JP4449273B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP4449273B2
JP4449273B2 JP2002066470A JP2002066470A JP4449273B2 JP 4449273 B2 JP4449273 B2 JP 4449273B2 JP 2002066470 A JP2002066470 A JP 2002066470A JP 2002066470 A JP2002066470 A JP 2002066470A JP 4449273 B2 JP4449273 B2 JP 4449273B2
Authority
JP
Japan
Prior art keywords
sludge
biological treatment
tank
treatment tank
ultrasonic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002066470A
Other languages
Japanese (ja)
Other versions
JP2003260489A (en
Inventor
隆司 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002066470A priority Critical patent/JP4449273B2/en
Publication of JP2003260489A publication Critical patent/JP2003260489A/en
Application granted granted Critical
Publication of JP4449273B2 publication Critical patent/JP4449273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は有機性排水処理方法および有機性排水処理装置、特に余剰汚泥の発生量を削減する排水処理方法および排水処理装置に関するものである。
【0002】
【従来の技術】
従来、下水処理場など活性汚泥法による廃水処理施設から排出される余剰汚泥は濃縮・脱水後、埋め立て処分や焼却処分されている。しかし、近年、埋め立て処分場の受け入れ容量の問題や焼却時の費用等の問題が生じるため余剰汚泥の削減が求められており、汚泥削減方法の一つとして汚泥を構成する微生物(以下、汚泥構成微生物)を基質化させ生物分解されやすい状態に変換した後に生物処理槽へ返送するという方法が提案されている。
【0003】
汚泥構成微生物の基質化方法のひとつとして、特開2000−24698号公報や特開2000−51883号公報のように物理的破砕処理(機械による破砕処理や超音波による破砕処理)する方法が提案されている。また、図7に示すように、超音波による基質化の効率を向上させるために、特開平11−128975号公報や特開2001−38397号公報のようにアルカリ剤を添加する方法も提案されている
【0004】
【発明が解決しようとする課題】
しかし、超音波による基質化能力は比較的低いので、実装置化する場合、装置は大型となり、運転するためには多大なエネルギーを必要とするため、イニシャルコスト及びランニングコストがかさみ、結果として、余剰汚泥の削減によるコストメリットは小さなものとのなる。また、アルカリ剤を添加する場合は、アルカリ剤添加後の中和処理装置が必要であり、さらに、定期的なアルカリ剤及び中和剤の補給が必要となる。
【0005】
また、上記方法では汚泥構成微生物を基質化させた汚泥が生物処理槽への負荷となり、生物処理槽の状態によっては汚泥削減効率の低下や放流水質の悪化を引き起こすことになるため、使用される場所は十分な生物処理能力がある場所に限定される。
【0006】
本発明は、上記問題点に鑑みなされたもので、その課題とするところは、汚泥削減効率を最大限高め処理水の適正な維持を図るとともに、超音波処理能力の向上を図ることができる有機性排水処理方法及び装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、有機物を含む排水を生物処理槽において微生物による有機物分解を行なうとともに、発生する余剰汚泥を物理的破砕のみで処理した後、物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽に返送する排水処理方法および、排水処理装置において、前記余剰汚泥の前記物理的破砕のみの処理を超音波装置と、この超音波装置に前記余剰汚泥を移送する供給タンクとを有する循環工程において行うことを特徴とする。
【0008】
また本発明は、有機物を含む排水を生物処理槽において微生物による有機物分解を行なうとともに、発生する余剰汚泥を物理的破砕のみで処理した後、物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽とは異なる第二の生物処理槽に移送する排水処理方法および、排水処理装置において、前記余剰汚泥の前記物理的破砕のみの処理を超音波装置、この超音波装置に前記余剰汚泥を移送する供給タンクとを有する循環工程において行うことを特徴とする。
【0009】
【発明の実施の形態】
請求項1および5の発明によれば、超音波装置と供給タンクとから成る循環工程を用いて汚泥を良好に物理的破砕処理することができるため、汚泥構成微生物を基質化する効率が高く、装置を小型化することができる。
【0010】
請求項2の発明によれば、生物処理槽内の汚泥保持量を増加させることができるので、汚泥削減効率を最大限に高めるとともに、放流水の適正な維持を図ることができる。
【0011】
請求項3および7の発明によれば、超音波装置と供給タンクとから成る循環工程を用いて汚泥を良好に物理的破砕処理することができるため、汚泥構成微生物を基質化する効率が高く、なおかつ、有機性排水の処理と基質化した汚泥の処理とを異なる生物処理槽で行うことにより、汚泥削減効率をさらに最大限に高め、放流水の適正な維持を図ることができる。
【0012】
請求項4の発明によれば、第二の生物処理槽内の汚泥保持量を増加させることができるので、汚泥削減効率を最大限に高めるとともに、放流水の適正な維持を図ることができ、さらに、第二の生物処理槽の小型化を図ることができる。
【0013】
特に、上記請求項1、3、5または7の発明によれば、超音波を用いて汚泥構成生物を基質化した後、生物処理することによって、効率良く余剰汚泥を削減することができる。
【0014】
【実施例】
以下、本発明の実施の形態について説明する。
【0015】
(実施例1)
図1は、本発明の実施例1の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図である。
【0016】
図1において、有機性排水1はまず生物処理槽2Aへ送られ、微生物により有機物が生物処理される。
【0017】
ここで、生物処理槽2Aは特に限定するものではなく、好気性生物処理(例えば、活性汚泥方式)、または嫌気性生物処理によって有機物を生物処理する槽のことである。
【0018】
生物処理槽2には分離膜3が設置されており、この分離膜3によって固液分離が行われ、膜を透過した水分は処理水4として系外に排出される。
【0019】
なお、分離膜3は特に限定されるものではなく、平膜型、中空糸型、スパイラル型等いずれを用いてもよく、材質についても特に限定されるものではなく、有機系材質、無機系材質のいずれを用いてもよい。
【0020】
一方、分離膜3で固液分離された汚泥は生物処理槽2A内に蓄積していき、生物処理槽2Aの汚泥保持量が増加する。生物処理槽2Aの汚泥保持量の増加は生物処理能力の増加を意味し、より高負荷の有機性基質の流入に対応可能となる。
【0021】
生物処理槽2Aで発生する余剰汚泥5は供給タンク6に送られ、供給タンク6と超音波装置7とを循環しながら超音波を照射される。
【0022】
汚泥に超音波を照射すると、汚泥中に存在する気体分子に正負の圧力が交互に作用し、正の圧力で圧縮された気体分子は次の瞬間、負の圧力により膨張する。この繰り返しにより気体分子は非常に高い圧力を持ち。遂にはその限界で崩壊する(キャビテーションという)。このキャビテーションにより高温・高圧の反応場が形成され、汚泥構成微生物を破砕し基質化させることができる。
【0023】
超音波装置7の形状は特に限定するものではなく、丸状でも角状でもよい。周波数も特に限定はしないが、低周波のほうが衝撃力が強いことから、約18〜28kHzの周波数が好ましい。また、超音波の照射は上部、側面または底部、さらには超音波装置7内部のいずれからでもよい。
【0024】
ここで、超音波装置7への余剰汚泥の移送は供給タンク6との間を循環させながら行う。汚泥を循環させることにより、超音波装置7内の汚泥濃度の均一化、キャビティーの合一抑制・分散化の効果が得られ、効率のよい超音波処理ができる。
【0025】
なお、図示してはいないが、超音波を照射する直前に有酸素気泡(空気、酸素、オゾン等の気泡)を注入し、汚泥に微細な有酸素気泡を接触させることにより汚泥中の溶存酸素を増加させ、キャビテーションの反応核を増加させる効果がある。さらに、微細な気泡はそれ自体がキャビテーションの反応核となり得る。また、キャビテーションにより生成される高温・高圧の反応場に酸素(有酸素気泡の注入)が入りこむと酸化力の高い活性種が生成され、汚泥構成微生物を基質化することができる。
【0028】
超音波照射により基質化された汚泥(以下、基質化汚泥と称す)9は生物処理槽2Aに返送され、生物処理される。基質化汚泥9を返送することによって生物処理槽2Aへの有機性基質負荷が増えることになるが、分離膜3によって槽内の汚泥濃度が増加、すなわち、汚泥保持量が増加しているため、負荷の増加に対応することができる。これにより、高い汚泥削減効果を得るとともに、放流水の適正な維持を図ることができる。
【0029】
なお、図1では基質化汚泥9は供給タンク6から生物処理槽2Aへ返送されているが、生物処理槽2Aへの返送方法は特に限定されるものではなく、超音波装置7から生物処理槽2Aへ返送してもよい。
【0030】
(実施例2)
図2は、本発明の実施例2の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図である。
【0031】
図2において、有機性排水1はまず生物処理槽2Bへ送られ、微生物により有機物が生物処理され、ついで沈殿槽10へと送られる。
【0032】
生物処理槽2B内には担体11が設置されており、担体11に汚泥を付着させることにより、槽内の汚泥保持量を増加させることができる。これによって、生物処理槽2Bの生物処理能力が増加し、より高負荷の有機基質の流入に対応可能となる。
【0033】
担体11の生物処理槽2B内への設置方法については限定されるものではなく、生物処理槽2B内で流動させても、固定させてもよい。また、担体11の形状は特に限定されるものではなく、流動させる場合は球状でも角状でも中空糸状でもよく、固定する場合は、ひも状でもハニカム状でも波板状でもよい。さらに、材質についても特に限定するものではなく、ポリ塩化ビニリデン、ポリプロピレン、ポリエチレン等の有機系材質でもよいし、シリカ系、アルミナ系等の無機系材質でもよい。
【0034】
沈殿槽10では、重力沈降により固液分離が行われ、上澄水は処理水として系外に排出されるとともに、底部に沈降した汚泥は、返送汚泥12として生物処理槽2Bに返送され、一部は余剰汚泥5として供給タンク6に送られる。
【0035】
供給タンク6に送られた余剰汚泥5は、実施例1と同様に、供給タンク6と超音波装置7とを循環しながら超音波を照射された後、基質化汚泥9として生物処理槽2Bへ返送され、生物処理される。基質化汚泥9を返送することによって生物処理槽2Bへの有機性基質負荷が増えることになるが、担体11によって槽内の汚泥保持量が増加しているため、負荷の増加に対応することができる。これにより、高い汚泥削減効果を得るとともに、放流水の適正な維持を図ることができる。
【0036】
(実施例3)
図3は、本発明の実施例3の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図である。
【0037】
本実施例では生物処理槽2C内に分離膜3と担体11の両方を設置している。
【0038】
本実施例における処理工程は実施例1の場合と同じであるが、実施例1および実施例2の場合よりも生物処理槽2C内の汚泥保持量を高くできるため、特に、有機性排水1の流入負荷が高い場合に有効である。
【0039】
(実施例4)
図4は、本発明の実施例4の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図である。
【0040】
図4において、有機性排水1はまず生物処理槽2Dへ送られ、微生物により有機物が生物処理され、ついで沈殿槽10へと送られる。
【0041】
沈殿槽10では、重力沈降により固液分離が行われ、上澄水は処理水として系外に排出されるとともに、底部に沈降した汚泥は、返送汚泥12として生物処理槽2Dに返送され、一部は余剰汚泥5として第二生物処理槽13に移送される。
【0042】
第二生物処理槽13には分離膜3と担体11が設置され、槽内の汚泥保持量が増加し、生物処理能力が高められている。
【0043】
分離膜3によって固液分離された膜透過水14は有機性排水1と混合された後、生物処理槽2へ送られる。
【0044】
なお、図示してはいないが、膜透過水14は有機性排水1と混合することなく直接、生物処理槽2Dに返送してもよいし、処理水として系外に排出してもよい。
【0045】
第二生物処理槽13内の汚泥は供給タンク6に移送され、供給タンク6と超音波装置7とを循環しながら超音波照射された後、基質化汚泥9が第二生物処理槽13に返送され、生物処理される。これにより、高い汚泥削減効果を得るとともに、放流水の適正な維持を図ることができる。
【0046】
なお、図示してはいないが、余剰汚泥5を直接、供給タンク6に移送し、供給タンク6と超音波装置7とを循環させながら超音波照射した後に第二生物処理槽13に移送するようにしてもよい。
【0047】
本実施例は、特に有機性排水1の流入負荷が高く、生物処理槽2Dに分離膜、担体を設置しても基質化汚泥の返送による負荷の増加に対応できない場合に有効である。また、寒冷地の場合、水温の低下により生物処理槽2D内の汚泥の活性が下がり、生物処理能力が低下するため、基質化汚泥の返送による負荷の増加に対応できない場合が生じる。このような場合においても、本実施例は有効である。
【0048】
なお、本実施例では、第二生物処理槽13において分離膜3と担体11を併用しているが、どちらか一方を用いた場合でも第二生物処理槽13内の汚泥保持量を増加させることができるため、良好な汚泥削減効果が得られることは明白である。
【0049】
(実施例5)
図5は、本発明の実施例5の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図である。
【0050】
において、有機性排水1はまず生物処理槽2Dへ送られ、微生物により有機物が生物処理され、ついで沈殿槽10へと送られる。
【0051】
沈殿槽10では、重力沈降により固液分離が行われ、上澄水は処理水として系外に排出されるとともに、底部に沈降した汚泥は、返送汚泥12として生物処理槽2に返送され、一部は余剰汚泥5として供給タンク6Aまたは第二生物処理槽13に移送される。
【0052】
原則として余剰汚泥5は供給タンク6Aに送られる。供給タンク6Aに送られた余剰汚泥5は、実施例2と同様に、供給タンク6Aと超音波装置7とを循環しながら超音波を照射された後、基質化汚泥9として生物処理槽2Dへ返送され、生物処理される。
【0053】
これに対し、有機性排水1の流入負荷が増加し基質化汚泥9を生物処理槽2Dへ返送できなくなった場合や、冬期における水温の低下により生物処理槽2D内の汚泥の活性が下がり、生物処理能力が低下した場合には、余剰汚泥5を第二生物処理槽13に移送するよう切換える。
【0054】
第二生物処理槽13内の汚泥は供給タンク6Bに移送され、供給タンク6Bと超音波装置7とを循環しながら超音波照射された後、基質化汚泥9が第二生物処理槽13に返送され、生物処理される。
【0055】
このように、第二生物処理槽13を必要時にのみ使用することにより、装置の小型化やランニングコストの低減化を図ることができる。
【0056】
(実施例6)
図6は、本発明の実施例6の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図である。
【0057】
実施例5では2つの供給タンクを用いていたが、本実施例では供給タンクを単一のものとしている。
【0058】
余剰汚泥5は供給タンク6に送られ、供給タンク6と超音波装置7とを循環させながら超音波を照射される。
【0059】
基質化汚泥9は原則として生物処理槽2Dに移送するようにし、有機性排水1の流入負荷の状態が高い場合や生物処理槽2D内汚泥の活性が低下した場合には第二生物処理槽13に移送するように切換える。
【0060】
本実施例においても、実施例5と同様に、第二生物処理槽13を必要時にのみ使用することにより、装置の小型化やランニングコストの低減化を図ることができる。
【0061】
【発明の効果】
以上詳細に説明したとおり、有機物を含む排水を生物処理槽において微生物による有機物分解を行なうとともに、発生する余剰汚泥を物理的破砕のみで処理した後、物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽に返送する排水処理方法および、排水処理装置において、前記余剰汚泥の前記物理的破砕のみの処理を超音波装置と、この超音波装置に前記余剰汚泥を移送する供給タンクとを有する循環工程において行うことを特徴とし、汚泥を良好に物理的破砕処理することができるため、汚泥構成微生物を基質化する効率を高くすることができる。また、ランニングコストやイニシャルコストを低減することができる。
【0062】
また、有機物を含む排水を生物処理槽において微生物による有機物分解を行なうとともに、発生する余剰汚泥を物理的破砕のみで処理した後、物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽とは異なる第二の生物処理槽に移送する排水処理方法および、排水処理装置において、前記余剰汚泥の前記物理的破砕のみで処理を超音波装置と供給タンクを有する循環工程において行うことを特徴とし、汚泥を良好に物理的破砕処理することができるため、汚泥構成微生物を基質化する効率が高く、なおかつ、有機性排水の処理と基質化した汚泥の処理とを異なる生物処理槽で行うことにより、汚泥削減効率をさらに最大限に高め、放流水の適正な維持を図ることができる。また、ランニングコストやイニシャルコストを低減することができる。
【図面の簡単な説明】
【図1】本発明の実施例1の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図
【図2】本発明の実施例2の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図
【図3】本発明の実施例3の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図
【図4】本発明の実施例4の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図
【図5】本発明の実施例5の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図
【図6】本発明の実施例6の排水処理方法および、排水処理装置における余剰汚泥の処理を示す工程図
【図7】従来の実施例の排水処理工程における余剰汚泥の処理を示す工程図
【符号の説明】
1…有機性排水
2A、2B、2C、2D…生物処理槽
3…分離膜
4…処理水
5…余剰汚泥
6、6A、6B…供給タンク
7…超音波装置
8…アルカリ剤
9…基質化汚泥
10…沈殿槽
11…担体
12…返送汚泥
13…第二生物処理槽
14…膜透過水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic wastewater treatment method and an organic wastewater treatment device , and more particularly to a wastewater treatment method and a wastewater treatment device that reduce the amount of excess sludge generated.
[0002]
[Prior art]
Conventionally, surplus sludge discharged from a wastewater treatment facility such as a sewage treatment plant by the activated sludge method is disposed of in landfill or incinerated after concentration and dehydration. However, in recent years, there has been a demand for reduction of surplus sludge due to problems such as the capacity of landfills and the cost of incineration. Microorganisms constituting sludge (hereinafter referred to as sludge composition) are one of the sludge reduction methods. There has been proposed a method in which a microorganism is converted into a substrate and converted into a state that is easily biodegraded, and then returned to a biological treatment tank.
[0003]
As one of the methods for forming sludge-constituting microorganisms as a substrate, a method of physical crushing (machine crushing or ultrasonic crushing) as disclosed in Japanese Patent Application Laid-Open Nos. 2000-24698 and 2000-51883 has been proposed. ing. In addition, as shown in FIG. 7, in order to improve the efficiency of substrate formation by ultrasonic waves, a method of adding an alkali agent as disclosed in JP-A-11-128975 and JP-A-2001-38397 has been proposed. Yes .
[0004]
[Problems to be solved by the invention]
However, since the ability to form a substrate with ultrasonic waves is relatively low, the device becomes large in size when used as an actual device, and requires a large amount of energy to operate, resulting in high initial costs and running costs. Cost merit by reducing excess sludge is small. Moreover, when adding an alkali agent, the neutralization processing apparatus after alkali agent addition is required, and also the regular replenishment of an alkali agent and a neutralizer is needed.
[0005]
In the above method, sludge with sludge-constituting microorganisms used as a substrate becomes a load on the biological treatment tank, and depending on the state of the biological treatment tank, it may cause a decrease in sludge reduction efficiency and deterioration of the discharged water quality. The location is limited to locations with sufficient biological treatment capacity.
[0006]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to increase the sludge reduction efficiency to the maximum and to properly maintain the treated water, and to improve the ultrasonic treatment capacity. A wastewater treatment method and apparatus are provided.
[0007]
[Means for Solving the Problems]
The present invention performs organic matter decomposition by microorganisms in wastewater containing organic matter in a biological treatment tank, and after the surplus sludge generated is treated only by physical crushing, the surplus sludge treated only by physical crushing is treated in the biological treatment tank. In the wastewater treatment method and the wastewater treatment apparatus to be returned to the wastewater treatment apparatus , only the physical crushing of the surplus sludge is performed in a circulation process having an ultrasonic device and a supply tank for transferring the surplus sludge to the ultrasonic device. It is characterized by that.
[0008]
Moreover, the present invention performs organic matter decomposition by microorganisms in wastewater containing organic matter in a biological treatment tank, and after treating the generated excess sludge only by physical crushing, the surplus sludge treated only by physical crushing is treated by the biological treatment. In a wastewater treatment method and a wastewater treatment apparatus for transferring to a second biological treatment tank different from the tank, an ultrasonic device is used to process only the physical crushing of the excess sludge, and the excess sludge is transferred to the ultrasonic device. It is carried out in a circulation process having a supply tank.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the inventions of claims 1 and 5 , since the sludge can be satisfactorily physically crushed using a circulation process comprising an ultrasonic device and a supply tank , the efficiency of converting the sludge constituent microorganisms into a substrate is high, The apparatus can be miniaturized.
[0010]
According to the invention of claim 2, since the sludge retention amount in the biological treatment tank can be increased, it is possible to maximize the sludge reduction efficiency and appropriately maintain the discharged water.
[0011]
According to the inventions of claims 3 and 7 , since the sludge can be satisfactorily physically crushed using a circulation process comprising an ultrasonic device and a supply tank , the efficiency of converting the sludge-constituting microorganism into a substrate is high, In addition, by performing the treatment of organic wastewater and the treatment of sludge as a substrate in different biological treatment tanks, the sludge reduction efficiency can be further maximized and the discharge water can be appropriately maintained.
[0012]
According to the invention of claim 4, since the amount of sludge retained in the second biological treatment tank can be increased, the sludge reduction efficiency can be maximized and the proper maintenance of the discharged water can be achieved. Furthermore, size reduction of a 2nd biological treatment tank can be achieved.
[0013]
In particular, according to the first, third, fifth or seventh aspect of the present invention, surplus sludge can be efficiently reduced by biologically treating sludge constituent organisms as a substrate using ultrasonic waves.
[0014]
【Example】
Embodiments of the present invention will be described below.
[0015]
Example 1
FIG. 1 is a process diagram showing a wastewater treatment method and a treatment of excess sludge in a wastewater treatment apparatus according to Example 1 of the present invention.
[0016]
In FIG. 1, the organic waste water 1 is first sent to the biological treatment tank 2A, and the organic matter is biologically treated by microorganisms.
[0017]
Here, the biological treatment tank 2A is not particularly limited, and is a tank for biologically treating organic substances by aerobic biological treatment (for example, activated sludge system) or anaerobic biological treatment.
[0018]
A separation membrane 3 is installed in the biological treatment tank 2, and solid-liquid separation is performed by the separation membrane 3, and water that has permeated through the membrane is discharged out of the system as treated water 4.
[0019]
The separation membrane 3 is not particularly limited, and any of a flat membrane type, a hollow fiber type, a spiral type, and the like may be used, and the material is not particularly limited, and an organic material or an inorganic material is used. Any of these may be used.
[0020]
On the other hand, the sludge separated into solid and liquid by the separation membrane 3 accumulates in the biological treatment tank 2A, and the amount of sludge retained in the biological treatment tank 2A increases. An increase in the amount of sludge retained in the biological treatment tank 2A means an increase in biological treatment capacity, and it becomes possible to cope with an inflow of a higher load organic substrate.
[0021]
Excess sludge 5 generated in the biological treatment tank 2 </ b> A is sent to the supply tank 6 and irradiated with ultrasonic waves while circulating between the supply tank 6 and the ultrasonic device 7.
[0022]
When ultrasonic waves are applied to the sludge, positive and negative pressures alternately act on gas molecules present in the sludge, and the gas molecules compressed by the positive pressure expand at the next moment due to the negative pressure. By repeating this, gas molecules have very high pressure. Eventually it collapses at that limit (called cavitation). By this cavitation, a high-temperature and high-pressure reaction field is formed, and sludge constituent microorganisms can be crushed and made into a substrate.
[0023]
The shape of the ultrasonic device 7 is not particularly limited, and may be round or square. The frequency is not particularly limited, but a frequency of about 18 to 28 kHz is preferable because a low frequency has a stronger impact force. Further, the irradiation of ultrasonic waves may be performed from any of the upper portion, the side surface or the bottom portion, and further inside the ultrasonic device 7.
[0024]
Here, the excess sludge is transferred to the ultrasonic device 7 while being circulated between the supply tank 6. By circulating the sludge, the effect of uniformizing the sludge concentration in the ultrasonic device 7, suppressing the coalescence of the cavities, and dispersing can be obtained, and efficient ultrasonic treatment can be performed.
[0025]
Although not shown, dissolved oxygen in the sludge is injected by injecting aerobic bubbles (bubbles of air, oxygen, ozone, etc.) just before irradiating ultrasonic waves and bringing the fine aerobic bubbles into contact with the sludge. This increases the number of reaction nuclei of cavitation. Furthermore, the fine bubbles themselves can be cavitation reaction nuclei. Moreover, when oxygen (injection of aerobic bubbles) enters a high-temperature and high-pressure reaction field generated by cavitation, active species with high oxidizing power are generated, and sludge-constituting microorganisms can be used as substrates.
[0028]
Sludge that has been made into a substrate by ultrasonic irradiation (hereinafter referred to as “substrate sludge”) 9 is returned to the biological treatment tank 2A for biological treatment. Returning the substrate sludge 9 increases the organic substrate load on the biological treatment tank 2A, but the separation membrane 3 increases the sludge concentration in the tank, that is, the sludge retention amount increases. It can cope with an increase in load. Thereby, while obtaining the high sludge reduction effect, the appropriate maintenance of discharged water can be aimed at.
[0029]
In FIG. 1, the substrate sludge 9 is returned from the supply tank 6 to the biological treatment tank 2 </ b> A, but the return method to the biological treatment tank 2 </ b> A is not particularly limited, and from the ultrasonic device 7 to the biological treatment tank. You may return to 2A.
[0030]
(Example 2)
FIG. 2 is a process diagram showing the wastewater treatment method of Example 2 of the present invention and the treatment of excess sludge in the wastewater treatment apparatus .
[0031]
In FIG. 2, the organic waste water 1 is first sent to the biological treatment tank 2 </ b> B, the organic matter is biologically treated by microorganisms, and then sent to the sedimentation tank 10.
[0032]
A carrier 11 is installed in the biological treatment tank 2B. By attaching sludge to the carrier 11, the amount of sludge retained in the tank can be increased. Thereby, the biological treatment capacity of the biological treatment tank 2B is increased, and it becomes possible to cope with the inflow of a higher load organic substrate.
[0033]
The method of installing the carrier 11 in the biological treatment tank 2B is not limited, and the carrier 11 may be flowed or fixed in the biological treatment tank 2B. The shape of the carrier 11 is not particularly limited. When the carrier 11 is made to flow, it may be spherical, square or hollow fiber, and when fixed, it may be a string, honeycomb or corrugated plate. Furthermore, the material is not particularly limited, and may be an organic material such as polyvinylidene chloride, polypropylene, or polyethylene, or may be an inorganic material such as silica or alumina.
[0034]
In the sedimentation tank 10, solid-liquid separation is performed by gravity sedimentation, and the supernatant water is discharged out of the system as treated water, and the sludge settled at the bottom is returned to the biological treatment tank 2B as a return sludge 12, and partly Is sent to the supply tank 6 as surplus sludge 5.
[0035]
The surplus sludge 5 sent to the supply tank 6 is irradiated with ultrasonic waves while circulating through the supply tank 6 and the ultrasonic device 7 in the same manner as in the first embodiment, and then is used as the substrate sludge 9 to the biological treatment tank 2B. Returned and biologically processed. Returning the substrate sludge 9 increases the organic substrate load on the biological treatment tank 2B. However, since the amount of sludge retained in the tank is increased by the carrier 11, the increase in load can be accommodated. it can. Thereby, while obtaining the high sludge reduction effect, the appropriate maintenance of discharged water can be aimed at.
[0036]
(Example 3)
FIG. 3 is a process diagram showing the wastewater treatment method of Example 3 of the present invention and the treatment of excess sludge in the wastewater treatment apparatus .
[0037]
In this embodiment, both the separation membrane 3 and the carrier 11 are installed in the biological treatment tank 2C.
[0038]
Although the treatment process in the present embodiment is the same as that in the first embodiment, the amount of sludge retained in the biological treatment tank 2C can be made higher than that in the first and second embodiments. This is effective when the inflow load is high.
[0039]
Example 4
FIG. 4 is a process diagram showing the wastewater treatment method of Example 4 of the present invention and the treatment of excess sludge in the wastewater treatment apparatus .
[0040]
In FIG. 4, the organic waste water 1 is first sent to the biological treatment tank 2 </ b> D, the organic matter is biologically treated by microorganisms, and then sent to the precipitation tank 10.
[0041]
In the sedimentation tank 10, solid-liquid separation is performed by gravity sedimentation, and the supernatant water is discharged out of the system as treated water, and the sludge settled at the bottom is returned to the biological treatment tank 2D as a return sludge 12, and partly Is transferred to the second biological treatment tank 13 as surplus sludge 5.
[0042]
In the second biological treatment tank 13, the separation membrane 3 and the carrier 11 are installed, the amount of sludge retained in the tank is increased, and the biological treatment capacity is enhanced.
[0043]
The membrane permeated water 14 separated by solid-liquid separation by the separation membrane 3 is mixed with the organic waste water 1 and then sent to the biological treatment tank 2.
[0044]
Although not shown, the membrane permeate 14 may be directly returned to the biological treatment tank 2D without being mixed with the organic waste water 1, or may be discharged out of the system as treated water.
[0045]
The sludge in the second biological treatment tank 13 is transferred to the supply tank 6 and irradiated with ultrasonic waves while circulating between the supply tank 6 and the ultrasonic device 7, and then the substrate sludge 9 is returned to the second biological treatment tank 13. And biologically processed. Thereby, while obtaining the high sludge reduction effect, the appropriate maintenance of discharged water can be aimed at.
[0046]
Although not shown in the figure, the surplus sludge 5 is directly transferred to the supply tank 6 and is then transferred to the second biological treatment tank 13 after being irradiated with ultrasonic waves while circulating the supply tank 6 and the ultrasonic device 7. It may be.
[0047]
This embodiment is particularly effective when the inflow load of the organic waste water 1 is high, and even if a separation membrane and a carrier are installed in the biological treatment tank 2D, the increase in the load due to the return of the substrate sludge cannot be dealt with. In the case of cold districts, the sludge activity in the biological treatment tank 2D is lowered due to a decrease in the water temperature, and the biological treatment capacity is lowered. Therefore, there is a case where the increase in load due to the return of the substrate sludge cannot be coped with. Even in such a case, the present embodiment is effective.
[0048]
In this embodiment, the separation membrane 3 and the carrier 11 are used in combination in the second biological treatment tank 13, but the amount of sludge retained in the second biological treatment tank 13 is increased even when either one is used. Therefore, it is clear that a good sludge reduction effect can be obtained.
[0049]
(Example 5)
FIG. 5 is a process diagram showing the wastewater treatment method and the treatment of excess sludge in the wastewater treatment apparatus of Example 5 of the present invention.
[0050]
In FIG. 5 , the organic waste water 1 is first sent to the biological treatment tank 2 </ b> D, the organic matter is biologically treated by microorganisms, and then sent to the precipitation tank 10.
[0051]
In the sedimentation tank 10, solid-liquid separation is performed by gravity sedimentation, and the supernatant water is discharged out of the system as treated water, and the sludge settled at the bottom is returned to the biological treatment tank 2D as return sludge 12. The part is transferred to the supply tank 6 </ b> A or the second biological treatment tank 13 as excess sludge 5.
[0052]
In principle, the excess sludge 5 is sent to the supply tank 6A. The surplus sludge 5 sent to the supply tank 6A is irradiated with ultrasonic waves while circulating through the supply tank 6A and the ultrasonic device 7 in the same manner as in the second embodiment, and then is used as the substrate sludge 9 to the biological treatment tank 2D. Returned and biologically processed.
[0053]
On the other hand, when the inflow load of the organic waste water 1 increases and the substrate sludge 9 cannot be returned to the biological treatment tank 2D, or the sludge activity in the biological treatment tank 2D decreases due to a decrease in the water temperature in the winter season. When the processing capacity is reduced, the surplus sludge 5 is switched to be transferred to the second biological treatment tank 13.
[0054]
The sludge in the second biological treatment tank 13 is transferred to the supply tank 6B, irradiated with ultrasonic waves while circulating between the supply tank 6B and the ultrasonic device 7, and then the substrate sludge 9 is returned to the second biological treatment tank 13. And biologically processed.
[0055]
Thus, by using the second biological treatment tank 13 only when necessary, it is possible to reduce the size of the apparatus and the running cost.
[0056]
(Example 6)
FIG. 6 is a process diagram showing the wastewater treatment method and the treatment of excess sludge in the wastewater treatment apparatus of Example 6 of the present invention.
[0057]
In the fifth embodiment, two supply tanks are used, but in this embodiment, a single supply tank is used.
[0058]
The excess sludge 5 is sent to the supply tank 6 and irradiated with ultrasonic waves while circulating between the supply tank 6 and the ultrasonic device 7.
[0059]
In principle, the substrate sludge 9 is transferred to the biological treatment tank 2D. When the inflow load of the organic waste water 1 is high or when the activity of the sludge in the biological treatment tank 2D is reduced, the second biological treatment tank 13 is used. Switch to transfer to.
[0060]
Also in the present embodiment, similarly to the fifth embodiment, by using the second biological treatment tank 13 only when necessary, the apparatus can be reduced in size and the running cost can be reduced.
[0061]
【The invention's effect】
As explained in detail above, wastewater containing organic matter is decomposed by microorganisms in a biological treatment tank, and the surplus sludge generated is treated only by physical crushing, and then the surplus sludge treated only by physical crushing is treated as described above. In the wastewater treatment method and the wastewater treatment apparatus to be returned to the biological treatment tank, a circulation having an ultrasonic device for processing only the physical sludge of the surplus sludge and a supply tank for transferring the surplus sludge to the ultrasonic device Since it is characterized in that it is carried out in the process and the sludge can be well physically crushed, the efficiency of converting the sludge-constituting microorganisms into a substrate can be increased. In addition, running costs and initial costs can be reduced.
[0062]
In addition, the wastewater containing organic matter is decomposed by microorganisms in a biological treatment tank, and the surplus sludge generated is treated only by physical crushing, and then the surplus sludge treated only by physical crushing is the biological treatment tank. waste water treatment method for transferring to a different second biological treatment tank and, in the waste water treatment apparatus, characterized by performing in a circulating step with said physical disruption only supply operation with respect to the ultrasound system tank of the excess sludge, Since sludge can be physically crushed well, the efficiency of converting sludge-constituting microorganisms into a substrate is high, and by treating organic wastewater and sludge that has become a substrate in different biological treatment tanks, The sludge reduction efficiency can be further increased to the maximum, and proper maintenance of the discharged water can be achieved. In addition, running costs and initial costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a process diagram showing wastewater treatment method and wastewater treatment apparatus wastewater treatment apparatus according to Embodiment 1 of the present invention. FIG. 2 is a wastewater treatment method and wastewater treatment apparatus wastewater treatment apparatus according to Embodiment 2 of the present invention. waste water treatment method and of example 3 steps Figure 3 shows the present invention illustrating the processing of waste water treatment method according to a fourth embodiment of the process diagram FIG. 4 the invention showing a process of excess sludge in the waste water treatment apparatus and, Process diagram showing treatment of surplus sludge in waste water treatment equipment . FIG. 5 is a process diagram showing waste water treatment method of Embodiment 5 of the present invention and treatment of surplus sludge in waste water treatment equipment . FIG. 6 is Embodiment 6 of the invention. Process diagram showing waste sludge treatment method and surplus sludge treatment in waste water treatment equipment FIG. 7 is a process diagram showing surplus sludge treatment in the waste water treatment process of the conventional example.
DESCRIPTION OF SYMBOLS 1 ... Organic waste water 2A, 2B, 2C, 2D ... Biological treatment tank 3 ... Separation membrane 4 ... Treated water 5 ... Excess sludge 6, 6A, 6B ... Supply tank 7 ... Ultrasonic device 8 ... Alkaline agent 9 ... Substrate sludge DESCRIPTION OF SYMBOLS 10 ... Precipitation tank 11 ... Carrier 12 ... Return sludge 13 ... Second biological treatment tank 14 ... Membrane permeated water

Claims (8)

有機物を含む排水を生物処理槽において微生物による有機物分解を行なうとともに、発生する余剰汚泥を物理的破砕のみで処理した後、物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽に返送する排水処理方法において、前記余剰汚泥の前記物理的破砕のみの処理を超音波装置と、この超音波装置に前記余剰汚泥を移送する供給タンクとを有する循環工程において行うことを特徴とした有機性排水処理方法。Wastewater containing organic matter is decomposed by microorganisms in a biological treatment tank, and the generated excess sludge is treated only by physical crushing, and then the surplus sludge treated only by physical crushing is returned to the biological treatment tank. In the treatment method, the organic wastewater treatment is characterized in that the treatment of only the physical sludge of the excess sludge is performed in a circulation process having an ultrasonic device and a supply tank for transferring the excess sludge to the ultrasonic device. Method. 請求項1に記載の有機性排水処理方法であって、前記生物処理槽内に分離膜および担体のうちの少なくとも一つまたは両方を設置することを特徴とした有機性排水処理方法。  2. The organic waste water treatment method according to claim 1, wherein at least one or both of a separation membrane and a carrier are installed in the biological treatment tank. 有機物を含む排水を生物処理槽において微生物による有機物分解を行なうとともに、発生する余剰汚泥を物理的破砕のみで処理した後、物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽とは異なる第二の生物処理槽に移送する排水処理方法において、前記余剰汚泥の前記物理的破砕のみの処理を超音波装置と、この超音波装置に前記余剰汚泥を移送する供給タンクとを有する循環工程において行うことを特徴とした有機性排水処理方法。The waste water containing organic matter is decomposed by microorganisms in the biological treatment tank, and the surplus sludge generated is treated only by physical crushing, and then the surplus sludge treated only by physical crushing is different from the biological treatment tank. In the wastewater treatment method of transferring to the second biological treatment tank, the treatment of only the physical crushing of the excess sludge is performed in a circulation step having an ultrasonic device and a supply tank for transferring the excess sludge to the ultrasonic device. Organic wastewater treatment method characterized by that. 請求項3に記載の有機性排水処理方法であって、前記第二の生物処理槽内に分離膜および担体のうちの少なくとも一つまたは両方を設置することを特徴とした有機性排水処理方法。  4. The organic wastewater treatment method according to claim 3, wherein at least one or both of a separation membrane and a carrier are installed in the second biological treatment tank. 有機物を含む排水を、微生物が有機物分解する生物処理槽と、この生物処理槽にて発生する余剰汚泥を物理的破砕のみで処理する物理的破砕処理装置と、この物理的破砕処理装置にて物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽へと返送する返送手段とを備え、前記物理的破砕処理装置は、前記余剰汚泥に対して超音波を照射する超音波装置と、この超音波装置とともに循環工程を成し、前記超音波装置に前記余剰汚泥を移送する供給タンクとから成ることを特徴とする有機排水処理装置。The wastewater containing organic matter is physically treated by a biological treatment tank in which microorganisms decompose organic matter, a physical crushing treatment device that treats surplus sludge generated in this biological treatment tank only by physical crushing, and a physical crushing treatment device. Return means for returning the surplus sludge treated only by mechanical crushing to the biological treatment tank, and the physical crushing treatment apparatus includes an ultrasonic device for irradiating the surplus sludge with ultrasonic waves, An organic wastewater treatment apparatus comprising a supply tank that forms a circulation step together with a sonic device and transfers the excess sludge to the ultrasonic device. 前記超音波装置は、前記循環工程において、前記余剰汚泥を構成する汚泥構成微生物が破砕するまで超音波を照射することを特徴とした請求項5に記載の有機排水処理装置。The organic wastewater treatment apparatus according to claim 5, wherein the ultrasonic device irradiates ultrasonic waves until the sludge-constituting microorganisms constituting the surplus sludge are crushed in the circulation step. 有機物を含む排水を、微生物が有機物分解する生物処理槽と、この生物処理槽にて発生する余剰汚泥を物理的破砕のみで処理する物理的破砕処理装置と、この物理的破砕処理装置にて物理的破砕のみで処理した前記余剰汚泥を前記生物処理槽とは異なる第二の生物処理槽へと移送する移送手段とを備え、前記物理的破砕処理装置は、前記余剰汚泥に対して超音波を照射する超音波装置と、この超音波装置とともに循環工程を成し、前記超音波装置に前記余剰汚泥を移送する供給タンクとから成ることを特徴とする有機排水処理装置。The wastewater containing organic matter is physically treated by a biological treatment tank in which microorganisms decompose organic matter, a physical crushing treatment device that treats surplus sludge generated in this biological treatment tank only by physical crushing, and a physical crushing treatment device. Transfer means for transferring the surplus sludge treated only by mechanical crushing to a second biological treatment tank different from the biological treatment tank, and the physical crushing treatment apparatus applies ultrasonic waves to the surplus sludge. An organic wastewater treatment apparatus comprising: an irradiating ultrasonic device; and a supply tank that forms a circulation step together with the ultrasonic device and transfers the excess sludge to the ultrasonic device. 前記超音波装置は、前記循環工程において、前記余剰汚泥を構成する汚泥構成微生物が破砕するまで超音波を照射することを特徴とした請求項7に記載の有機排水処理装置。The organic waste water treatment apparatus according to claim 7, wherein the ultrasonic device irradiates ultrasonic waves until the sludge-constituting microorganisms constituting the surplus sludge are crushed in the circulation step.
JP2002066470A 2002-03-12 2002-03-12 Organic wastewater treatment method Expired - Lifetime JP4449273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066470A JP4449273B2 (en) 2002-03-12 2002-03-12 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066470A JP4449273B2 (en) 2002-03-12 2002-03-12 Organic wastewater treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008006604A Division JP2008132493A (en) 2008-01-16 2008-01-16 Organic waste water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2003260489A JP2003260489A (en) 2003-09-16
JP4449273B2 true JP4449273B2 (en) 2010-04-14

Family

ID=28671470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066470A Expired - Lifetime JP4449273B2 (en) 2002-03-12 2002-03-12 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4449273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947815A (en) * 2010-08-18 2011-01-19 重庆市文钜机械有限公司 Sludge energy-saving waste-using machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2022763A4 (en) * 2006-04-28 2013-04-03 Kurita Water Ind Ltd Method and apparatus for biologically treating organic discharged water
JP4666228B2 (en) * 2006-07-11 2011-04-06 株式会社安川電機 Sludge treatment equipment
JP5269331B2 (en) * 2007-03-15 2013-08-21 住友重機械工業株式会社 Waste water treatment equipment
CN114149167B (en) * 2021-12-20 2024-02-06 黑龙江省科学院高技术研究院 Device and method for treating residual sludge by cavitation technology to release internal carbon source
CN114560558B (en) * 2022-04-08 2023-05-30 滁州职业技术学院 Anaerobic reactor for sewage treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947815A (en) * 2010-08-18 2011-01-19 重庆市文钜机械有限公司 Sludge energy-saving waste-using machine

Also Published As

Publication number Publication date
JP2003260489A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
CN101607777B (en) Lurgi furnace coal gasification wastewater treatment and reuse technology
EP1550638B1 (en) Method of reducing volume of sludge and apparatus therefor
JP2007313504A (en) Apparatus for treating waste water and method therefor
JP2008055291A (en) Water treating device
CN102001806A (en) Method and device for treating oily sludge
CN106830536A (en) A kind of advanced treatment process of ferment antibiotics waste water
CN107399871A (en) A kind of Waste Water Treatment of co-oxidation
JP4449273B2 (en) Organic wastewater treatment method
JP3775654B2 (en) Method and apparatus for reducing excess sludge in biological treatment of organic sewage
JP2002361293A (en) Method and apparatus for reducing volume of organic sludge
JP2005169304A (en) Method of treating high concentration colored organic waste water
JP4667890B2 (en) Organic waste treatment methods
JP2007021285A (en) Method and apparatus for reducing volume of excess sludge
CN110040913A (en) A kind of advanced treatment process and device of biology non-degradable waste water
JP2008132493A (en) Organic waste water treatment apparatus
JP2006239625A (en) Method and equipment for treating organic waste
KR100603990B1 (en) Sludge reduction and biogas increasing technics by ultrasound treatment
CN106517657A (en) Treating method for high-concentration wastewater from chemical production
KR20030090362A (en) A combined process and device of ozone and sonication for water/wastewater treatment
KR20190134583A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP2002219482A (en) Wastewater treatment equipment
JP2708087B2 (en) Garbage disposal method
JP2003071411A (en) Method for treating organic wastes
JP5873744B2 (en) Organic wastewater and organic waste treatment method and treatment equipment
CN213506147U (en) Landfill leachate&#39;s processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R151 Written notification of patent or utility model registration

Ref document number: 4449273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

EXPY Cancellation because of completion of term