JP4452976B2 - Magnetic Geneva gear mechanism - Google Patents

Magnetic Geneva gear mechanism Download PDF

Info

Publication number
JP4452976B2
JP4452976B2 JP2003316775A JP2003316775A JP4452976B2 JP 4452976 B2 JP4452976 B2 JP 4452976B2 JP 2003316775 A JP2003316775 A JP 2003316775A JP 2003316775 A JP2003316775 A JP 2003316775A JP 4452976 B2 JP4452976 B2 JP 4452976B2
Authority
JP
Japan
Prior art keywords
magnetic
rotating body
rotating
gear mechanism
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003316775A
Other languages
Japanese (ja)
Other versions
JP2005083487A (en
Inventor
憲二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003316775A priority Critical patent/JP4452976B2/en
Publication of JP2005083487A publication Critical patent/JP2005083487A/en
Application granted granted Critical
Publication of JP4452976B2 publication Critical patent/JP4452976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Description

本発明はFA、ロボット等の位置検出器に用いられる多回転式エンコーダの多回転量を検出する為の非接触で大きな減速比が得られる磁気ゼネバ歯車機構に関する。   The present invention relates to a magnetic Geneva gear mechanism capable of obtaining a large reduction ratio in a non-contact manner for detecting a multi-rotation amount of a multi-rotation encoder used in a position detector such as an FA or a robot.

従来、円板状の磁性体で形成された回転体に回転軸に対して半径方向や周方向に多極着磁した磁気歯車機構を利用した多回転式エンコーダが開示されている(例えば、特許文献1参照)。
図7は多回転式エンコーダに用いられた従来の磁気歯車機構である。図において、1は第1回転体、2は第2回転体、12は第1回転軸、22は第2回転軸、16は第1回転軸12と直角方向に一方向に着磁された磁性体円板、26はラジアル方向に多極着磁された第2回転体のリング状の磁性体部、24は第2回転軸22とリング状の磁性体部26を固定する非磁性体円板である。
第1回転体と第2回転体は磁気的な結合をしており、第1回転体が1回転すると、第2回転体は2極分回転する。本従来例では、第2回転体のリング状の磁性体部25はラジアル方向に16極着磁されており、減速比1:8の磁気歯車機構を構成している。
図8はこの磁気歯車機構を用いた従来の多回転式エンコーダの適用例を示す斜視図である。多回転式エンコーダ40は第1回転体、第2回転体および絶対値エンコーダ50から構成される。多回転量を測定するモータ60の回転軸に第1回転体の回転軸を、第2回転体の回転軸に絶対値エンコーダの回転軸を直結する。モータの回転数に対して絶対値エンコーダの回転数は1/8に減速され、絶対値エンコーダの回転角の読みから、モータ8回転分の多回転量を検出できる。
Conventionally, a multi-rotation encoder using a magnetic gear mechanism in which a multi-pole magnet is magnetized in a radial direction or a circumferential direction with respect to a rotating shaft on a rotating body formed of a disk-like magnetic body has been disclosed (for example, a patent) Reference 1).
FIG. 7 shows a conventional magnetic gear mechanism used in a multi-rotation encoder. In the figure, 1 is a first rotating body, 2 is a second rotating body, 12 is a first rotating shaft, 22 is a second rotating shaft, and 16 is magnetized in one direction perpendicular to the first rotating shaft 12. A body disk 26 is a ring-shaped magnetic body portion of the second rotating body magnetized in the radial direction, and 24 is a non-magnetic disk that fixes the second rotating shaft 22 and the ring-shaped magnetic body portion 26. It is.
The first rotating body and the second rotating body are magnetically coupled. When the first rotating body rotates once, the second rotating body rotates by two poles. In this conventional example, the ring-shaped magnetic body portion 25 of the second rotating body is magnetized in 16 poles in the radial direction to constitute a magnetic gear mechanism with a reduction ratio of 1: 8.
FIG. 8 is a perspective view showing an application example of a conventional multi-rotation encoder using this magnetic gear mechanism. The multi-rotation encoder 40 includes a first rotating body, a second rotating body, and an absolute value encoder 50. The rotary shaft of the first rotary body is directly connected to the rotary shaft of the motor 60 for measuring the multi-rotation amount, and the rotary shaft of the absolute value encoder is directly connected to the rotary shaft of the second rotary body. The rotational speed of the absolute value encoder is reduced to 1/8 with respect to the rotational speed of the motor, and a multi-rotation amount corresponding to 8 motor rotations can be detected from the reading of the rotational angle of the absolute value encoder.

このように、従来の磁気歯車機構は、回転軸と直角方向に1方向に着磁した第1回転体とラジアル方向に多極着磁した第2回転体との磁気的な結合を使って、非接触の減速機構を実現している。
国際公開第03/036237号(第2図)
As described above, the conventional magnetic gear mechanism uses the magnetic coupling between the first rotating body magnetized in one direction perpendicular to the rotation axis and the second rotating body magnetized in the radial direction. A non-contact reduction mechanism is realized.
International Publication No. 03/036237 (Fig. 2)

従来の歯車装置は、回転軸に対してラジアル方向に着磁しており、強い磁力を得るためには直径の大きいリング状磁性体を使用し、さらに内径と外径との差を大きくして磁軸方向の長さを確保する必要がある。しかし、内径と外径との差を大きくすると特に内径側の磁極ピッチが短くなり、磁力の強い磁化を得ることが難しい。従って、減速比が大きく、伝達力の大きい小型の磁気歯車機構が実現できないという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、減速比が大きく取れ、伝達力の大きい小型の磁気ゼネバ歯車機構を提供することを目的とする。
The conventional gear unit is magnetized in the radial direction with respect to the rotating shaft. To obtain a strong magnetic force, a ring-shaped magnetic body having a large diameter is used, and the difference between the inner diameter and the outer diameter is increased. It is necessary to ensure the length in the magnetic axis direction. However, when the difference between the inner diameter and the outer diameter is increased, the magnetic pole pitch on the inner diameter side is particularly shortened, and it is difficult to obtain a strong magnetic force. Therefore, there is a problem that a small magnetic gear mechanism having a large reduction ratio and a large transmission force cannot be realized.
The present invention has been made in view of such problems, and an object of the present invention is to provide a small magnetic Geneva gear mechanism having a large reduction ratio and a large transmission force.

上記問題を解決するため請求項1記載の発明は、第1回転円板と第1回転軸から成る第1回転体と、第2回転円板と第2回転軸から成る第2回転体とから構成され、前記第1回転体と前記第2回転体の磁気的結合により回転運動を伝達する運動機構において、前記第1回転円板および前記第2回転円板は、少なくとも磁性円板の円周部が回転軸方向に磁軸を持つように多極着磁され、前記第2回転体の磁極数を前記第1回転体の磁極数より大きくし、前記第1回転体の磁極の一部と前記第2回転体の磁極の一部との間に、磁性体板を磁気的に絶縁して複数重ね合わせて形成した磁路形成部材を付加したことを特徴とする磁気ゼネバ歯車機構とするものである。
また、請求項2に記載の発明は、第1回転円板と第1回転軸から成る第1回転体と、第2回転円板と第2回転軸から成る第2回転体とから構成され、前記第1回転体と前記第2回転体の磁気的結合により回転運動を伝達する運動機構において、前記第1回転円板および前記第2回転円板は、非磁性円板の円周部に、回転軸方向に磁軸を持つ複数の永久磁石が取り付けられるか、回転円板全体が回転軸方向に磁軸を持つ複数の永久磁石から構成され、前記第2回転体の磁極数を前記第1回転体の磁極数より大きくし、前記第1回転体の磁極の一部と前記第2回転体の磁極の一部との間に、磁性体板を磁気的に絶縁して複数重ね合わせて形成した磁路形成部材を付加したことを特徴とする磁気ゼネバ歯車機構とするものである。

In order to solve the above-mentioned problem, the invention described in claim 1 includes a first rotating body composed of a first rotating disk and a first rotating shaft, and a second rotating body composed of a second rotating disk and a second rotating shaft. In the motion mechanism configured to transmit rotational motion by magnetic coupling of the first rotating body and the second rotating body, the first rotating disk and the second rotating disk are at least a circumference of the magnetic disk. A multi-pole magnetized so that the portion has a magnetic axis in the rotation axis direction, the number of magnetic poles of the second rotating body is larger than the number of magnetic poles of the first rotating body, and a part of the magnetic poles of the first rotating body A magnetic Geneva gear mechanism characterized in that a magnetic path forming member formed by overlapping a plurality of magnetic plates with magnetic insulation is added between a part of the magnetic poles of the second rotating body. It is.
The invention according to claim 2 comprises a first rotating body composed of a first rotating disk and a first rotating shaft, and a second rotating body composed of a second rotating disk and a second rotating shaft, In the motion mechanism that transmits rotational motion by magnetic coupling between the first rotating body and the second rotating body, the first rotating disk and the second rotating disk are arranged on a circumferential portion of a nonmagnetic disk, A plurality of permanent magnets having a magnetic axis in the direction of the rotation axis is attached, or the entire rotating disk is composed of a plurality of permanent magnets having a magnetic axis in the direction of the rotation axis, and the number of magnetic poles of the second rotating body is set to the first number. The number of magnetic poles is larger than the number of magnetic poles of the rotating body, and a plurality of magnetic plates are magnetically insulated and overlapped between a part of the magnetic poles of the first rotating body and a part of the magnetic poles of the second rotating body. The magnetic geneva gear mechanism is characterized in that the magnetic path forming member is added .

請求項1に記載の発明によると、少なくとも回転円板の円周部に、回転軸方向に磁軸を持つよう多極着磁したので、径方向に小さくでき、小型の磁気ゼネバ歯車機構を提供することができる。
また、請求項2に記載の発明によると、強い磁化をもたせた永久磁石を用いて回転体を構成したので、より伝達力の大きい小型の磁気ゼネバ歯車機構を提供することができる。
また、請求項3に記載の発明によると磁路形成部材を用いて1回転体と第2回転体を磁気的に結合したので、さらに伝達力の大きい小型の磁気ゼネバ歯車機構を提供することができる。
また、請求項4記載の発明によると、磁路形成部材は、磁気的に絶縁した磁性体板を複数重ね合わせて形成したので、この磁路形成部材により同一回転体の隣り合う磁極間で磁路が形成されてしまうことがないので、回転体の磁極の境目が磁路形成部材の下に来たときも伝達力が減衰しない。
According to the first aspect of the present invention, since the multipolar magnetization is provided so that at least the circumferential portion of the rotating disk has a magnetic axis in the direction of the rotation axis, a small magnetic Geneva gear mechanism that can be reduced in the radial direction is provided. can do.
According to the second aspect of the present invention, since the rotating body is configured using a permanent magnet having strong magnetization, a small magnetic Geneva gear mechanism having a larger transmission force can be provided.
According to the third aspect of the present invention, since the first rotating body and the second rotating body are magnetically coupled using the magnetic path forming member, it is possible to provide a small magnetic Geneva gear mechanism having a larger transmission force. it can.
According to the invention described in claim 4, since the magnetic path forming member is formed by superposing a plurality of magnetically insulated magnetic plates, a magnetic path is formed between adjacent magnetic poles of the same rotating body by the magnetic path forming member. Since no path is formed, the transmission force is not attenuated even when the boundary between the magnetic poles of the rotating body comes under the magnetic path forming member.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示す磁気ゼネバ歯車機構の斜視図である。図において1は第1回転体、2は第2回転体である。第1回転体1は、磁性体の第1回転円板11と第1回転軸12と第1回転円板11の円周上の表層部に施された磁化部分13から構成されている。同様に、第2回転体2は、磁性体の第2回転円板21と第2回転軸22と第2回転円板21の円周上の表層部に施された磁化部分23から構成されている。磁化部分の矢印は磁化の方向を示す。図に示すように回転軸方向に磁軸もつように磁化されており、第1回転体1は2極、第2回転体2は24極に着磁されている。 FIG. 1 is a perspective view of a magnetic Geneva gear mechanism showing a first embodiment of the present invention. In the figure, 1 is a first rotating body and 2 is a second rotating body. The first rotating body 1 includes a magnetic first rotating disk 11, a first rotating shaft 12, and a magnetized portion 13 provided on a surface layer portion on the circumference of the first rotating disk 11. Similarly, the 2nd rotary body 2 is comprised from the magnetized part 23 given to the surface layer part on the circumference of the 2nd rotating disc 21, the 2nd rotating shaft 22, and the 2nd rotating disc 21 of a magnetic body. Yes. The arrow of the magnetized portion indicates the direction of magnetization. As shown in the figure, it is magnetized so as to have a magnetic axis in the direction of the rotation axis, the first rotating body 1 is magnetized to 2 poles, and the second rotating body 2 is magnetized to 24 poles.

次に本発明の第1実施例の動作について説明する。
図2は第1実施例における二つの回転体の位置関係を示すグラフで、横軸に第1回転体の回転角を、縦軸に第2回転体の回転角を示している。両回転体のお互いに異なる極性の磁化部分が対向するように、吸引力が働き、第1回転体の回転が、第2回転体に伝達される。本実施例では第1回転体が1/2回転するごとに第2回転体は1/24回転する。従って、1:12の減速比をもつ磁気ゼネバ歯車機構が実現できる。
本発明が従来の方法と異なる部分は、従来の方法では回転体の回転軸と直角方向に磁軸を持つ磁化を形成しているのに対し、本発明では回転体の回転軸方向に磁軸をもつ磁化を形成した点である。これにより、径方向に小さくでき、小型の磁気ゼネバ歯車機構を提供することができる。
Next, the operation of the first embodiment of the present invention will be described.
FIG. 2 is a graph showing the positional relationship between the two rotating bodies in the first embodiment. The horizontal axis represents the rotation angle of the first rotating body, and the vertical axis represents the rotation angle of the second rotating body. The attractive force acts so that the magnetized portions of different polarities of the two rotating bodies face each other, and the rotation of the first rotating body is transmitted to the second rotating body. In the present embodiment, every time the first rotating body rotates 1/2, the second rotating body rotates 1/24. Therefore, a magnetic Geneva gear mechanism having a reduction ratio of 1:12 can be realized.
Where the present invention differs from the conventional method, the conventional method forms magnetization having a magnetic axis in a direction perpendicular to the rotation axis of the rotating body, whereas in the present invention, the magnetic axis extends in the direction of the rotating axis of the rotating body. This is the point where the magnetization with Thereby, it can reduce in radial direction and can provide a small-sized magnetic Geneva gear mechanism.

図3は、本発明の第2実施例を示す磁気ゼネバ歯車機構の斜視図である。第1回転体1は、非磁性体円板14と円板上の周囲に取り付けられた永久磁石15から構成されている。同様に、第2回転体2は、非磁性体円板24と円板上の周囲に取り付けられた永久磁石25から構成されている。永久磁石に記入した矢印は磁化の方向を示す。図のように回転軸方向に磁軸を持つようにして永久磁石を取り付けており、第1回転体1は2極、第2回転体2は24極の極数をもつ回転体を形成している。なお、動作については実施例1と同じである。両回転体とも永久磁石が非磁性円板に固定されているので、両回転体の永久磁石で発生した磁束が両回転体間で効率よく結合する。従って、実施例1に比べて強い伝達力が得られる。 FIG. 3 is a perspective view of a magnetic Geneva gear mechanism showing a second embodiment of the present invention. The 1st rotary body 1 is comprised from the nonmagnetic disk 14 and the permanent magnet 15 attached to the circumference | surroundings on a disk. Similarly, the 2nd rotary body 2 is comprised from the nonmagnetic disk 24 and the permanent magnet 25 attached to the circumference | surroundings on a disk. The arrow written on the permanent magnet indicates the direction of magnetization. As shown in the figure, a permanent magnet is attached so as to have a magnetic axis in the direction of the rotation axis. The first rotating body 1 forms a rotating body having 2 poles and the second rotating body 2 has a pole number of 24 poles. Yes. The operation is the same as in the first embodiment. Since the permanent magnets are fixed to the non-magnetic discs in both rotating bodies, the magnetic flux generated by the permanent magnets of both rotating bodies is efficiently coupled between the rotating bodies. Therefore, a stronger transmission force can be obtained than in the first embodiment.

図4は、本発明の第3実施例を示す磁気ゼネバ歯車機構の斜視図である。第1回転体、第2回転体の個々の構成は実施例2と同じであるが、両回転体の永久磁石が磁化の方向にギャップを介して重なるように配置されており、磁気的結合が強く、強い伝達力が得られる。また、回転体の径方法に小型化できるという特徴がある。 FIG. 4 is a perspective view of a magnetic Geneva gear mechanism showing a third embodiment of the present invention. The individual configurations of the first rotating body and the second rotating body are the same as in the second embodiment, but the permanent magnets of both rotating bodies are arranged so as to overlap with each other via a gap in the direction of magnetization, and the magnetic coupling is Strong and strong transmission power can be obtained. In addition, there is a feature that the diameter of the rotating body can be reduced.

図5は、本発明の第4実施例を示す磁気ゼネバ歯車機構の斜視図である。図6は、図5におけるA−A線断面図である。第1回転体、第2回転体の個々の構成は実施例2と同じであるが、実施例2と異なる点は、磁路形成用部材30を使って接近した両回転体の永久磁石間に磁路を形成している点である。磁路形成用部材30により磁気的結合部分の磁束密度が増し、さらに強い伝達力が得られる。磁路形成用部材30は複数の磁性体板を樹脂などの非磁性の材料を挟みながら重ね合わせており、同一回転体の隣り合う磁極間とこの磁路形成部材により磁路が形成されることがないので、回転体の磁極の境目が磁路形成部材の下に来たときも伝達力が減衰しない。 FIG. 5 is a perspective view of a magnetic Geneva gear mechanism showing a fourth embodiment of the present invention. 6 is a cross-sectional view taken along line AA in FIG. The individual configurations of the first rotating body and the second rotating body are the same as those of the second embodiment. However, the difference from the second embodiment is that the permanent magnets of both rotating bodies approaching each other using the magnetic path forming member 30 are different. This is a point forming a magnetic path. The magnetic path forming member 30 increases the magnetic flux density of the magnetic coupling portion, and a stronger transmission force is obtained. The magnetic path forming member 30 is formed by stacking a plurality of magnetic plates while sandwiching a non-magnetic material such as resin, and a magnetic path is formed between adjacent magnetic poles of the same rotating body by the magnetic path forming member. Therefore, the transmission force is not attenuated even when the boundary between the magnetic poles of the rotating body comes under the magnetic path forming member.

本発明の第1実施例を示す磁気ゼネバ歯車機構の斜視図The perspective view of the magnetic Geneva gear mechanism which shows 1st Example of this invention. 本発明の第1実施例における二つの回転体の位置関係を示すグラフThe graph which shows the positional relationship of the two rotary bodies in 1st Example of this invention. 本発明の第2実施例を示す磁気ゼネバ歯車機構の斜視図The perspective view of the magnetic Geneva gear mechanism which shows 2nd Example of this invention. 本発明の第3実施例を示す磁気ゼネバ歯車機構の斜視図The perspective view of the magnetic Geneva gear mechanism which shows 3rd Example of this invention. 本発明の第4実施例を示す磁気ゼネバ歯車機構の斜視図The perspective view of the magnetic Geneva gear mechanism which shows 4th Example of this invention. 図5におけるA−A線断面図AA line sectional view in FIG. 従来の磁気歯車機構を示す斜視図A perspective view showing a conventional magnetic gear mechanism 従来の磁気歯車機構を用いた多回転式エンコーダへの適用例を示す斜視図A perspective view showing an application example to a multi-rotation encoder using a conventional magnetic gear mechanism

符号の説明Explanation of symbols

1 第1回転体
2 第2回転体
11 第1回転円板
12 第1回転軸
13 磁化部分
14 非磁性円板
15 永久磁石
16 磁性体円板
21 第2回転円板
22 第2回転軸
23 磁化部分
24 非磁性円板
25 永久磁石
26 磁性体部
30 磁路形成部材
40 多回転式エンコーダ
50 絶対値エンコーダ
60 モータ
DESCRIPTION OF SYMBOLS 1 1st rotary body 2 2nd rotary body 11 1st rotary disc 12 1st rotary shaft 13 Magnetization part 14 Nonmagnetic disc 15 Permanent magnet 16 Magnetic disc 21 Second rotary disc 22 2nd rotary shaft 23 Magnetization Portion 24 Nonmagnetic disk 25 Permanent magnet 26 Magnetic body portion 30 Magnetic path forming member 40 Multi-rotation encoder 50 Absolute value encoder 60 Motor

Claims (2)

第1回転円板と第1回転軸から成る第1回転体と、第2回転円板と第2回転軸から成る第2回転体とから構成され、前記第1回転体と前記第2回転体の磁気的結合により回転運動を伝達する運動機構において、前記第1回転円板および前記第2回転円板は、少なくとも磁性円板の円周部が回転軸方向に磁軸を持つように多極着磁され、前記第2回転体の磁極数を前記第1回転体の磁極数より大きくし、前記第1回転体の磁極の一部と前記第2回転体の磁極の一部との間に、磁性体板を磁気的に絶縁して複数重ね合わせて形成した磁路形成部材を付加したことを特徴とする磁気ゼネバ歯車機構。 A first rotating body composed of a first rotating disk and a first rotating shaft, and a second rotating body composed of a second rotating disk and a second rotating shaft, the first rotating body and the second rotating body. In the motion mechanism that transmits the rotational motion by magnetic coupling, the first rotating disc and the second rotating disc are multipolar so that at least a circumferential portion of the magnetic disc has a magnetic axis in the rotation axis direction. Magnetized, the number of magnetic poles of the second rotating body is made larger than the number of magnetic poles of the first rotating body, and between a part of the magnetic poles of the first rotating body and a part of the magnetic poles of the second rotating body A magnetic Geneva gear mechanism, characterized in that a magnetic path forming member formed by superposing a plurality of magnetic plates in a magnetically insulated manner is added . 第1回転円板と第1回転軸から成る第1回転体と、第2回転円板と第2回転軸から成る第2回転体とから構成され、前記第1回転体と前記第2回転体の磁気的結合により回転運動を伝達する運動機構において、前記第1回転円板および前記第2回転円板は、非磁性円板の円周部に、回転軸方向に磁軸を持つ複数の永久磁石が取り付けられるか、回転円板全体が回転軸方向に磁軸を持つ複数の永久磁石から構成され、前記第2回転体の磁極数を前記第1回転体の磁極数より大きくし、前記第1回転体の磁極の一部と前記第2回転体の磁極の一部との間に、磁性体板を磁気的に絶縁して複数重ね合わせて形成した磁路形成部材を付加したことを特徴とする磁気ゼネバ歯車機構。 A first rotating body composed of a first rotating disk and a first rotating shaft, and a second rotating body composed of a second rotating disk and a second rotating shaft, the first rotating body and the second rotating body. In the motion mechanism that transmits the rotational motion by magnetic coupling, the first rotating disc and the second rotating disc are a plurality of permanent magnets having a magnetic axis in the rotation axis direction at the circumferential portion of the nonmagnetic disc. A magnet is attached, or the entire rotating disk is composed of a plurality of permanent magnets having a magnetic axis in the direction of the rotation axis, and the number of magnetic poles of the second rotating body is made larger than the number of magnetic poles of the first rotating body . A magnetic path forming member formed by magnetically insulating and overlapping a plurality of magnetic plates is added between a part of the magnetic poles of one rotating body and a part of the magnetic poles of the second rotating body. Magnetic Geneva gear mechanism.
JP2003316775A 2003-09-09 2003-09-09 Magnetic Geneva gear mechanism Expired - Fee Related JP4452976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316775A JP4452976B2 (en) 2003-09-09 2003-09-09 Magnetic Geneva gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316775A JP4452976B2 (en) 2003-09-09 2003-09-09 Magnetic Geneva gear mechanism

Publications (2)

Publication Number Publication Date
JP2005083487A JP2005083487A (en) 2005-03-31
JP4452976B2 true JP4452976B2 (en) 2010-04-21

Family

ID=34416568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316775A Expired - Fee Related JP4452976B2 (en) 2003-09-09 2003-09-09 Magnetic Geneva gear mechanism

Country Status (1)

Country Link
JP (1) JP4452976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243500A (en) * 2017-07-10 2019-01-18 蒂雅克股份有限公司 Phonograph

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI369839B (en) * 2007-06-29 2012-08-01 Delta Electronics Inc Passive fan
CN104314844A (en) * 2007-07-06 2015-01-28 台达电子工业股份有限公司 Passive fan
JP4975144B2 (en) * 2009-07-30 2012-07-11 キヤノン株式会社 Driving device and image forming apparatus
CN202203362U (en) * 2010-08-30 2012-04-25 靳北彪 Speed change mechanism for magnetic gear
JP6438112B2 (en) * 2014-09-25 2018-12-12 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Interaction between two timer components
KR101655323B1 (en) * 2015-01-20 2016-09-08 진 붕 신 Power transmission device
EP3182225B1 (en) * 2015-12-18 2018-08-08 Montres Breguet S.A. Timepiece sequencer mecanism with recess wheel having a reduced mechanical friction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243500A (en) * 2017-07-10 2019-01-18 蒂雅克股份有限公司 Phonograph
CN109243500B (en) * 2017-07-10 2020-05-26 蒂雅克股份有限公司 Record player

Also Published As

Publication number Publication date
JP2005083487A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
CA2120764A1 (en) Multi-pole composite magnet
JPH05505883A (en) Magnetic position and velocity sensor with Hall element
JP2007267565A (en) Coreless motor
JP2005341696A (en) Axial gap type rotating electric machine
JP5213790B2 (en) Angular position detection system with two multipole magnets
JP4452976B2 (en) Magnetic Geneva gear mechanism
JPH0223049A (en) Permanent magnet type rotary machine
JP2000287427A (en) Brushless motor
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JP6052258B2 (en) Linear rotary actuator
JPH11233338A (en) Multipolar magnetic ping
JP6052259B2 (en) Linear rotary actuator
JP4918406B2 (en) Electromagnetic clutch
JP2005291942A (en) Rotation angle sensor
JP2003125568A (en) Brushless motor
JPH02250657A (en) Transfer mechanism
JP2007221877A (en) Magnet rotor
JP2002228486A (en) Magnetic encoder
WO2020195003A1 (en) Motor
JP2004020501A (en) Method of manufacturing magnetic type multiple rotational encoder system and magnetic gear wheel
JP3758174B2 (en) Non-contact position sensor
JPH0875500A (en) Magnet rotor
JP7209911B1 (en) RPM detector
JP2004258028A (en) Apparatus for coding rotation parameter, anti-friction bearing and electric motor having the apparatus
JP4383231B2 (en) Non-contact position sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees