JP4451471B2 - Method for reactivating electrode for electrolysis - Google Patents

Method for reactivating electrode for electrolysis Download PDF

Info

Publication number
JP4451471B2
JP4451471B2 JP2007230379A JP2007230379A JP4451471B2 JP 4451471 B2 JP4451471 B2 JP 4451471B2 JP 2007230379 A JP2007230379 A JP 2007230379A JP 2007230379 A JP2007230379 A JP 2007230379A JP 4451471 B2 JP4451471 B2 JP 4451471B2
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
mass
reactivating
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007230379A
Other languages
Japanese (ja)
Other versions
JP2008150700A (en
Inventor
昭博 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39653187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4451471(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2007230379A priority Critical patent/JP4451471B2/en
Priority to DE602007011380T priority patent/DE602007011380D1/en
Priority to EP07021299A priority patent/EP1923487B1/en
Priority to US11/930,743 priority patent/US20080115810A1/en
Priority to TW096142961A priority patent/TWI392772B/en
Priority to KR1020070115850A priority patent/KR101125035B1/en
Priority to CN2007101883609A priority patent/CN101235531B/en
Publication of JP2008150700A publication Critical patent/JP2008150700A/en
Publication of JP4451471B2 publication Critical patent/JP4451471B2/en
Application granted granted Critical
Priority to KR1020110145041A priority patent/KR101321420B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、電解銅箔製造又は銅メッキなどの工業電解における電解により、電解用電極の表面に鉛化合物又は鉛化合物と酸化アンチモンを含む電極表面付着物が付着し、低活性化した電解用電極、特に、バルブメタル又はバルブメタル合金よりなる電極基体の表面に真空スパッタリングにより形成された金属又は金属合金よりなる薄膜を形成し、該薄膜の表面に電極触媒層が被覆された電解用電極の再活性化方法に関する。   The present invention relates to an electrode for electrolysis in which the electrode surface deposit containing a lead compound or a lead compound and antimony oxide adheres to the surface of the electrode for electrolysis by electrolysis in industrial electrolysis such as electrolytic copper foil production or copper plating, and the electrode for electrolysis is reduced in activity. In particular, a thin film made of a metal or metal alloy formed by vacuum sputtering is formed on the surface of an electrode substrate made of valve metal or valve metal alloy, and the electrode for electrolysis is coated with an electrode catalyst layer coated on the surface of the thin film. It relates to an activation method.

従来、電解銅箔製造又は銅メッキなどの工業電解における電解においては、チタン、タンタル等のバルブメタル又はバルブメタル合金よりなる電極基体の表面に、直接、イリジウム酸化物を含有する電極触媒層が被覆された酸素発生用電極が用いられている   Conventionally, in electrolysis in industrial electrolysis such as electrolytic copper foil production or copper plating, the surface of an electrode substrate made of valve metal or valve metal alloy such as titanium or tantalum is directly coated with an electrode catalyst layer containing iridium oxide. Used oxygen generating electrode

然しながら、この種の酸素発生用電極は、一定期間以上使用すると、チタン、タンタル等のバルブメタル又はバルブメタル合金よりなる電極基体とイリジウム酸化物などの電極触媒層との界面が腐食し、基体の表面に不働態層が形成されるため再活性化処理が困難であり、基体表面を新しい表面が出るまで削るかもしくは新たに、電極基材から製作する必要があった。   However, when this type of oxygen generating electrode is used for a certain period or longer, the interface between the electrode substrate made of a valve metal such as titanium or tantalum or a valve metal alloy and the electrode catalyst layer such as iridium oxide corrodes, Since a passive layer is formed on the surface, the reactivation process is difficult, and it is necessary to scrape the surface of the substrate until a new surface appears or to newly manufacture the substrate from an electrode substrate.

一方、酸素発生用電極として、チタン、タンタル等のバルブメタル又はバルブメタル合金よりなる電極基体の表面に、イオンプレーティング等の真空スパッタリングにより0.5〜3μmのタンタル、ニオブなどの金属よりなる薄膜を形成し、該薄膜の表面にイリジウム酸化物を含有する電極触媒層が被覆された電解用電極を用いた場合、電極基材と触媒層の界面腐食は発生しなかった(例えば、特許文献1参照)。
しかしながら、上記の酸素発生用電極であっても、これを電解銅箔製造又は銅メッキにおける電解に使用した場合、電解用電極の電極表面に、電解銅箔製造の場合、電解液中に含まれる鉛化合物である硫酸鉛又は硫酸鉛と酸化アンチモンを含む化合物が付着し、また、電解銅メッキの場合、電解液中に含まれる鉛化合物である酸化鉛又は酸化鉛と酸化アンチモンを含む化合物が付着する。電解時においては、電解液中に含まれる鉛は、良導電体である酸化鉛として付着するが、アンチモンは不良導電体である酸化アンチモンとして付着する。また、導電体である酸化鉛も電解停止時には、導電体の酸化鉛から不良導電体である硫酸鉛に変化する。更に、電極表面付着物である鉛化合物である硫酸鉛、酸化鉛及び酸化アンチモンは、電解開始・停止時もしくは電解中に、電解用電極の表面から脱落する。その結果、上記の酸素発生用電極は、電解用電極として、電流分布が不均一となり、銅箔厚み不良の原因となり、電解用電極として長期間、継続使用できないという欠点を有していた。
On the other hand, as an oxygen generating electrode, a thin film made of a metal such as tantalum or niobium having a thickness of 0.5 to 3 μm by vacuum sputtering such as ion plating on the surface of an electrode substrate made of valve metal or valve metal alloy such as titanium or tantalum. When an electrode for electrolysis in which an electrode catalyst layer containing an iridium oxide is coated on the surface of the thin film is used, interfacial corrosion between the electrode substrate and the catalyst layer did not occur (for example, Patent Document 1) reference).
However, even if it is said electrode for oxygen generation, when this is used for electrolytic copper foil manufacture or electrolysis in copper plating, it is contained in the electrolyte surface in the case of electrolytic copper foil manufacture on the electrode surface of the electrode for electrolysis. Lead sulfate, which is a lead compound, or a compound containing lead sulfate and antimony oxide adheres. In the case of electrolytic copper plating, lead oxide or a compound containing lead oxide and antimony oxide, which is a lead compound contained in the electrolyte, adheres. To do. During electrolysis, lead contained in the electrolytic solution adheres as lead oxide, which is a good conductor, but antimony adheres as antimony oxide, which is a defective conductor. Also, lead oxide, which is a conductor, changes from lead oxide, which is a conductor, to lead sulfate, which is a defective conductor, when electrolysis is stopped. Furthermore, lead sulfate, lead oxide and antimony oxide, which are lead compounds adhering to the electrode surface, fall off from the surface of the electrode for electrolysis at the start / stop of electrolysis or during electrolysis. As a result, the above-mentioned oxygen generating electrode has the disadvantages that the current distribution becomes non-uniform as an electrode for electrolysis, causes a copper foil thickness defect, and cannot be used continuously for a long time as an electrode for electrolysis.

この様な場合、上記の酸素発生用電極は、電解に使用した電解用電極の表面を住友3M株式会社製の研磨剤であるScotch−Brite(登録商標)により、こすり落とすことにより、鉛化合物又は鉛化合物と酸化アンチモンを含む電極表面付着物を除去し、電解用電極を再活性化していた。
然るに、上記の酸素発生用電極は、連続で3ヶ月使用した場合、前記研磨剤による電解用電極の再活性化は、困難であった。
In such a case, the above-mentioned oxygen generating electrode is obtained by scraping the surface of the electrode for electrolysis used for electrolysis with Scotch-Brite (registered trademark), an abrasive manufactured by Sumitomo 3M Co., Ltd. Electrode surface deposits containing lead compounds and antimony oxide were removed, and the electrode for electrolysis was reactivated.
However, when the oxygen generating electrode is used continuously for 3 months, it is difficult to reactivate the electrode for electrolysis with the abrasive.

特許第2761751号公報Japanese Patent No. 2761751

本発明は、上記の従来方法の欠点を解消し、電解銅箔製造又は銅メッキなどの工業電解における電解により、電解用電極の表面に鉛化合物又は鉛化合物と酸化アンチモンを含む電極表面付着物が付着し、低活性化した電解用電極、特に、バルブメタル又はバルブメタル合金よりなる電極基体の表面に真空スパッタリングにより形成された金属又は金属合金よりなる薄膜を形成し、該薄膜の表面に電極触媒層が被覆された電解用電極の表面に付着した、鉛化合物又は鉛化合物と酸化アンチモンを含む電極表面付着物を効果的且つ容易に除去し、電解用電極の再活性化を図ることの出来る方法を提供することを目的とするものである。   The present invention eliminates the drawbacks of the conventional methods described above, and an electrode surface deposit containing a lead compound or a lead compound and antimony oxide is formed on the surface of the electrode for electrolysis by electrolysis in industrial electrolysis such as electrolytic copper foil production or copper plating. An electrode for electrolysis that has been deposited and activated, in particular, a thin film made of metal or metal alloy formed by vacuum sputtering is formed on the surface of an electrode substrate made of valve metal or valve metal alloy, and an electrode catalyst is formed on the surface of the thin film Method for effectively and easily removing electrode surface deposits containing lead compounds or lead compounds and antimony oxide adhering to the surface of the electrode for electrolysis coated with the layer, and reactivating the electrode for electrolysis Is intended to provide.

そして、本発明は、上記目的を達成するために、下記の電解用電極再活性化方法を提供することにある。 The present invention, in order to achieve the above object, there is provided a method of reactivating an electrode for electrolysis below.

第1の課題解決手段は、電解により、電解用電極の表面に硫酸鉛を含む電極表面付着物が付着し低活性化した電解用電極を5質量%〜20質量%のアルカリ金属水酸化物水溶液内に浸漬するアルカリ処理工程と、5質量%〜30質量%の硝酸と5質量%〜20質量%の過酸化水素を含有する水溶液内に浸漬する酸処理工程と、50〜100メガパスカルの圧力で高圧水洗する高圧水洗工程を順次実施することにより、鉛及びアンチモンを含む電極表面付着物を除去し、低活性化した電解用電極を再活性化するものである。 The first problem-solving means is that 5% by mass to 20% by mass of an alkali metal hydroxide aqueous solution is obtained by electrolyzing an electrode for electrode surface containing lead sulfate on the surface of the electrode for electrolysis to reduce the activation. An alkali treatment step immersed in the solution, an acid treatment step immersed in an aqueous solution containing 5% by mass to 30% by mass nitric acid and 5% by mass to 20% by mass hydrogen peroxide, and a pressure of 50 to 100 megapascals. in by sequentially carrying out the high-pressure water washing step of high-pressure water washing to remove the electrode surface deposit containing lead and antimony, is to reactivate the electrode for electrolysis was lower activated.

また、第の課題解決手段は、上記アルカリ処理工程と酸処理工程と高圧水洗工程との3工程よりなる本発明による再活性化方法において、電極表面付着物を鉛化合物と酸化アンチモンを含む電極表面付着物としたことにある。 The second problem-solving means is an electrode comprising a lead compound and antimony oxide as an electrode surface deposit in the reactivation method according to the present invention comprising three steps of the alkali treatment step, acid treatment step and high-pressure water washing step. It is in the surface deposit.

また、第の課題解決手段は、上記アルカリ処理工程と酸処理工程と高圧水洗工程との3工程よりなる本発明による再活性化方法において、鉛化合物を硫酸鉛としたことにある。 The third problem-solving means is that the lead compound is lead sulfate in the reactivation method according to the present invention comprising the three steps of the alkali treatment step, the acid treatment step and the high-pressure water washing step.

更に、第の課題解決手段は、上記アルカリ処理工程と酸処理工程と高圧水洗工程との3工程よりなる本発明による再活性化方法において、電解を銅箔製造用電解としたことにある。 Furthermore, the fourth problem solving means is that in the reactivation method according to the present invention comprising the three steps of the alkali treatment step, the acid treatment step and the high-pressure water washing step, the electrolysis is an electrolysis for producing copper foil.

更に、第の課題解決手段は、上記アルカリ処理工程と酸処理工程と高圧水洗工程との3工程よりなる本発明による再活性化方法において、電解用電極をバルブメタル又はバルブメタル合金よりなる電極基体の表面に真空スパッタリングにより形成された金属又は金属合金よりなる薄膜を形成し、該薄膜の表面に電極触媒層が被覆された電解用電極としたことにある。 Further, the fifth problem solving means is the reactivation method according to the present invention comprising the three steps of the alkali treatment step, the acid treatment step and the high pressure water washing step, wherein the electrode for electrolysis is an electrode made of a valve metal or a valve metal alloy. A thin film made of a metal or metal alloy formed by vacuum sputtering is formed on the surface of the substrate, and an electrode for electrolysis in which an electrode catalyst layer is coated on the surface of the thin film is provided.

更に、第の課題解決手段は、上記アルカリ処理工程と酸処理工程と高圧水洗工程との3工程よりなる本発明による再活性化方法において、薄膜がチタン、タンタル、ニオブ、ジルコニウム及びハフニウムから選ばれた1種以上の金属又はその合金よりなる薄膜としたことにある。 Further, the sixth problem-solving means is the reactivation method according to the present invention comprising three steps of the alkali treatment step, the acid treatment step and the high-pressure water washing step, wherein the thin film is selected from titanium, tantalum, niobium, zirconium and hafnium. The thin film is made of one or more kinds of metals or alloys thereof.

更に、第の課題解決手段は、上記アルカリ処理工程と酸処理工程と高圧水洗工程との3工程よりなる本発明による再活性化方法において、電極触媒層を酸化イリジウムを含有する電極触媒層としたことにある。 Furthermore, a seventh problem-solving means is the reactivation method according to the present invention comprising three steps of the alkali treatment step, the acid treatment step and the high-pressure water washing step, wherein the electrode catalyst layer comprises an electrode catalyst layer containing iridium oxide, It is to have done.

更に、第の課題解決手段は、上記アルカリ処理工程と酸処理工程と高圧水洗工程との3工程よりなる本発明による再活性化方法において、電極表面付着物を除去した後、電極触媒層を形成したことにある。 Furthermore, in the reactivation method according to the present invention comprising the three steps of the alkali treatment step, the acid treatment step and the high-pressure water washing step, the eighth problem-solving means is to remove the electrode surface deposits, It is in forming.

本発明によれば、鉛化合物である酸化鉛又は酸化鉛と酸化アンチモンを含む電極表面付着物を硝酸と過酸化水素を含有する水溶液による酸処理工程よって、水酸化鉛と酸化アンチモンを溶解除去することが出来、更に、残留する酸化鉛と酸化アンチモンを高圧水洗する高圧水洗工程により、物理的に除去することが出来るとともに、鉛化合物が硫酸鉛の場合、硫酸鉛又は硫酸鉛と酸化アンチモンを含む電極表面付着物を水酸化ナトリウム水溶液によるアルカリ処理工程によって水酸化鉛とし、次いで、硝酸と過酸化水素を含有する水溶液による酸処理工程によって、水酸化鉛と酸化アンチモンを溶解除去することが出来、更に、残留する鉛とアンチモンを高圧水洗する高圧水洗工程により、物理的に除去することが出来るので、鉛化合物である又は鉛化合物と酸化アンチモンを含む電極表面付着物が効率的且つ容易に除去することができ、電解用電極の再活性化が容易になった。   According to the present invention, lead hydroxide and antimony oxide are dissolved and removed by an acid treatment step using an aqueous solution containing nitric acid and hydrogen peroxide for electrode surface deposits containing lead oxide or lead oxide and antimony oxide, which are lead compounds. In addition, the lead oxide and antimony oxide remaining can be physically removed by a high pressure water washing step of washing with high pressure water, and when the lead compound is lead sulfate, it contains lead sulfate or lead sulfate and antimony oxide. The electrode surface deposit is converted to lead hydroxide by an alkali treatment step using an aqueous sodium hydroxide solution, and then the lead hydroxide and antimony oxide can be dissolved and removed by an acid treatment step using an aqueous solution containing nitric acid and hydrogen peroxide. Furthermore, since the remaining lead and antimony can be physically removed by a high-pressure water washing process of washing with high pressure water, Or the electrode surface deposit containing a lead compound and antimony oxide is able to efficiently and easily removed, has facilitated reactivation of the electrode for electrolysis.

以下に、本発明を詳細に説明する。
電解が例えば、銅メッキ用の場合、電解用電極の表面に鉛化合物である酸化鉛又は酸化鉛とアンチモンを含む電極表面付着物が付着し、電解用電極が低活性化する。このような場合、本発明においては、先ず、酸処理工程として、低活性化した電解用電極を、5質量%〜30質量%の硝酸と5質量%〜20質量%の過酸化水素を含有する水溶液内に5〜15時間浸漬し、硝酸と過酸化水素を含有する水溶液によって、水酸化鉛と酸化アンチモンを溶解除去する。次に、高圧水洗工程として、これを、50〜100メガパスカル圧力で高圧水洗することにより、残留する鉛とアンチモン化合物を物理的に除去して、低活性化した電解用電極を再活性化する。
一方、電解が例えば、銅箔製造用電解の場合、電解用電極の表面に鉛化合物である硫酸鉛又は硫酸鉛とアンチモンを含む電極表面付着物が付着し電解用電極が低活性化する。このような場合、本発明においては、先ず、アルカリ処理工程として、5質量%〜20質量%のアルカリ金属水酸化物水溶液内に1〜3時間浸漬し、鉛及びアンチモンを含む電極表面付着物中の硫酸鉛を水酸化ナトリウム水溶液によって水酸化鉛とする。次いで、酸処理工程として、これを、5質量%〜30質量%の硝酸と5質量%〜20質量%の過酸化水素を含有する水溶液内に5〜15時間浸漬し、硝酸と過酸化水素を含有する水溶液内によって、水酸化鉛と酸化アンチモンを溶解除去する。更に、高圧水洗工程として、これを、50〜100メガパスカル圧力で高圧水洗することにより、残留する鉛とアンチモン化合物を物理的に除去して、低活性化した電解用電極を再活性化する。
The present invention is described in detail below.
When the electrolysis is, for example, for copper plating, the electrode surface deposit containing lead oxide or lead oxide and antimony, which is a lead compound, adheres to the surface of the electrode for electrolysis, and the electrode for electrolysis is activated. In such a case, in the present invention, first, as the acid treatment step, the electrode for electrolysis that has been activated contains 5% by mass to 30% by mass nitric acid and 5% by mass to 20% by mass hydrogen peroxide. It is immersed in an aqueous solution for 5 to 15 hours, and lead hydroxide and antimony oxide are dissolved and removed with an aqueous solution containing nitric acid and hydrogen peroxide. Next, as a high-pressure water washing step, this is washed with high-pressure water at a pressure of 50 to 100 megapascal, thereby physically removing the remaining lead and antimony compounds and reactivating the electrode for electrolysis that has been deactivated. .
On the other hand, when the electrolysis is, for example, electrolysis for producing a copper foil, an electrode surface deposit containing lead sulfate or lead sulfate and antimony, which is a lead compound, adheres to the surface of the electrode for electrolysis, and the electrode for electrolysis is reduced in activity. In such a case, in the present invention, first, as an alkali treatment step, the electrode surface deposits containing lead and antimony are immersed for 1 to 3 hours in a 5% by mass to 20% by mass alkali metal hydroxide aqueous solution. The lead sulfate is converted to lead hydroxide with a sodium hydroxide aqueous solution. Next, as an acid treatment step, this is immersed in an aqueous solution containing 5% by mass to 30% by mass of nitric acid and 5% by mass to 20% by mass of hydrogen peroxide for 5 to 15 hours. Lead hydroxide and antimony oxide are dissolved and removed in the aqueous solution contained. Furthermore, as a high-pressure water washing step, this is washed with high-pressure water at a pressure of 50 to 100 megapascal, thereby physically removing the remaining lead and antimony compounds, and reactivating the electrode for electrolysis that has been deactivated.

酸処理工程における硝酸と過酸化水素を含有する水溶液中の硝酸の濃度が30質量%超、または、過酸化水素の濃度が20質量%超となると、電解用電極のチタン等の基材である腐食が始まるとともに、電解用電極の電極触媒層が剥離する惧れがあり、一方、硝酸の濃度が5質量%未満、または、過酸化水素の濃度が5質量%未満の場合、水酸化鉛と酸化アンチモンを溶解するための反応が不十分である。このため、硝酸と過酸化水素を含有する水溶液中の硝酸の濃度は、5質量%〜30質量%とする必要があり、過酸化水素の濃度は、5質量%〜20質量%とする必要がある。また、硝酸と過酸化水素を含有する水溶液中への電解用電極の浸漬時間は、5時間以上が必要であるが、好ましくは15時間以上とした方がよい。   When the concentration of nitric acid in the aqueous solution containing nitric acid and hydrogen peroxide in the acid treatment step exceeds 30% by mass or the concentration of hydrogen peroxide exceeds 20% by mass, it is a substrate such as titanium for the electrode for electrolysis. As corrosion begins, the electrode catalyst layer of the electrode for electrolysis may peel off. On the other hand, if the concentration of nitric acid is less than 5% by mass or the concentration of hydrogen peroxide is less than 5% by mass, lead hydroxide and Insufficient reaction to dissolve antimony oxide. For this reason, the concentration of nitric acid in the aqueous solution containing nitric acid and hydrogen peroxide needs to be 5% by mass to 30% by mass, and the concentration of hydrogen peroxide needs to be 5% by mass to 20% by mass. is there. Further, the immersion time of the electrode for electrolysis in an aqueous solution containing nitric acid and hydrogen peroxide needs to be 5 hours or more, but preferably 15 hours or more.

アルカリ処理工程におけるアルカリ金属水酸化物は、水酸化ナトリウム又は水酸化カリウムが好ましく、これらの水溶液の濃度は、20質量%超となると、電解用電極のチタン等の基材の腐食が始まるので、20質量%以下とする必要があり、5質量%未満では、鉛及びアンチモンを含む電極表面付着物中の硫酸鉛を水酸化鉛に変換する反応が十分でないため、5質量%〜20質量%とする必要がある。また、アルカリ金属水酸化物水溶液中への電解用電極の浸漬時間は、3時間超となると、電解用電極のチタン等の基材の腐食が始まるので、3時間以内とする必要がある。   The alkali metal hydroxide in the alkali treatment step is preferably sodium hydroxide or potassium hydroxide, and when the concentration of these aqueous solutions exceeds 20% by mass, corrosion of the base material such as titanium of the electrode for electrolysis starts. Since it is necessary to make it 20 mass% or less, and less than 5 mass%, the reaction which converts lead sulfate in the electrode surface deposit containing lead and antimony into lead hydroxide is not enough, 5 mass% to 20 mass% There is a need to. Further, the immersion time of the electrode for electrolysis in the alkali metal hydroxide aqueous solution needs to be within 3 hours because corrosion of the substrate such as titanium of the electrode for electrolysis starts when it exceeds 3 hours.

更に、高圧水洗工程において、残留する鉛とアンチモン化合物を物理的に除去するためには、50〜100メガパスカルの圧力で高圧水洗することが必要であり、50メガパスカル未満の圧力では、除去効率が低く、逆に100メガパスカル超になると、電解用電極のチタン等の基材に穴が開く畏れがある。   Furthermore, in order to physically remove the remaining lead and antimony compound in the high-pressure water washing step, it is necessary to perform high-pressure water washing at a pressure of 50 to 100 megapascals, and the removal efficiency at a pressure of less than 50 megapascals. On the other hand, if it exceeds 100 megapascals, there is a possibility that a hole is formed in a base material such as titanium of the electrode for electrolysis.

更に、本発明おいては、上記のようにして、電極付着物を除去した後、電極触媒層が消耗している場合には、後述する方法により、新たに、電極触媒層を被覆するものとする。   Further, in the present invention, when the electrode catalyst layer is consumed after removing the electrode deposit as described above, the electrode catalyst layer is newly coated by the method described later. To do.

電解用電極の電極基体は、金属性材料が用いられ、導電性や適当な剛性を有するものであれば材質や形状は特に限定されない。例えば、耐食性の良いTi、Ta、Nb、Zr等のバルブメタル又はその合金が好適であるが、非晶質層を含む耐食性被覆により表面を十分に耐食性にすれば、Cu、Al等の良導電性金属を用いることも可能である。電極基体は必要ならば予め焼鈍、ブラスト等による表面粗化、酸洗等による表面清浄化等の物理的、化学的前処理を適宜行う。   The electrode base of the electrode for electrolysis is made of a metallic material, and the material and shape are not particularly limited as long as it has conductivity and appropriate rigidity. For example, valve metals such as Ti, Ta, Nb, and Zr with good corrosion resistance or alloys thereof are suitable. However, if the surface is made sufficiently corrosion resistant by an anti-corrosion coating including an amorphous layer, good conductivity such as Cu and Al. It is also possible to use a conductive metal. If necessary, the electrode substrate is appropriately subjected to physical and chemical pretreatments such as surface roughening by annealing, blasting, etc., and surface cleaning by pickling.

次いで、該基体の表面には、金属よりなる薄膜を形成する。該薄膜を形成する金属は、導電性や耐食性が良く、基体や電極触媒層との密着が良好なものであれば特に限定されない。代表的な物質として、耐食性に優れたチタン、タンタル、ニオブ、ジルコニウム、ハフニウム又はそれらの合金があげられ、これらはチタン等のバルブメタルよりなる電極基体と密着性が特に良い。   Next, a thin film made of metal is formed on the surface of the substrate. The metal forming the thin film is not particularly limited as long as it has good conductivity and corrosion resistance and has good adhesion to the substrate and the electrode catalyst layer. Typical materials include titanium, tantalum, niobium, zirconium, hafnium, or alloys thereof having excellent corrosion resistance, and these have particularly good adhesion to electrode substrates made of valve metals such as titanium.

このような薄膜を電極基体上に形成する方法としては、真空スパッタリングによる薄膜形成方法を用いる。真空スパッタリング法によれば、粒界のない非晶質なアモルファス状の薄膜が得やすい。真空スパッタリングには、直流スパッタリング、高周波スパッタリング、アークイオンプレーティング、イオンビームプレーティング、クラスターイオンビーム法等、種々の装置を適用することが可能であり、真空度、基板温度、ターゲット板の組成や純度、析出速度(投入電力)等の条件を適宜設定することにより所望の物性の薄膜を形成することができる。該薄膜の形成による表面改質層の厚さは通常0.1〜10μmの範囲でよく、耐食性や生産性等の実用的見地から適宜選定すればよい。かくして、粒界のない非晶質層の薄膜形成により表面が改質された電極基体は、その表面の熱的酸化に対する優れた特性、即ち酸化皮膜の成長挙動に顕著な特色を見出すことが出来た。市販の純チタン板(TP2B)を脱脂、酸洗処理して表面清浄化したチタン板と、その表面に真空スパッタリングにより純チタン板をターゲットとして純チタンを薄層被覆したチタン板をそれぞれ空気雰囲気で温度分布均一な電気炉中にて450〜600℃で、0〜5時間、チタンに緻密な酸化皮膜が形成される条件で熱処理した。その結果、後者の表面改質されたチタン板は、前者の素チタン板に比べて色調が単調で、斑点等の色むらが見られず、酸化皮膜の生長が極めて均一であり、又酸化皮膜の成長速度が遅いことが明確な差異として見られた。この酸化皮膜成長の抑制効果は非晶質層の物質組成を単一金属でなく、合金組成にすればより顕著である。こうした表面改質層による熱的酸化に対する均質化及び制御効果は、次に述べる電極触媒層被覆工程における熱影響の緩和は勿論、同様に電解使用時の電気化学的酸化に対する緩和効果をもたらし、電極の耐久性の向上に大きく寄与するものと考えられる。   As a method of forming such a thin film on the electrode substrate, a thin film forming method by vacuum sputtering is used. According to the vacuum sputtering method, it is easy to obtain an amorphous thin film having no grain boundary. Various devices such as direct current sputtering, high frequency sputtering, arc ion plating, ion beam plating, cluster ion beam method can be applied to vacuum sputtering, and the degree of vacuum, substrate temperature, target plate composition, A thin film having desired physical properties can be formed by appropriately setting conditions such as purity and deposition rate (input power). The thickness of the surface modification layer formed by the formation of the thin film may usually be in the range of 0.1 to 10 μm, and may be appropriately selected from practical viewpoints such as corrosion resistance and productivity. Thus, an electrode substrate whose surface has been modified by forming a thin film of an amorphous layer having no grain boundaries can be found to have excellent characteristics against thermal oxidation of the surface, that is, a remarkable feature in the growth behavior of the oxide film. It was. A commercially available pure titanium plate (TP2B) is degreased, pickled and cleaned, and a titanium plate coated with a thin layer of pure titanium with a pure titanium plate as a target by vacuum sputtering in an air atmosphere. Heat treatment was performed in an electric furnace having a uniform temperature distribution at 450 to 600 ° C. for 0 to 5 hours under the condition that a dense oxide film was formed on titanium. As a result, the latter surface-modified titanium plate has a monotonous color tone, no color unevenness such as spots, and the growth of the oxide film is extremely uniform compared to the former titanium plate. The slow growth rate was clearly seen as a difference. The effect of suppressing the growth of the oxide film is more remarkable when the material composition of the amorphous layer is not a single metal but an alloy composition. The homogenization and control effect on the thermal oxidation by the surface modification layer brings about the mitigation effect on the electrochemical oxidation at the time of electrolytic use as well as the thermal effect in the electrocatalyst layer coating process described below. It is considered that this greatly contributes to the improvement of the durability.

該薄膜を形成した電極基体は、次いで電極触媒層を被覆して電解用電極とする。該電極触媒層は、用途により既知の種々のものが適用でき特定されないが、耐久性を特に要求される酸素発生反応用においては、イリジウム酸化物等の白金族金属酸化物を含むものが好適である。電極触媒層を被覆する方法は種々の手段が知られ、適宜の方法が適用できる。代表的な方法として熱分解法があり、電極被覆層成分金属の塩化物、硝酸塩、アルコキシド、レジネート等の原料塩を塩酸、硝酸、アルコール、有機溶媒等の溶剤に溶解して被覆液とし、前記表面改質した基材表面に塗布し、乾燥後空気中等の酸化性雰囲気で焼成炉中にて加熱処理する。   The electrode substrate on which the thin film is formed is then coated with an electrode catalyst layer to form an electrode for electrolysis. The electrode catalyst layer is not specified because various known ones can be applied depending on the use. However, for an oxygen generation reaction that particularly requires durability, a layer containing a platinum group metal oxide such as iridium oxide is suitable. is there. Various methods are known for coating the electrode catalyst layer, and appropriate methods can be applied. As a typical method, there is a thermal decomposition method, and a raw material salt such as an electrode coating layer component metal chloride, nitrate, alkoxide, resinate is dissolved in a solvent such as hydrochloric acid, nitric acid, alcohol, organic solvent to form a coating solution, It apply | coats to the surface of the base material which carried out surface modification, and heat-processes in a baking furnace in oxidizing atmospheres, such as in the air after drying.

その他、予め金属酸化物を作製し、適当な有機バインダー、有機溶媒を加えてペースト状とし、電極基体上に印刷し焼成を行う厚膜法、或いはCVD法を適用することも可能である。又、電極触媒層を被覆する前に前記した表面改質した基体を熱処理してその表面にごく薄い高温酸化膜層を中間層として形成する方法、或いは熱分解法やCVD法等により中間層として金属酸化物層を設けてもよい。この中間層により、電極触媒層の密着強度が増し、基体の熱的酸化や電気的酸化に対する保護効果が期待でき、基体上の該薄膜による前記した本質的効果と共に、電解用電極のより一層の耐久性の向上を図ることができる。   In addition, it is also possible to apply a thick film method or a CVD method in which a metal oxide is prepared in advance, is made into a paste by adding an appropriate organic binder and organic solvent, is printed on an electrode substrate, and is fired. In addition, the above-mentioned surface-modified substrate is heat-treated before coating the electrode catalyst layer to form a very thin high-temperature oxide film layer on the surface as an intermediate layer, or as an intermediate layer by a thermal decomposition method or a CVD method. A metal oxide layer may be provided. By this intermediate layer, the adhesion strength of the electrode catalyst layer is increased, and a protective effect against thermal oxidation and electrical oxidation of the substrate can be expected. In addition to the above-mentioned essential effect by the thin film on the substrate, further enhancement of the electrode for electrolysis is possible. Durability can be improved.

次に、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

参考例1>
JISI種チタン板の表面を鉄グリット(#120サイズ)にて乾式ブラスト処理を施し、次いで、20%硫酸水溶液中(105℃)にて10分間酸洗処理を行い、電極基板の洗浄処理を行った。洗浄した電極基板をアークイオンプレーティング装置にセットし、純チタン材のスパッタリング被覆を行った。被覆条件は次の通りである。
ターゲット:JIS1種チタン円板(裏面を水冷)
真空度:1.0×10-2Torr(Arガス置換導入)
投入電力:500W(3.0KV)
基板温度:150℃(スパッタリング時)
時間:35分
コーティング厚み:2ミクロン(重量増加換算)
スパッタリング被覆後、X線回折をとると、基板バルクに帰属する鋭い結晶性ピークとスパッタリング被覆に帰属するブロードなパターンが見られ、該被覆が非晶質であることがわかった。
次に、四塩化イリジウム、五塩化タンタルを35%塩酸に溶解して塗布液とし、前記スパッタリング被覆処理済基板にハケ塗り乾燥後、空気循環式の電気炉中(550℃、20分間)にて熱分解被覆を行い、酸化イリジウムと酸化タンタルとの固溶体よりなる電極触媒層を形成した。前記はけ塗りの1回の塗布厚みは、イリジウム金属に換算してほぼ1.0g/m2になる様に前記塗布液の量を設定した。
この塗布〜焼成操作を12回繰り返したものを製作した。このようにして製造した電解用電極を以下の条件で電解した。
電流密度:125A/dm2
電解温度:60℃
電解液:塩化鉛を含む銅メッキ用模擬液
使用した電解用電極は、6ヶ月で使用不能となった。次いで、この電解用電極を以下の条件で、再活性化処理した。
電極表面には、酸化鉛含む電極表面付着物が形成された。酸化鉛含む電極表面付着物を有する電解用電極を酸処理工程として、5質量%の硝酸と5質量%の過酸化水素の水溶液に15時間浸漬し、その後、高圧水洗工程として、50メガパスカルで高圧水洗を施した。その結果、電解用電極の表面に付着した酸化鉛を含む電極表面付着物を完全に除去することができた。
しかる後、本電解用電極の電極触媒層の酸化イリジウム量を測定し、IrO2が5g/m2未満の場合、コーティングを上乗せし、酸化イリジウムが5g/m2超の場合、そのまま再使用した。
上記電解条件で電解したところ、新品と同じ6ヶ月間使用できた。
< Reference Example 1>
The surface of the JISI type titanium plate is dry-blasted with iron grit (# 120 size), then pickled in a 20% sulfuric acid aqueous solution (105 ° C) for 10 minutes to clean the electrode substrate. It was. The cleaned electrode substrate was set in an arc ion plating apparatus, and a pure titanium material was coated by sputtering. The coating conditions are as follows.
Target: JIS Class 1 titanium disc (back side is water cooled)
Degree of vacuum: 1.0 × 10 -2 Torr (Ar gas replacement introduced)
Input power: 500W (3.0KV)
Substrate temperature: 150 ° C. (during sputtering)
Time: 35 minutes Coating thickness: 2 microns (in terms of weight increase)
When the X-ray diffraction was taken after the sputtering coating, a sharp crystalline peak attributed to the substrate bulk and a broad pattern attributed to the sputtering coating were observed, indicating that the coating was amorphous.
Next, iridium tetrachloride and tantalum pentachloride are dissolved in 35% hydrochloric acid to obtain a coating solution. After the brush-coated substrate is brush-dried and dried, in an air-circulating electric furnace (550 ° C., 20 minutes) Thermal decomposition coating was performed to form an electrode catalyst layer made of a solid solution of iridium oxide and tantalum oxide. The amount of the coating solution was set so that the thickness of one application of brush coating was approximately 1.0 g / m 2 in terms of iridium metal.
A product obtained by repeating this coating to baking operation 12 times was produced. The electrode for electrolysis thus produced was electrolyzed under the following conditions.
Current density: 125A / dm 2
Electrolysis temperature: 60 ° C
Electrolytic solution: Simulated solution for copper plating containing lead chloride The used electrode for electrolysis became unusable after 6 months. Next, the electrode for electrolysis was reactivated under the following conditions.
An electrode surface deposit containing lead oxide was formed on the electrode surface. An electrode for electrolysis having electrode surface deposits containing lead oxide is immersed in an aqueous solution of 5% by mass nitric acid and 5% by mass hydrogen peroxide as an acid treatment step for 15 hours, and then at 50 megapascals as a high-pressure water washing step. High-pressure water washing was performed. As a result, electrode surface deposits including lead oxide adhered to the surface of the electrode for electrolysis could be completely removed.
Thereafter, the amount of iridium oxide in the electrode catalyst layer of the electrode for main electrolysis was measured. When IrO 2 was less than 5 g / m 2 , the coating was added, and when iridium oxide was more than 5 g / m 2 , it was reused as it was. .
When electrolysis was performed under the above electrolysis conditions, it could be used for the same 6 months as a new product.

参考例2>
上記参考例1において、電解液として、塩化鉛と酸化アンチモンを含む銅メッキ用模擬液を使用して、同じ条件で使用した結果、参考例1と同じ結果が得られた。
< Reference Example 2>
In the above Reference Example 1, the same results as in Reference Example 1 were obtained as a result of using a simulated copper plating solution containing lead chloride and antimony oxide as the electrolytic solution under the same conditions.

<実施例3>
JISI種チタン板の表面を鉄グリット(#120サイズ)にて乾式ブラスト処理を施し、次いで、20%硫酸水溶液中(105℃)にて10分間酸洗処理を行い、電極基板の洗浄処理を行った。洗浄した電極基板をアークイオンプレーティング装置にセットし、純チタン材のスパッタリング被覆を行った。被覆条件は次の通りである。
ターゲット:JIS1種チタン円板(裏面を水冷)
真空度:1.0×10-2Torr(Arガス置換導入)
投入電力:500W(3.0KV)
基板温度:150℃(スパッタリング時)
時間:35分
コーティング厚み:2ミクロン(重量増加換算)
スパッタリング被覆後、X線回折をとると、基板バルクに帰属する鋭い結晶性ピークとスパッタリング被覆に帰属するブロードなパターンが見られ、該被覆が非晶質であることがわかつた。
次に、四塩化イリジウム、五塩化タンタルを35%塩酸に溶解して塗布液とし、前記スパッタリング被覆処理済基板にハケ塗り乾燥後、空気循環式の電気炉中(550℃、20分間)にて熱分解被覆を行い、酸化イリジウムと酸化タンタルとの固溶体よりなる電極触媒層を形成した。前記はけ塗りの1回の塗布厚みは、イリジウム金属に換算してほぼ1.0g/m2になる様に前記塗布液の量を設定した。
この塗布〜焼成操作を12回繰り返したものを製作した。このようにして製造した電解用電極を以下の条件で電解した。
電流密度:125A/dm2
電解温度:60℃
電解液:硫酸鉛を含む銅箔製造用模擬液
使用した電解用電極は、6ヶ月で製箔不能となった。次いで、この電解用電極を以下の条件で、再活性化処理した。
表面に硫酸鉛及び酸化アンチモンを含む電極表面付着物を有する電解用電極をアルカリ処理工程として、5質量%の水酸化ナトリウム水溶液に3時間浸漬後、酸処理工程として、5質量%の硝酸と5質量%の過酸化水素の水溶液に15時間浸漬し、その後、高圧水洗工程として、50メガパスカルで高圧水洗を施した。その結果、電解用電極の表面に付着した硫酸鉛を含む電極表面付着物を完全に除去することができた。
しかる後、本電解用電極の電極触媒層の酸化イリジウム量を測定し、IrO2が5g/m2未満の場合、コーティングを上乗せし、酸化イリジウムが5g/m2超の場合、そのまま再使用した。上記電解条件で電解したところ、新品と同じ6ヶ月間使用できた。
<Example 3>
The surface of the JISI type titanium plate is dry-blasted with iron grit (# 120 size), then pickled in a 20% sulfuric acid aqueous solution (105 ° C) for 10 minutes to clean the electrode substrate. It was. The cleaned electrode substrate was set in an arc ion plating apparatus, and a pure titanium material was coated by sputtering. The coating conditions are as follows.
Target: JIS Class 1 titanium disc (back side is water cooled)
Degree of vacuum: 1.0 × 10 -2 Torr (Ar gas replacement introduced)
Input power: 500W (3.0KV)
Substrate temperature: 150 ° C. (during sputtering)
Time: 35 minutes Coating thickness: 2 microns (in terms of weight increase)
When X-ray diffraction was taken after the sputtering coating, a sharp crystalline peak attributed to the substrate bulk and a broad pattern attributed to the sputtering coating were observed, indicating that the coating was amorphous.
Next, iridium tetrachloride and tantalum pentachloride are dissolved in 35% hydrochloric acid to obtain a coating solution. After the brush-coated substrate is brush-dried and dried, in an air-circulating electric furnace (550 ° C., 20 minutes) Thermal decomposition coating was performed to form an electrode catalyst layer made of a solid solution of iridium oxide and tantalum oxide. The amount of the coating solution was set so that the thickness of one application of brush coating was approximately 1.0 g / m 2 in terms of iridium metal.
A product obtained by repeating this coating to baking operation 12 times was produced. The electrode for electrolysis thus produced was electrolyzed under the following conditions.
Current density: 125A / dm 2
Electrolysis temperature: 60 ° C
Electrolytic solution: Simulated solution for producing copper foil containing lead sulfate The used electrode for electrolysis became incapable of making foil in 6 months. Next, the electrode for electrolysis was reactivated under the following conditions.
An electrode for electrolysis having an electrode surface deposit containing lead sulfate and antimony oxide on the surface is immersed in a 5% by mass aqueous sodium hydroxide solution for 3 hours as an alkali treatment step, and then 5% by mass nitric acid and 5 as an acid treatment step. It was immersed in an aqueous solution of mass% hydrogen peroxide for 15 hours, and then subjected to high pressure water washing at 50 megapascals as a high pressure water washing step. As a result, electrode surface deposits including lead sulfate adhered to the surface of the electrode for electrolysis could be completely removed.
Thereafter, the amount of iridium oxide in the electrode catalyst layer of the electrode for main electrolysis was measured. When IrO 2 was less than 5 g / m 2 , the coating was added, and when iridium oxide was more than 5 g / m 2 , it was reused as it was. . When electrolysis was performed under the above electrolysis conditions, it could be used for the same 6 months as a new product.

<実施例4>
実施例3で作製した電極を電流密度80A/dm2、電解温度55℃で使用したところ10月で製箔不能となった。
その電極を10質量%の水酸化ナトリウム水溶液に1時間浸漬後、10質量%の硝酸と10質量%の過酸化水素の水溶液に15時間浸漬し、その後70メガパスカルで高圧水洗を施した。その結果、電解用電極の表面に付着した鉛及びアンチモンを含む電極表面付着物を完全に除去することができ、更に10月使用できた。
<Example 4>
When the electrode produced in Example 3 was used at a current density of 80 A / dm 2 and an electrolysis temperature of 55 ° C., foil production was impossible in October.
The electrode was immersed in a 10% by mass aqueous sodium hydroxide solution for 1 hour, then immersed in an aqueous solution of 10% by mass nitric acid and 10% by mass hydrogen peroxide for 15 hours, and then washed with high pressure water at 70 megapascals. As a result, electrode surface deposits including lead and antimony adhering to the surface of the electrode for electrolysis could be completely removed and used for another 10 months.

<実施例5>
実施例3で作製した電極を電流密度50A/dm2、電解温度45℃で使用したところ12月で製箔不能となった。
その電極を20質量%の水酸化ナトリウム水溶液に2時間浸漬後、30質量%の硝酸と20質量%の過酸化水素の水溶液に15時間浸漬し、その後100メガパスカルで高圧水洗を施した。その結果、電解用電極の表面に付着した鉛及びアンチモンを含む電極表面付着物を完全に除去することができ、更に12月使用できた。
<Example 5>
When the electrode produced in Example 3 was used at a current density of 50 A / dm 2 and an electrolysis temperature of 45 ° C., foil production became impossible in December.
The electrode was immersed in a 20% by mass aqueous sodium hydroxide solution for 2 hours, then immersed in an aqueous solution of 30% by mass nitric acid and 20% by mass hydrogen peroxide for 15 hours, and then washed with high pressure water at 100 megapascals. As a result, the electrode surface deposits containing lead and antimony adhered to the surface of the electrode for electrolysis could be completely removed, and it could be used for 12 months.

<実施例6>
上記実施例3において、電解液として、硫酸鉛と酸化アンチモンを含む銅箔製造用模擬液を使用して、実施例3と同じ条件で使用した結果、実施例3と同じ結果が得られた。
<Example 6>
In the said Example 3, as a result of using it on the same conditions as Example 3 using the simulation liquid for copper foil manufacture containing lead sulfate and antimony oxide as electrolyte solution, the same result as Example 3 was obtained.

<比較例1>
一方、硝酸と過酸化水素とを含有する水溶液に代えて、硝酸、又は過酸化水素のみを使用した場合、付着物の溶解除去反応の効率が悪かった。また、硝酸に代えて硫酸を使用した場合、同様に反応効率が極めて悪く、使用できなかった。更に、塩酸に変えた場合、作業環境が悪化すると言う欠点を有していた。
<Comparative Example 1>
On the other hand, when only nitric acid or hydrogen peroxide was used in place of the aqueous solution containing nitric acid and hydrogen peroxide, the efficiency of the deposit removal reaction was poor. In addition, when sulfuric acid was used instead of nitric acid, the reaction efficiency was similarly very poor and could not be used. Furthermore, when it changed to hydrochloric acid, it had the fault that a working environment deteriorated.

本発明は、電解銅粉、電解銅箔の製造又は銅メッキだけでなく、各種の電解用電極の再活性方法に適用可能である。   The present invention is applicable not only to the production of electrolytic copper powder, electrolytic copper foil, or copper plating, but also to various methods for reactivation of electrodes for electrolysis.

Claims (8)

電解により、電解用電極の表面に鉛化合物を含む電極表面付着物が付着し低活性化した電解用電極を5質量%〜20質量%のアルカリ金属水酸化物水溶液内に浸漬するアルカリ処理工程と、5質量%〜30質量%の硝酸と5質量%〜20質量%の過酸化水素を含有する水溶液内に浸漬する酸処理工程と、50〜100メガパスカルの圧力で高圧水洗する高圧水洗工程を順次実施することにより、鉛及びアンチモンを含む電極表面付着物を除去し、低活性化した電解用電極を再活性化することを特徴とする電解用電極の再活性化方法。   An alkali treatment step of immersing the electrode for electrolysis in which the electrode surface deposit containing a lead compound adheres to the surface of the electrode for electrolysis by electrolysis and is activated in a 5% by mass to 20% by mass alkali metal hydroxide aqueous solution; An acid treatment step of immersing in an aqueous solution containing 5% by mass to 30% by mass of nitric acid and 5% by mass to 20% by mass of hydrogen peroxide, and a high pressure water washing step of rinsing with high pressure at a pressure of 50 to 100 megapascals. A method for reactivating an electrode for electrolysis, characterized by removing electrode surface deposits containing lead and antimony and reactivating the electrode for electrolysis that has been activated by performing sequentially. 電極表面付着物が鉛化合物と酸化アンチモンを含む電極表面付着物である請求項に記載の電解用電極の再活性化方法。 The method for reactivating an electrode for electrolysis according to claim 1 , wherein the electrode surface deposit is an electrode surface deposit containing a lead compound and antimony oxide. 鉛化合物が硫酸鉛である請求項に記載の電解用電極の再活性化方法。 The method for reactivating an electrode for electrolysis according to claim 1 , wherein the lead compound is lead sulfate. 電解が銅箔製造用電解である請求項1から3までの何れか1項に記載の電解用電極の再活性化方法。 The method for reactivating an electrode for electrolysis according to any one of claims 1 to 3, wherein the electrolysis is electrolysis for producing copper foil. 電解用電極がバルブメタル又はバルブメタル合金よりなる電極基体の表面に真空スパッタリングにより形成された金属又は金属合金よりなる薄膜を形成し、該薄膜の表面に電極触媒層が被覆された電解用電極である請求項からまでの何れか1項に記載の電解用電極の再活性化方法。 An electrode for electrolysis in which a thin film made of metal or metal alloy formed by vacuum sputtering is formed on the surface of an electrode base made of valve metal or valve metal alloy, and an electrode catalyst layer is coated on the surface of the thin film. The method for reactivating an electrode for electrolysis according to any one of claims 1 to 4 . 薄膜がチタン、タンタル、ニオブ、ジルコニウム及びハフニウムから選ばれた1種以上の金属又はその合金よりなる薄膜である請求項に記載の電解用電極の再活性化方法。 6. The method for reactivating an electrode for electrolysis according to claim 5 , wherein the thin film is a thin film made of at least one metal selected from titanium, tantalum, niobium, zirconium and hafnium or an alloy thereof. 電極触媒層が酸化イリジウムを含有する電極触媒層である請求項又はに記載の電解用電極の再活性化方法。 The method for reactivating an electrode for electrolysis according to claim 5 or 6 , wherein the electrode catalyst layer is an electrode catalyst layer containing iridium oxide. 電極表面付着物を除去した後、電極触媒層を形成する請求項からまでの何れか1項に記載の電解用電極の再活性化方法。 The method for reactivating an electrode for electrolysis according to any one of claims 1 to 7 , wherein the electrode catalyst layer is formed after removing the electrode surface deposits.
JP2007230379A 2006-11-20 2007-09-05 Method for reactivating electrode for electrolysis Active JP4451471B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007230379A JP4451471B2 (en) 2006-11-20 2007-09-05 Method for reactivating electrode for electrolysis
DE602007011380T DE602007011380D1 (en) 2006-11-20 2007-10-31 Process for recovering an electrode for electrolysis
EP07021299A EP1923487B1 (en) 2006-11-20 2007-10-31 Method of reactivating electrode for electrolysis
US11/930,743 US20080115810A1 (en) 2006-11-20 2007-10-31 Method of reactivating electrode for electrolysis
TW096142961A TWI392772B (en) 2006-11-20 2007-11-14 Method of reactivating electrode for electrolysis
KR1020070115850A KR101125035B1 (en) 2006-11-20 2007-11-14 Method of reactivating electrode for electrolysis
CN2007101883609A CN101235531B (en) 2006-11-20 2007-11-19 Method of reactivating electrode for electrolysis
KR1020110145041A KR101321420B1 (en) 2006-11-20 2011-12-28 Method of reactivating electrode for electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006313252 2006-11-20
JP2007230379A JP4451471B2 (en) 2006-11-20 2007-09-05 Method for reactivating electrode for electrolysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009294536A Division JP5035731B2 (en) 2006-11-20 2009-12-25 Method for reactivating electrode for electrolysis

Publications (2)

Publication Number Publication Date
JP2008150700A JP2008150700A (en) 2008-07-03
JP4451471B2 true JP4451471B2 (en) 2010-04-14

Family

ID=39653187

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007230379A Active JP4451471B2 (en) 2006-11-20 2007-09-05 Method for reactivating electrode for electrolysis
JP2009294536A Active JP5035731B2 (en) 2006-11-20 2009-12-25 Method for reactivating electrode for electrolysis

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009294536A Active JP5035731B2 (en) 2006-11-20 2009-12-25 Method for reactivating electrode for electrolysis

Country Status (5)

Country Link
JP (2) JP4451471B2 (en)
KR (2) KR101125035B1 (en)
CN (1) CN101235531B (en)
DE (1) DE602007011380D1 (en)
TW (1) TWI392772B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707936B2 (en) * 2010-12-28 2015-04-30 東ソー株式会社 Reactivation method for electrodes for hydrogen generation
JP5667674B1 (en) * 2013-08-20 2015-02-12 サーモス株式会社 Cleaning device for cleaning metal containers
CN104120460B (en) * 2014-07-02 2016-09-21 广州鸿葳科技股份有限公司 A kind of method removing electrolytic copper foil Ni-Ti anode surface scale
JP7284938B2 (en) * 2018-11-21 2023-06-01 株式会社大阪ソーダ Method for removing electrode surface deposits containing lead compounds from electrodes for electrolysis to which lead compounds are attached
CN109385645B (en) * 2018-12-06 2021-05-11 普瑞斯矿业(中国)有限公司 Treatment method for improving conductivity of anode plate for electrolytic manganese dioxide
CN112342566B (en) * 2019-08-09 2023-09-19 株式会社大阪曹达 Method for manufacturing electrode for electrolysis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1195871A (en) * 1967-02-10 1970-06-24 Chemnor Ag Improvements in or relating to the Manufacture of Electrodes.
JPS586788B2 (en) * 1980-05-23 1983-02-07 日本カ−リツト株式会社 Recycling method for lead dioxide coated electrodes
DE4419276A1 (en) * 1994-06-01 1995-12-07 Heraeus Elektrochemie Process for preparing the coating process of activatable or reactivatable electrodes for electrolytic purposes
US5741366A (en) * 1996-02-09 1998-04-21 Zelez; Joseph Methods for treatment of lead-containing surface coatings and soil
IT1293319B1 (en) * 1997-07-10 1999-02-16 De Nora Spa METHOD FOR THE APPLICATION OF A CATALYTIC COATING TO A METALLIC SUBSTRATE
JP2002194581A (en) * 2000-12-27 2002-07-10 Furuya Kinzoku:Kk Method for recovering platinum group metal from metal electrode
US6440279B1 (en) * 2000-12-28 2002-08-27 Alcoa Inc. Chemical milling process for inert anodes
JP3914162B2 (en) * 2003-02-07 2007-05-16 ダイソー株式会社 Oxygen generating electrode

Also Published As

Publication number Publication date
CN101235531A (en) 2008-08-06
KR20080045620A (en) 2008-05-23
JP2010065323A (en) 2010-03-25
JP2008150700A (en) 2008-07-03
TW200825212A (en) 2008-06-16
CN101235531B (en) 2010-08-11
KR101321420B1 (en) 2013-10-28
TWI392772B (en) 2013-04-11
KR20120034067A (en) 2012-04-09
KR101125035B1 (en) 2012-03-21
DE602007011380D1 (en) 2011-02-03
JP5035731B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5035731B2 (en) Method for reactivating electrode for electrolysis
CN101550558B (en) Manufacturing process of electrodes for electrolysis
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
JP7462884B2 (en) Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached
CA2347438C (en) Electrode characterized by highly adhering superficial catalytic layer
JP2721739B2 (en) Method for producing an improved anode
CN101550557B (en) Manufacturing process of electrodes for electrolysis
JP4638672B2 (en) Anode for generating oxygen and support therefor
JP6404226B2 (en) Electrode for oxygen generation in industrial electrochemical processes, method for producing the electrode, and method for cathodic electrodeposition of metal from aqueous solution using the electrode
EP1923487B1 (en) Method of reactivating electrode for electrolysis
CN114481131A (en) Improved MnO2Preparation method and application of coated electrode
JP3422885B2 (en) Electrode substrate
US20040031689A1 (en) Electrochemical catalyst electrode to increase bonding durability between covering layers and a metal substrate
JPH0987896A (en) Production of electrolytic electrode
JP3700661B2 (en) Metal foil manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090330

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250