JP4452813B2 - Method for producing hexagonal zinc sulfide nanotubes - Google Patents

Method for producing hexagonal zinc sulfide nanotubes Download PDF

Info

Publication number
JP4452813B2
JP4452813B2 JP2005050470A JP2005050470A JP4452813B2 JP 4452813 B2 JP4452813 B2 JP 4452813B2 JP 2005050470 A JP2005050470 A JP 2005050470A JP 2005050470 A JP2005050470 A JP 2005050470A JP 4452813 B2 JP4452813 B2 JP 4452813B2
Authority
JP
Japan
Prior art keywords
zinc sulfide
hexagonal zinc
nanotubes
powder
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005050470A
Other languages
Japanese (ja)
Other versions
JP2006232627A (en
Inventor
義雄 板東
ジンツィ・フウ
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005050470A priority Critical patent/JP4452813B2/en
Publication of JP2006232627A publication Critical patent/JP2006232627A/en
Application granted granted Critical
Publication of JP4452813B2 publication Critical patent/JP4452813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ディスプレイ、センサー、レーザー、光触媒などに応用が期待される六方晶
系の硫化亜鉛ナノチューブの製造方法に関する。
The present invention relates to a method for producing hexagonal zinc sulfide nanotubes that are expected to be applied to displays, sensors, lasers, photocatalysts, and the like.

硫化亜鉛は約3.6eVのバンドギャップエネルギーを持つII-VI族の半導体であり、マンガ
ンなどをドーピングすることにより、高い発光効率が得られることから、フォトルミネッ
センス、メカノルミネッセンス、熱ルミネッセンスのような種々の発光特性を示す。この
ような特性を利用することにより、ディスプレイ、センサー、レーザー、光触媒などに応
用できる。立方晶系の硫化亜鉛ナノチューブは,酸化亜鉛ナノベルトと飽和硫化水素水溶
液の反応により製造されている(例えば、非特許文献1参照。)。また、亜鉛が充填され
た硫化亜鉛ナノチューブを加熱することにより、充填物である亜鉛を蒸発させて、中空の
硫化亜鉛ナノチューブを製造することも知られている(例えば、非特許文献2参照。)。
Zinc sulfide is a II-VI group semiconductor with a band gap energy of about 3.6 eV, and high luminous efficiency can be obtained by doping with manganese, etc. The light emission characteristics of are shown. By utilizing such characteristics, it can be applied to displays, sensors, lasers, photocatalysts and the like. Cubic zinc sulfide nanotubes are produced by the reaction of a zinc oxide nanobelt and a saturated aqueous solution of hydrogen sulfide (see, for example, Non-Patent Document 1). It is also known to produce hollow zinc sulfide nanotubes by heating zinc sulfide nanotubes filled with zinc to evaporate the zinc that is the filler (see, for example, Non-Patent Document 2). .

X.Wang,ほか、Adv.Mater.14巻、1732頁、2002年X.Wang, et al., Adv.Mater.14, 1732, 2002 Y.Zhu,ほか、Chem.Commun.836頁、2003年Y.Zhu, et al., Chem. Commun. 836, 2003

本発明は、上記の方法とは異なる六方晶系の硫化亜鉛ナノチューブの新規な製造方法を
提供することを解決すべき課題としている。
An object of the present invention is to provide a novel method for producing hexagonal zinc sulfide nanotubes different from the above method.

上記の課題を解決するため、本発明の六方晶系硫化亜鉛ナノチューブの製造方法は、硫
化亜鉛粉末と一酸化スズ粉末の混合物をグラファイト製容器に入れ、不活性ガス気流中で
、所定温度に所定時間加熱することによって六方晶系硫化亜鉛ナノチューブを得ることを
特徴とする。
In order to solve the above-described problems, the method for producing hexagonal zinc sulfide nanotubes of the present invention includes a mixture of zinc sulfide powder and tin monoxide powder placed in a graphite container, and a predetermined temperature at a predetermined temperature in an inert gas stream. A hexagonal zinc sulfide nanotube is obtained by heating for a period of time.

上記製造方法において、加熱温度は1100〜1200℃の範囲が好ましく、加熱時間は2〜6時
間の範囲が好ましい。硫化亜鉛粉末と一酸化スズ粉末の重量比は、6:1〜3:1の範囲が好ま
しい。また、加熱する際に流す不活性ガスは窒素ガスが好ましい。さらに、上記の方法に
より得られる六方晶系硫化亜鉛ナノチューブの中空部の一部には、スズが充填されている
In the above production method, the heating temperature is preferably in the range of 1100 to 1200 ° C., and the heating time is preferably in the range of 2 to 6 hours. The weight ratio of the zinc sulfide powder and the tin monoxide powder is preferably in the range of 6: 1 to 3: 1. Moreover, nitrogen gas is preferable as the inert gas to be flowed when heating. Furthermore, a part of the hollow part of the hexagonal zinc sulfide nanotube obtained by the above method is filled with tin.

本発明の製造方法によれば、六方晶系硫化亜鉛ナノチューブの中にスズを充填させるこ
とが可能となり、単一材料としての効果だけでなく、複合材料としての今後検出されるで
あろう新規な用途にも効果が期待できる。
According to the production method of the present invention, it becomes possible to fill the hexagonal zinc sulfide nanotubes with tin, and not only the effect as a single material but also a novel material that will be detected in the future as a composite material. The effect can be expected for the use.

硫化亜鉛粉末と一酸化スズ粉末の混合物をグラファイトるつぼに入れ、このグラファイ
トるつぼを横型石英抵抗加熱炉の中央部に配置する。窒素ガス等の不活性ガスを流しなが
ら、所定温度に所定時間加熱した後、加熱炉を室温に冷却する。
A mixture of zinc sulfide powder and tin monoxide powder is placed in a graphite crucible, and this graphite crucible is placed in the center of a horizontal quartz resistance heating furnace. While heating an inert gas such as nitrogen gas for a predetermined time, the heating furnace is cooled to room temperature.

上記において、硫化亜鉛粉末と一酸化スズ粉末の重量比は、6:1〜3:1の範囲が好ましく
、硫化亜鉛粉末の重量比が上記の範囲よりも多いと、生成物中に硫化亜鉛ナノロッドやナ
ノワイヤーが混入する。逆に、硫化亜鉛粉末の重量比が上記の範囲よりも少ないと生成物
中に大きなスズの粒子が混入する。
In the above, the weight ratio of the zinc sulfide powder and the tin monoxide powder is preferably in the range of 6: 1 to 3: 1. When the weight ratio of the zinc sulfide powder is larger than the above range, the zinc sulfide nanorods in the product Or nanowires. On the contrary, when the weight ratio of the zinc sulfide powder is less than the above range, large tin particles are mixed in the product.

上記混合物を加熱する際の温度は、1100〜1200℃の範囲が好ましく、1200℃で十分に分
解反応が進行するので、これ以上の温度に加熱する必要はない。1100℃よりも低いと硫化
亜鉛ナノチューブは得られない。加熱時間は2〜6時間の範囲が好ましく、6時間で十分に
分解反応が進行するのでこれ以上の時間をかける必要はない。加熱時間が2時間よりも短
いと、収量が低下する。
The temperature at which the mixture is heated is preferably in the range of 1100 to 1200 ° C, and the decomposition reaction proceeds sufficiently at 1200 ° C, so it is not necessary to heat to a temperature higher than this. If it is lower than 1100 ° C., zinc sulfide nanotubes cannot be obtained. The heating time is preferably in the range of 2 to 6 hours, and since the decomposition reaction proceeds sufficiently in 6 hours, it is not necessary to spend more time. If the heating time is shorter than 2 hours, the yield decreases.

窒素ガス等の不活性ガスの流量は300〜600 ml/minの範囲が好ましく、600 ml/minより
も流量が多いと、逸散により、収量が低下する。300 ml/minよりも流量が少ないと硫化亜
鉛ナノチューブが得られない。
The flow rate of the inert gas such as nitrogen gas is preferably in the range of 300 to 600 ml / min. If the flow rate is higher than 600 ml / min, the yield decreases due to dissipation. If the flow rate is less than 300 ml / min, zinc sulfide nanotubes cannot be obtained.

上記の操作を施すことにより、加熱中に180〜250℃に維持されていた反応管の内壁に六
方晶系の硫化亜鉛ナノチューブが堆積する。この六方晶系硫化亜鉛ナノチューブ内には70
〜80容量%スズが充填されている。
By performing the above operation, hexagonal zinc sulfide nanotubes are deposited on the inner wall of the reaction tube maintained at 180 to 250 ° C. during heating. The hexagonal zinc sulfide nanotube contains 70
Filled with ~ 80% by volume tin.

次に、実施例を示して、さらに具体的に本発明について説明する。
シグマ・アルドリッチ社製の硫化亜鉛粉末(純度99.99%)1.5g、和光純薬工業(株)製の
一酸化スズ粉末(純度99.0%)0.3gの混合物をグラファイトるつぼに入れ、このグラファ
イトるつぼを横型石英抵抗加熱炉の中央部に設置した。口径100mmの石英管中に流量
450 ml/minの窒素ガスを流しながら、10℃/minの昇温速度で1150℃まで温度を上げ、この
温度に4時間保持した。加熱炉を室温に冷却すると石英管の内側の180〜250℃になってい
た部分に、灰色の粉末が5mg堆積した。
Next, the present invention will be described more specifically with reference to examples.
A mixture of 1.5 g of zinc sulfide powder (purity 99.99%) manufactured by Sigma-Aldrich and 0.3 g of tin monoxide powder (purity 99.0%) manufactured by Wako Pure Chemical Industries, Ltd. is placed in a graphite crucible, and this graphite crucible is horizontal. Installed in the center of the quartz resistance heating furnace. Flow rate in a quartz tube with a diameter of 100 mm
While flowing 450 ml / min of nitrogen gas, the temperature was raised to 1150 ° C. at a rate of temperature increase of 10 ° C./min, and kept at this temperature for 4 hours. When the heating furnace was cooled to room temperature, 5 mg of gray powder was deposited on the inner part of the quartz tube at 180 to 250 ° C.

図1に、実施例で得られた灰色粉末の低倍率走査型電子顕微鏡像の写真を示した。この
粉末は先端に球状粒子を有する一次元のナノ構造物からなることが分かった。これらのナ
ノ構造物の長さは数マイクロメートルから十数マイクロメートルにわたっていることが確
認された。
FIG. 1 shows a photograph of a low magnification scanning electron microscope image of the gray powder obtained in the example. This powder was found to consist of a one-dimensional nanostructure with spherical particles at the tip. It was confirmed that the length of these nanostructures ranged from a few micrometers to a dozen micrometers.

図2に、灰色粉末のX線回折のスペクトルを示した。格子定数a=3.8298Å、c=6.2573Å
を有する六方晶系の硫化亜鉛と格子定数a=5.831Å、c=3.182Åを有する正方晶系のスズか
らなることが分かった。
FIG. 2 shows the X-ray diffraction spectrum of the gray powder. Lattice constant a = 3.8298Å, c = 6.2573Å
It was found to be composed of hexagonal zinc sulfide with a tetragonal tin with lattice constants a = 5.831 and c = 3.182.

図3に、灰色粉末の透過型電子顕微鏡像の写真を示した。先端に直径数百ナノメートル
のスズの球形粒子を有する硫化亜鉛ナノチューブで、この硫化亜鉛ナノチューブの中にス
ズが70〜80容量%充填されていることが分かった。そして、このチューブは一方の端が太
く、他方の端が細くなっている構造物を多く有している。太い部分の直径は180〜250ナノ
メートルで、壁の厚さは60〜80ナノメートルである。細い部分の直径は80〜120ナノメー
トルで、壁の厚さは25〜50ナノメートルである。また、完全に端から端まで同じ太さと壁
厚を有するチューブも少量存在する。この均一な太さのチューブの直径は150〜200ナノメ
ートルで、壁厚は50〜60ナノメートルであった。
FIG. 3 shows a transmission electron microscope image of the gray powder. It was found that zinc sulfide nanotubes having spherical particles of tin with a diameter of several hundred nanometers at the tip were filled with 70-80% by volume of tin in the zinc sulfide nanotubes. And this tube has many structures where one end is thick and the other end is thin. The diameter of the thick part is 180-250 nanometers, and the wall thickness is 60-80 nanometers. The narrow part has a diameter of 80 to 120 nanometers and a wall thickness of 25 to 50 nanometers. There are also small amounts of tubes that have the same thickness and wall thickness from end to end. The diameter of this uniformly thick tube was 150-200 nanometers and the wall thickness was 50-60 nanometers.

図4の1)に、チューブの中に充填物のない中空部からなる構造物のエネルギー分散型X
線分析の結果を示した。この図から中空のチューブを構成している元素は亜鉛と硫黄から
なり、化学量論組成の硫化亜鉛であることが分かった。なお、この図で銅のピークは試料
を取り付ける際に用いた銅グリッドに由来するものである。
Fig. 4 1) shows the energy dispersive X of the structure consisting of a hollow part without a filler in the tube
The results of line analysis are shown. From this figure, it was found that the elements constituting the hollow tube consist of zinc and sulfur, and stoichiometric zinc sulfide. In this figure, the copper peak is derived from the copper grid used when attaching the sample.

図4の2)に、充填物を有するナノチューブのエネルギー分散型X線分析の結果を示した
。亜鉛と硫黄のほかにスズが存在することが分かる。すなわち、硫化亜鉛ナノチューブの
中にスズが充填されていることが分かった。
FIG. 4 2) shows the result of energy dispersive X-ray analysis of the nanotube having the filler. It can be seen that tin is present in addition to zinc and sulfur. That is, it was found that tin sulfide was filled in the zinc sulfide nanotube.

図4の3)に、先端の球状粒子のエネルギー分散型X線分析の結果を示した。この図から
粒子の組成はスズであることが分かった。
The results of energy dispersive X-ray analysis of the spherical particles at the tip are shown in FIG. From this figure, it was found that the composition of the particles was tin.

本発明により、六方晶系の硫化亜鉛ナノチューブの製造が可能となったので、ディスプ
レイ、センサー、レーザー、光触媒などへの応用が期待される。
According to the present invention, since hexagonal zinc sulfide nanotubes can be produced, application to displays, sensors, lasers, photocatalysts, and the like is expected.

六方晶系硫化亜鉛ナノチューブの低倍率走査型電子顕微鏡像の写真である。It is a photograph of a low magnification scanning electron microscope image of hexagonal zinc sulfide nanotubes. 六方晶系硫化亜鉛ナノチューブのX線回折のパターンである。It is an X-ray diffraction pattern of hexagonal zinc sulfide nanotubes. 六方晶系硫化亜鉛ナノチューブの透過型電子顕微鏡像の写真である。It is a photograph of a transmission electron microscope image of hexagonal zinc sulfide nanotubes. 1)六方晶系硫化亜鉛ナノチューブの充填物のない部分のエネルギー分散型X線分析の図である。2)スズが充填された六方晶系硫化亜鉛ナノチューブのエネルギー分散型X線分析の図である。3)先端のスズの球状粒子のエネルギー分散型X線分析の図である。1) Energy dispersive X-ray analysis of an unfilled portion of hexagonal zinc sulfide nanotubes. 2) Energy dispersive X-ray analysis of hexagonal zinc sulfide nanotubes filled with tin. 3) Energy dispersive X-ray analysis of the tip tin spherical particles.

Claims (6)

硫化亜鉛粉末、一酸化スズ粉末の混合物をグラファイト製容器に入れ、不活性ガス気流
中で、加熱処理することを特徴とする六方晶系硫化亜鉛ナノチューブの製造方法。
A method for producing hexagonal zinc sulfide nanotubes, wherein a mixture of zinc sulfide powder and tin monoxide powder is placed in a graphite container and heated in an inert gas stream.
前記において、加熱処理する際の温度が1100〜1200℃の範囲であることを特徴とする請
求項1に記載の六方晶系硫化亜鉛ナノチューブの製造方法。
2. The method for producing hexagonal zinc sulfide nanotubes according to claim 1, wherein the temperature during the heat treatment is in the range of 1100 to 1200 ° C. 3.
前記において、加熱処理する際の時間が2〜6時間の範囲であることを特徴とする請求項
1又は2に記載の六方晶系硫化亜鉛ナノチューブの製造方法。
The method for producing hexagonal zinc sulfide nanotubes according to claim 1 or 2, wherein the heat treatment time is in the range of 2 to 6 hours.
前記において、硫化亜鉛粉末と一酸化スズ粉末の重量比が6:1〜3:1の範囲であることを
特徴とする請求項1ないし3の何れかに記載の六方晶系硫化亜鉛ナノチューブの製造方法
4. The production of hexagonal zinc sulfide nanotubes according to claim 1, wherein the weight ratio of zinc sulfide powder to tin monoxide powder is in the range of 6: 1 to 3: 1. Method.
前記において、不活性ガスとして窒素ガスを使用することを特徴とする請求項1ないし
4の何れかに記載の六方晶系硫化亜鉛ナノチューブの製造方法。
In the above, nitrogen gas is used as the inert gas.
5. The method for producing a hexagonal zinc sulfide nanotube according to any one of 4 above.
前記において、六方晶系硫化亜鉛ナノチューブの中空部の一部にスズが充填されている
ことを特徴とする請求項1ないし5の何れかに記載の六方晶系硫化亜鉛ナノチューブの製
造方法。
6. The method for producing hexagonal zinc sulfide nanotubes according to any one of claims 1 to 5, wherein the hollow portion of the hexagonal zinc sulfide nanotubes is filled with tin.
JP2005050470A 2005-02-25 2005-02-25 Method for producing hexagonal zinc sulfide nanotubes Expired - Fee Related JP4452813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050470A JP4452813B2 (en) 2005-02-25 2005-02-25 Method for producing hexagonal zinc sulfide nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050470A JP4452813B2 (en) 2005-02-25 2005-02-25 Method for producing hexagonal zinc sulfide nanotubes

Publications (2)

Publication Number Publication Date
JP2006232627A JP2006232627A (en) 2006-09-07
JP4452813B2 true JP4452813B2 (en) 2010-04-21

Family

ID=37040689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050470A Expired - Fee Related JP4452813B2 (en) 2005-02-25 2005-02-25 Method for producing hexagonal zinc sulfide nanotubes

Country Status (1)

Country Link
JP (1) JP4452813B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500543B2 (en) * 2009-06-01 2014-05-21 独立行政法人物質・材料研究機構 Zinc sulfide nanobelts, UV detection sensors, and methods for producing them
CN105016378B (en) * 2014-04-21 2016-08-17 渤海大学 The preparation method of stannous sulfide nanometer sheet
KR101789927B1 (en) 2016-06-16 2017-10-26 고려대학교 산학협력단 METHOD OF FORMING A ZnS NANO ROD HAVING A HEXAGONAL CRYSTAL STRUCTURE

Also Published As

Publication number Publication date
JP2006232627A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
Chakraborty et al. A simple method of synthesis and optical properties of Mn doped ZnO nanocups
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP4452813B2 (en) Method for producing hexagonal zinc sulfide nanotubes
JP5382673B2 (en) Cerium oxide nanotube and method for producing the same
Lan et al. Synthesis of K6Ta10. 8O30 nanowires by molten salt technique
Kharkwal et al. Novel synthesis of selective phase-shape orientation of AgInS 2 nanoparticles at low temperature
Bhargava et al. Switching in structural, optical, and magnetic properties of self-assembled Co-doped ZnO: effect of Co-concentration
Zhou et al. Preparation and photoluminescence of Sc-doped ZnO nanowires
Zhou et al. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires
JP4025869B2 (en) Gallium oxide nanowire and manufacturing method thereof
JP2004283961A (en) Zinc sulfide nano belt and its manufacturing method
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
JP4576607B2 (en) Single crystal zinc sulfide nanotube and method for producing the same
JP3918063B2 (en) Method for producing single crystal zinc oxide nanosheet
JP2010083732A (en) Method for manufacturing silicon crystal and method for manufacturing solar cell film
JP4997622B2 (en) Hexagonal single crystal nanotube and method for producing the same
Autade et al. Systematic synthesis of Bi2S3 nanoplates by template free solid-state approach and its field emission behaviour
JP4258741B2 (en) Zinc cadmium sulfide nanotubes and method for producing the same
JP3873126B2 (en) Method for producing indium phosphide nanowires and nanotubes
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same
Yu et al. The controllable growth of superhydrophobic SiC nanowires by tailoring the cooling rate
JP2005194140A (en) Method of manufacturing zinc sulfide nanocable coated with carbon film and method of manufacturing zinc sulfide nanocable coated with carbon film to which tetrapod like zinc sulfide structure is joined
KR101702404B1 (en) Nano structures, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees