JP4451114B2 - Functional water production equipment with exhaust gas treatment function - Google Patents

Functional water production equipment with exhaust gas treatment function Download PDF

Info

Publication number
JP4451114B2
JP4451114B2 JP2003371065A JP2003371065A JP4451114B2 JP 4451114 B2 JP4451114 B2 JP 4451114B2 JP 2003371065 A JP2003371065 A JP 2003371065A JP 2003371065 A JP2003371065 A JP 2003371065A JP 4451114 B2 JP4451114 B2 JP 4451114B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
electrolyzer
pure water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003371065A
Other languages
Japanese (ja)
Other versions
JP2005131554A (en
Inventor
隆行 自在丸
勲 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2003371065A priority Critical patent/JP4451114B2/en
Publication of JP2005131554A publication Critical patent/JP2005131554A/en
Application granted granted Critical
Publication of JP4451114B2 publication Critical patent/JP4451114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Fuel Cell (AREA)

Description

本発明は、半導体用シリコン基板、液晶用ガラス基板などの電子材料を製造する際の洗浄工程において用いられる機能水を製造する装置に係り、特に、クリーンルーム内で用いるのに適した機能水製造装置に関する。   The present invention relates to an apparatus for producing functional water used in a cleaning process for producing electronic materials such as a silicon substrate for a semiconductor and a glass substrate for liquid crystal, and in particular, a functional water production apparatus suitable for use in a clean room. About.

半導体製造プロセスのウエハ洗浄工程では、オゾン水や水素水などのガス溶解水や稀薄薬液が用いられているが、特にオゾン水については溶存ガス濃度がppmオーダーと稀薄であるにもかかわらず強い酸化力を有し洗浄力が大きいことから広く用いられている。   In the wafer cleaning process of the semiconductor manufacturing process, gas-dissolved water such as ozone water and hydrogen water and dilute chemicals are used, but especially for ozone water, strong oxidation occurs even though the dissolved gas concentration is as low as ppm order. It is widely used because it has high power and detergency.

オゾン水は、純水を電気分解装置で電気分解して隔壁で仕切られた別個の貯溜室にオゾンを含む酸素系ガスと水素ガスを生成させ、ここで生成した酸素系ガスを純水中に溶解させて製造されている(以下、特にオゾン又は酸素を指称するとき以外は、オゾン、酸素、およびこれらの混合ガスを酸素系ガスと称する。)。   Ozone water is produced by electrolyzing pure water with an electrolyzer and generating oxygen-based gas and hydrogen gas containing ozone in separate storage chambers partitioned by partition walls. It is manufactured by dissolving (hereinafter, ozone, oxygen, and a mixed gas thereof are referred to as oxygen-based gas, except when ozone or oxygen is specifically indicated).

酸素系ガスを純水中に溶解させる方式としては、中空糸膜などの多孔質フッ素樹脂膜を用いる方式、エゼクタ方式及び充填塔方式等が一般に用いられている。   As a method for dissolving oxygen-based gas in pure water, a method using a porous fluororesin membrane such as a hollow fiber membrane, an ejector method and a packed tower method are generally used.

超純水中に対する酸素系ガスの超純水に対する飽和溶解度は、ヘンリーの法則により、酸素系ガスの濃度、圧力、超純水の温度が一定である。   The saturation solubility of oxygen-based gas in ultrapure water with respect to ultrapure water has a constant oxygen-based gas concentration, pressure, and temperature of ultrapure water according to Henry's law.

オゾン水を製造する場合には、酸素系ガスと同時に生成する水素ガスは不要なため、そのまま、または触媒を通して燃焼させた後、配管で外部に放出している。   In the case of producing ozone water, hydrogen gas generated simultaneously with the oxygen-based gas is unnecessary, and therefore, it is discharged to the outside as it is or after being burned through a catalyst.

水素水を製造する場合も同様であって、水素ガスと同時に生成する酸素系ガスは不用であるため、活性炭を通して全部を酸素に還元させた上で外部に放出している。   The same applies to the production of hydrogen water, and the oxygen-based gas produced simultaneously with the hydrogen gas is unnecessary, so that the whole is reduced to oxygen through activated carbon and then released to the outside.

一方、電気分解装置は、電解電流値などの仕様が決まっているため、運転中は常時一定量の酸素系ガスと水素ガスとを生成している。   On the other hand, since the electrolysis apparatus has specifications such as an electrolysis current value, a constant amount of oxygen-based gas and hydrogen gas are always generated during operation.

ところで、オゾン水は、長い区間を送水するとオゾンが酸素に分解してしまい濃度が低くなってしまうという問題があり、また長い区間を送水すると配管内面からの微粒子物質の剥離等により送水中に汚染されるという問題もある。   By the way, ozone water has a problem that ozone is decomposed into oxygen when water is sent over a long section, and the concentration becomes low. When water is sent over a long section, it is contaminated in the water due to separation of particulate matter from the inner surface of the pipe. There is also the problem of being.

このため、最近では、機能水製造装置はクリーンルーム内の洗浄装置に近い位置に設置されることが多くなってきている。   For this reason, recently, functional water production apparatuses are often installed at positions close to cleaning apparatuses in clean rooms.

しかしながら、クリーンルームは当然ながら密閉空間であるため、触媒装置が働かなかったり、配管が損傷したりして水素ガスが漏出した場合には非常に危険である。   However, since the clean room is naturally a sealed space, it is extremely dangerous if hydrogen gas leaks out due to the catalytic device not working or the piping being damaged.

また、クリーンルーム内は雰囲気のガス組成も管理されているが、水素ガスや酸素系ガスがクリーンルーム内へ漏出すると、雰囲気内のガス組成が変化してしまうという問題もある。   Further, although the gas composition of the atmosphere is managed in the clean room, there is a problem that the gas composition in the atmosphere changes when hydrogen gas or oxygen-based gas leaks into the clean room.

上述したように、機能水製造装置は、最近、クリーンルーム内の洗浄装置に近い位置に設置されることが多くなってきているが、クリーンルームは密閉空間であるため、触媒装置が働かなかったり配管が損傷したりしてクリーンルーム内に水素ガスが漏出した場合には非常に危険であるという問題があった。   As described above, functional water production apparatuses have recently been frequently installed at positions close to cleaning apparatuses in clean rooms. However, since clean rooms are sealed spaces, the catalytic apparatus does not work or piping is not used. When hydrogen gas leaks into the clean room due to damage, there is a problem that it is very dangerous.

また、クリーンルーム内は雰囲気のガス組成も管理されているため、水素ガスや酸素系ガスがクリーンルーム内へ漏出すると雰囲気内のガス組成が変化してしまうという問題もあった。   Moreover, since the gas composition of the atmosphere is managed in the clean room, there is a problem that the gas composition in the atmosphere changes when hydrogen gas or oxygen-based gas leaks into the clean room.

本発明は、かかる従来の難点を解消すべなされたもので、クリーンルーム内への酸素系ガスや水素ガスの漏出をいち早く検出して、これらのガスの生成を停止させるようにした機能水製造装置を提供することを目的としている。   The present invention has been made to solve such conventional problems, and a functional water production apparatus that quickly detects leakage of oxygen-based gas and hydrogen gas into a clean room and stops the production of these gases. It is intended to provide.

本発明の第1の機能水製造装置は、純水を電気分解してオゾンを含む酸素系ガスと水素ガスを生成する電気分解装置と、前記電気分解装置に電力を供給する直流電源装置と、前記電気分解装置の酸素系ガス排出口に配管を介して接続され連続的又は断続的に供給される純水中に酸素系ガスを溶解させるガス溶解手段と、前記電気分解装置及び前記酸素系ガス溶解手段に純水を供給する純水供給手段とを備えた機能水製造装置において、前記ガス溶解手段において純水に未溶解の酸素系ガス、化学量論的に足りなくなった酸素を補う空気並びに前記電気分解装置で生成した水素ガスを導入して、酸素過剰の状態で化学反応を行うことにより水を生成する余剰ガス処理手段と、前記余剰ガス処理手段の温度を測定する温度センサーと、前記温度センサーが測定した温度が所定の温度より低い場合に前記直流電源装置から前記電気分解装置への給電を遮断する電源遮断装置を有することを特徴としている。 A first functional water production apparatus of the present invention includes an electrolysis apparatus that electrolyzes pure water to generate an oxygen-based gas containing ozone and hydrogen gas, a DC power supply apparatus that supplies power to the electrolysis apparatus, Gas dissolving means for dissolving oxygen-based gas in pure water that is connected to an oxygen-based gas discharge port of the electrolyzer via a pipe and is continuously or intermittently supplied; the electrolyzer and the oxygen-based gas In a functional water production apparatus comprising pure water supply means for supplying pure water to a dissolving means, an oxygen-based gas not dissolved in pure water in the gas dissolving means, air for supplementing oxygen in a stoichiometric amount , and Introducing hydrogen gas generated by the electrolyzer, and performing a chemical reaction in an oxygen-excess state to generate water, a temperature sensor that measures the temperature of the excess gas processing unit, and Temperature sensor Temperature Sir is measured is characterized by having a power cutoff device for cutting off the power supply from the DC power supply device is lower than a predetermined temperature to the electrolyzer.

また、本件特許発明の第2の機能水製造装置は、純水を電気分解して酸素系ガスと水素ガスを生成する電気分解装置と、前記電気分解装置に電力を供給する直流電源装置と、前記電気分解装置の水素ガス排出口に配管を介して接続され連続的又は断続的に供給される純水中に水素ガスを溶解させるガス溶解手段と、前記電気分解装置及び前記水素ガス溶解手段に純水を供給する純水供給手段とを備えた機能水製造装置において、前記ガス溶解手段において純水に未溶解の水素ガスと前記電気分解装置で生成した酸素系ガスを導入して、酸素過剰の状態で化学反応を行うことにより水を生成する余剰ガス処理手段と、前記余剰ガス処理手段の温度を測定する温度センサーと、前記温度センサーが測定した温度が所定の温度より低い場合に前記直流電源装置から前記電気分解装置への給電を遮断する電源遮断装置を有することを特徴としている。 The second functional water production apparatus of the present patent invention includes an electrolysis apparatus that electrolyzes pure water to generate an oxygen-based gas and a hydrogen gas, a DC power supply apparatus that supplies power to the electrolysis apparatus, A gas dissolving means for dissolving hydrogen gas in pure water connected to a hydrogen gas discharge port of the electrolysis apparatus via a pipe and continuously or intermittently supplied; and the electrolysis apparatus and the hydrogen gas dissolution means In a functional water production apparatus comprising pure water supply means for supplying pure water , an oxygen-excess hydrogen gas is introduced by introducing undissolved hydrogen gas and pure oxygen generated in the electrolysis apparatus into the pure water in the gas dissolving means. and excess gas processing means for generating a water by a chemical reaction in a state, a temperature sensor for measuring the temperature of the surplus gas treatment section, the straight when the temperature by the temperature sensor is measured is lower than a predetermined temperature It is characterized in that the power unit has a power cutoff device for cutting off the power supply to the electrolyzer.

なお、本発明における純水には、純度が非常に高い超純水を含むものとする。
上記の余剰ガス処理手段としては燃料電池がエネルギー効率の点から適しており、この場合、前述した電源遮断装置の温度センサーに代えて燃料電池の出力電圧を用いて、出力電圧が所定の電圧より低い場合に直流電源装置からの給電を遮断するようにしてもよい。また、電流値、燃料電池内の温度、圧力によっても異常を検知することが可能である。
In addition, the pure water in this invention shall contain the ultrapure water with very high purity.
As the surplus gas processing means, a fuel cell is suitable from the viewpoint of energy efficiency. In this case, the output voltage of the fuel cell is replaced with a predetermined voltage by using the output voltage of the fuel cell instead of the temperature sensor of the power shut-off device. When it is low, the power supply from the DC power supply device may be cut off. Further, it is possible to detect an abnormality by the current value, the temperature in the fuel cell, and the pressure.

なお、最近、機能水製造装置が小型化する傾向にあり、電気分解装置とガス溶解手段とを接続する配管も短くなっているので、電気分解装置側からの水分とともに汚染物質が超純水中に混入してくるのを防ぎ、併せて、運転停止時にガス溶解手段側からガスが逆流するのをの防ぐために、電気分解装置とガス溶解手段とを接続する配管に逆止弁と水分除去装置を順に介挿することが望ましい。   In recent years, functional water production devices tend to be miniaturized, and the piping connecting the electrolyzer and gas dissolving means has also become shorter. In order to prevent the gas from flowing into the gas dissolution means side when the operation is stopped, a check valve and a water removal device are connected to the pipe connecting the electrolysis device and the gas dissolution means. Are preferably inserted in order.

以上の実施例からも明らかなように、本発明によれば、オゾン水や水素水のような機能水の製造装置において、水素ガスのリークが生じた場合には、電気分解装置1への給電が遮断されて、水素ガスの発生が停止されるので、水素ガスのリークによりクリーンルーム内の気体の組成が変化したり、爆発の危険が防止される。   As is clear from the above embodiments, according to the present invention, when hydrogen gas leaks in the functional water production apparatus such as ozone water or hydrogen water, power is supplied to the electrolysis apparatus 1. Since the generation of hydrogen gas is stopped, the gas composition in the clean room changes due to hydrogen gas leakage, and the danger of explosion is prevented.

次に本発明の実施態様について説明する。   Next, embodiments of the present invention will be described.

図1は、この実施例の、クリーンルーム内に設置されたオゾン水製造装置を概略的に示すブロック図である。
同図に示すように、このオゾン水発生装置は、電気分解装置1、この電気分解装置1に電源スイッチ2を介して給電する直流電源3、電気分解装置1で発生したオゾンガスを含む酸素系ガスを純水に溶解させるオゾンガス溶解装置4、余剰ガス処理手段5、余剰ガス処理手段5の温度を測定する温度センサー6、この温度センサー6の温度が予め設定された設定温度より低くなったとき電源スイッチ2を遮断する電源制御装置7及び配管類から主として構成されている。なお、電気分解装置1とオゾンガス溶解装置4とを接続する配管には、図示を省略した逆止弁と水分除去装置が順に介挿されている。
FIG. 1 is a block diagram schematically showing an ozone water production apparatus installed in a clean room according to this embodiment.
As shown in the figure, the ozone water generator includes an electrolyzer 1, a DC power source 3 that supplies power to the electrolyzer 1 through a power switch 2, and an oxygen-based gas containing ozone gas generated by the electrolyzer 1. An ozone gas dissolving device 4 for dissolving water in pure water, surplus gas processing means 5, a temperature sensor 6 for measuring the temperature of the surplus gas processing means 5, and a power source when the temperature of the temperature sensor 6 becomes lower than a preset temperature. It is mainly composed of a power supply control device 7 that shuts off the switch 2 and piping. Note that a check valve and a water removal device (not shown) are inserted in order in the pipe connecting the electrolyzer 1 and the ozone gas dissolving device 4.

また、余剰ガス処理手段5は、水素と酸素を反応させる活性炭のような触媒機能を持つ物質を充填した反応装置又は水素を燃料とする燃料電池等からなり、電気分解装置1で発生した水素ガスと、オゾンガス溶解装置4で純水に溶解しなかったオゾンを含む余剰酸素系ガス、化学量論的に足りなくなった酸素を補う空気(酸素ガス)とを化学反応させて水にする装置であり、生成した水(水蒸気)は凝縮装置8の水封用の純水中に吹き込まれてドレンとして放出される。   Further, the surplus gas processing means 5 comprises a reaction device filled with a substance having a catalytic function such as activated carbon that reacts hydrogen and oxygen, or a fuel cell using hydrogen as fuel, and hydrogen gas generated in the electrolysis device 1 And a surplus oxygen-based gas containing ozone that was not dissolved in pure water by the ozone gas dissolving device 4 and air (oxygen gas) that supplements oxygen in a stoichiometric amount is chemically reacted into water. The generated water (water vapor) is blown into water-sealing pure water of the condenser 8 and discharged as drain.

この実施例においては、電源スイッチ2を閉じると、電気分解装置1は純水供給ライン9によって連続的又は断続的に供給される純水を電気分解してオゾンを含む酸素系ガスを陽極側に、水素ガスを陰極側に生成する。   In this embodiment, when the power switch 2 is closed, the electrolyzer 1 electrolyzes pure water continuously or intermittently supplied by the pure water supply line 9 to bring oxygen-containing gas containing ozone to the anode side. Hydrogen gas is generated on the cathode side.

電気分解装置1で生成したオゾンガスを含む酸素系ガスは、酸素系ガス供給配管10によってオゾンガス溶解装置4に送られ、ここで純水供給ライン9から供給される純水中に、例えば中空糸膜等によって溶解されてオゾン水が生成される。生成したオゾン水は、オゾン水供給ライン11によって、例えば、図示を省略した半導体製造装置における洗浄装置等に供給される。 The oxygen-based gas containing the ozone gas generated by the electrolyzer 1 is sent to the ozone gas dissolving device 4 through the oxygen-based gas supply pipe 10, and in the pure water supplied from the pure water supply line 9, for example, a hollow fiber membrane Ozone water is generated by being dissolved. The generated ozone water is supplied by the ozone water supply line 11 to, for example, a cleaning device in a semiconductor manufacturing apparatus (not shown).

一方、電気分解装置1で生成した水素ガスは水素ガス供給配管12により余剰ガス処理手段5に送られる。また、オゾンガス溶解装置4で純水に溶解しなかった余剰の酸素系ガスも余剰酸素系ガス供給配管13により余剰ガス処理手段5に送られる。   On the other hand, the hydrogen gas generated by the electrolysis apparatus 1 is sent to the surplus gas processing means 5 through the hydrogen gas supply pipe 12. Further, surplus oxygen-based gas that has not been dissolved in pure water by the ozone gas dissolving device 4 is also sent to the surplus gas processing means 5 through the surplus oxygen-based gas supply pipe 13.

ここで、送られてきた酸素系ガスと水素ガスとは触媒物質の作用等により反応して水になるのであるが、酸素系ガスは、オゾンガス溶解装置4で純水に溶解しているため、化学量論的に水素が過剰になる。そこで、不足する酸素を補うために、空気が空気取入配管14から送り込まれ、酸素過剰の状態で水素と、酸素の酸化反応が行われる。反応により生成した水(水蒸気)は、ドレン配管15により凝縮装置8に送られて凝縮水となり、排水管16により系外に放出される。   Here, the oxygen-based gas and the hydrogen gas that have been sent react with each other due to the action of the catalyst substance to become water, but the oxygen-based gas is dissolved in pure water by the ozone gas dissolving device 4, so Stoichiometric excess of hydrogen. Therefore, in order to make up for the insufficient oxygen, air is sent from the air intake pipe 14, and an oxidation reaction between hydrogen and oxygen is performed in an oxygen-excess state. Water (steam) generated by the reaction is sent to the condensing device 8 through the drain pipe 15 to become condensed water, and is discharged out of the system through the drain pipe 16.

この装置においては、余剰ガス処理手段5では水素と酸素の反応が行われ、かつ電気分解装置1は定格条件で稼働しているため、ほぼ一定の温度が保たれ、この温度は温度センサー6により常時監視されている。   In this apparatus, the surplus gas treatment means 5 performs a reaction between hydrogen and oxygen, and the electrolysis apparatus 1 operates under rated conditions, so that a substantially constant temperature is maintained. It is constantly monitored.

そして、触媒活性の低下、水素ガスのリーク、その他何らかの理由で余剰ガス処理手段5での水素ガスと酸素系ガスの反応が低下し、あるいは反応が停止すると余剰ガス処理手段5の温度が低下し、この温度低下は温度センサー6に検知されて電源制御装置7により電源スイッチ2が遮断されて直流電源3から電気分解装置1への給電が中止され、電気分解装置1における純水の電解が中断されて、水素ガスのクリーンルーム内への漏洩が防止される。   Then, the reaction between the hydrogen gas and the oxygen-based gas in the surplus gas processing means 5 decreases for some reason due to a decrease in catalyst activity, hydrogen gas leakage, or the temperature of the surplus gas processing means 5 decreases when the reaction stops. The temperature drop is detected by the temperature sensor 6, the power switch 2 is cut off by the power control device 7, the power supply from the DC power source 3 to the electrolyzer 1 is stopped, and electrolysis of pure water in the electrolyzer 1 is interrupted. Thus, leakage of hydrogen gas into the clean room is prevented.

図2は、この実施例の、クリーンルーム内に設置された水素水製造装置を概略的に示すブロック図である。
同図において、図1と同一の装置には、共通の符号を付して重複する説明は省略する。
FIG. 2 is a block diagram schematically showing a hydrogen water production apparatus installed in a clean room according to this embodiment.
In the figure, the same devices as those in FIG.

なお、図を省略したが、この実施例でも電気分解装置1と水素ガス溶解装置4′を接続する配管には、逆止弁と水分除去装置が順に介挿されている。   Although not shown, a check valve and a water removing device are inserted in this order in the pipe connecting the electrolyzer 1 and the hydrogen gas dissolving device 4 '.

この実施例においては、電源スイッチ2を閉じると、電気分解装置1は純水供給ライン9によって供給される純水を電気分解してオゾンを含む酸素系ガスを陽極側に、水素ガスを陰極側に生成する。   In this embodiment, when the power switch 2 is closed, the electrolyzer 1 electrolyzes pure water supplied by the pure water supply line 9 to bring oxygen-containing gas containing ozone to the anode side and hydrogen gas to the cathode side. To generate.

電気分解装置1で生成した水素ガスは、水素ガス供給配管12によって水素ガス溶解装置4′に送られ、ここで純水供給ライン9から供給される純水中に溶解されて水素水が生成される。生成した水素水は、水素水供給ライン11′によって、例えば、図示を省略した半導体製造装置における洗浄装置等に供給される。   The hydrogen gas generated in the electrolysis apparatus 1 is sent to the hydrogen gas dissolving apparatus 4 ′ through the hydrogen gas supply pipe 12, where it is dissolved in pure water supplied from the pure water supply line 9 to generate hydrogen water. The The generated hydrogen water is supplied to, for example, a cleaning device in a semiconductor manufacturing apparatus (not shown) through a hydrogen water supply line 11 ′.

一方、電気分解装置1で生成した酸素系ガスは酸素系ガス供給配管10により余剰ガス処理手段5に送られる。また、水素ガス溶解装置4で純水に溶解しなかった余剰の水素ガスも余剰水素ガス供給配管12′により余剰ガス処理手段5に送られる。 On the other hand, the oxygen-based gas generated by the electrolysis apparatus 1 is sent to the surplus gas processing means 5 through the oxygen-based gas supply pipe 10 . Further, surplus hydrogen gas that has not been dissolved in pure water by the hydrogen gas dissolving device 4 is also sent to the surplus gas processing means 5 through the surplus hydrogen gas supply pipe 12 ′.

ここで、送られてきた酸素系ガスと水素ガスとは反応して水になるのであるが、水素ガスの一部は、水素ガス溶解装置4′で純水に溶解しているので、化学量論的に酸素系ガスが過剰になる。この過剰の酸素系ガスは、酸素放出配管17から酸素ガスとして放出される。反応により生成した水(水蒸気)は、ドレン配管15により凝縮装置8に送られて凝縮水となり、排水管16にり系外に放出される。   Here, the oxygen-based gas and the hydrogen gas that have been sent react to become water, but a part of the hydrogen gas is dissolved in pure water by the hydrogen gas dissolving device 4 ', so the chemical amount In theory, oxygen-based gas becomes excessive. This excess oxygen-based gas is released from the oxygen release pipe 17 as oxygen gas. Water (steam) generated by the reaction is sent to the condensing device 8 through the drain pipe 15 to become condensed water, and is discharged out of the system through the drain pipe 16.

この装置においても、余剰ガス処理手段5の温度は温度センサー6により常時監視されている。   Also in this apparatus, the temperature of the surplus gas processing means 5 is constantly monitored by the temperature sensor 6.

そして、触媒活性の低下、水素ガスのリーク、その他何らかの理由で余剰ガス処理手段5での水素ガスと酸素系ガスの反応が低下し、あるいは反応が停止すると余剰ガス処理手段5の温度が低下し、この温度低下は温度センサー6に検知されて電源制御装置7により電源スイッチ2が遮断されて直流電源3から電気分解装置1への給電が中止され、電気分解装置1における純水の電解が中断されて、水素ガスのクリーンルーム内への漏洩が防止される。   Then, the reaction between the hydrogen gas and the oxygen-based gas in the surplus gas processing means 5 decreases for some reason due to a decrease in catalyst activity, hydrogen gas leakage, or the temperature of the surplus gas processing means 5 decreases when the reaction stops. The temperature drop is detected by the temperature sensor 6, the power switch 2 is cut off by the power control device 7, the power supply from the DC power source 3 to the electrolyzer 1 is stopped, and electrolysis of pure water in the electrolyzer 1 is interrupted. Thus, leakage of hydrogen gas into the clean room is prevented.

この実施例は、余剰ガス処理手段5として燃料電池を使用したものであり、図3はその要部を概略的に示したブロック図である。   In this embodiment, a fuel cell is used as the surplus gas processing means 5, and FIG. 3 is a block diagram schematically showing the main part thereof.

この実施例は、実施例1及び実施例2にも適用可能であり、余剰ガス処理手段5の部分を除く他の部分は他の実施例と共通の構成、動作であるので、余剰ガス処理手段5の部分についてのみ説明する。   This embodiment can also be applied to the first and second embodiments, and the other portions except the portion of the surplus gas processing means 5 have the same configuration and operation as the other embodiments, so that the surplus gas processing means. Only the portion 5 will be described.

燃料電池20には、水素ガス導入管21、酸素系ガス導入管22により、それぞれ燃料としての水素と酸素が供給される。酸素系ガス導入管22には、活性炭処理装置23が介挿されており、未反応のオゾンガスはここで酸素ガスに還元される。燃料電池20内の気相の温度、圧力は、それぞれ温度センサー24、圧力センサー25により測定され、水素ガスと酸素ガスは反応等量となる量又は酸素ガスがやや過剰となる量だけ、流量調整弁26、27で調整されて供給される。   Hydrogen and oxygen as fuel are supplied to the fuel cell 20 through a hydrogen gas introduction pipe 21 and an oxygen-based gas introduction pipe 22, respectively. An activated carbon treatment device 23 is inserted in the oxygen-based gas introduction pipe 22, and unreacted ozone gas is reduced here to oxygen gas. The temperature and pressure of the gas phase in the fuel cell 20 are measured by the temperature sensor 24 and the pressure sensor 25, respectively. It is adjusted and supplied by valves 26 and 27.

燃料電池20から出力される電流は、電気ケーブル28により出力されてシステムの電源の一部として用いられる。   The current output from the fuel cell 20 is output by the electric cable 28 and used as part of the system power supply.

符号29は、燃料電池20の出力電圧を測定する電圧計、30は電流計である。
この実施例においては、水素水製造システムに適用する場合には、水素水を製造した余剰の水素が、オゾン水製造システムに適用する場合には、電気分解装置1で生成された水素が燃料として燃料電池20に供給されて発電が行われる。
Reference numeral 29 is a voltmeter for measuring the output voltage of the fuel cell 20, and 30 is an ammeter.
In this embodiment, when applied to a hydrogen water production system, surplus hydrogen produced from hydrogen water is used as fuel, and when applied to an ozone water production system, hydrogen produced by the electrolysis apparatus 1 is used as fuel. Electric power is generated by being supplied to the fuel cell 20.

そして、燃料電池20の出力電圧、電流値、水素ガスや酸素ガスの流量、燃料電池20内の気相の温度、圧力等が正規の運転状態のそれと異なる値を示したときには、水素ガスのリークが疑われるため、電気分解装置1への給電が遮断される。 When the output voltage, current value, flow rate of hydrogen gas or oxygen gas, temperature of the gas phase in the fuel cell 20, pressure, etc. show values different from those in the normal operation state, hydrogen gas leaks. Therefore, power supply to the electrolyzer 1 is interrupted.

本発明の実施例1の構成を概略的に示すブロック図。1 is a block diagram schematically showing the configuration of a first embodiment of the present invention. 本発明の実施例2の構成を概略的に示すブロック図。The block diagram which shows schematically the structure of Example 2 of this invention. 本発明の実施例3の構成を概略的に示すブロック図。The block diagram which shows schematically the structure of Example 3 of this invention.

符号の説明Explanation of symbols

1……電気分解装置、2……電源スイッチ、3……直流電源、4……オゾンガス溶解装置、4′……水素ガス溶解装置、5……余剰ガス処理手段、6……温度センサー、7……電源制御装置、8……凝縮装置、9……純水供給ライン、10……酸素系ガス供給配管、11……オゾン水供給ライン、11……水素水供給ライン、12……水素ガス供給配管、12′……余剰水素ガス供給配管、13……余剰酸素系ガス供給配管、14……空気取入配管、15……ドレン配管、16……排水管、17……酸素放出配管、20……燃料電池、21……水素ガス導入管、22……酸素系ガス導入管、23……活性炭処理装置、24……温度センサー、25……圧力センサー、26,27……流量調整弁、28……電気ケーブル、29……電圧計、30……電流計。 DESCRIPTION OF SYMBOLS 1 ... Electrolysis apparatus, 2 ... Power switch, 3 ... DC power supply, 4 ... Ozone gas dissolution apparatus, 4 '... Hydrogen gas dissolution apparatus, 5 ... Surplus gas processing means, 6 ... Temperature sensor, 7 ...... Power supply control device, 8 ... Condenser, 9 ... Pure water supply line, 10 ... Oxygen-based gas supply pipe, 11 ... Ozone water supply line, 11 ... Hydrogen water supply line, 12 ... Hydrogen gas Supply pipe, 12 '... surplus hydrogen gas supply pipe, 13 ... surplus oxygen gas supply pipe, 14 ... air intake pipe , 15 ... drain pipe, 16 ... drain pipe, 17 ... oxygen release pipe, DESCRIPTION OF SYMBOLS 20 ... Fuel cell, 21 ... Hydrogen gas introduction pipe, 22 ... Oxygen type gas introduction pipe, 23 ... Activated carbon processing apparatus, 24 ... Temperature sensor, 25 ... Pressure sensor, 26, 27 ... Flow control valve , 28 ... Electric cable, 29 ... Voltmeter, 30 ... ammeter.

Claims (7)

純水を電気分解してオゾンを含む酸素系ガスと水素ガスを生成する電気分解装置と、前記電気分解装置に電力を供給する直流電源装置と、前記電気分解装置の酸素系ガス排出口に配管を介して接続され連続的又は断続的に供給される純水中に酸素系ガスを溶解させるガス溶解手段と、前記電気分解装置及び前記酸素系ガス溶解手段に純水を供給する純水供給手段とを備えた機能水製造装置において、
前記ガス溶解手段において純水に未溶解の酸素系ガス、化学量論的に足りなくなった酸素を補う空気並びに前記電気分解装置で生成した水素ガスを導入して、酸素過剰の状態で化学反応を行うことにより水を生成する余剰ガス処理手段と、前記余剰ガス処理手段の温度を測定する温度センサーと、前記温度センサーが測定した温度が所定の温度より低い場合に前記直流電源装置から前記電気分解装置への給電を遮断する電源遮断装置を有することを特徴とする機能水製造装置。
An electrolyzer that electrolyzes pure water to generate an oxygen-based gas containing hydrogen and hydrogen gas, a DC power supply that supplies power to the electrolyzer, and a pipe to an oxygen-based gas discharge port of the electrolyzer A gas dissolving means for dissolving oxygen-based gas in pure water connected via a continuous or intermittent supply, and pure water supply means for supplying pure water to the electrolysis apparatus and the oxygen-based gas dissolving means In the functional water production apparatus equipped with
In the gas dissolving means, an oxygen-based gas that is not dissolved in pure water, air that supplements oxygen in a stoichiometric amount, and hydrogen gas generated by the electrolysis apparatus are introduced to perform a chemical reaction in an oxygen-excess state. Surplus gas processing means for generating water by performing, a temperature sensor for measuring the temperature of the surplus gas processing means, and the electrolysis from the DC power supply device when the temperature measured by the temperature sensor is lower than a predetermined temperature. A functional water production apparatus comprising a power cutoff device that cuts off power supply to the device.
前記ガス溶解手段と前記余剰ガス処理手段とを接続する配管には、オゾンガスを酸素ガスに還元するオゾン還元手段が介装されていることを特徴とする請求項1記載の機能水製造装置。   The functional water production apparatus according to claim 1, wherein an ozone reduction means for reducing ozone gas to oxygen gas is interposed in a pipe connecting the gas dissolving means and the surplus gas processing means. 純水を電気分解して酸素系ガスと水素ガスを生成する電気分解装置と、前記電気分解装置に電力を供給する直流電源装置と、前記電気分解装置の水素ガス排出口に配管を介して接続され連続的又は断続的に供給される純水中に水素ガスを溶解させるガス溶解手段と、前記電気分解装置及び前記水素ガス溶解手段に純水を供給する純水供給手段とを備えた機能水製造装置において、
前記ガス溶解手段において純水に未溶解の水素ガスと前記電気分解装置で生成した酸素系ガスを導入して、酸素過剰の状態で化学反応を行うことにより水を生成する余剰ガス処理手段と、前記余剰ガス処理手段の温度を測定する温度センサーと、前記温度センサーが測定した温度が所定の温度より低い場合に前記直流電源装置から前記電気分解装置への給電を遮断する電源遮断装置を有することを特徴とする機能水製造装置。
An electrolyzer that electrolyzes pure water to produce oxygen-based gas and hydrogen gas, a DC power supply that supplies power to the electrolyzer, and a hydrogen gas outlet of the electrolyzer connected via a pipe Functional water comprising gas dissolving means for dissolving hydrogen gas in pure water supplied continuously or intermittently, and pure water supply means for supplying pure water to the electrolysis apparatus and the hydrogen gas dissolving means In manufacturing equipment,
Surplus gas treatment means for producing water by introducing a hydrogen gas undissolved in pure water and an oxygen-based gas produced by the electrolyzer in the gas dissolving means and performing a chemical reaction in an oxygen-excess state ; A temperature sensor that measures the temperature of the surplus gas processing means, and a power shut-off device that shuts off power supply from the DC power supply device to the electrolyzer when the temperature measured by the temperature sensor is lower than a predetermined temperature. Functional water production equipment characterized by.
前記電気分解装置の酸素系ガス排出口と前記余剰ガス処理手段とを接続する配管には、オゾンガスを酸素ガスに還元するオゾン還元手段が介装されていることを特徴とする請求項3記載の機能水製造装置。   4. The ozone reduction means for reducing ozone gas to oxygen gas is interposed in a pipe connecting the oxygen-based gas discharge port of the electrolyzer and the surplus gas processing means. Functional water production equipment. 前記余剰ガス処理手段が燃料電池であることを特徴とする請求項1乃至4のいずれか1項記載の機能水製造装置。   The functional water production apparatus according to any one of claims 1 to 4, wherein the surplus gas treatment means is a fuel cell. 前記燃料電池の出力電圧が所定の電圧より低い場合に前記直流電源装置からの給電を遮断する電源遮断装置を有することを特徴とする請求項5記載の機能水製造装置。 6. The functional water production apparatus according to claim 5 , further comprising a power shut-off device that cuts off power supply from the DC power supply device when the output voltage of the fuel cell is lower than a predetermined voltage. 前記電気分解装置とガス溶解手段とを接続する配管に、逆止弁と水分除去装置を順に介挿したことを特徴とする請求項1乃至6のいずれか1項記載の機能水製造装置。   The functional water production apparatus according to any one of claims 1 to 6, wherein a check valve and a water removal device are inserted in order in a pipe connecting the electrolyzer and the gas dissolving means.
JP2003371065A 2003-10-30 2003-10-30 Functional water production equipment with exhaust gas treatment function Expired - Fee Related JP4451114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371065A JP4451114B2 (en) 2003-10-30 2003-10-30 Functional water production equipment with exhaust gas treatment function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371065A JP4451114B2 (en) 2003-10-30 2003-10-30 Functional water production equipment with exhaust gas treatment function

Publications (2)

Publication Number Publication Date
JP2005131554A JP2005131554A (en) 2005-05-26
JP4451114B2 true JP4451114B2 (en) 2010-04-14

Family

ID=34647872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371065A Expired - Fee Related JP4451114B2 (en) 2003-10-30 2003-10-30 Functional water production equipment with exhaust gas treatment function

Country Status (1)

Country Link
JP (1) JP4451114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838779B2 (en) * 2007-09-05 2011-12-14 株式会社ニクニ Functional liquid production equipment
WO2017154138A1 (en) * 2016-03-09 2017-09-14 株式会社 東芝 System for preventing hydrogen leakage, method for preventing hydrogen leakage, system for producing hydrogen, and system for storing electric power
JP7365283B2 (en) * 2020-03-26 2023-10-19 株式会社日本トリム washing equipment
CN112806849B (en) * 2020-12-11 2022-12-27 武汉宝盈普济科技有限公司 Hydrogen-rich water tea bar machine with water dispenser function and hydrogen-rich water generation method

Also Published As

Publication number Publication date
JP2005131554A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US8999069B2 (en) Method for producing cleaning water for an electronic material
US20110042281A1 (en) Gas-dissolved water supply system
US20070034230A1 (en) Method and system for producing ozonized deionized water
JPH1177023A (en) Preparation of hydrogen-containing ultrapure water
TW200416306A (en) Fluorine gas generator
JPWO2008072392A1 (en) Exhaust gas treatment method and apparatus
JP6427378B2 (en) Ammonia dissolved water supply system, ammonia dissolved water supply method, and ion exchange apparatus
JP4108798B2 (en) Ozone-containing ultrapure water supply method and ozone-containing ultrapure water supply device
JP4451114B2 (en) Functional water production equipment with exhaust gas treatment function
JP2009016118A (en) Fuel cell power generating device
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
JP2897637B2 (en) Wet processing equipment
US10239772B2 (en) Recycling loop method for preparation of high concentration ozone
JP3432136B2 (en) Ozone and hydrogen generation method and generator
JP5126478B2 (en) Cleaning liquid manufacturing method, cleaning liquid supply apparatus and cleaning system
JP2005186067A (en) Ozone-containing ultrapure water supply method and apparatus
JPH11138182A (en) Ozonized ultrapure water feeder
JP4228144B2 (en) Solid polymer water electrolysis hydrogen production system
JP2017202474A (en) Ozone dissolved water production apparatus
JP2016136139A (en) Measuring method and measuring device of oxidizing agent concentration, and electronic material cleaning device
JP3748765B2 (en) Electrolytic gas generation method and electrolytic gas generator
JPH11267652A (en) Method of generating ozone water and hydrogen water, and device therefor
JP3188063B2 (en) Semiconductor wafer heat treatment equipment
JP2002153729A (en) Method and device for halogen-containing gas treatment
JP2005270720A (en) Functional water manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees