JP5234226B2 - Manufacturing method of steel pipe for airbag - Google Patents

Manufacturing method of steel pipe for airbag Download PDF

Info

Publication number
JP5234226B2
JP5234226B2 JP2012518424A JP2012518424A JP5234226B2 JP 5234226 B2 JP5234226 B2 JP 5234226B2 JP 2012518424 A JP2012518424 A JP 2012518424A JP 2012518424 A JP2012518424 A JP 2012518424A JP 5234226 B2 JP5234226 B2 JP 5234226B2
Authority
JP
Japan
Prior art keywords
steel pipe
cold drawing
less
steel
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012518424A
Other languages
Japanese (ja)
Other versions
JPWO2011152447A1 (en
Inventor
卓磨 川本
勇次 荒井
孝司 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012518424A priority Critical patent/JP5234226B2/en
Application granted granted Critical
Publication of JP5234226B2 publication Critical patent/JP5234226B2/en
Publication of JPWO2011152447A1 publication Critical patent/JPWO2011152447A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/003Cooling or heating of work
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Extraction Processes (AREA)

Abstract

In a process for manufacturing a steel tube for air bags having a high strength and high toughness which can simplify cold drawing and reduce the alloy cost, a seamless steel tube is formed from a steel comprising, in mass percent, C: 0.04 - 0.20%, Si: 0.10 - 0.50%, Mn: 0.10 - 1.00%, P: at most 0.025%, S: at most 0.005%, Al: at most 0.10%, Cr: 0.01 - 0.50%, Cu: 0.01 - 0.50%, Ni: 0.01 - 0.50%, and a remainder of Fe and unavoidable impurities, and the seamless steel tube is subjected to cold drawing at least one time with a working ratio such that the reduction in area is greater than 40% to obtain predetermined dimensions, then to quench hardening by heating to a temperature of at least the Ac 3 point at a rate of temperature increase of at least 50° C per second followed by cooling at a cooling rate of at least 50° C per second at least in a temperature range of 850 - 500° C, and to tempering at a temperature of at most the Ac 1 point.

Description

本発明は、エアバッグ用鋼管に適した、引張強度900MPa以上の高強度と共に、vTrs100(延性破面率が100%となる最低シャルピー破面遷移温度)が−60℃以下という高度の靭性が要求される継目無鋼管の安価な製造方法に関する。   The present invention requires high toughness that is suitable for airbag steel pipes and has a high tensile strength of 900 MPa or more, and vTrs100 (the lowest Charpy fracture surface transition temperature at which the ductile fracture surface ratio is 100%) is −60 ° C. or less. The present invention relates to an inexpensive method for manufacturing a seamless steel pipe.

近年、自動車産業においては、安全性を追求した装置の導入が積極的に進められている。そのような装置の一つとして、エアバッグシステムが開発され、多くの自動車に搭載されるようになってきた。エアバッグシステムは、衝突時に乗員がハンドルやインストルメントパネルなどに衝突する前に、それらと乗員との間にガス等でエアバッグを展開させ、乗員の運動エネルギーを吸収して傷害軽減を図るシステムである。エアバッグシステムとして、当初は爆発性薬品を使用する方式が採用されていたが、近年は高圧充填ガスを使用する方式が開発され、その適用が広がっている。   In recent years, in the automobile industry, introduction of devices pursuing safety has been actively promoted. As one of such devices, an air bag system has been developed and installed in many automobiles. The airbag system is a system that reduces the injury by absorbing the kinetic energy of the occupant by deploying the airbag with gas etc. between the occupant and the occupant before the occupant collides with the steering wheel or instrument panel at the time of collision. It is. As an air bag system, a method using explosive chemicals was initially adopted, but in recent years, a method using a high-pressure filling gas has been developed and its application is expanding.

高圧充填ガスを使用するエアバッグシステムでは、衝突時にエアバッグ内に吹出す不活性ガス(例、アルゴン)のような展開用ガスを、エアバッグに連結されている蓄圧容器(アキュムレータ)内で常時高圧に保持し、衝突時にはアキュムレータから一気にガスをエアバッグに噴出させてエアバッグを展開させる。アキュムレータは一般に、適当な長さに切断した鋼管に必要に応じて縮径加工を施した後、両端に蓋体を溶接することによって製造される。   In an airbag system that uses high-pressure filling gas, a deployment gas such as an inert gas (eg, argon) that blows into the airbag at the time of a collision is always stored in the pressure accumulator (accumulator) connected to the airbag. The pressure is maintained at a high pressure, and in the event of a collision, gas is ejected from the accumulator at a stretch into the airbag to deploy the airbag. An accumulator is generally manufactured by welding a lid to both ends after subjecting a steel pipe cut to an appropriate length to diameter reduction processing as necessary.

したがって、エアバッグシステムのアキュムレータ(以下、エアバッグアキュムレータまたは単にアキュムレータという)に用いる鋼管には、極めて短時間に大きな歪速度で応力が負荷されることになる。このため、この種の鋼管には、従来の圧力シリンダーやラインパイプのような構造物とは異なり、高い寸法精度、加工性及び溶接性が要求され、更に高強度と優れた耐バースト性も要求される。   Therefore, stress is applied to a steel pipe used for an accumulator of an air bag system (hereinafter referred to as an air bag accumulator or simply an accumulator) at a large strain rate in a very short time. For this reason, unlike conventional structures such as pressure cylinders and line pipes, this type of steel pipe requires high dimensional accuracy, workability and weldability, and also requires high strength and excellent burst resistance. Is done.

最近では、自動車の軽量化に対する要求が強まっている。その観点から車載用のエアバッグ鋼管に対しても薄肉化、軽量化が要望されており、薄肉であっても高いバースト圧を確保するため、引張強度が900MPa以上、更には1000MPa以上の高強度の継目無鋼管から製造されたアキュムレータがエアバッグシステムに用いられるようになってきた。例えば、外径60mmで肉厚3.55mmの継目無鋼管から作製されたアキュムレータの場合、TSが800MPaではバースト圧は高々100MPa程度であるのに対し、TSが1000MPaになると、バースト圧は130MPaまで向上する。同時に、エアバッグアキュムレータの外径と要求バースト圧が一定の場合、20%程度の薄肉化が可能である。   Recently, there is an increasing demand for weight reduction of automobiles. From this point of view, there is a demand for thinner and lighter air bag steel pipes for vehicles. To ensure a high burst pressure even when thin, high tensile strength of 900 MPa or more, and even 1000 MPa or more is required. Accumulators made from seamless steel pipes have been used in airbag systems. For example, in the case of an accumulator made of a seamless steel pipe having an outer diameter of 60 mm and a wall thickness of 3.55 mm, the burst pressure is about 100 MPa at a TS of 800 MPa, whereas when the TS is 1000 MPa, the burst pressure is up to 130 MPa. improves. At the same time, when the outer diameter of the airbag accumulator and the required burst pressure are constant, the thickness can be reduced by about 20%.

さらに、例えば寒冷地においても、衝突時にアキュムレータが脆性破壊して2次災害を招くようなことが無いように、アキュムレータには優れた低温靭性が必要である。
このような観点から、アキュムレータ用の継目無鋼管は、焼き入れ焼き戻しを行うことで高強度と高靭性を実現するようになってきた。具体的には、アキュムレータに対しては、−60℃でのシャルピー衝撃試験で破面が延性を呈する(すなわち、vTrs100が−60℃以下)という低温靭性が、望ましくは−80℃でのシャルピー衝撃試験で破面が延性を呈する(vTrs100が−80℃以下)という低温靭性が求められる。
Furthermore, even in a cold region, for example, the accumulator needs to have excellent low temperature toughness so that the accumulator is not brittlely broken at the time of a collision and causes a secondary disaster.
From such a point of view, seamless steel pipes for accumulators have come to realize high strength and high toughness by quenching and tempering. Specifically, for an accumulator, a low temperature toughness in which a fracture surface exhibits ductility in a Charpy impact test at −60 ° C. (that is, vTrs100 is −60 ° C. or less), preferably a Charpy impact at −80 ° C. The low temperature toughness that the fracture surface exhibits ductility in the test (vTrs100 is −80 ° C. or lower) is required.

高強度且つ高靭性のエアバッグシステム用の継目無鋼管に関して、例えば特許文献1には、所定の範囲の化学組成の鋼素材を用いて継目無鋼管を熱間で製管し、この継目無鋼管に冷間抽伸加工を施して所定寸法の鋼管とした後、Ac3点以上、1050℃以下の範囲内の温度に加熱したのち焼き入れし、ついで450℃以上、Ac1点以下の範囲内の温度で焼き戻しする、焼き入れ焼き戻し処理を施すことを特徴とする、エアバッグ用継目無鋼管の製造方法が提案されている。With regard to a seamless steel pipe for an air bag system having a high strength and high toughness, for example, Patent Document 1 discloses that a seamless steel pipe is hot-formed using a steel material having a chemical composition within a predetermined range. The steel pipe is subjected to cold drawing to obtain a steel pipe of a predetermined size, and then heated to a temperature in the range of Ac 3 points or more and 1050 ° C. or less and then quenched, and then in the range of 450 ° C. or more and Ac 1 point or less. There has been proposed a method for producing a seamless steel pipe for an air bag, characterized by performing quenching and tempering treatment by tempering at a temperature.

この方法により、エアバッグインフレータ製造時の加工性、溶接性に優れ、さらにインフレータとして、900MPa以上の引張強さと、半割にした鋼管に対する−60℃における落重試験で延性を示す高靭性とを有する、継目無鋼管が得られるとしている。但し、−60℃における落重試験で延性を示すことが、必ずしも−60℃のバースト試験で延性を呈することを意味するものではない。   By this method, it is excellent in workability and weldability at the time of manufacturing an airbag inflator, and further, as an inflator, it has a tensile strength of 900 MPa or more and a high toughness that exhibits ductility in a drop test at -60 ° C. against a halved steel pipe. It is said that a seamless steel pipe is obtained. However, exhibiting ductility in a drop weight test at -60 ° C does not necessarily mean exhibiting ductility in a burst test at -60 ° C.

特許文献2には、高周波誘導加熱焼き入れを行い、急速加熱による細粒化で、引張強度が1000MPaを越えるエアバッグシステム用鋼管を製造する方法が提案されている。例えば素管として継目無鋼管を用いる場合、特定範囲の化学組成の鋼素材を用いて継目無鋼管を熱間で製管し、この継目無鋼管に冷間抽伸加工を施して所定寸法の鋼管とする。この鋼管に加熱後に焼き入れを行い、次いでAc1変態点以下の温度で焼き戻しを施す。焼き入れ後に焼き戻し処理を行うことで、望ましくは−80℃以下のバースト試験でも延性を示すような高靭性が得られる。Patent Document 2 proposes a method of manufacturing a steel pipe for an airbag system having a tensile strength exceeding 1000 MPa by high-frequency induction heating and quenching and fine graining by rapid heating. For example, when a seamless steel pipe is used as a raw pipe, a seamless steel pipe is made hot using a steel material having a chemical composition in a specific range, and the seamless steel pipe is subjected to cold drawing to obtain a steel pipe having a predetermined size. To do. The steel pipe is quenched after heating and then tempered at a temperature below the Ac 1 transformation point. By performing a tempering treatment after quenching, it is desirable to obtain high toughness that exhibits ductility even in a burst test at −80 ° C. or lower.

しかし、特許文献1、2に開示された方法では、具体例に示されている通り、引張強度が1000MPa以上で且つ高靭性の鋼管を得るためには、Cr、Moといった高価な合金を多量に含有させる必要があった。特許文献1の場合には、Cr+Mo:1.0〜2.5質量%となり、特許文献2では、多くの場合Cr+Mo:0.92質量%の鋼材が採用されている。Cr、Moを多量に含有すると、特に高価なMoによる原料コスト高に加えて、継目無鋼管の熱間での製管後に、鋼管の強度が高めになりやすく、その後の冷間抽伸加工が困難になる。そのため、冷間抽伸加工前に軟化焼鈍が必要となり、工程が煩雑化し、製造コストが高くなる。   However, in the methods disclosed in Patent Documents 1 and 2, as shown in specific examples, in order to obtain a steel pipe having a tensile strength of 1000 MPa or more and a high toughness, a large amount of expensive alloys such as Cr and Mo are used. It was necessary to make it contain. In the case of Patent Document 1, Cr + Mo is 1.0 to 2.5% by mass, and in Patent Document 2, a steel material of Cr + Mo: 0.92% by mass is often adopted. When containing a large amount of Cr and Mo, in addition to high raw material costs due to expensive Mo, the strength of the steel pipe is likely to increase after the hot steel pipe is manufactured, and subsequent cold drawing is difficult. become. Therefore, soft annealing is required before cold drawing, which complicates the process and increases the manufacturing cost.

Cr+Mo:1.0〜1.18質量%の鋼を利用する特許文献3においても、特許文献1、2の場合と同様の問題がある。
特許文献4は、耐バースト性の優れた継目無鋼管に対して、Cr、Mo、Cu、Niを含有する鋼組成を開示しているが、その特性を評価しているのは、Cr+Mo:0.76質量%以上の継目無鋼管であり、そのときの引張強度も高々947MPaである。
Even in Patent Document 3 that uses steel of Cr + Mo: 1.0 to 1.18% by mass, there are the same problems as in Patent Documents 1 and 2.
Patent Document 4 discloses a steel composition containing Cr, Mo, Cu, and Ni with respect to a seamless steel pipe excellent in burst resistance. The characteristics of the steel composition are evaluated as Cr + Mo: 0. It is a seamless steel pipe of .76% by mass or more, and the tensile strength at that time is at most 947 MPa.

特開2004−76034JP-A-2004-76034 WO 2004/104255A1WO 2004 / 104255A1 US 2005/0076975A1US 2005/0076975 A1 WO 2002/079526A1WO 2002 / 079526A1

従来のエアバッグ用鋼管では、高強度と高靭性を確保するため、CrとMoの添加により強化が図られてきた。しかし、この手法は、合金コストが嵩む他、製管後の冷間抽伸加工を困難にする。そのため、素管の継目無鋼管のサイズと最終製品であるエアバッグ用鋼管のサイズとの差異が大きいと、冷間抽伸工程において冷間抽伸加工を何回も繰り返すことが必要となる。その場合、冷間抽伸加工の都度、中間軟化焼鈍を行いながら、所望の製品寸法に仕上げることになるため、総合的に見て、製造コストが嵩む。   Conventional steel pipes for airbags have been reinforced by the addition of Cr and Mo in order to ensure high strength and high toughness. However, this method increases the alloy cost and makes cold drawing after pipe making difficult. Therefore, if the difference between the size of the seamless steel pipe and the size of the air pipe steel pipe which is the final product is large, it is necessary to repeat the cold drawing process many times in the cold drawing process. In that case, since it finishes in a desired product dimension, performing intermediate | middle softening annealing for every cold drawing process, when it sees synthetically, manufacturing cost will increase.

本発明は、冷間抽伸工程の簡略化あるいは合金コストの削減によって、従来品に比べて安価であって、高強度かつ高靭性のエアバッグ用鋼管を、従来法と比べて安価な手段で製造する方法を提供することを目的とする。   By simplifying the cold drawing process or reducing alloy costs, the present invention produces a steel pipe for an air bag having high strength and toughness that is cheaper than the conventional method by using cheaper means. It aims to provide a way to do.

別の面からは、本発明は、従来より低コストの素材・製造方法を利用して、従来品と同等あるいはそれより薄肉、小径のエアバッグ用鋼管を製造する方法を提供することを目的とする。   From another aspect, an object of the present invention is to provide a method of manufacturing a steel pipe for an air bag having a small diameter and a thickness equal to or smaller than that of a conventional product by using a material / manufacturing method that is lower in cost than in the past. To do.

本発明者らは、従来の高強度エアバッグ用鋼管がCr、Moによる強化に頼っている結果として、熱間製管終了後の強度が高く、冷間抽伸における生産性の低下と合金コストの増加を招いている点に着眼し、これらの合金元素の使用をできるだけ抑制しつつ、引張強度900MPa以上の高強度と、vTrs100が−60℃以下の優れた低温靭性とを確保できる合金組成及び製造方法を検討した。   As a result of the conventional steel pipe for high-strength airbag relying on strengthening with Cr and Mo, the present inventors have high strength after the end of hot pipe making, and the reduction in productivity and the alloy cost in cold drawing. An alloy composition and production capable of securing a high strength with a tensile strength of 900 MPa or more and an excellent low temperature toughness with a vTrs100 of −60 ° C. or less while suppressing the use of these alloy elements as much as possible. The method was examined.

その結果、次のような知見を得て、本発明に到達した。
(a)冷間抽伸後に焼き入れ及び焼き戻しを行うエアバッグ用鋼管の製造において、焼入時の加熱条件および冷却条件をうまく設定すれば、必ずしも多量のCr及びMoを含有させなくても、高強度と低温靭性を確保することができる。特にCrやMoに代えてCu及びNiを含有させることが有効である。
As a result, the following knowledge was obtained and the present invention was reached.
(A) In the manufacture of a steel pipe for an air bag that is quenched and tempered after cold drawing, if the heating conditions and cooling conditions at the time of quenching are set well, not necessarily containing a large amount of Cr and Mo, High strength and low temperature toughness can be secured. In particular, it is effective to contain Cu and Ni instead of Cr and Mo.

(b)Cr及びMoを削減し、代わりにCuやNiを含有させた鋼は、熱間製管後の冷間抽伸が容易であり、冷間抽伸工程における1回の冷間抽伸加工での加工度(減面率)を大きくすることが可能になり、冷間抽伸工程の簡略化を図ることが可能となる。   (B) Steel with reduced Cr and Mo, and containing Cu or Ni instead, is easy to be cold drawn after hot pipe making, and in one cold drawing process in the cold drawing process. It becomes possible to increase the degree of processing (area reduction), and it is possible to simplify the cold drawing process.

本発明は、質量%で、C:0.04〜0.20%、Si:0.10〜0.50%、Mn:0.10〜1.00%、P:0.025%以下、S:0.005%以下、Al:0.10%以下、Cr:0.01〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%、残部がFeおよび不可避不純物からなる鋼から継目無鋼管の熱間製管を行う製管工程と、得られた継目無鋼管に、1回の冷間抽伸加工の減面率が40%超、50%以下となる冷間抽伸加工を少なくとも1回行って所定寸法の鋼管を得る冷間抽伸工と、冷間抽伸された鋼管に、50℃/s以上の昇温速度でAc3点以上の温度に加熱した後、少なくとも850〜500℃の温度範囲の冷却速度が50℃/s以上になるように冷却することにより焼き入れを施し、次いでAc1点温度以下の温度で焼き戻しを施す熱処理工程と、を含むことを特徴とする、900MPa以上の引張強度と、vTrs100が−60℃以下の低温靭性を有するエアバッグ用鋼管の製造方法である
In the present invention, by mass%, C: 0.04 to 0.20%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, P: 0.025% or less, S : 0.005% or less, Al: 0.10% or less, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50%, the balance A pipe making process for making a seamless steel pipe from steel composed of Fe and inevitable impurities, and the obtained seamless steel pipe has a surface reduction rate of more than 40% and less than 50% in one cold drawing process. performing cold drawing process at least once to be a more cold drawing engineering to obtain the steel pipe having a predetermined size, the cold drawing steel tube, heated to a temperature above Ac3 point or more of the heating rate 50 ° C. / s After that, quenching is performed by cooling so that the cooling rate in the temperature range of at least 850 to 500 ° C. is 50 ° C./s or more, and then the temperature is less than the Ac 1 point temperature. Characterized in that it comprises a heat treatment step of subjecting the tempered at a temperature, and a tensile strength of at least 900 MPa, VTrs100 is method for producing a steel pipe for an air bag having low temperature toughness of -60 ° C. or less.

本発明に係るエアバッグ用鋼管の製造方法の好適態様を列挙すると、次の通りである:
前記鋼は、場合により、下記の1種または2種以上の元素をさらに含有していてもよい:
・Mo:0.10%未満、
・Nb:0.050%以下、Ti:0.050%以下、およびV:0.20%以下の少なくとも1種;
・Ca:0.005%以下およびB:0.0030%以下の少なくとも1種。
The preferred embodiments of the method for producing a steel pipe for an air bag according to the present invention are listed as follows:
The steel may optionally further contain one or more of the following elements:
Mo: less than 0.10%
-Nb: 0.050% or less, Ti: 0.050% or less, and V: 0.20% or less;
-At least one of Ca: 0.005% or less and B: 0.0003% or less.

前記鋼のCu、Ni、Cr、Moの濃度は下記(1)式を充足することが好ましい:
Cu+Ni≧ (Cr+Mo)2+0.3 ・・・ (1)
式(1)の元素記号は、それらの元素の含有量を質量%で示したときの数値を意味する。ただし、Moを含有しないときはMo=0(ゼロ)とする。
The concentrations of Cu, Ni, Cr, and Mo in the steel preferably satisfy the following formula (1):
Cu + Ni ≧ (Cr + Mo) 2 +0.3 (1)
The element symbol of the formula (1) means a numerical value when the content of these elements is expressed by mass%. However, when Mo is not contained, Mo = 0 (zero).

前記冷間抽伸工程の終了後に鋼管の肉厚は好ましくは2.0mm以下である。 前記冷間抽伸工程は好ましくは1回の冷間抽伸で実施される。
前記熱処理工程において焼き入れための加熱は好ましくは高周波誘導加熱により行われ、その場合、焼き入れのための加熱の前に、冷間抽伸工程で得られた鋼管を矯正することが好ましい。
The wall thickness of the steel pipe is preferably 2.0 mm or less after the cold drawing process is completed. The cold drawing step is preferably performed by one cold drawing.
The heating for quenching in the heat treatment step is preferably performed by high frequency induction heating. In this case, it is preferable to correct the steel pipe obtained in the cold drawing step before the heating for quenching.

本発明によれば、高価なMoの量を0または少量に抑えて、引張強度900MPa以上の高強度とvTrs100が−60℃以下の優れた低温靭性を有するエアバッグ用鋼管を製造することが可能となる。また、熱間製管で得られた継目無鋼管の強度が高すぎないため、その後の冷間抽伸工程における加工率を従来に比べて増大させることができ、間に中間軟化焼鈍が必要な冷間抽伸の回数を減らすことができる。従って、本発明により、エアバッグ用鋼管の合金コストと製造コストの両方を従来に比べて低減させることができる。   According to the present invention, it is possible to manufacture a steel pipe for an air bag having high tensile strength of 900 MPa or more and excellent low temperature toughness of vTrs100 of −60 ° C. or less while suppressing the amount of expensive Mo to 0 or a small amount. It becomes. In addition, since the strength of the seamless steel pipe obtained by hot pipe making is not too high, the processing rate in the subsequent cold drawing process can be increased as compared with the conventional one, and the intermediate softening annealing is necessary. The number of inter-drawings can be reduced. Therefore, according to the present invention, both the alloy cost and the manufacturing cost of the steel pipe for airbag can be reduced as compared with the conventional case.

以下に本発明のエアバッグ用鋼管の化学組成と製造工程について、より具体的に説明する。
(A)鋼の化学組成
本明細書において、鋼の化学組成に関する「%」は「質量%」を意味する。以下に述べる元素を除く鋼の化学組成の残部はFeおよび不可避不純物である。
Below, the chemical composition and manufacturing process of the steel pipe for airbags of this invention are demonstrated more concretely.
(A) Chemical composition of steel In this specification, "%" related to the chemical composition of steel means "mass%". The balance of the chemical composition of the steel excluding the elements described below is Fe and inevitable impurities.

C:0.04〜0.20%
Cは、安価に鋼の強度を高めるのに有効な元素である。その含有量が0.04%未満では高強度(引張強度)を得ることが困難であり、0.20%を超えると加工性及び溶接性が低下する。したがって、Cの含有量を0.04%以上、0.20%以下とする。C含有量の好ましい範囲は0.07%以上、0.20%以下であり、より好ましい範囲は0.12%以上、0.17%以下である。1000MPa以上の引張強度を目標にするには、Cを0.06%以上含有させることが望ましい。
C: 0.04 to 0.20%
C is an element effective for increasing the strength of steel at a low cost. If its content is less than 0.04%, it is difficult to obtain high strength (tensile strength), and if it exceeds 0.20%, workability and weldability deteriorate. Therefore, the C content is set to 0.04% or more and 0.20% or less. A preferable range of the C content is 0.07% or more and 0.20% or less, and a more preferable range is 0.12% or more and 0.17% or less. In order to target a tensile strength of 1000 MPa or more, it is desirable to contain 0.06% or more of C.

Si:0.10〜0.50%
Siは、脱酸作用を有するほか、鋼の焼き入れ性を高めて強度を向上させる元素である。この目的でSiの含有量を0.10%以上とする。しかし、その含有量が0.50%を超えると靱性が低下するため、Siの含有量を0.50%以下とする。Si含有量の好ましい範囲は0.20%以上、0.45%以下である。
Si: 0.10 to 0.50%
In addition to having a deoxidizing action, Si is an element that improves the hardenability of the steel and improves the strength. For this purpose, the Si content is set to 0.10% or more. However, if the content exceeds 0.50%, the toughness decreases, so the Si content is set to 0.50% or less. A preferable range of the Si content is 0.20% or more and 0.45% or less.

Mn:0.10〜1.00%
Mnは、脱酸作用を有するほか、鋼の焼き入れ性を高めて強度と靱性を向上させるのに有効な元素である。しかし、その含有量が0.10%未満では十分な強度と靱性が得られず、一方、1.00%を超えるとMnSの粗大化が起こり、これが熱間圧延時に展伸し、靱性が低下する。このため、Mnの含有量を0.10%以上、1.00%以下とする。好ましいMnの含有量は0.30%以上、0.80%以下である。
Mn: 0.10 to 1.00%
In addition to having a deoxidizing action, Mn is an element effective for enhancing the hardenability of steel and improving the strength and toughness. However, if its content is less than 0.10%, sufficient strength and toughness cannot be obtained. On the other hand, if it exceeds 1.00%, MnS coarsens, which expands during hot rolling and decreases toughness. To do. For this reason, content of Mn shall be 0.10% or more and 1.00% or less. A preferable Mn content is 0.30% or more and 0.80% or less.

P:0.025%以下
Pは、鋼中に不純物として含まれ、粒界偏析に起因する靱性低下をもたらす。特に、Pの含有量が0.025%を超えると、靱性の低下が著しくなる。したがって、Pの含有量を0.025%以下とする。Pの含有量は好ましくは0.020%以下、より好ましくは0.015%以下である。
P: 0.025% or less P is contained as an impurity in the steel and causes toughness reduction due to grain boundary segregation. In particular, when the P content exceeds 0.025%, the toughness is significantly lowered. Therefore, the content of P is set to 0.025% or less. The P content is preferably 0.020% or less, more preferably 0.015% or less.

S:0.005%以下
Sも、鋼中に不純物として含まれ、特に鋼管T方向(鋼管の圧延方向(長手方向)に直交する方向)の靱性を低下させる。Sの含有量が0.005%を超えると、鋼管T方向の靱性低下が著しくなるので、Sの含有量を0.005%以下とする。好ましいSの含有量は0.003%以下である。
S: 0.005% or less S is also contained in the steel as an impurity, and particularly reduces the toughness in the steel pipe T direction (direction perpendicular to the rolling direction (longitudinal direction) of the steel pipe). When the S content exceeds 0.005%, the toughness in the steel pipe T direction decreases significantly, so the S content is set to 0.005% or less. A preferable S content is 0.003% or less.

Al:0.10%以下
Alは、脱酸作用を有し、また鋼の靱性及び加工性を高めるのに有効な元素である。しかし、0.10%を超える量のAlを含有させると、地疵の発生が著しくなる。したがって、Alの含有量を0.10%以下とする。Al含有量は不純物レベルであってもよいので、その下限は特に定めないが、0.005%以上とすることが好ましい。本発明にいうAl含有量とは、酸可溶Al(所謂「sol.Al」)の含有量を指す。
Al: 0.10% or less Al is an element that has a deoxidizing action and is effective in enhancing the toughness and workability of steel. However, when an amount of Al exceeding 0.10% is contained, the generation of ground becomes remarkable. Therefore, the Al content is set to 0.10% or less. Since the Al content may be at the impurity level, the lower limit is not particularly defined, but is preferably 0.005% or more. The Al content referred to in the present invention refers to the content of acid-soluble Al (so-called “sol.Al”).

Cr:0.01〜0.50%
Crは、鋼の焼き入れ性と焼き戻し軟化抵抗を高めることにより、鋼の強度と靭性を向上させる効果がある。その効果は、Crが0.01%以上の量で含有されていれば発現する。しかし、焼き入れ性改善元素としてのCrは、熱間製管後の冷却過程で鋼の硬化を招き、1回の冷間抽伸での加工度に制約をもたらすので、間に軟化焼鈍を挟んだ複数回の冷間抽伸加工を冷間抽伸工程で行う必要性が高くなる。さらに、Cr含有量の増加は合金コストの増大にも繋がる。以上の理由で、Crの含有量を0.01%以上、0.50%以下とする。Crの好ましい含有量は0.15%以上、0.45%以下であり、より好ましい含有量は0.18%以上、0.35%以下である。
Cr: 0.01 to 0.50%
Cr has the effect of improving the strength and toughness of steel by increasing the hardenability and temper softening resistance of the steel. The effect is manifested when Cr is contained in an amount of 0.01% or more. However, Cr as a hardenability improving element causes hardening of the steel in the cooling process after hot pipe making and restricts the degree of work in one cold drawing, so softening annealing is sandwiched between them. The necessity of performing a plurality of cold drawing processes in the cold drawing process is increased. Furthermore, an increase in the Cr content also leads to an increase in alloy costs. For these reasons, the Cr content is set to 0.01% or more and 0.50% or less. The preferable content of Cr is 0.15% or more and 0.45% or less, and the more preferable content is 0.18% or more and 0.35% or less.

Mo:0〜0.10%未満
Moは、鋼の焼き入れ性と焼き戻し軟化抵抗を高めることにより、鋼の強度と靭性を向上させる効果がある。しかし、本発明では、必要な強度と靱性はNiとCuにより確保されるので、Moの添加は必須ではない。すなわち、Moは0%であってもよい。
Mo: 0 to less than 0.10% Mo has the effect of improving the strength and toughness of steel by increasing the hardenability and temper softening resistance of the steel. However, in the present invention, the necessary strength and toughness are ensured by Ni and Cu, so the addition of Mo is not essential. That is, Mo may be 0%.

Moを添加するときでも、その含有量を0.10%未満とする。Mo含有量が高いと、熱間製管で得られた継目無鋼管を空冷しても、継目無鋼管の強度が高くなりすぎる傾向がある。その結果、次の冷間抽伸工程において、加工前に軟化焼鈍を行うことが必要となり、また冷間抽伸加工の加工度(減面率)が制限されて、所定の寸法の鋼管にするのに必要な冷間抽伸加工とその前の軟化焼鈍の回数が増える。この傾向はMoが0.10%以上になると顕著となる。また、Moは、非常に高価な金属であるので、Mo含有量の増大は合金コストの著しい増大に繋がる。すなわち、0.10%以上のMoは本発明の目的を達成する上では有害である。従って、Moを含有させる場合のMo含有量は0.10%未満とするが、好ましい含有量は0.01%以上、0.05%以下である。   Even when Mo is added, the content is made less than 0.10%. When the Mo content is high, the strength of the seamless steel pipe tends to be too high even if the seamless steel pipe obtained by hot pipe making is air-cooled. As a result, in the next cold drawing process, it is necessary to perform soft annealing before processing, and the degree of cold drawing (reduction rate) is limited, so that a steel pipe of a predetermined size can be obtained. The number of necessary cold drawing processes and previous soft annealing increases. This tendency becomes remarkable when Mo becomes 0.10% or more. Further, since Mo is a very expensive metal, an increase in the Mo content leads to a significant increase in alloy costs. That is, 0.10% or more of Mo is harmful in achieving the object of the present invention. Therefore, when Mo is contained, the Mo content is less than 0.10%, but the preferred content is 0.01% or more and 0.05% or less.

Cu:0.01〜0.50%
Cuは、鋼の焼き入れ性を高めることで強度と靭性を向上させる効果がある。その効果は、0.01%以上、好ましくは0.03%以上のCuを含有していれば発現する。しかし、0.50%を越えてCuを含有させると、合金コストの上昇を招く。従って、Cuの含有量を0.01%以上、0.50%以下とする。好ましいCu含有量は0.03%以上、特に0.05%以上であり、より好ましくは0.15%以上である。Cu含有量の上限は好ましくは0.40%、より好ましくは0.35%である。
Cu: 0.01 to 0.50%
Cu has the effect of improving strength and toughness by increasing the hardenability of steel. The effect is manifested if it contains 0.01% or more, preferably 0.03% or more of Cu. However, if Cu is contained in excess of 0.50%, the alloy cost increases. Therefore, the Cu content is set to 0.01% or more and 0.50% or less. A preferable Cu content is 0.03% or more, particularly 0.05% or more, and more preferably 0.15% or more. The upper limit of the Cu content is preferably 0.40%, more preferably 0.35%.

Ni:0.01〜0.50%
Niは、鋼の焼き入れ性を高め、それにより強度と靭性を向上させる効果がある。その効果は、0.01%以上、好ましくは0.03%以上のNiを含有していれば発現する。しかし、0.50%を越えてNiを含有させるのは合金コストの上昇を招く。従って、Niの含有量を0.01%以上、0.50%以下とする。好ましいNi含有量は0.03%以上、特に0.05%以上であり、より好ましくは0.15%以上である。Ni含有量の上限は好ましくは0.40%、より好ましくは0.35%である。
Ni: 0.01 to 0.50%
Ni has the effect of increasing the hardenability of the steel and thereby improving the strength and toughness. The effect is manifested if it contains 0.01% or more, preferably 0.03% or more of Ni. However, if Ni is contained exceeding 0.50%, the alloy cost increases. Therefore, the Ni content is set to 0.01% or more and 0.50% or less. A preferable Ni content is 0.03% or more, particularly 0.05% or more, and more preferably 0.15% or more. The upper limit of the Ni content is preferably 0.40%, more preferably 0.35%.

Cu及びNiの含有量の和である(Cu+Ni)は、0.20%以上、0.65%以下であることが好ましく、0.28%以上、0.60%以下であることがより好ましい。
本発明の好ましい態様においては、鋼中のCu、Ni、Cr、Mo含有量が、下記式(1)を満足するように調整する。
(Cu + Ni), which is the sum of the contents of Cu and Ni, is preferably 0.20% or more and 0.65% or less, and more preferably 0.28% or more and 0.60% or less.
In the preferable aspect of this invention, Cu, Ni, Cr, and Mo content in steel are adjusted so that the following formula (1) may be satisfied.

Cu+Ni≧ (Cr+Mo)2+0.3 ・・・ (1)
式(1)の元素記号は、それぞれの元素の含有量を質量%で表したときの数値である。Moが含有されない場合、Moはゼロとする。
Cu + Ni ≧ (Cr + Mo) 2 +0.3 (1)
The element symbol of Formula (1) is a numerical value when the content of each element is expressed in mass%. When Mo is not contained, Mo is zero.

Cr、Moは、焼き戻し時に析出するセメンタイトの球状化を妨げ、特にBが含有されている鋼では、Bと化合物(硼化物)を結晶粒界に形成しやすいため、特に高強度材では靭性が低下しやすい。式(1)を充足するようにCr、Moを抑制し、Cu、Niの含有させることで、高強度かつ高靭性のエアバッグ鋼管の製造が容易となる。   Cr and Mo prevent spheroidization of cementite that precipitates during tempering, and in particular, steel containing B easily forms B and a compound (boride) at the grain boundary. Is prone to decline. By suppressing Cr and Mo so as to satisfy the formula (1) and containing Cu and Ni, it is easy to manufacture a high strength and high toughness airbag steel pipe.

本発明における好適態様においては、以下の(i)、(ii)の2群の一方または両方から選んだ少なくとも1種の元素をさらに含有させることができる。
(i)Nb、Ti、V
(ii)Ca、B
Nb:0.050%以下
Nbは、鋼中で炭化物として微細に分散し、結晶粒界を強くピン止めする効果がある。その結果、結晶粒を細粒化させ、鋼の靭性を向上させる。しかし、Nbを0.050%より多量に含有させると、炭化物が粗大化し、かえって靭性が低下する。したがって、添加する場合のNbの含有量を0.050%以下とする。なお、Nbの前記効果は極微量でも認められるが、その効果を十分得るためには、0.005%以上含有させることが望ましい。
In a preferred embodiment of the present invention, at least one element selected from one or both of the following two groups (i) and (ii) can be further contained.
(I) Nb, Ti, V
(Ii) Ca, B
Nb: 0.050% or less Nb has the effect of finely dispersing as carbides in steel and strongly pinning the grain boundaries. As a result, the crystal grains are refined and the toughness of the steel is improved. However, when Nb is contained in a larger amount than 0.050%, the carbides are coarsened and the toughness is lowered. Therefore, the content of Nb when added is set to 0.050% or less. The effect of Nb is recognized even in a very small amount, but in order to obtain the effect sufficiently, it is desirable to contain 0.005% or more.

Ti:0.050%以下
Tiは、鋼中でNを固定し、靭性を向上させる効果を有する。微細に分散したTi窒化物は、結晶粒界を強くピン止めし、結晶粒を細粒化させ、鋼の靭性を向上させる。しかし、Tiを0.050%より多量に含有させると、窒化物が粗大化し、かえって靭性が低下する。したがって、添加する場合のTiの含有量を0.050%以下とする。Tiの効果は微量でも認められるが、その効果を十分に得るためには、0.005%以上含有させることが望ましい。Tiの好ましい含有量は0.008〜0.035%である。
Ti: 0.050% or less Ti has an effect of fixing N in steel and improving toughness. The finely dispersed Ti nitride strongly pins the crystal grain boundaries, refines the crystal grains, and improves the toughness of the steel. However, when Ti is contained in a larger amount than 0.050%, the nitride is coarsened and the toughness is lowered. Therefore, when Ti is added, the content of Ti is set to 0.050% or less. Although the effect of Ti is recognized even in a trace amount, in order to obtain the effect sufficiently, it is desirable to contain 0.005% or more. A preferable content of Ti is 0.008 to 0.035%.

V:0.20%以下
Vは、靭性を確保するとともに、析出強化により強度を高める作用があるが、Vの含有量が0.20%を超えると靭性の低下を招く。したがって、添加する場合のVの含有量を0.20%以下とする。Vの作用は微量でも認めら得るが、十分な効果を得るには、0.02%以上含有させることが望ましい。V含有量の好ましい範囲は、0.03〜0.10%である。
V: 0.20% or less V has the effect of securing toughness and increasing the strength by precipitation strengthening, but if the V content exceeds 0.20%, the toughness is reduced. Therefore, when V is added, the content of V is set to 0.20% or less. Although the action of V can be observed even in a trace amount, in order to obtain a sufficient effect, it is desirable to contain 0.02% or more. A preferable range of the V content is 0.03 to 0.10%.

Ca:0.005%以下
Caは、鋼中に不可避不純物として存在するSを硫化物として固定し、靱性の異方性を改善して、鋼管のT方向靱性を高め、これによって耐バースト性を高める作用を有する。しかし、0.005%を超えてCaを含有させると、介在物が増加して、かえって靭性が低下する。したがって、添加する場合のCaの含有量を0.005%以下とする。前記Caの効果は極微量でも認められるが、十分な効果を得るには0.0005%以上含有させることが望ましい。
Ca: 0.005% or less Ca fixes S present as an inevitable impurity in steel as a sulfide, improves anisotropy of toughness, and increases the T-direction toughness of a steel pipe, thereby improving burst resistance. Has an enhancing effect. However, if Ca is contained in excess of 0.005%, inclusions increase and the toughness decreases. Therefore, when Ca is added, the content of Ca is set to 0.005% or less. Although the effect of Ca is recognized even in a very small amount, it is desirable to contain 0.0005% or more in order to obtain a sufficient effect.

B:0.0030%以下
Bは、微量添加することにより鋼中で粒界偏析し、鋼の焼き入れ性を著しく向上させる。しかし、0.0030%以上のBを含有させると、結晶粒界に硼化物が粗大に析出し、靭性が低下する傾向が認められる。従って、添加する場合のBの含有量を0.0030%以下とする。Bの効果は微量でも認められるが、十分な効果を確保するには0.0005%以上含有させることが望ましい。
B: 0.0003% or less B is segregated at grain boundaries in steel when added in a small amount, and remarkably improves the hardenability of the steel. However, when 0.0003% or more of B is contained, a boride precipitates coarsely at the grain boundaries, and a tendency to lower toughness is recognized. Accordingly, the B content when added is 0.0003% or less. Although the effect of B is recognized even in a minute amount, it is desirable to contain 0.0005% or more in order to ensure a sufficient effect.

本発明において、1000MPa以上の引張強度を狙う場合には、Bを配合することで焼き入れ性改善による強度向上を図ることが望ましい。
なお、Bは固溶状態で含有されていないと、結晶粒界に偏析しない。従って、Bと化合物を造りやすいNは、Tiによって固定されていることが好ましく、Bは、Nによって固定される量以上に含有されていることが好ましい。その意味で、B含有量は、B、Ti、Nの化学量論比から、下記の式(2)の関係を満たしていると好適である。
In the present invention, when aiming at a tensile strength of 1000 MPa or more, it is desirable to improve strength by improving hardenability by blending B.
Note that B does not segregate at grain boundaries unless it is contained in a solid solution state. Therefore, it is preferable that N which can easily form a compound with B is fixed by Ti, and B is preferably contained in an amount more than the amount fixed by N. In that sense, it is preferable that the B content satisfies the relationship of the following formula (2) from the stoichiometric ratio of B, Ti, and N.

B−(N−Ti/3.4)×(10.8/14)≧0.0001 ・・・ (2)
式(2)中のB、N、Tiはそれぞれの元素の含有量を質量%で表したときの数値である。
B- (N-Ti / 3.4) × (10.8 / 14) ≧ 0.0001 (2)
B, N, and Ti in the formula (2) are numerical values when the content of each element is expressed in mass%.

(B)製管工程
上記(A)に述べたように化学組成を調整した鋼からなる鋼塊を素材に用いて熱間製管により継目無鋼管を得る。
(B) Pipe-making process A seamless steel pipe is obtained by hot pipe-making using a steel ingot made of steel with a chemical composition adjusted as described in (A) above as a raw material.

熱間鋼管の素材となる鋼塊の形態および作成法は特に限定されない。例えば、円柱型の鋳型を有する連続鋳造機にて鋳込まれた鋳片(ラウンドCCビレット)でも良いし、或いは矩形型に鋳込んだ後に、熱間鍛造により円柱状に成形した鋼塊でも良い。本発明で使用する鋼は、CrおよびMoといったフェライト安定化元素の添加を抑制し、CuおよびNiといったオーステナイト安定化元素を添加している関係から、ラウンドCCビレットとして丸形状に連続鋳造鋳込を行った場合にも中心割れが防止できる効果が大きく、ラウンドCCへの適合性も十分高い。それにより、矩形型に鋳込んだ場合に必要となる分塊圧延等による丸ビレットへの加工工程を省略できる。   The form and production method of the steel ingot used as the raw material of a hot steel pipe are not specifically limited. For example, a cast piece (round CC billet) cast by a continuous casting machine having a cylindrical mold may be used, or a steel ingot formed into a cylindrical shape by hot forging after casting into a rectangular mold may be used. . The steel used in the present invention suppresses the addition of ferrite stabilizing elements such as Cr and Mo, and from the relationship of adding an austenite stabilizing element such as Cu and Ni, continuous casting casting into a round shape as a round CC billet. When performed, the effect of preventing the center crack is great, and the compatibility with the round CC is sufficiently high. Thereby, the processing process to a round billet by the partial rolling etc. required when casting in a rectangular shape can be omitted.

継目無鋼管にするための熱間製管法も特に制限されない。例えば、マンドレル−マンネスマン法が採用される。熱間製管後の冷却は、放冷等の冷却速度が小さい方が、冷間抽伸が容易となるので好ましい。得られた継目無鋼管の形状は、特に制限されるものではないが、例えば、直径32〜50mm、肉厚2.5〜3.0mm程度で良い。   The hot pipe making method for making seamless steel pipe is not particularly limited. For example, the mandrel-Mannesmann method is adopted. As for cooling after hot pipe making, it is preferable that the cooling rate such as cooling is small because cold drawing becomes easy. The shape of the obtained seamless steel pipe is not particularly limited, and may be, for example, a diameter of 32 to 50 mm and a thickness of about 2.5 to 3.0 mm.

(C)冷間抽伸工程
熱間製管で得られた継目無鋼管は、一般に肉厚および径が大きく、寸法精度も不十分である。所定の寸法(鋼管の外径および肉厚)ならびに表面性状を得るために、この継目無鋼管を素管として、これに冷間抽伸を施す。本発明では、用いる鋼の特質を生かすために、冷間抽伸工程で行われる少なくとも1回の冷間抽伸加工の加工度(減面率)を40%超とする。1回の冷間抽伸の加工度が50%を超えると内面しわや割れの発生が起こりやすくなるので、好ましい加工度は42〜48%、より好ましくは43〜46%である。冷間抽伸工程において冷間抽伸加工を2回以上行う場合には、少なくとも1回の冷間抽伸における加工度が40%以上であればよく、加工度が40%未満の冷間抽伸を併用することは許容される。
(C) Cold drawing process The seamless steel pipe obtained by hot pipe making generally has a large thickness and diameter and insufficient dimensional accuracy. In order to obtain predetermined dimensions (outer diameter and thickness of the steel pipe) and surface properties, the seamless steel pipe is used as a base pipe and subjected to cold drawing. In the present invention, in order to take advantage of the characteristics of the steel to be used, the workability (reduction rate) of at least one cold drawing process performed in the cold drawing process is set to more than 40%. If the degree of work in one cold drawing exceeds 50%, the occurrence of internal wrinkles and cracks is likely to occur, so the preferred degree of work is 42 to 48%, more preferably 43 to 46%. When the cold drawing process is performed twice or more in the cold drawing process, the degree of processing in at least one cold drawing may be 40% or more, and cold drawing having a degree of processing of less than 40% is used in combination. It is permissible.

冷間抽伸における加工度は、次式で定義される減面率(断面減少率)と同義である。
減面率(%)=(S0−Sf)×100/S0
但し
0:冷間抽伸工程前の鋼管の断面積
f:冷間抽伸工程完了後の鋼管の断面積
「鋼管の断面積」は、管断面における中空部分を除いた管壁部だけの断面積である。
The degree of work in cold drawing is synonymous with the area reduction rate (section reduction rate) defined by the following equation.
Area reduction ratio (%) = (S 0 −S f ) × 100 / S 0
However, S 0 : Cross section of steel pipe before cold drawing process S f : Cross section of steel pipe after completion of cold drawing process “Cross section area of steel pipe” It is an area.

「1回の冷間抽伸の加工度(または減面率)」とは、中間に軟化焼鈍を介在させることなく行うものであれば、複数の冷間抽伸操作における総加工度も「1回の冷間抽伸の加工度」として扱う。本発明に係る鋼を用いることで、1回の冷間抽伸の加工度を40%超とすることができるので、熱間製管で得られる継目無鋼管の仕上がり寸法を適宜選択すれば、所定寸法の薄肉の鋼管を1回の冷間抽伸だけで製造することが可能になる。これにより従来、2回の冷間抽伸工程を必要とし、中間に軟化焼鈍が必要であった薄肉鋼管の製造が大きく簡略化できる。   The “degree of work (or reduction in area) of one cold drawing” means that the total degree of work in a plurality of cold drawing operations is “one time” as long as it is performed without interposing soft annealing. Treated as “Cold drawing degree”. By using the steel according to the present invention, the degree of processing of one cold drawing can be over 40%. Therefore, if the finished dimension of the seamless steel pipe obtained by hot pipe making is appropriately selected, a predetermined value can be obtained. It becomes possible to manufacture a thin steel pipe having a dimension by only one cold drawing. This can greatly simplify the production of thin-walled steel pipes that conventionally required two cold drawing steps and required softening annealing in the middle.

冷間抽伸の加工方法は周知であり、常法に従って実施すればよい。例えば、前述のようにマンドレル−マンネスマン法で作成された継目無鋼管を素管とし、これを室温にまで放冷してから、ダイスとプラグにより引抜き加工を行い、縮径と薄肉化を行う。エアバッグ用鋼管は、例えば、直径30mm以下、肉厚2mm以下であることが好ましい。素管の継目無鋼管から必要な寸法の鋼管への冷間抽伸が実現できれば、加工方法に特に制限はないが、上記方式の引抜き加工が好ましい。   The cold drawing method is well known and may be carried out according to a conventional method. For example, a seamless steel pipe produced by the mandrel-Mannesmann method as described above is used as a raw pipe, and this is allowed to cool to room temperature, and then drawn with a die and a plug to reduce the diameter and reduce the thickness. The steel pipe for airbag is preferably, for example, 30 mm in diameter or less and 2 mm in thickness or less. There is no particular limitation on the processing method as long as cold drawing from a seamless steel pipe to a steel pipe having a required size can be realized, but the above-described drawing process is preferable.

本発明で用いる鋼では、1回の冷間抽伸により、例えば46%の減面率で加工することが可能である。従って、エアバッグ用鋼管の最終寸法が1.7mm肉厚で外径25mmである場合、冷間抽伸加工を受ける素管の寸法が、例えば、外径31.8mm、肉厚2.5mmであれば、1回の冷間抽伸で所定の寸法の製品を得ることができる。   The steel used in the present invention can be processed, for example, with a reduction in area of 46% by one cold drawing. Therefore, if the final dimension of the steel pipe for airbag is 1.7 mm thick and the outer diameter is 25 mm, the dimension of the raw pipe subjected to cold drawing is, for example, 31.8 mm outer diameter and 2.5 mm thick. For example, a product having a predetermined size can be obtained by one cold drawing.

(D)矯正
本発明で製造するエアバッグ用鋼管は、引張強度が900MPa以上であることと、冷間抽伸の減面率が40%以上であることから、冷間抽伸後の強度が従来鋼よりも高くなる傾向があり、場合によってはスプリングバックなどで冷間抽伸工程後の鋼管に曲がりが生じる可能性がある。
(D) Straightening Since the steel pipe for airbags produced in the present invention has a tensile strength of 900 MPa or more and a surface reduction rate of cold drawing of 40% or more, the strength after cold drawing is conventional steel. In some cases, the steel pipe after the cold drawing process may be bent due to a springback or the like.

後で説明するように、高い強度と高い靭性を確保するために、冷間抽伸で所定の寸法にされた鋼管を、焼き入れのために急速加熱によりAc3変態点以上に加熱するが、その急速加熱は典型的には高周波誘導加熱により行われる。焼き入れを施すべき鋼管に曲がりがあると、高周波誘導加熱に使われる高周波コイルに鋼管が真っ直ぐに通過しない問題が懸念される。従って、好ましい態様では、冷間抽伸後に矯正加工を行って、鋼管の曲がりを解消する。As will be described later, in order to ensure high strength and high toughness, a steel pipe having a predetermined size by cold drawing is heated to a temperature higher than the Ac 3 transformation point by rapid heating for quenching. Rapid heating is typically performed by high frequency induction heating. If the steel pipe to be quenched is bent, there is a concern that the steel pipe does not pass straight through the high-frequency coil used for high-frequency induction heating. Therefore, in a preferred embodiment, straightening is performed after cold drawing to eliminate bending of the steel pipe.

この矯正の方法は特に限定されず、常法により実施すればよい。例えば、2ロールタイプのスタンドを4列ぐらい設け、各列のロールギャップの中心位置を互い違いにずらし(すなわち、オフセットし)、さらにロールギャップ量を調整し、ロール間に鋼管を通すことによって、曲げおよび曲げ戻しの加工を加える方法が好ましい。この時の曲げおよび曲げ戻しの加工度が高いほど、矯正の効果が高くなる。その観点からは、オフセット量(隣接するロール対の間のロール軸線のずれの量)は鋼管の外径の1%以上とし、鋼管の外径より1%分小さいロールギャップ量以下とするのが好ましい。一方、鋼管の割れ等の問題を避けるには、オフセット量を鋼管の外径の50%以下とし、鋼管の外径より5%分小さいロールギャップ量以上としておくのが好ましい。   The correction method is not particularly limited, and may be performed by a conventional method. For example, by arranging about 4 rows of 2 roll type stands, staggering the center position of the roll gap in each row (ie, offsetting), adjusting the amount of roll gap, and passing the steel pipe between the rolls, bending And a method of adding bending processing is preferable. The higher the degree of bending and bending back at this time, the higher the correction effect. From that point of view, the offset amount (the amount of deviation of the roll axis between adjacent roll pairs) should be 1% or more of the outer diameter of the steel pipe, and less than the roll gap amount that is 1% smaller than the outer diameter of the steel pipe. preferable. On the other hand, in order to avoid problems such as cracks in the steel pipe, it is preferable to set the offset amount to 50% or less of the outer diameter of the steel pipe and to a roll gap amount that is 5% smaller than the outer diameter of the steel pipe.

(E)熱処理
必要に応じて上記(D)の矯正加工を実施した後、鋼管に所要の引張強度を付与するとともに、T方向靱性を高めて耐バースト性を確保するために、鋼管に熱処理を施す。鋼管に引張強度で900MPa以上の高強度と、優れた低温靭性もしくは耐バースト性とを具備させるためには、Ac3(変態)点以上の温度に加熱して焼き入れを行い、次いでAc1(変態)点以下の温度で焼き戻しを行う。
(E) Heat treatment After performing the straightening process of (D) as necessary, the steel pipe is subjected to a heat treatment in order to impart the required tensile strength to the steel pipe and to increase the T-direction toughness and ensure the burst resistance. Apply. In order to provide a steel pipe with high tensile strength of 900 MPa or more and excellent low-temperature toughness or burst resistance, it is quenched by heating to a temperature above the Ac 3 (transformation) point, and then Ac 1 ( Tempering is performed at a temperature below the transformation point.

急冷前の加熱温度がオーステナイト単相となるAc3点より低いと、良好なT方向靱性(したがって良好な耐バースト性)を確保することができない。一方、上記の加熱温度が高温すぎると、オーステナイト粒が急激に成長し始めて、粗粒となり、靭性が低下するので、1050℃以下とすることが望ましい。より望ましくは、1000℃以下である。If the heating temperature before quenching is lower than the Ac 3 point at which the austenite single phase is obtained, good T direction toughness (and hence good burst resistance) cannot be ensured. On the other hand, if the heating temperature is too high, austenite grains begin to grow rapidly, become coarse grains, and toughness decreases. More desirably, it is 1000 ° C. or lower.

焼き入れ時のAc3点以上の温度への加熱は、加熱速度が50℃/s以上の急速加熱により行う。この加熱速度は、200℃以上、加熱温度までの温度域における平均加熱速度の値を採用できる。加熱速度が50℃/sより小さいと、オーステナイト粒径の微細化を図ることができず、引張特性と低温靭性あるいは耐バースト性能とが低下する。引張強度が1000MPa以上、vTrs100が−80℃以下の鋼管を得るには、加熱速度を80℃/s以上とすることが好ましく、より好ましくは100℃/s以上とする。このような急速加熱は高周波誘導加熱により達成できる。この場合、加熱速度は、高周波コイルへ通す鋼管の送り速度などにより調整可能である。Heating to a temperature of Ac 3 point or higher at the time of quenching is performed by rapid heating at a heating rate of 50 ° C./s or higher. As the heating rate, a value of an average heating rate in a temperature range of 200 ° C. or more and the heating temperature can be adopted. If the heating rate is less than 50 ° C./s, the austenite grain size cannot be refined, and the tensile properties and the low temperature toughness or burst resistance performance deteriorate. In order to obtain a steel pipe having a tensile strength of 1000 MPa or more and a vTrs100 of −80 ° C. or less, the heating rate is preferably 80 ° C./s or more, more preferably 100 ° C./s or more. Such rapid heating can be achieved by high frequency induction heating. In this case, the heating rate can be adjusted by the feed rate of the steel pipe passing through the high frequency coil.

急速加熱によってAc3点以上の温度に加熱された鋼管は、Ac3点以上の温度に短時間保持した後、焼き入れのための急速冷却を行う。この保持時間は0.5〜8秒の範囲が望ましい。より望ましくは1〜4秒である。保持時間が短すぎると、機械的な特性の均一性が劣る場合がある。保持時間が長すぎると、特に保持温度が高めの場合、オーステナイト粒径の粗大化を招きやすい。粒径を細粒化させることは極めて高い靭性を確保するのに必要である。The steel pipe heated to a temperature of Ac 3 point or higher by rapid heating is held at a temperature of Ac 3 point or higher for a short time, and then rapidly cooled for quenching. This holding time is preferably in the range of 0.5 to 8 seconds. More desirably, it is 1 to 4 seconds. If the holding time is too short, the uniformity of mechanical properties may be inferior. If the holding time is too long, the austenite grain size tends to be coarsened, especially when the holding temperature is high. Reducing the particle size is necessary to ensure extremely high toughness.

焼き入れのための冷却速度は、少なくとも850〜500℃の温度範囲の冷却速度が50℃/s以上となるように制御する。この冷却速度は望ましくは100℃/s以上である。引張強度1000MPa以上、vTrs100を−80℃以下とするには、冷却速度を150℃/s以上とすることが望ましい。冷却速度が小さすぎると、焼き入れが不完全になり、マルテンサイトの比率が低下し、十分な引張強度が得られない。   The cooling rate for quenching is controlled so that the cooling rate in the temperature range of at least 850 to 500 ° C. is 50 ° C./s or more. This cooling rate is desirably 100 ° C./s or more. In order to set the tensile strength to 1000 MPa or more and vTrs100 to −80 ° C. or less, it is desirable to set the cooling rate to 150 ° C./s or more. If the cooling rate is too low, quenching becomes incomplete, the martensite ratio decreases, and sufficient tensile strength cannot be obtained.

急冷されて常温近傍まで冷却された鋼管は、900MPa以上の引張強度と十分な耐バースト性を付与するためにAc1点以下の温度で焼き戻しをする。焼き戻しの温度がAc1点を越えると、目的とする引張強度と低温靱性を安定して確実に得ることが困難になる。The steel pipe that has been quenched and cooled to near normal temperature is tempered at a temperature of Ac 1 point or less in order to give a tensile strength of 900 MPa or more and sufficient burst resistance. When the tempering temperature exceeds the Ac 1 point, it becomes difficult to stably and surely obtain the intended tensile strength and low temperature toughness.

焼き戻しの方法は特に限定されないが、例えば、ハースローラー型連続炉等の熱処理炉、高周波誘導加熱等により均熱加熱後、冷却することにより実施すればよい。熱処理炉での好ましい均熱条件は温度350〜500℃、保持時間20〜30分である。焼き戻しの後、(D)で述べたような方法で、適宜ストレートナー等により曲がりを矯正してもよい。   The method of tempering is not particularly limited. For example, the tempering method may be carried out by cooling after soaking with a heat treatment furnace such as a hearth roller type continuous furnace, high-frequency induction heating or the like. Preferable soaking conditions in the heat treatment furnace are a temperature of 350 to 500 ° C. and a holding time of 20 to 30 minutes. After tempering, the bending may be corrected as appropriate with a straightener or the like by the method described in (D).

このようにして製造されたエアバッグ用鋼管からエアバッグ用アキュムレータに加工するには、この鋼管を所定長さに切断して短管とした後、必要に応じて、その少なくとも一端をプレス加工やへら絞り加工などで縮径加工し(これをボトル加工と称す)、イニシエータ等の装着に必要な形状に最終加工すればよい。従って、本明細書に言うエアバッグ用鋼管としての所定の寸法および寸法精度とは、管厚さと直径とに関する寸法および寸法精度を意味する。最後に鋼管の両端に蓋体が溶接で装着される。   In order to process an air bag accumulator from an air bag steel pipe manufactured in this way, the steel pipe is cut to a predetermined length to make a short pipe, and if necessary, at least one end thereof is subjected to press working or The diameter may be reduced by spatula drawing or the like (referred to as bottle processing) and finally processed into a shape necessary for mounting an initiator or the like. Therefore, the predetermined dimensions and dimensional accuracy of the steel pipe for an air bag referred to in this specification means dimensions and dimensional accuracy related to the tube thickness and diameter. Finally, lids are attached to both ends of the steel pipe by welding.

表1に示す化学組成を有する鋼(Ac1点は720〜735℃の範囲内、Ac3点は835〜860℃の範囲内)を転炉にて溶製し、連続鋳造(ラウンドCC)によって外径191mmの円柱状ビレットを製造した。このラウンドCCビレットを所望の長さに切断し、1250℃に加熱した後、通常のマンネスマンピアサーマンドレルミル方式による穿孔と圧延により、外径31.8mm、肉厚2.5mmの第1の素管と、外径42.7mm、肉厚2.7mmの第2の素管とを得た。Steel having the chemical composition shown in Table 1 (Ac 1 point is in the range of 720 to 735 ° C., Ac 3 point is in the range of 835 to 860 ° C.) is melted in a converter and is continuously cast (round CC). A cylindrical billet having an outer diameter of 191 mm was manufactured. The round CC billet is cut to a desired length, heated to 1250 ° C., and then drilled and rolled by a normal Mannesmann Piercer mandrel mill method to produce a first blank tube having an outer diameter of 31.8 mm and a wall thickness of 2.5 mm. And a second element tube having an outer diameter of 42.7 mm and a wall thickness of 2.7 mm.

このようにして得た2種類の素管を、ダイスとプラグを使って引抜き加工を行う通常の方法で、1回ないしは2回の冷間抽伸加工(冷間引抜加工)を経て、外径25.0mm、肉厚1.7mmの鋼管に仕上げた。表1の比較鋼G、Hについて、外径31.8mm、肉厚2.5mmの第1の素管を使用して、一回の抽伸で上記形状の鋼管の製造を試みたところ、破断が発生し、製造することが出来なかった。   The two types of raw pipes thus obtained are subjected to a drawing process using a die and a plug in a usual manner, and after one or two cold drawing processes (cold drawing processes), an outer diameter of 25 The steel pipe was finished with a thickness of 0.0 mm and a thickness of 1.7 mm. Regarding the comparative steels G and H in Table 1, when a first pipe having an outer diameter of 31.8 mm and a wall thickness of 2.5 mm was used to produce a steel pipe having the above-mentioned shape by a single drawing, the fracture occurred. Generated and could not be manufactured.

比較例9、10では、第2の素管を用い、1回目の抽伸で外径32.0mm、肉厚2.2mmの鋼管とし、更に630℃、20分の軟化焼鈍を介して、2回目の抽伸で外径25.0mm 肉厚1.7mmに仕上げた。   In Comparative Examples 9 and 10, the second raw pipe was used to obtain a steel pipe having an outer diameter of 32.0 mm and a wall thickness of 2.2 mm by the first drawing, and then the second time through softening annealing at 630 ° C. for 20 minutes. The outer diameter was 25.0 mm and the wall thickness was 1.7 mm.

この冷間抽伸加工を施した鋼管を、ストレートナーによって矯正した後、高周波誘導加熱装置を用いて平均昇温速度300℃/s(200〜900℃の温度域の平均値)にて920℃まで加熱し、920℃に2秒保持した後、水冷(850〜500℃の温度域の平均冷却速度150℃/s)を行って水焼き入れを実施した。続いて、鋼管を焼き戻しするために、光輝焼鈍炉にて350〜500℃で30分の均熱処理し、炉内自然冷却と放冷により常温まで冷却して、エアバッグ用鋼管を得た。   After correcting the cold drawn steel pipe with a straightener, up to 920 ° C. at an average temperature increase rate of 300 ° C./s (average value in a temperature range of 200 to 900 ° C.) using a high frequency induction heating device. After heating and holding at 920 ° C for 2 seconds, water quenching was performed by water cooling (average cooling rate of 150 ° C / s in the temperature range of 850 to 500 ° C). Subsequently, in order to temper the steel pipe, a soaking treatment was performed at 350 to 500 ° C. for 30 minutes in a bright annealing furnace, and the steel pipe was cooled to room temperature by natural cooling and cooling in the furnace to obtain a steel pipe for an airbag.

得られた各鋼管から一定長さの管を切り出し、室温で管の長さ方向に切断して展開した。展開した管からそのT方向から採取した長さ55mm、高さ10mm、幅1.7mmの矩形材に2mmVノッチを導入した試験片を用いて、シャルピー衝撃試験を−40℃以下の各種温度で実施した。この試験により、延性破面率が100%となる下限温度(vTrs100)を求めた。   A tube having a certain length was cut out from each of the obtained steel tubes, and the tube was cut and developed in the length direction of the tube at room temperature. Charpy impact test was conducted at various temperatures below -40 ° C using test pieces with a 2 mm V notch introduced into a rectangular material 55 mm long, 10 mm high and 1.7 mm wide taken from the T direction from the expanded tube. did. By this test, the lower limit temperature (vTrs100) at which the ductile fracture surface ratio becomes 100% was determined.

また、鋼管のL方向から採取したJIS Z 2201に規定の11号試験片を用いて、JIS Z 2241に規定の金属材料引張試験法に準じて引張試験を行った。以上の試験結果を、鋼管の製造条件とともに表2にまとめて示す。   Moreover, the tension test was done according to the metal material tensile test method prescribed | regulated to JISZ2241, using the No. 11 test piece prescribed | regulated to JISZ2201 extract | collected from the L direction of the steel pipe. The above test results are shown together in Table 2 together with the steel pipe production conditions.

Figure 0005234226
Figure 0005234226

Figure 0005234226
Figure 0005234226

表2から明らかなように、本発明に従った鋼の化学組成を有する鋼A〜Fを用いた場合、高価なMoを全く含まないか、或いは0.10%未満の少量しか含まず、合金コストが低いにもかかわらず、減面率46%の加工度であっても1回の冷間抽伸で所定の製品寸法に加工することが可能であり、後続の焼き入れ工程において急速加熱、急速冷却を行うことで、エアバッグ用鋼管として高水準の製品性能を達成することができる。特に、前述した式(1)を満足する組成を有する鋼A〜C、E、Fを用いた場合には、vTrs100が−100℃以下となり、低温靭性が極めて高く、低温環境での優れた耐バースト性能が期待できることが明らかである。   As is apparent from Table 2, when steels A to F having the chemical composition of the steel according to the present invention were used, the alloy contained no expensive Mo or only a small amount of less than 0.10%, and an alloy. Despite the low cost, it is possible to process into a predetermined product size by one cold drawing even at a processing rate of 46% area reduction. By performing cooling, a high level of product performance can be achieved as a steel pipe for an airbag. In particular, when steels A to C, E, and F having a composition satisfying the above-described formula (1) are used, vTrs100 is −100 ° C. or less, low temperature toughness is extremely high, and excellent resistance in a low temperature environment. It is clear that burst performance can be expected.

一方、比較例の鋼F,Gは、多量のMoを含有するので合金コストが高い。その上、減面率が40%以上の冷間抽伸加工を施すと、割れが発生した。そのため、冷間抽伸加工を40%未満の減面率で2回以上行う必要があり、中間の軟化焼鈍が必要となって、エアバッグ用鋼管の製造コストも増大する。   On the other hand, the steels F and G of the comparative examples contain a large amount of Mo, so the alloy cost is high. In addition, cracks occurred when cold drawing with a reduction in area of 40% or more was performed. Therefore, it is necessary to perform the cold drawing process twice or more with a surface area reduction rate of less than 40%, and an intermediate softening annealing is required, which increases the manufacturing cost of the steel pipe for airbag.

Claims (8)

質量%で、C:0.04〜0.20%、Si:0.10〜0.50%、Mn:0.10〜1.00%、P:0.025%以下、S:0.005%以下、Al:0.10%以下、Cr:0.01〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%、残部がFeおよび不可避不純物からなる鋼から継目無鋼管の熱間製管を行う製管工程;
得られた継目無鋼管に、1回の冷間抽伸加工の減面率が40%超、50%以下となる冷間抽伸加工を少なくとも1回行って所定寸法の鋼管を得る冷間抽伸工程;ならびに
冷間抽伸された鋼管に、50℃/s以上の昇温速度でAc3点以上の温度に加熱した後、少なくとも850〜500℃の温度範囲の冷却速度が50℃/s以上になるように冷却することにより焼き入れを施し、次いでAc1点温度以下の温度で焼き戻しを施す熱処理工程、
を含むことを特徴とする、900MPa以上の引張強度と、vTrs100が−60℃以下の低温靭性を有するエアバッグ用鋼管の製造方法。
By mass%, C: 0.04 to 0.20%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, P: 0.025% or less, S: 0.005 %: Al: 0.10% or less, Cr: 0.01-0.50%, Cu: 0.01-0.50%, Ni: 0.01-0.50%, the balance being Fe and inevitable impurities A pipe making process for performing hot pipe making of seamless steel pipe from steel comprising:
A cold drawing process in which the obtained seamless steel pipe is subjected to a cold drawing process in which the area reduction rate of one cold drawing process is more than 40% and 50% or less to obtain a steel pipe having a predetermined size; In addition, after the cold drawn steel pipe is heated to a temperature of Ac3 point or higher at a temperature increase rate of 50 ° C / s or higher, the cooling rate in the temperature range of at least 850 to 500 ° C is 50 ° C / s or higher. A heat treatment step in which quenching is performed by cooling, and then tempering is performed at a temperature equal to or lower than the Ac1 point temperature;
The manufacturing method of the steel pipe for airbags which has the tensile strength of 900 Mpa or more characterized by containing vMPs100 and the low temperature toughness whose vTrs100 is -60 degrees C or less.
前記鋼が、Mo:0.10%未満である、請求項1に記載のエアバッグ用鋼管の製造方法。   The manufacturing method of the steel pipe for airbags of Claim 1 whose said steel is less than Mo: 0.10%. 前記鋼が、Nb:0.050%以下、Ti:0.050%以下およびV:0.20%以下から選ばれた少なくとも1種、ならびにCa:0.005%以下およびB:0.0030%以下から選ばれた少なくとも1種を含有する、請求項1または2に記載のエアバッグ用鋼管の製造方法。   The steel is at least one selected from Nb: not more than 0.050%, Ti: not more than 0.050% and V: not more than 0.20%, and Ca: not more than 0.005% and B: 0.0030% The manufacturing method of the steel pipe for airbags of Claim 1 or 2 containing the at least 1 sort (s) chosen from the following. 前記鋼のCu、Ni、Cr、Moの濃度が下記(1)式を充足する、請求項1〜3のいずれかに記載のエアバッグ用鋼管の製造方法。
Cu+Ni≧(Cr+Mo)2 +0.3 ・・・ (1)
式(1)における元素記号は、それらの元素の含有量を質量%で示したときの数値を意味する。ただし、Moを含有しないときは、Mo=0とする。
The manufacturing method of the steel pipe for airbags in any one of Claims 1-3 with which the density | concentration of Cu, Ni, Cr, and Mo of the said steel satisfies the following (1) Formula.
Cu + Ni ≧ (Cr + Mo) 2 +0.3 (1)
The element symbol in Formula (1) means a numerical value when the content of these elements is expressed in mass%. However, when Mo is not contained, Mo = 0.
前記冷間抽伸工程終了後の鋼管の肉厚が2.0mm以下である、請求項1〜4のいずれかに記載のエアバッグ用鋼管の製造方法。   The manufacturing method of the steel pipe for airbags in any one of Claims 1-4 whose wall thickness of the steel pipe after the said cold drawing process completion is 2.0 mm or less. 前記冷間抽伸工程が1回の冷間抽伸により行われる請求項5記載のエアバッグ用鋼管の製造方法。   The manufacturing method of the steel pipe for airbags of Claim 5 with which the said cold drawing process is performed by one cold drawing. 前記熱処理工程において焼き入れための加熱を高周波誘導加熱により行う、請求項1〜6のいずれかに記載のエアバッグ用鋼管の製造方法。 Performed by high-frequency induction heating to heat for quenching in the heat treatment step, the manufacturing method for an air bag steel according to any one of claims 1 to 6. 前記焼き入れのための加熱の前に、冷間抽伸工程で得られた鋼管を矯正する、請求項7に記載のエアバッグ用鋼管の製造方法。   The manufacturing method of the steel pipe for airbags of Claim 7 which corrects the steel pipe obtained at the cold drawing process before the heating for the said quenching.
JP2012518424A 2010-06-03 2011-06-01 Manufacturing method of steel pipe for airbag Active JP5234226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518424A JP5234226B2 (en) 2010-06-03 2011-06-01 Manufacturing method of steel pipe for airbag

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010127713 2010-06-03
JP2010127713 2010-06-03
PCT/JP2011/062583 WO2011152447A1 (en) 2010-06-03 2011-06-01 Process for producing steel pipe for air bag
JP2012518424A JP5234226B2 (en) 2010-06-03 2011-06-01 Manufacturing method of steel pipe for airbag

Publications (2)

Publication Number Publication Date
JP5234226B2 true JP5234226B2 (en) 2013-07-10
JPWO2011152447A1 JPWO2011152447A1 (en) 2013-08-01

Family

ID=45066805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012518424A Active JP5234226B2 (en) 2010-06-03 2011-06-01 Manufacturing method of steel pipe for airbag

Country Status (12)

Country Link
US (1) US20130086965A1 (en)
EP (1) EP2578705B1 (en)
JP (1) JP5234226B2 (en)
KR (1) KR20130020811A (en)
CN (1) CN103261451B (en)
CA (1) CA2800991C (en)
ES (1) ES2691209T3 (en)
MX (1) MX2012013939A (en)
PL (1) PL2578705T3 (en)
TR (1) TR201815837T4 (en)
TW (1) TWI436912B (en)
WO (1) WO2011152447A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316635B2 (en) * 2011-12-21 2013-10-16 新日鐵住金株式会社 Manufacturing method of steel pipe for airbag
JP5304915B2 (en) * 2012-03-09 2013-10-02 新日鐵住金株式会社 Metal tube manufacturing method and manufacturing equipment
CN103639233B (en) * 2013-11-28 2016-02-17 攀钢集团江油长城特殊钢有限公司 Manufacture the method for 40MPa level super-pressure gas cylinder forging seamless steel pipe
CN103725859B (en) * 2013-11-30 2015-09-16 常熟市东鑫钢管有限公司 The manufacture method of weldless steel tube
CN104046924B (en) 2014-06-25 2017-01-04 宝山钢铁股份有限公司 A kind of safe automobile air bag high tough seamless steel pipe and manufacture method thereof
SI3719148T1 (en) * 2019-04-05 2023-06-30 Ssab Technology Ab High-hardness steel product and method of manufacturing the same
CN113770196A (en) * 2021-09-15 2021-12-10 江苏宏亿钢管有限公司 Processing technology of precise seamless steel tube for safety airbag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104255A1 (en) * 2003-05-21 2004-12-02 Sumitomo Metal Industries, Ltd. Tube d'acier pour systeme de coussin de securite gonflable et procede de production associe
WO2007091585A1 (en) * 2006-02-09 2007-08-16 Sumitomo Metal Industries, Ltd. Method for manufacturing bottle member for air bag inflator
JP2010132999A (en) * 2008-12-08 2010-06-17 Sumitomo Metal Ind Ltd Steel pipe for air bag and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050076975A1 (en) * 2003-10-10 2005-04-14 Tenaris Connections A.G. Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
US20060169368A1 (en) * 2004-10-05 2006-08-03 Tenaris Conncections A.G. (A Liechtenstein Corporation) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
CN101048524B (en) * 2004-10-29 2011-04-13 住友金属工业株式会社 Steel pipe for air bag inflator and method for production thereof
JP5018784B2 (en) * 2006-10-27 2012-09-05 住友金属工業株式会社 Seamless steel pipe for airbag accumulator and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104255A1 (en) * 2003-05-21 2004-12-02 Sumitomo Metal Industries, Ltd. Tube d'acier pour systeme de coussin de securite gonflable et procede de production associe
WO2007091585A1 (en) * 2006-02-09 2007-08-16 Sumitomo Metal Industries, Ltd. Method for manufacturing bottle member for air bag inflator
JP2010132999A (en) * 2008-12-08 2010-06-17 Sumitomo Metal Ind Ltd Steel pipe for air bag and method for manufacturing the same
JP4770922B2 (en) * 2008-12-08 2011-09-14 住友金属工業株式会社 Steel pipe for airbag and manufacturing method thereof

Also Published As

Publication number Publication date
TWI436912B (en) 2014-05-11
TW201217199A (en) 2012-05-01
MX2012013939A (en) 2013-05-06
EP2578705B1 (en) 2018-08-08
ES2691209T3 (en) 2018-11-26
US20130086965A1 (en) 2013-04-11
WO2011152447A1 (en) 2011-12-08
TR201815837T4 (en) 2018-11-21
CN103261451A (en) 2013-08-21
KR20130020811A (en) 2013-02-28
JPWO2011152447A1 (en) 2013-08-01
PL2578705T3 (en) 2019-03-29
EP2578705A4 (en) 2017-06-14
CA2800991C (en) 2016-08-02
CN103261451B (en) 2015-06-24
EP2578705A1 (en) 2013-04-10
CA2800991A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
US7727463B2 (en) Steel pipe for an airbag system
JP5018784B2 (en) Seamless steel pipe for airbag accumulator and manufacturing method thereof
EP2484793B1 (en) Steel pipe for air bag and process for producing same
JP5234226B2 (en) Manufacturing method of steel pipe for airbag
US7749339B2 (en) Process for manufacturing an airbag inflator bottle member
JP4770922B2 (en) Steel pipe for airbag and manufacturing method thereof
JPH10140250A (en) Production of steel tube for air bag, having high strength and high toughness
US20060070687A1 (en) Method for producing seamless steel pipe for inflator of air bag
JP3858615B2 (en) Method for producing seamless steel pipe for high strength airbag with tensile strength of 900 MPa or more
JP4079053B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe for airbag
JP2001049343A (en) Production of electric resistance welded tube for high toughness air bag
JP2004076034A (en) Method for producing high strength, high toughness and high workability seamless steel pipe for air bag
JPH10140249A (en) Production of steel tube for air bag, having high strength and high toughness
JP4079054B2 (en) High strength and high toughness welded steel pipe for airbag bottle and method for producing the same
JP3960145B2 (en) Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
TWI433938B (en) Steel pipe for airbag and method for manufacturing the same
JPH10212549A (en) High toughness electric resistance welded tube for air bag and its production
US20080265553A1 (en) Process for manufacturing an airbag inflator bottle member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

R151 Written notification of patent or utility model registration

Ref document number: 5234226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350