. In these fields, further weight reduction and higher strength are desired.

一方、中実部材の中空化による軽量化手法としてハイドロフォームによる部品成形が注目されてきている。
ここに、「ハイドロフォーム」とは素材となる中空管(素管という)を加工用金型内に装着し、この素管内部に加工液を注入して圧力を加えると同時に、必要に応じて管端から軸押しを負荷して膨出加工を行いつつ所定の異形管状製品を製造する加工方法である。
On the other hand, component molding by hydroforming has been attracting attention as a method for reducing the weight by hollowing a solid member.
Here, `` hydroform '' means that a hollow tube (called a raw pipe) that is a material is mounted in a processing mold, and a working liquid is injected into the raw pipe to apply pressure, and at the same time as necessary. This is a processing method for manufacturing a predetermined deformed tubular product while performing bulge processing by applying axial push from the tube end.

図1は、ハイドロフォーミングの加工要領を説明する図であり、同図(a) は加工前の素管2の形状を一部断面で示し、同図(b)はこれをハイドロフォームして得られた製品1の形状を一部断面で示す。   Fig. 1 is a diagram for explaining the hydroforming process. Fig. 1 (a) shows a partial cross-sectional view of the shape of the raw tube 2 before processing, and Fig. 1 (b) shows the result of hydroforming it. The shape of the obtained product 1 is shown in partial cross section.

図1(a)に示すハイドロフォーム用素管である金属管2は加工用金型(図示せず)内に装着し、この金属管内部に加工液を注入して圧力を加えると同時に、必要に応じて管端から軸押しを負荷しつつ、図1(b)に示す所定の異形管状製品1を製造する。通常、ハイドロフォームにおける加工性の評価指標として拡管率[(ハイドロフォーム後の周長)―(素管の周長)/(素管の周長)]が用いられ、拡管率が大きい製品ほどハイドロフォームが難しいとされる。換言すれば、拡管率の大きな素管ほど加工性がよいと云える。   The metal tube 2 which is a raw tube for hydroform shown in FIG. 1 (a) is mounted in a processing mold (not shown), and a processing liquid is injected into the metal tube to apply pressure, and at the same time, it is necessary. In response to this, a predetermined deformed tubular product 1 shown in FIG. Normally, pipe expansion ratio [(peripheral length after hydroforming)-(perimeter of base pipe) / (perimeter of base pipe)]] is used as an evaluation index of workability in hydroform. Form is said to be difficult. In other words, it can be said that a work tube with a larger tube expansion rate has better workability.

一方、通常、製品の断面には矩形等の異形断面が含まれる場合があり、成形時に破断や著しい減肉を生じずによりシャープなコーナ部を成形する、つまり、コーナ部により小さなR部(以下、コーナR部という)を成形できるほど、そのような異形断面を有する複雑で精密な形状の部品の成形に適した素材といえる。   On the other hand, there are cases where the cross section of the product usually includes an irregular cross section such as a rectangle, and a sharper corner portion is formed without causing breakage or significant thinning during molding, that is, a smaller R portion (hereinafter referred to as a corner portion). It can be said that it is a material suitable for molding a complex and precise shape part having such an irregular cross section.

このようなハイドロフォームに用いる素管としてのチタン管を製造する方法としては条材を穿孔して製作するシームレス管と、板材を管状に丸めて突き合わせ部を溶接する溶接管がある。本明細書において、単に「チタン(合金)管」と云うときは、シームレス管および溶接管の両者を包含する。   As a method of manufacturing a titanium tube as an element tube used for such a hydroform, there are a seamless tube that is manufactured by drilling a strip material, and a welded tube that rounds a plate material into a tubular shape and welds a butt portion. In the present specification, the term “titanium (alloy) pipe” includes both seamless pipes and welded pipes.

一般に、純チタン溶接管またはチタン合金溶接管(以下、単にチタン溶接管と総称することもある)の造管では、不活性ガスでシールドして行うTIG溶接が用いられている。チタン合金は窒素、酸素、水素等の含有量が多いほど硬化することが知られており、製管時にアルゴン等の不活性ガスでシールドして、不純ガスの混入を防止している。   In general, TIG welding performed by shielding with an inert gas is used for pipe making of a pure titanium welded pipe or a titanium alloy welded pipe (hereinafter sometimes simply referred to as a titanium welded pipe). Titanium alloys are known to be hardened as the content of nitrogen, oxygen, hydrogen, etc. increases, and are shielded with an inert gas such as argon during pipe production to prevent the introduction of impure gas.

しかしながら、従来のチタン溶接管をハイドロフォームに適用しようとすると、本来の母材の成形限界よりも小さい拡管しかできない という問題がある。
特許文献1には、β型チタン合金管の造管時の溶接方法についての技術が開示してあるが、管そのものの強度(靭性)を向上させるものであって、管の加工時の成型性を向上させるためのものではない。
However, when applying a conventional titanium welded pipe to a hydroform, there is a problem that the pipe can only be expanded smaller than the forming limit of the original base material.
Patent Document 1 discloses a technique relating to a welding method at the time of forming a β-type titanium alloy tube, but it improves the strength (toughness) of the tube itself, and the formability at the time of processing of the tube is disclosed. It is not intended to improve.

特許文献2には、冷間加工性に優れたβ型チタン合金が示されているが、特に冷間鍛造を対象としたもので、ハイドロフォームを想定したものではない。
特許文献3には、溶接部の幅を狭めることでハイドロフォーム等での成形性のよい純チタン管を提案しているが、3t≧W>(3/6.5)tの関係を満たすように、溶接幅(W)を板厚(t)で規定されるある範囲に制限するというのである。
Patent Document 2 discloses a β-type titanium alloy excellent in cold workability, but it is particularly intended for cold forging and does not assume a hydroform.
Patent Document 3 proposes a pure titanium tube having good formability in hydroform or the like by narrowing the width of the welded portion, but to satisfy the relationship of 3t ≧ W> (3 / 6.5) t, The welding width (W) is limited to a certain range defined by the plate thickness (t).

しかし、この方法はレーザ溶接を前提にしており、溶接条件としてはかなり厳しい条件といわなければなず、実用的とは云えない。
特開平11-114684号公報 特許2669004号 特開2003−311322号公報
However, this method is premised on laser welding, and it must be said that the welding conditions are rather severe, and cannot be said to be practical.
Japanese Patent Laid-Open No. 11-114684 Patent 2669004 JP2003-311322

本発明の課題は、ハイドロフォームで成形するのに適したチタン管、その製造方法およびそれを用いたハイドロフォーム成形品を提供することである。 An object of the present invention is to provide a titanium tube suitable for molding with hydrofoam, a method for producing the same, and a hydrofoam molded article using the same.

自動車及び2輪車部品等において、金属管をハイドロフォームにより成形した部品が採用されている。一方、純チタン材は高温で独自の発色を生じるため意匠性が高く高級感があり、2輪車のマフラー等に用いられており、更なる加工性の向上が望まれている。   In automobiles and motorcycle parts, parts formed by hydroforming metal pipes are used. On the other hand, pure titanium material produces a unique color at high temperatures, has a high design and high-class feeling, and is used for mufflers and the like of two-wheeled vehicles. Further improvement in workability is desired.

さらに、航空機部品等ではより精密な形状がもとめられ、製品としては高い強度が求められる。
製品の軽量化と高強度化を両立させるためには、形状を閉断面構造とし、素材としては比強度の高いものを用いるのが有効である。そこで、閉断面構造部材の製法としてハイドロフォームの採用が、そして素材の軽量化のためには、チタン材の適用が考えられるが、従来のチタン溶接管でのハイドロフォームでは膨出成形中に溶接部で破断することがあるため、成形可能な形状が制限されていた。
Furthermore, aircraft parts and the like are required to have a more precise shape, and the product is required to have high strength.
In order to achieve both weight reduction and high strength of the product, it is effective to use a closed cross-sectional structure and a material with high specific strength. Therefore, the use of hydroform as a manufacturing method for closed cross-section structural members and the application of titanium material can be considered to reduce the weight of the material, but conventional hydroforms with titanium welded pipes are welded during bulging molding. In some cases, the shape that can be molded is limited.

本発明者は鋭意調査の結果、チタン合金の場合、溶接部の存在しないシームレス管とすれば、素材のもつ成形限界で成形できることを見出した。
ところで、シームレス管は製造コストが高く、今日のようにコスト削減が強く求められている状況下からは、特殊用途以外にその採用が難しく、通常は溶接管が用いられている。
As a result of earnest investigation, the present inventor has found that in the case of a titanium alloy, if it is a seamless pipe having no welded portion, it can be formed at the forming limit of the material.
By the way, seamless pipes are expensive to manufacture, and it is difficult to adopt them other than special applications under the circumstances where cost reduction is strongly demanded as in today, and welded pipes are usually used.

ここに、チタン溶接管の製管の溶接方法としては、不活性ガスでシールして行うTIG溶接が一般的である。しかしながら、そのようなチタン溶接管をハイドロフォームしたところ、シームレス管で得られた拡管率以下で、溶接部より破断することが判明した。   Here, as a method for welding a titanium welded pipe, TIG welding performed by sealing with an inert gas is generally used. However, when such a titanium welded tube was hydroformed, it was found that the welded portion fractured below the expansion ratio obtained with the seamless tube.

そこで、本発明者らが、更に破断現象をさらに詳細に調査した結果、拡管中に母材よりも熱影響部が集中的に延びて破断することが判明した。
つまり、熱影響部の強度が、母材よりも低くならなければ溶接管としても、素材自体の持つ成形性を得られるのである。本明細書では溶金部と熱影響部とを含めて「溶接部」と云い、熱影響部の強度の指標としてこの溶接部の平均硬度を用いるのである。したがって、本発明では、少なくともこの溶接部の平均硬度をもって母材の平均硬度より高くすることで、チタン溶接管のハイドロフォーム時の拡管率の向上を図るのである。
Thus, as a result of further investigation of the fracture phenomenon by the present inventors, it has been found that the heat-affected zone extends more intensively than the base metal during pipe expansion and breaks.
That is, if the strength of the heat-affected zone is not lower than that of the base material, the formability of the material itself can be obtained even as a welded pipe. In this specification, the weld zone and the heat affected zone are collectively referred to as “welded zone”, and the average hardness of the weld zone is used as an index of the strength of the heat affected zone. Therefore, in the present invention, at least the average hardness of the welded portion is made higher than the average hardness of the base material, so that the expansion ratio of the titanium welded tube during hydroforming is improved.

特許文献3には溶接金属が凝固冷却されるまでに結晶粒が粗大化し軟化が起こると記載されているが、溶接に際して用いられる不活性ガスに不純ガスを混入させることにより、そのような軟化が防止できることを見出した。   Patent Document 3 describes that the crystal grains become coarse and soften until the weld metal is solidified and cooled, but such softening can be achieved by mixing an impure gas into the inert gas used during welding. I found out that it can be prevented.

さらに、素材の比強度を上げるためには、望ましいチタン合金の適用が考えられる。
従来、冷間加工性に優れた、チタン合金が提案されているが、これらは冷間及び熱間鍛造、プレス成形を対象としたものであって、ハイドロフォームはその範疇になかった。鍛造での成形性は円柱状の試験片を軸方向に潰し、表面での割れ発生で評価するが、この割れは軸方向の圧縮と周方向の引張により生じるせん断応力に起因するものである。プレス成形での判断では板厚方向を含まない2軸引張応力下での引張に起因するものである。
一方、ハイドロフォームでの破断は基本的に3軸応力状態での割れ発生であり、従来の鍛造やプレス成形にて成形性の優れた素材が必ずしもハイドロフォームにおいて優れる訳ではない。
Furthermore, in order to increase the specific strength of the material, it is conceivable to apply a desirable titanium alloy.
Conventionally, titanium alloys excellent in cold workability have been proposed, but these are intended for cold and hot forging and press forming, and hydroforms were not in that category. Formability in forging is evaluated by crushing a cylindrical specimen in the axial direction and generating cracks on the surface. This crack is caused by shear stress caused by axial compression and circumferential tension. Judgment in press molding is due to tension under biaxial tensile stress that does not include the thickness direction.
On the other hand, fracture in hydroform is basically cracking in a triaxial stress state, and a material excellent in formability by conventional forging or press molding is not necessarily superior in hydroform.

そのため、ハイドロフォームでの成形に優れたチタン合金は特にこれまで提案されていない。
本発明者らは、これら要求を満たす手法としては、冷間加工性のよい体心立方晶の結晶構造を持ち、溶体化処理を施した状態で成形し、成形後に時効処理を施しα相を析出させることにより強度を高められるβ型チタン合金が有望であると考えた。
Therefore, a titanium alloy excellent in forming with a hydroform has not been proposed so far.
As a method for satisfying these requirements, the present inventors have a body-centered cubic crystal structure with good cold workability, and are molded in a solution-treated state, and are subjected to an aging treatment after molding to form an α phase. It was considered that a β-type titanium alloy whose strength can be increased by precipitation is promising.

ここに、β型チタン合金としては、Ti-3Al-8V-6Cr-4Mo-4ZrやTi-15V-3Cr-3Al-3Znなどのβ型チタン合金が知られているが、これらは変形抵抗が高いため、液圧によって成形するハイドロフォームでは成形できる形状に制限があり、より変形抵抗が低い素材が望まれる。   Here, β-type titanium alloys such as Ti-3Al-8V-6Cr-4Mo-4Zr and Ti-15V-3Cr-3Al-3Zn are known as β-type titanium alloys, but these have high deformation resistance. For this reason, there is a limit to the shape that can be molded with hydroform molded by hydraulic pressure, and a material with lower deformation resistance is desired.

一方、航空機部品等のように精密な形状が要求される場合、よりシャープなコーナR部の形成が必要である。一般に液圧を上げることにより、コーナ部のRを小さくできるが、無限に小さなRが選られる訳でなく、成形中にR止まり又はR頂点で破断することが知られている。
ここに、本発明者らは鋭意検討の結果、低い液圧で、しかも割れることなくシャープなコーナR部を得るためには、(1)降伏点が低い、(2)加工硬化し難い(一様のびが小さく、局部のびが大きい)材料がよいことを見いだした。
On the other hand, when a precise shape such as an aircraft part is required, it is necessary to form a sharper corner R portion. In general, by increasing the hydraulic pressure, the corner R can be reduced, but an infinitely small R is not selected, and it is known that R stops or breaks at the R apex during molding.
Here, as a result of intensive studies, the present inventors have obtained (1) a low yield point and (2) difficult to work harden (1) in order to obtain a sharp corner R portion with a low hydraulic pressure and without cracking. I found that the material is good (small spread and large local spread).

そこで、上記の、ハイドロフォーム成形時に熱影響部での破断を防止する方法について検討し、溶接時に溶金部、熱影響部が再結晶により結晶粒が粗大化することは不可避であるが、結晶粒の粗大化による強度低下を別の手法で補えばよいことを見出した。   Therefore, the above-mentioned method for preventing breakage at the heat affected zone during hydroforming is studied, and it is inevitable that the crystal grains become coarse due to recrystallization at the molten metal and heat affected zone during welding. It has been found that a decrease in strength due to grain coarsening may be compensated by another method.

ここに、以上を総括するに、チタン溶接管のハイドロフォーム時に破断部位となる熱影響部の強度を上げる方法としては、溶接時のシールド用不活性ガスに不純ガスを混入させればよい。不純ガスの中でも酸素はとくに強度増加に効果的である。   Here, to summarize the above, as a method for increasing the strength of the heat-affected zone that becomes the fracture site during hydroforming of a titanium welded tube, an impure gas may be mixed into the shielding inert gas during welding. Among impure gases, oxygen is particularly effective for increasing the strength.

熱影響部の強度上昇の指標としては、溶金部と熱影響部とを含む溶接部の硬度分布の平均と母材とのビッカース硬度の差を用い、それをゼロ超とすればよい。
さらに、上記効果をさらに高める手法として、上述のような条件下で熱影響部の幅を小さくすることが効果的である。熱影響部の幅を十分短くすれば、硬質な母材の拘束を受けるため、軟質な熱影響部が変形しようとしても変形し難くなる。
As an index for increasing the strength of the heat-affected zone, the average hardness distribution of the weld zone including the molten metal zone and the heat-affected zone and the difference in Vickers hardness between the base metal and the base material may be made to exceed zero.
Furthermore, as a method for further enhancing the above effect, it is effective to reduce the width of the heat affected zone under the above-described conditions. If the width of the heat-affected zone is made sufficiently short, it will be restrained by a hard base material, so that it will be difficult for the soft heat-affected zone to be deformed.

熱影響部の幅を短くするためには溶接時の入熱を集中させればよく、溶接法としては例えばレーザ溶接が有効である。
一方、造管溶接時に熱影響部の結晶粒が粗大化するが、そのような場合にあっても、その後に結晶粒を微細化させ、熱影響部の強度を母材の強度と同等とすれば、ハイドロフォームに際しての溶接部での破断を阻止し、拡管率を高めることができる。このとき結晶粒を微細化する手法としては、溶接部を冷間加工し、塑性ひずみを与えた後、溶体化熱処理を行えばよい。
In order to shorten the width of the heat-affected zone, it is only necessary to concentrate heat input during welding. For example, laser welding is effective as a welding method.
On the other hand, the crystal grains in the heat-affected zone become coarse during pipe-forming welding, but even in such a case, the crystal grains are subsequently refined to make the strength of the heat-affected zone equal to the strength of the base material. For example, it is possible to prevent breakage at the welded portion during hydroforming and increase the pipe expansion rate. At this time, as a technique for refining the crystal grains, a solution heat treatment may be performed after cold-working the weld and applying plastic strain.

さらに、純チタン溶接管では、溶接に際して上記現象に加え以下の現象が生じるため、熱影響部の強度は、母材以上に高くしなければならない。
すなわち、純チタン溶接管の母材である純チタン板は集合組織であって塑性異方性が大きい、通常、圧延方向のr値が2前後、圧延直角方向のr値は特に大きく4〜6に達する。一方、造管溶接時に溶接部を構成する溶金部、熱影響部は、一旦β変態点を超えて加熱冷却されるためにトランスフォームト゛β相となってr値は1程度まで減少する。そのため、一軸引張では熱影響部の方が母材よりも強度が高くとも、ハイドロフォームのような長手方向の変形が拘束された平面ひずみ引張に近い2軸引張応力下では母材に比べ熱影響部の強度が著しく低下するのである。
Furthermore, in a pure titanium welded pipe, the following phenomenon occurs in addition to the above phenomenon during welding, so the strength of the heat affected zone must be higher than that of the base metal.
That is, a pure titanium plate as a base material of a pure titanium welded pipe has a texture and a large plastic anisotropy. Usually, the r value in the rolling direction is around 2 and the r value in the direction perpendicular to the rolling is particularly large 4-6. To reach. On the other hand, the molten metal part and the heat-affected zone constituting the welded part at the time of pipe-forming welding are once heated and cooled beyond the β transformation point, so that they become transformed β phases and the r value decreases to about 1. Therefore, even if the heat-affected zone is stronger than the base metal in uniaxial tension, the thermal effect is higher than that of the base metal under biaxial tensile stress close to plane strain tension such as hydroform where the deformation in the longitudinal direction is restricted. The strength of the part is significantly reduced.

よって、純チタン溶接管の熱影響部は母材に比べてr値が小さいため、たとえ、一軸引張で同等の強さを持っていても、ハイドロフォームのような軸方向の変形が拘束された平面ひずみ引張に近い2軸引張応力下では熱影響部のほうが軟質な挙動を示す。   Therefore, the heat affected zone of pure titanium welded pipe has a smaller r value than the base metal, so even if it has the same strength by uniaxial tension, the axial deformation like hydroform is restrained. Under the biaxial tensile stress close to plane strain tension, the heat-affected zone shows a softer behavior.

従って、純チタン溶接管では、ハイドロフォーム時の熱影響部の破断を防止する手法として、前述の2つの方法に加えて以下の方法が有効である、
つまり、純チタン板は幅方向のr値は4〜6と大きいが、圧延方向のr値は2前後である。従って、板の圧延方向を、管の周方向となるように造管すれば、熱影響部のr値が下がっても、母材との差はそれほど広がらないため、ハイドロフォーム時に破断しにくくなる。
Therefore, in the pure titanium welded pipe, the following method is effective in addition to the above-mentioned two methods as a method for preventing breakage of the heat-affected zone during hydroforming.
That is, the pure titanium sheet has a large r value in the width direction of 4 to 6, but the r value in the rolling direction is around 2. Therefore, if the rolling direction of the plate is made to be the circumferential direction of the pipe, even if the r value of the heat-affected zone decreases, the difference from the base material does not increase so much, and it is difficult to break during hydroforming. .

次に、好ましいチタン合金素材について述べるが、この場合には、シームレス管であっても溶接管であってもよく、いずれの場合も包含する。ハイドロフォームは基本的に拡管加工であるため、全のびは少なくとも10%以上あることが求められる。また、よりシャープなコーナR部を得るためにはほとんど加工硬化せず、コーナ部へ材料が流入しやすいことが必要である。つまり、一様延びが2%以下、全伸びが10%以上であることが好ましい。   Next, a preferable titanium alloy material will be described. In this case, it may be a seamless pipe or a welded pipe, and both cases are included. Since hydroform is basically a tube expansion process, the total elongation is required to be at least 10%. Further, in order to obtain a sharper corner R portion, it is necessary that the material hardly flows and is easy to flow into the corner portion. That is, it is preferable that the uniform elongation is 2% or less and the total elongation is 10% or more.

さらに、製品として強度を得るため、成形後強度を上げる手段が必要であり、成形後製品の引張強度1200MPa以上をあげられることが望ましい。
しかし、このような観点からは、純チタン、α型チタン合金は熱処理性が無いため上記条件を達成できない。α+β型チタン合金は、強度が高く、一様のびも大きいため、上記条件を達成できず、β型チタン合金のみが、上記条件を達成できる。
Furthermore, in order to obtain strength as a product, a means for increasing the strength after molding is necessary, and it is desirable that the tensile strength of the product after molding is 1200 MPa or more.
However, from this point of view, pure titanium and α-type titanium alloys do not have heat treatment properties, so the above conditions cannot be achieved. Since the α + β type titanium alloy has high strength and high uniformity, the above condition cannot be achieved, and only the β type titanium alloy can achieve the above condition.

さらに、β形チタン合金の中でも、下記組成のものが特に有効である。
V:10〜25%、Al:2.5〜5%、Sn:0.5〜4%、を有し、残部がTi及び不可避不純物からなるβ型チタン合金。
Further, among the β-type titanium alloys, those having the following composition are particularly effective.
A β-type titanium alloy having V: 10 to 25%, Al: 2.5 to 5%, Sn: 0.5 to 4%, and the balance being Ti and inevitable impurities.

本発明により、ハイドロフォーム成形において成形性が優れ、成形後製品の強度が高くなるチタン管、つまり純チタン溶接管またはチタン合金シームレス管あるいはチタン合金溶接管が提供でき、従来よりも厳しい加工を要する成形品、精密な成形品の加工が可能となる。   According to the present invention, it is possible to provide a titanium tube which has excellent formability in hydrofoam molding and increases the strength of the product after molding, that is, a pure titanium welded tube, a titanium alloy seamless tube or a titanium alloy welded tube, and requires more severe processing than before. Processing of molded products and precision molded products is possible.

次に、ハイドロフォーム時のチタン溶接管の溶接部での破断を防止するための製管時の溶接について作用効果、および限定理由を説明する。
図2は、溶接管の溶接部の模式的説明図であり溶接管は溶金部において付き合わせ溶接が行われ、その両側には熱影響部が存在する。すでに述べたように、両者を併せて「溶接部」という。溶金部および熱影響部の結晶粒は、母材部に比べ著しく粗大化する。
Next, a description will be given of the operational effects and reasons for limitation of welding at the time of pipe making for preventing breakage at the welded portion of the titanium welded pipe at the time of hydroforming.
FIG. 2 is a schematic explanatory view of a welded portion of a welded pipe. The welded pipe is subjected to butt welding in the molten metal part, and heat affected parts exist on both sides thereof. As already mentioned, both are collectively referred to as the “welded part”. The crystal grains in the molten metal part and the heat-affected zone are significantly coarser than the base metal part.

したがって、結晶粒が粗大化している溶接部は母材に比べ軟質となっているのである。
例えば、ハイドロフォームにより、内圧pにより、曲率半径 r1で拡管している場合、そのときの肉厚がt1なら、その曲面の周方向応力σθは一様に
σθ=(r1・p)/t1
となる。そのため、周方向で部分的に軟質な部分があるとその部分が集中してのび、ついには破断にいたることになる。
Therefore, the welded portion in which the crystal grains are coarser is softer than the base material.
For example, when the pipe is expanded with a radius of curvature r 1 by hydroforming and with an internal pressure p, if the wall thickness at that time is t 1 , the circumferential stress σ θ of the curved surface is uniformly σ θ = (r 1 · p) / t 1
It becomes. Therefore, if there is a partially soft part in the circumferential direction, the part concentrates and eventually breaks.

そこで、熱影響部の強度アップの方法であるが、硬度は引張強さ、降伏点と相関があり、硬度が上がれば、これらも増加する。溶接部の硬度を上げる方法としては溶接時のシールドガス(アルゴン等の不活性ガス)に不純ガス(酸素、窒素、水素等)混入させればよい。チタン素材は不純ガスの含有量が多いほど硬度が上昇するから、溶接時溶融したチタンに固溶させるのである。   Therefore, as a method for increasing the strength of the heat-affected zone, the hardness has a correlation with the tensile strength and the yield point, and these increase as the hardness increases. As a method for increasing the hardness of the welded portion, an impure gas (oxygen, nitrogen, hydrogen, etc.) may be mixed in a shielding gas (inert gas such as argon) during welding. Since the hardness of the titanium material increases as the impure gas content increases, the titanium material is dissolved in titanium melted during welding.

β型チタン合金溶接管に見られる溶接部の硬度分布の一例を図3に示すが、これは溶接部の硬度上昇を行わなかった場合です。なお、図示の「溶接部硬度差」は、溶接部の最少硬度をもって示す場合である。このような硬度分布であっても、溶接時に不純ガスが混入することで、溶接部の硬度は上昇する。前述のように、不純ガスがチタンに固溶するためと考えられる。ここで、溶接部の硬度アップの指標として、熱影響部を含む溶接部に分布する硬度の平均値と、母材の硬度との差を用いることとする。以下、溶接部硬度差と呼ぶ。   Fig. 3 shows an example of the hardness distribution of the welded portion seen in β-type titanium alloy welded pipes, which is when the hardness of the welded portion was not increased. In addition, the “difference in hardness of the weld” shown in the figure is a case where the minimum hardness of the weld is indicated. Even with such a hardness distribution, the hardness of the welded portion increases due to the mixing of impure gas during welding. As described above, it is considered that the impure gas is dissolved in titanium. Here, as an index for increasing the hardness of the welded portion, the difference between the average hardness value distributed in the welded portion including the heat-affected zone and the hardness of the base material is used. Hereinafter, this is referred to as a weld hardness difference.

チタン合金溶接管では溶接部硬度差が0(ゼロ)超から、ハイドロフォームの限界拡管率が著しく向上した。
一方、純チタン溶接管では溶接部硬度差が0超から向上し、さらに20以上から、ハイドロフォームの限界拡管率が著しく向上した。なお、本明細書において硬度はビッカース硬度を云う。
In the titanium alloy welded pipe, the difference in hardness of the weld zone exceeds 0 (zero), so that the critical pipe expansion rate of the hydroform is remarkably improved.
On the other hand, in the pure titanium welded pipe, the hardness difference of the weld zone has been improved from over 0, and from 20 or more, the critical pipe expansion rate of hydroform has been significantly improved. In the present specification, hardness refers to Vickers hardness.

純チタン溶接管の場合、チタン合金溶接管の場合よりも溶接部硬度差が大きくないとハイドロフォームの限界拡管率が向上しないのは以下の理由による。
純チタン溶接管の素材の純チタン板は集合組織のためr値が4〜5と高いのに対し、溶接部は変態点を超えて加熱されるため、r値が1程度にまで低下してしまう。そのため、一軸引張では熱影響部と母材の強度が同程度であったとしても、ハイドロフォームのような長手方向の変形が拘束された平面ひずみ引張に近い2軸引張応力下では母材に比べ熱影響部の強度が著しく低下する。したがって、純チタン溶接管の場合、平面ひずみ引張による変形下で、溶接部近傍が母材よりも軟質な挙動を示すのである。
In the case of a pure titanium welded tube, the limit expansion rate of the hydroform is not improved unless the weld hardness difference is larger than in the case of a titanium alloy welded tube for the following reason.
The pure titanium plate, which is the material of the pure titanium welded tube, has a high r value of 4 to 5 because of the texture, whereas the welded portion is heated beyond the transformation point, so the r value decreases to about 1. End up. Therefore, even if the heat-affected zone and the base metal have the same strength in uniaxial tension, the biaxial tensile stress close to the plane strain tension in which deformation in the longitudinal direction is constrained, such as hydroform, is compared with that of the base material. The strength of the heat affected zone is significantly reduced. Therefore, in the case of a pure titanium welded pipe, the vicinity of the welded portion exhibits a softer behavior than the base material under deformation due to plane strain tension.

一方、溶接部への不純ガスの混入が多すぎると、溶接部が脆化する問題があり、ハイドロフォームの前工程のプリフォームや曲げ工程時に破断する危険があるため、純チタン、チタン合金のいずれの溶接管にあっても溶接硬度差は50以下とすることが望ましい。   On the other hand, if too much impure gas is mixed into the weld, there is a problem that the weld becomes brittle, and there is a risk of breakage during the preforming or bending process of the previous hydroform. In any of the welded pipes, the weld hardness difference is desirably 50 or less.

次に、溶接管の拡管率を向上させる第2の方法として溶接部の結晶粒を微細化すればよい。
溶接時の再結晶によって粗大化した結晶粒を微細化するためには、一旦冷間加工を施して塑性ひずみを付与し、変態点以上の温度に加熱後急冷すればよい。これは純チタン溶接管、チタン合金溶接管のいずれにおいても適用できるが、チタン合金溶接管の場合がその効果が大きく好ましい。
Next, as a second method for improving the expansion ratio of the welded tube, the crystal grains in the welded portion may be refined.
In order to refine crystal grains coarsened by recrystallization at the time of welding, it is only necessary to give a plastic strain by performing cold working once, and then rapidly cool after heating to a temperature above the transformation point. This can be applied to either a pure titanium welded tube or a titanium alloy welded tube, but the effect of the titanium alloy welded tube is large and preferable.

図4に、後述する実施例7の結果を示す、β型チタン合金溶接管における結晶粒径と拡管率の関係を示す。
図示結果からも、溶接部の最大の結晶粒径Dwと母材の結晶粒径Dmとの拡管率との関係が:
log(Dw)/log(Dm)>0.65
を満足するとき、拡管率が大幅に向上することがわかる。
FIG. 4 shows the relationship between the crystal grain size and the pipe expansion rate in a β-type titanium alloy welded pipe, showing the results of Example 7 described later.
From the illustrated results, the relationship between the maximum crystal grain size Dw of the welded portion and the expansion ratio of the crystal grain size Dm of the base material is:
log (Dw) / log (Dm)> 0.65
When satisfying the above, it can be seen that the tube expansion rate is greatly improved.

冷間加工する方法としては、冷間抽伸、冷間圧延等がある。
冷間加工で与えるひずみ量と熱処理条件で結晶粒は任意に変更できるが、例えば、本発明の望ましいβ型チタン合金の場合、冷間加工により10%の相当塑性ひずみを付与し、不活性雰囲気で800℃、15分加熱し、次いで20℃/分で冷却すれば上記条件を満たす。
Examples of the cold working method include cold drawing and cold rolling.
The crystal grain can be arbitrarily changed depending on the strain amount and heat treatment conditions given by cold working.For example, in the case of the desirable β-type titanium alloy of the present invention, 10% equivalent plastic strain is given by cold working, and the inert atmosphere. The above condition is satisfied by heating at 800 ° C. for 15 minutes and then cooling at 20 ° C./minute.

更に上記に加え熱影響部幅の幅が十分に短ければ、母材と熱影響部の強度差から境界面のせん断応力が熱影響部の板厚方向に引張りとなって働き、周方向の変形を拘束することになる。   In addition to the above, if the width of the heat-affected zone is sufficiently short, the shear stress at the interface acts as a tension in the thickness direction of the heat-affected zone due to the difference in strength between the base material and the heat-affected zone, causing deformation in the circumferential direction. Will be restrained.

本発明者による種々の実験によれば、熱影響部の幅が小さくなるほど限界拡管率が大きくなる、特に熱影響部の幅が板厚の1倍以下から著しく限界拡管率が増大することが判明した。   According to various experiments by the inventor, it has been found that the critical tube expansion ratio increases as the width of the heat affected zone decreases. In particular, the critical tube expansion ratio increases remarkably when the width of the heat affected zone is less than 1 times the plate thickness. did.

熱影響部の幅を短くする方法であるが、従来チタン溶接で行われているTIG溶接では、入熱量が大きいため、熱影響部の幅を狭くすることは困難である。そこで、本発明のチタン溶接管は以下の製造方法により製造できる。   Although it is a method of shortening the width of the heat affected zone, in TIG welding conventionally performed by titanium welding, it is difficult to narrow the width of the heat affected zone because the heat input is large. Therefore, the titanium welded pipe of the present invention can be manufactured by the following manufacturing method.

チタンコイルを成形ロール群に供給し、連続的にオープンパイプ状に成形した開先部にレーザビームを照射し溶融させ、アップセットをかけて接合し溶接管とする製管方法において熱影響部の幅を板厚の1 倍以下となるようにする。   Titanium coils are supplied to a group of forming rolls, the laser beam is melted by irradiating the groove part continuously formed into an open pipe shape, and the heat-affected zone is formed in a pipe making method by joining up by setting up. The width should be less than 1 times the plate thickness.

ハイドロフォームは基本的に液圧による拡管加工であるため、成形のためには素材の強度が高すぎると、成形困難であるため、加工時には比較的軟質であることが望ましく、一般的なハイドロフォーム用の設備を考慮すると、望ましいチタン合金としては、降伏点は800MP以下であることが望ましい。
次に、変形特性について説明する。
Since hydroform is basically a pipe expansion process by hydraulic pressure, if the strength of the material is too high for molding, it is difficult to form, so it is desirable that it is relatively soft during processing. In view of the equipment used, it is desirable that the yield point is 800MP or less as a desirable titanium alloy.
Next, deformation characteristics will be described.

一般に、最高荷重に達するまでののびを一様延び、最高荷重から、破断までののびを局部伸び、これらを合計したのびを全のびと称する。全のびが同じなら一様延びの大きい材料ほど、加工硬化しやすいといえる。   In general, the extension until reaching the maximum load is uniformly extended, the extension from the maximum load to the break is locally extended, and the total of these is called the total extension. If the stretch is the same, it can be said that a material having a larger uniform elongation is easier to work and harden.

一般に、自動車部材などに用いられるハイドロフォーム用鋼管においては加工硬化しやすい鋼管が望ましいとされているが、これは自動車部材においては引張強さで400〜600MPa程度の鋼管が用いられ、コーナRも8mm以上と比較的大きくても良いためでであって、材料の強度レベルに対して十分な圧力が比較的容易に得られ、コーナRをシャープにしたいというニーズが低いため、そのような条件では加工硬化し易い素材が望ましいとされているのである。   Generally, steel pipes that are easy to work harden are desirable for hydroform steel pipes used for automobile parts, etc., but for automobile parts, steel pipes with a tensile strength of about 400 to 600 MPa are used, and corner R is also used. This is because it may be relatively large, such as 8 mm or more, and a sufficient pressure with respect to the strength level of the material can be obtained relatively easily, and the need for sharpening the corner R is low. Materials that are easy to work harden are desirable.

高強度、軽量化をねらう部材においては、ハイドロフォーム時には成形のため強度が小さいことが望まれるが、成形後の製品としては強度が高いことが望ましい。そこで、冷間加工性の良い体心立方晶の結晶構造を持つβ単層型チタン合金(β型チタン合金)に着目し、溶体化処理にて強度を下げて加工性を上げた素材をハイドロフォームにて成形後、時効熱処理を施しα相を析出させて強度を高めることで、上記目的を達することができる。   In a member aiming at high strength and light weight, it is desired that the strength is low because of molding at the time of hydroforming, but it is desirable that the strength after molding is high. Therefore, paying attention to β single-layer titanium alloy (β-type titanium alloy) that has a body-centered cubic crystal structure with good cold workability, hydrolyze a material that has been improved in workability by lowering the strength by solution treatment. After forming with a foam, the above-mentioned purpose can be achieved by applying an aging heat treatment to precipitate the α phase to increase the strength.

α型チタン合金はひずみの増加と共に応力が上昇し、高い最高荷重に到達後すぐに破断する。α+βチタン合金もα合金ほどでないが強度が高く、局所のびが小さく、ハイドロフォームに不適である。   The α-type titanium alloy increases with increasing strain and breaks immediately after reaching a high maximum load. The α + β titanium alloy is not as strong as the α alloy, but has high strength, small local spread, and is unsuitable for hydroforming.

一方、本発明に用いるβ型チタン合金は、降伏後、ひずみ増加の初期段階で最高荷重に達し、その後応力は漸減しながら大きな延びが得られる。
一方、チタン合金が適するとされる航空機分野などにおいては、より精密な形状で高強度な製品が要求される。従って、加工硬化し易い素材は、成形中に強度が上昇するため、特に成形終期のコーナR部へ材料を流入させるためには莫大な液圧を必要する。従って、精密な形状を要求するものに対しては加工硬化しにくい素材、つまり、一様のびが小さく、局部のびが大きい材料が望ましく、例えば一様のびが2%以下、全のびが10%以上である材料が望ましい。
On the other hand, the β-type titanium alloy used in the present invention reaches the maximum load at the initial stage of strain increase after yielding, and then a large elongation is obtained while the stress gradually decreases.
On the other hand, in the aircraft field where titanium alloys are suitable, products with higher precision and higher strength are required. Therefore, the strength of the work-hardening material increases during the molding, and therefore enormous hydraulic pressure is required to allow the material to flow into the corner R portion at the end of molding. Therefore, for materials that require precise shapes, materials that are difficult to work harden, that is, materials with small uniform spread and large local spread are desirable. For example, uniform stretch is 2% or less, and total stretch is 10% or more. A material that is

本発明のβ型チタン合金管の中でも更にハイドロフォームに望ましい成分について各成分の作用効果、及び限定理由を説明する。なお、合金組成を示す「%」はとくにことわりがないかぎり、「質量%」である。   In the β-type titanium alloy tube of the present invention, the effects of each component and the reasons for limitation will be described with respect to the components desirable for the hydroform. The “%” indicating the alloy composition is “mass%” unless otherwise specified.

V:15〜25%
Vはチタン合金素地に固溶してβ相を安定化し、室温に置いてβ相単体組織となし、冷間加工性を向上させる。しかし、V含有量が15%よりも小さい場合は溶体化処理を行ってもβ相単体とすることができず、マルテンサイト組織となる。25%より多い場合はβ相単体とはなるが、時効硬化性が悪く、時効処理に要する時間が長くなる。また、Vを過大に添加すると原料費が嵩み経済的でない。
V: 15-25%
V dissolves in the titanium alloy substrate to stabilize the β phase, and is placed at room temperature to form a single β phase structure, thereby improving cold workability. However, when the V content is less than 15%, the β phase alone cannot be obtained even if the solution treatment is performed, and a martensite structure is formed. When it is more than 25%, it becomes a β phase alone, but the age hardening is poor and the time required for the aging treatment becomes long. Moreover, when V is added excessively, raw material costs increase and it is not economical.

なお、β相安定化元素としてはVの他にMo、Ta、Nb、Cr、Fe、Mn等があるがこれらの中で安価で、かつ溶体化の状態で強度の低いβ相単体合金となる元素は、MoとVに限られる。Moは融点が高く、溶解しにくいため偏析が生じやすい。結局、β相安定化元素として事実上好ましいのはVであり、その含有量は前記の理由で15〜25%とする。   In addition to V, there are other elements such as Mo, Ta, Nb, Cr, Fe, and Mn as β-phase stabilizing elements. Among these, β-phase simple alloys are inexpensive and have low strength in a solution state. Elements are limited to Mo and V. Mo has a high melting point and is difficult to dissolve, so segregation is likely to occur. Eventually, V is the most preferable β-phase stabilizing element, and its content is 15 to 25% for the above-mentioned reason.

Al:2.5〜5%
本発明のチタン合金は、溶体化の状態で準安定β相単体であり、これを時効処理したときα相が析出して強度の上昇が得られるものである。α相の時効析出により強度を高めるためにはα層の分散強化だけでなく、析出したα相自身の強化が有効である。αチタンの固溶強化に最も有効な合金元素はAlである。また、Alの添加は合金を脆化させるω相の析出を抑制し、α相の析出を促進するという効果もある。
Al: 2.5-5%
The titanium alloy of the present invention is a metastable β-phase single substance in a solution state, and when this is subjected to an aging treatment, an α-phase is precipitated and an increase in strength is obtained. In order to increase the strength by aging precipitation of the α phase, not only the dispersion strengthening of the α layer but also the strengthening of the precipitated α phase itself is effective. Al is the most effective alloy element for solid solution strengthening of α-titanium. The addition of Al also has the effect of suppressing the precipitation of the ω phase that embrittles the alloy and promoting the precipitation of the α phase.

そのようなAlの効果はその含有量が、2.5%未満では顕著に現れない。一方、Alの含有量が5%を越えると溶体化処理状態での強度が高くなって加工性が低下する。即ち、Alの適正含有量は2.5〜5%である。   Such an effect of Al does not appear remarkably when the content is less than 2.5%. On the other hand, if the Al content exceeds 5%, the strength in the solution treatment state increases and the workability decreases. That is, the proper content of Al is 2.5 to 5%.

Sn:0.5%〜4.0%
Snはα相の時効析出を促進安定化し、ω相の生成を抑えるため、時効処理のための適正温度範囲を広くする効果があり、かつ時効強度を高くする。更にAlが合金素地を固溶強化するのに対し、Snはあまり素地を硬化させないのでAlを減らしてSnに置き換えることが変形抵抗を減少させるためには有効である。Snの効果は0.5%未満では乏しく、4%を越えると素地の硬度上昇が避けられない。従ってSnの含有量は0.5〜4%とする。
Sn: 0.5% to 4.0%
Sn promotes and stabilizes the aging precipitation of the α phase and suppresses the formation of the ω phase, so that it has the effect of widening the appropriate temperature range for the aging treatment and increases the aging strength. Furthermore, while Al strengthens the alloy substrate in solid solution, Sn does not harden the substrate so much, so reducing Al and replacing it with Sn is effective for reducing deformation resistance. The effect of Sn is poor if it is less than 0.5%, and if it exceeds 4%, an increase in the hardness of the substrate is inevitable. Therefore, the Sn content is 0.5-4%.

以上の合金成分の外、残部は実質的にTiである。実質的にTiであるというのは工業的に製造される場合の不可避的に含まれる不純物を伴うと言う意味である。しかし、本発明の合金に於いては不純物中の酸素及び水素が特に下記のように抑制される。   In addition to the above alloy components, the balance is substantially Ti. The fact that it is substantially Ti means that it is accompanied by impurities inevitably contained in the case of industrial production. However, in the alloy of the present invention, oxygen and hydrogen in impurities are particularly suppressed as follows.

酸素:0.12%以下
酸素はα相安定化元素であり、多量にあるとβ相単体化を阻害し、また、素地を硬化させ、ハイドロフォーム加工性を劣化させる。すなわち、変形抵抗を大きくし、変形能を低下させ、ハイドロフォーム時に割れを発生させる原因となる。0.12%以下であれはかかる影響が小さいので0.12%以下とした。
Oxygen: 0.12% or less Oxygen is an α-phase stabilizing element. If it is present in a large amount, it inhibits the β-phase element, hardens the substrate, and degrades the hydroform processability. That is, the deformation resistance is increased, the deformability is lowered, and it becomes a cause of generating cracks during hydroforming. Since the effect is small if it is 0.12% or less, it was made 0.12% or less.

水素:0.05%以下
水素はβ相安定化元素であり、その含有量が過剰な場合には時効析出を遅らせるのでできるだけ少ない方がよい。しかし、0.05%以下であればかかる影響が小さいので0.05%以下とした。
Hydrogen: 0.05% or less Hydrogen is a β-phase stabilizing element, and if its content is excessive, aging precipitation is delayed. However, if it is 0.05% or less, the effect is small, so 0.05% or less was set.

これら条件を満たすことによってハイドロフォーム用溶接管に適した素材が提供でき、これら素材を用いたシームレス管を用いれば、素材の特性をそのまま有するハイドロフォーム用チタン管を提供できることは自明である。
次に、実施例によって、本発明をさらに具体的に説明する。
By satisfying these conditions, it is obvious that a material suitable for a welded pipe for hydroform can be provided. If a seamless pipe using these materials is used, a titanium pipe for hydroform having the characteristics of the material can be provided.
Next, the present invention will be described more specifically with reference to examples.

実施例1〜2
図5に、本発明においてハイドロフォーム成形性の評価試験に用いた金型を示す。
金型寸法はD1=φ50.9mm、D2=φ120mm、L1=140mm、L2=30mmである。
Examples 1-2
In FIG. 5, the metal mold | die used for the evaluation test of hydroform moldability in this invention is shown.
The mold dimensions are D1 = φ50.9 mm, D2 = φ120 mm, L1 = 140 mm, L2 = 30 mm.

金型は下形、上形から構成され孔型に素管がセットされる。
加工性の評価は、限界拡管率により行った。すなわち、ハイドロフォームの昇圧パターンは内圧一定の下で管端に軸押しを付与して、金型キャビィティー内で膨出させ、膨出部で割れが発生した時点で加工を停止し、同径部の周長を測定して破断発生時の最大拡管率を算出した。内圧は種々の圧力で試験し、最も破断発生時の最大拡管率が大きかったものを限界拡管率として評価に用いた。
The mold is composed of a lower shape and an upper shape, and the raw tube is set in the hole shape.
The workability was evaluated based on the limit tube expansion rate. In other words, the hydrofoam pressurization pattern applies axial push to the pipe end under a constant internal pressure, bulges in the mold cavities, and stops processing when cracks occur in the bulges. The perimeter of the part was measured to calculate the maximum tube expansion rate when the fracture occurred. The internal pressure was tested at various pressures, and the one with the highest maximum tube expansion rate at the time of occurrence of fracture was used for evaluation as the limit tube expansion rate.

このときの試験には、外径φ50.8mm、全長480mmで、肉厚が1.5mmと2.0mmのJIS1種とJIS2種の純チタンの溶接管を用意した。  For this test, JIS type 1 and JIS type 2 pure titanium welded tubes having an outer diameter of 50.8 mm, a total length of 480 mm, and wall thicknesses of 1.5 mm and 2.0 mm were prepared.

シールドガス(アルゴンガス)に0〜5%の窒素ガスを混入させてTIG溶接を行い、熱影響部の硬度を変化させたチタン溶接管を製作した。
図6は、溶接部のビッカース硬度分布を示すグラフである。溶接部の硬度はどの箇所においても母材のそれを上回っているのが分かる。
TIG welding was performed with 0-5% nitrogen gas mixed in the shielding gas (argon gas), and a titanium welded tube with varying hardness of the heat affected zone was produced.
FIG. 6 is a graph showing the Vickers hardness distribution of the weld. It can be seen that the hardness of the weld is higher than that of the base metal at any location.

図7は、溶接部硬度差と拡管率との関係を示すグラフであるが、これからも分かるように、溶接部硬度差の差が大きくなると大きな拡管率が得られ、0Hv超から拡管率が向上し、20Hv以上からさらに拡管率が向上した。   Fig. 7 is a graph showing the relationship between the weld hardness difference and the tube expansion ratio. As can be seen from the graph, a large tube expansion ratio is obtained when the weld hardness difference is increased, and the tube expansion ratio is improved from over 0 Hv. However, the tube expansion rate was further improved from 20Hv or higher.

製管はTIG溶接又は、レーザ溶接を用い溶接速度をコントロールすることにより種々の熱影響部幅の試験材を製作した。熱影響部/肉厚の比と限界拡管率の関係を求めた。
試験結果を図8に示すが、板厚に対する熱影響部幅の比Wh/tが小さいほど、大きな拡管率が得られた。
The pipes were manufactured using TIG welding or laser welding to control the welding speed to produce test materials with various heat affected zone widths. The relationship between the heat affected zone / thickness ratio and the limit tube expansion ratio was determined.
The test results are shown in FIG. 8, and a larger tube expansion ratio was obtained as the ratio Wh / t of the heat affected zone width to the plate thickness was smaller.

実施例3〜7
VAR法を用いて、表1に示す組成のチタン合金を溶解し、次いで、これらインゴットに熱間鍛造、および熱間圧延を施した後、溶体化処理、スケール除去(フッ硝酸酸洗)して、最終的に厚さ1.75mmにまで冷間圧延を行い、冷延板を得た。
一方、ピアサー穿孔、マンドレル圧延により外径φ25.4、肉厚1.75mmのシームレスパイプを製作した。
各材質の機械特性は前記板材から切り出したJIS5号試験片により調査した。
Examples 3-7
Using the VAR method, a titanium alloy having the composition shown in Table 1 is melted, and then hot forging and hot rolling are performed on these ingots, followed by solution treatment and scale removal (hydrofluoric acid pickling). Finally, cold rolling was performed to a thickness of 1.75 mm to obtain a cold rolled sheet.
Meanwhile, seamless pipes with an outer diameter of 25.4 mm and a wall thickness of 1.75 mm were manufactured by piercer drilling and mandrel rolling.
The mechanical properties of each material were investigated using a JIS No. 5 test piece cut out from the plate material.

(加工性評価方法1)
図9(a)、(b)は、本例においてハイドロフォームの拡管特性の評価試験に用いた金型を示す模式的説明図である。
(Processability evaluation method 1)
FIGS. 9A and 9B are schematic explanatory views showing a mold used in an evaluation test of the tube expansion characteristics of the hydroform in this example.

金型寸法はD1=25.5mm、D2=33mm、L1=100mmである。金型形状に拡管した場合、拡管率は30%となる、金型は下形、上形から構成され孔型に素管がセットされる。
加工性の評価は、ハイドロフォームの昇圧パターンは内圧一定の下で管端に軸押しを付与して、金型キャビィティー内で膨出させ、膨出部で割れが発生した時点で加工を停止し、同径部の周長を測定して破断発生時の最大拡管率を算出した。内圧は種々の圧力で試験し、最も破断発生時の最大拡管率が大きかったものを限界拡管率として評価に用いた。
The mold dimensions are D1 = 25.5mm, D2 = 33mm, L1 = 100mm. When the pipe is expanded into a mold shape, the expansion ratio is 30%. The mold is composed of a lower shape and an upper shape, and the base tube is set in the hole shape.
For the evaluation of workability, the hydrofoam pressurization pattern was applied to the end of the tube with a constant internal pressure, and the tube was swollen in the mold cavity, and the processing was stopped when a crack occurred in the swollen part. And the perimeter of the same diameter part was measured and the maximum tube expansion rate at the time of fracture occurrence was computed. The internal pressure was tested at various pressures, and the one with the highest maximum tube expansion rate at the time of fracture occurrence was used for evaluation as the limit tube expansion rate.

(加工性評価方法2)
図10(a)、(b)は、本例においてハイドロフォームのコーナR成形性の評価試験に用いた金型を示す模式的説明図である。
(Processability evaluation method 2)
FIGS. 10 (a) and 10 (b) are schematic explanatory views showing a mold used in the evaluation test of the corner R formability of the hydroform in this example.

金型寸法はD1=25.5、L3=25.5mm、L2=100mmである。
金型は下形、上形から構成され孔型に素管がセットされる。
加工性の評価は、ハイドロフォームの昇圧パターンは内圧を200MPa一定と20mm軸押したときの成形品の中央断面のコーナRを測定した。
The mold dimensions are D1 = 25.5, L3 = 25.5mm, L2 = 100mm.
The mold is composed of a lower shape and an upper shape, and the raw tube is set in the hole shape.
Evaluation of workability was performed by measuring the corner radius of the center section of the molded product when the hydrofoam pressure pattern was axially pressed with a constant inner pressure of 200 MPa and 20 mm.

表1に示す素材を用いシームレス管にて加工性評価方法1の試験を行った。
なお、表1には時効処理後の引張強さの測定値を併せて揚げた。
時効処理はβ型チタン合金は475℃×20時間とし、No.14のα+β型チタン合金は750℃加熱後炉冷の熱処理を行った。No. 16のα型チタン合金は熱処理性が無いため熱処理は行わず、ハイドロフォーム後の素材の値を示す。
A test of workability evaluation method 1 was performed with a seamless pipe using the materials shown in Table 1.
Table 1 also shows the measured values of tensile strength after aging treatment.
The aging treatment was 475 ° C. × 20 hours for the β-type titanium alloy, and the No. 14 α + β-type titanium alloy was heated at 750 ° C. followed by furnace cooling heat treatment. No. 16 α-type titanium alloy has no heat treatment property, so heat treatment is not performed and the value of the material after hydroforming is shown.

表1に示す様に本発明のハイドロフォーム用チタン合金管はいずれも拡管率30%を達成した。
比較合金のα+β型チタン合金であるNo. 14は拡管率10%であり、α型チタン合金であるNo. 16に至っては5%とハイドロフォームには適さないことがわかる。
As shown in Table 1, all of the titanium alloy tubes for hydrofoams of the present invention achieved a tube expansion rate of 30%.
It can be seen that No. 14 which is an α + β type titanium alloy as a comparative alloy has a tube expansion rate of 10%, and No. 16 which is an α type titanium alloy is 5%, which is not suitable for hydroforming.

本発明のハイドロフォーム用チタン合金管の内、望ましい範囲を見ると、No. 1〜7、15は引張強さ800MPa以下であり、成形容易な低強度のチタン合金となっており、時効熱処理後の引張強さが1200MPa以上となっている。   Of the titanium alloy tubes for hydrofoams of the present invention, No. 1 to 7 and 15 are low strength titanium alloys that have a tensile strength of 800 MPa or less and are easy to form. Has a tensile strength of 1200 MPa or more.

Vの含有量の低いNo. 8はβ単体組織とならないため強度が高すぎ、Al、Sn、酸素の含有量の高すぎるNo.9、10、11も引張強さが800MPa以上となり、ハイドロフォームで成形するには強度がやや高くなっている。   No. 8 with low V content does not become a β simple structure, so the strength is too high, and No. 9, 10 and 11 with too high contents of Al, Sn, and oxygen also have a tensile strength of 800 MPa or more, and hydroform The strength is slightly higher for molding with.

No. 12はVの含有量が多すぎるので溶体化状態での強度は低く問題ないが、時効処理後の引張強さが110MPaであり、ハイドロフォーム後の製品として望ましい、120MPaに達さない。   In No. 12, since the V content is too much, the strength in the solution state is low and there is no problem, but the tensile strength after aging treatment is 110 MPa, and it does not reach 120 MPa, which is desirable as a product after hydroforming.

No. 15はβ型チタン合金としてよく知られるTi−15V−3Cr−3Snであるが、若干引張強度が高い。   No. 15 is Ti-15V-3Cr-3Sn, which is well known as a β-type titanium alloy, but has a slightly high tensile strength.

表1に示すNo. 5、8、15のシームレス管を用いて、加工性評価方法2の試験を行い、成形性を調査した。
得られた最小コーナRはNo. 15は半径10mmが限界であったが、No. 5、8は半径5mmまで成形できた。
Using the seamless pipes of Nos. 5, 8, and 15 shown in Table 1, the workability evaluation method 2 was tested to investigate the moldability.
The obtained minimum corner radius No. 15 was limited to a radius of 10 mm, but Nos. 5 and 8 could be molded to a radius of 5 mm.

これは、No. 5、8は一様伸びが小さく、ほとんど加工硬化しないため、金型コーナ部を充填すべく材料の流入が起こったためである。   This is because No. 5 and 8 have a small uniform elongation and hardly work harden, so that the material flowed in to fill the mold corner.

表1に示すNo. 5の素材の板材から造管し、ArガスにてシールしつつTIG溶接または、レーザ溶接を用い、溶接速度をコントロールすることにより、種々の熱影響幅の試験材を製作し前述の加工性評価方法1において評価試験を行った。   Test materials with various heat-affected widths are manufactured by controlling the welding speed using TIG welding or laser welding while making pipes from the plate material No. 5 shown in Table 1 and sealing with Ar gas. Then, an evaluation test was conducted in the workability evaluation method 1 described above.

試験結果を図11に示すが、板厚に対する熱影響部幅の比が小さいほど大きな拡管率が得られ、熱影響部幅/肉厚1.0以下から著しく限界拡管率が向上した。
ハイドロフォームで成形された部材を475℃、20時間で時効熱処理を行ったものから、引張試験片を切出し、引張試験を行った結果、引張強さは1300MPaに達した。
The test results are shown in FIG. 11. As the ratio of the heat affected zone width to the plate thickness is smaller, a larger tube expansion rate was obtained, and the limit tube expansion rate was significantly improved from the heat affected zone width / thickness of 1.0 or less.
Tensile test pieces were cut out from aging at 475 ° C for 20 hours, and the tensile strength reached 1300MPa.

表1に示すNo. 5の素材の板材から造管し、TIG溶接にてシールドガス(アルゴンガス)に種々の割合の不純ガスを混入させ、溶接部の硬度を変化させたチタン合金溶接管を製作した。
前述の加工性評価方法1において評価試験を行った。TIG溶接のため溶金部、熱影響部の幅は大きく、完全にガスシールした状態では結晶粒の粗大化による高度低下が生じるが、不純ガスの混入により結晶粒が粗大化しつつも、硬度低下を低減でき、試験結果を図12に示すが、母材の硬度と溶接部の平均硬度との差が大きくなれば大きな拡管率が得られ、0Hv超から著しく拡管率が向上した。
Titanium alloy welded pipes made from plate material No. 5 shown in Table 1 and mixed with various proportions of impure gas in shield gas (argon gas) by TIG welding to change the hardness of the weld. Produced.
An evaluation test was performed in the processability evaluation method 1 described above. The width of the molten metal part and heat-affected zone is large due to TIG welding, and in a completely gas-sealed state, the altitude is lowered due to the coarsening of the crystal grains, but the hardness is reduced while the crystal grains are coarsened due to the inclusion of impure gas. The test results are shown in FIG. 12. As the difference between the hardness of the base metal and the average hardness of the welded portion increases, a large expansion ratio is obtained, and the expansion ratio is significantly improved from above 0 Hv.

本発明の素材にてアルゴンガスにてシールドし、TIG溶接にて各外径の溶接管を製作し、次に冷間抽伸を行って管全体を塑性変形させ、外径φ25.4、肉厚1.75 mmの管を製作し、溶体化処理を行って溶接部の結晶粒を微細化させた。結果を図4にグラフで示すが、溶接部から十分離れた位置での平均結晶粒径Dm、溶接部の最大結晶粒径Dwとしたとき、DwがDmに近づくほど、つまりはlog(Dw)/log’Dw)が大きくなるほど大きな拡管率が得られ、0.65以上から著しく拡管率が向上した。   Shielded with argon gas with the material of the present invention, manufactured welded tubes of each outer diameter by TIG welding, then cold drawn to plastically deform the entire tube, outer diameter φ25.4, wall thickness A 1.75 mm tube was manufactured, and solution treatment was performed to refine the crystal grains in the weld. The results are shown in a graph in FIG. 4, where the average crystal grain size Dm at a position sufficiently distant from the weld and the maximum crystal grain size Dw of the weld are as Dw approaches Dm, that is, log (Dw) The larger the / log'Dw), the larger the tube expansion rate, and the tube expansion rate improved remarkably from 0.65 or more.

Figure 0004453422
Figure 0004453422

ハイドロフォーミングの加工要領の説明図であり、図1(a)は加工前の素管の形状を示し、図1(b)はハイドロフォームで得られた形状例を示す。It is explanatory drawing of the processing point of hydroforming, FIG. 1 (a) shows the shape of the raw pipe | tube before a process, FIG.1 (b) shows the example of a shape obtained by hydroforming. 溶接管の溶接部を模式的に示した図である。It is the figure which showed the welding part of the welded pipe typically. 溶接管の溶接部の硬度分布を説明する図である。It is a figure explaining the hardness distribution of the welding part of a welded pipe. 本発明の実施の形態に係わる母材の結晶粒径に対する溶接部の最大結晶粒径の割合と限界拡管率との関係を示す図である。It is a figure which shows the relationship between the ratio of the maximum crystal grain size of a weld part with respect to the crystal grain size of the base material concerning embodiment of this invention, and a limit pipe expansion rate. 本発明の実施例に用いた金型の図である。It is a figure of the metal mold | die used for the Example of this invention. 溶接管の溶接部の硬度分布を説明する図である。It is a figure explaining the hardness distribution of the welding part of a welded pipe. 純チタン溶接管での本発明の実施の形態に係わる溶接部の平均硬度と限界拡管率との関係を示す図である。It is a figure which shows the relationship between the average hardness of the welding part concerning embodiment of this invention in a pure titanium welded pipe, and a limit pipe expansion rate. 本発明の実施の形態に係わる肉厚に対する熱影響部幅の割合と限界拡管率との関係を示す図である。It is a figure which shows the relationship between the ratio of the heat affected zone width | variety with respect to the thickness concerning embodiment of this invention, and a limit pipe expansion rate. 本発明の実施例に用いた金型の図であり、図10(a)は側面図、図10(b)は断面図である。FIG. 10 is a view of a mold used in an example of the present invention, FIG. 10 (a) is a side view, and FIG. 10 (b) is a cross-sectional view. 本発明の実施例に用いた金型の図であり、図11(a)は側面図、図11(b)は断面図である。FIG. 11A is a side view of the mold used in the example of the present invention, and FIG. 11B is a cross-sectional view. 本発明の実施の形態に係わる肉厚に対する熱影響部幅の割合と限界拡管率との関係を示す図である。It is a figure which shows the relationship between the ratio of the heat affected zone width | variety with respect to the thickness concerning embodiment of this invention, and a limit pipe expansion rate. チタン合金溶接管での本発明の実施の形態に係わる溶接部の平均硬度と限界拡管率との関係を示す図である。It is a figure which shows the relationship between the average hardness of the welding part concerning embodiment of this invention, and a limit pipe expansion rate in a titanium alloy welded pipe.

Claims (4)

溶接部のビッカース硬度の平均値が、下記式を満足することを特徴とするハイドロフォーム用β型チタン又は純チタン溶接管。
Hv−Hv>0・・・・・・(1)
Hv:溶接部のビッカース硬度の平均値
Hv:母材のビッカース硬度の平均値
Β-type titanium or pure titanium welded pipe for hydrofoam, characterized in that the average value of Vickers hardness of the welded portion satisfies the following formula.
Hv W -Hv M > 0 (1)
Hv W : Average value of Vickers hardness of welded portion Hv M : Average value of Vickers hardness of base material
造管溶接後冷間加工を行い、溶体化熱処理を行うことを特徴とする、請求項1に記載のハイドロフォーム用β型チタン又は純チタン溶接管の製造方法。 The method for producing β-type titanium or pure titanium welded pipe for hydroforming according to claim 1, wherein cold working is performed after pipe forming welding and solution heat treatment is performed. 前記チタン溶接管がβ型チタン溶接管であって、請求項2に記載の製造方法に続いて、ハイドロフォーム成形を施した後に、時効熱処理を行うことを特徴とする、ハイドロフォーム成形品の製造方法。 The said titanium welded pipe is a beta-type titanium welded pipe , Comprising: The manufacturing method of hydroform molded article characterized by performing an aging heat treatment after hydroforming shaping | molding following the manufacturing method of Claim 2. Method. 板の圧延方向を管の周方向として造管されたことを特徴とする、請求項1に記載のハイドロフォーム成形用純チタン溶接管。 The pure titanium welded pipe for hydroform molding according to claim 1, wherein the rolled direction of the plate is formed in the circumferential direction of the pipe.
JP2004105275A 2004-03-31 2004-03-31 Titanium tube for hydrofoam, its manufacturing method and hydrofoam molding Expired - Lifetime JP4453422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105275A JP4453422B2 (en) 2004-03-31 2004-03-31 Titanium tube for hydrofoam, its manufacturing method and hydrofoam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105275A JP4453422B2 (en) 2004-03-31 2004-03-31 Titanium tube for hydrofoam, its manufacturing method and hydrofoam molding

Publications (2)

Publication Number Publication Date
JP2005290448A JP2005290448A (en) 2005-10-20
JP4453422B2 true JP4453422B2 (en) 2010-04-21

Family

ID=35323716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105275A Expired - Lifetime JP4453422B2 (en) 2004-03-31 2004-03-31 Titanium tube for hydrofoam, its manufacturing method and hydrofoam molding

Country Status (1)

Country Link
JP (1) JP4453422B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007000544B4 (en) 2006-03-30 2018-04-05 Kabushiki Kaisha Kobe Seiko Sho Titanium material and exhaust pipe for engine
JP5821488B2 (en) * 2011-10-03 2015-11-24 新日鐵住金株式会社 Α + β Titanium Alloy Plate for Welded Pipes with Excellent Pipe Formability and Manufacturing Method, α + β Type Titanium Alloy Welded Pipe Products with Excellent Longitudinal Strength and Rigidity
CN104498849B (en) * 2014-12-05 2017-03-08 宁夏东方钽业股份有限公司 A kind of preparation technology of Ti662 titanium alloy pipe

Also Published As

Publication number Publication date
JP2005290448A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
EP2007914B1 (en) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
EP2078764B1 (en) Seamless steel tube for airbag accumulators and process for production thereof
KR101138569B1 (en) High Strength and High Thermal Conductivity Copper Alloy Tube and Method for Producing The Same
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
EP1681364B1 (en) Expansible seamless steel pipe for use in oil well and method for production thereof
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
EP3597781A1 (en) Copper-nickel-tin alloy with high toughness
JP2007508452A6 (en) Low carbon alloy steel pipe with ultra high strength and excellent toughness at low temperature and its manufacturing method
JP2007508452A (en) Low carbon alloy steel pipe with ultra high strength and excellent toughness at low temperature and its manufacturing method
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
WO2020044988A1 (en) Duplex stainless steel seamless pipe and method for producing same
JP4770922B2 (en) Steel pipe for airbag and manufacturing method thereof
JP5234226B2 (en) Manufacturing method of steel pipe for airbag
WO2016028992A1 (en) Method for making clad metal pipe
JP3975852B2 (en) Steel pipe excellent in workability and manufacturing method thereof
JP4453422B2 (en) Titanium tube for hydrofoam, its manufacturing method and hydrofoam molding
EP2801631B1 (en) Alpha+beta-type titanium alloy plate for welded pipe, method for producing same, and alpha+beta-type titanium-alloy welded pipe product
ES2227408T3 (en) PROCEDURE TO PRODUCE HIGH RESISTANCE STEEL PIPES.
JP2007056283A (en) High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method
JP2010024544A (en) Warm-hot forging die
JPS60141823A (en) Production of nonmagnetic steel working member
JP7063169B2 (en) Seamless steel pipe for hot forging
JP2011195912A (en) 6,000 series aluminum alloy hollow extruded material having excellent high temperature expanded tube formability
JP4186566B2 (en) Manufacturing method of steel pipe for airbag having excellent low temperature toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350