JP2005169304A - Method of treating high concentration colored organic waste water - Google Patents

Method of treating high concentration colored organic waste water Download PDF

Info

Publication number
JP2005169304A
JP2005169304A JP2003414857A JP2003414857A JP2005169304A JP 2005169304 A JP2005169304 A JP 2005169304A JP 2003414857 A JP2003414857 A JP 2003414857A JP 2003414857 A JP2003414857 A JP 2003414857A JP 2005169304 A JP2005169304 A JP 2005169304A
Authority
JP
Japan
Prior art keywords
ozone
treatment
biological treatment
water
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414857A
Other languages
Japanese (ja)
Inventor
Keisuke Miyamura
啓祐 宮村
Osamu Uchiumi
修 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003414857A priority Critical patent/JP2005169304A/en
Publication of JP2005169304A publication Critical patent/JP2005169304A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical waste water treatment method by which high concentration colored organic waste water containing at least one of dye and pigment is cleaned and decolored to be discharged to public water or to be recycled as recycled waste water while dispensing with the liquid waste processing commission to a waste-disposal vendor to reduce the quantity of the waste processing commission. <P>SOLUTION: The method of treating the high concentration colored organic waste water containing at least one of the dye or the pigment has a process for carrying out biological treatment of the organic waste water and a process for decoloring the biologically treated water by adding ozone and an apparatus used for the same is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

産業排水、特には、パソコン、デジカメ等のデータを出力するためのインクジェット方式プリンターで使用されるインクカートリッジ及びインクの製造工場等で発生するインク廃液等、染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水を、河川等公共用水域に放流ができるまで浄化し脱色し、排水処理する方法に関するものである。   Industrial wastewater, especially ink cartridges used in inkjet printers for outputting data from personal computers, digital cameras, etc. and ink waste liquid generated at ink manufacturing plants, etc. The present invention relates to a method for purifying and decolorizing high-concentration organic wastewater until it is released into public water areas such as rivers, and then treating the wastewater.

上記インクには、染料または顔料の他、グリセリン、グリコール、多価アルコール等が高濃度で含有されており、インク等製造工場では黒く着色した高濃度有機性廃液が排出される。当初、このようなインク廃液等は産業廃棄物として液状のまま廃棄物処理専門業者に引取られ処理委託され焼却処理等おこなわれていた。近年の環境関係法規及び廃棄物関係法規の規制強化等により処理費用が上昇しており、そのため、インク廃液等の処理委託量を削減する方法が考案されてきた。たとえば、インク廃液等を逆浸透膜法や、あるいは、蒸発濃縮法により濃縮する方法などである。   In addition to dyes or pigments, the ink contains glycerin, glycol, polyhydric alcohol, and the like at a high concentration, and a high-concentration organic waste liquid that is colored black is discharged at an ink manufacturing plant. Initially, such ink waste liquids were collected as industrial wastes in a liquid state by a waste disposal specialist and were commissioned for incineration. In recent years, processing costs have risen due to stricter regulations on environment-related laws and waste-related laws and regulations, and therefore methods have been devised to reduce the amount of commissioned processing such as ink waste liquid. For example, a method of concentrating ink waste liquid or the like by a reverse osmosis membrane method or an evaporation concentration method.

蒸発濃縮法では、エチレングリコールを処理したものについて特開平4-313302号公報(特許文献1)及び特開平4-330903号公報(特許文献2)があり、アルコール系洗浄剤を処理したものについては特開平06-198101の実施例がある。   In the evaporative concentration method, there are JP-A-4-313302 (Patent Document 1) and JP-A-4-330903 (Patent Document 2) which are treated with ethylene glycol, and those which are treated with an alcohol-based detergent. There is an example in Japanese Patent Laid-Open No. 06-198101.

逆浸透膜で濃縮する方法では、染料を含む排水から染料を分離濃縮させる方法が特開2003-155656号公報(特許文献4)で示されている。   In the method of concentrating with a reverse osmosis membrane, JP 2003-155656 A (Patent Document 4) discloses a method of separating and concentrating a dye from waste water containing the dye.

しかしながら、インク廃液を逆浸透膜法や蒸発濃縮法により濃縮する方法などでは液状の産業廃棄物の処理委託は完全にはなくならず、逆浸透膜法ではインク廃液の1/3程度の濃縮液がまた蒸発濃縮法でも1/20程度の濃縮液が液状廃棄物として排出される。また、逆浸透膜法では逆浸透膜モジュールの定期的な交換により大きな費用がかかり、蒸発濃縮装法では蒸気等熱エネルギー使用のコストがかかるため共にコスト削減の効果が小さい。   However, in the method of concentrating the ink waste liquid by the reverse osmosis membrane method or the evaporation concentration method, the disposal of the liquid industrial waste is not completely eliminated. In the reverse osmosis membrane method, the concentrated liquid is about 1/3 of the ink waste liquid. However, the concentrated liquid of about 1/20 is also discharged as liquid waste by the evaporation concentration method. Further, the reverse osmosis membrane method requires a large cost due to periodic replacement of the reverse osmosis membrane module, and the evaporative concentrating method requires a cost of using heat energy such as steam, so that the cost reduction effect is small.

また、逆浸透膜で濃縮する方法では透過水、濃縮蒸留装置からは蒸留水が発生し、この透過水または蒸留水にはほとんど着色していないが、アルコール類がほぼ単独成分で高濃度に含有した有機性排水であり河川等公共用水域に直接放流できない。この透過水および蒸留水は生物処理が困難であり、別の排水と混合し低負荷で生物処理をおこなうか終末処理場のある公共下水道に放流する等の処置対策が必要である。このことは、大規模の生物処理施設が設置可能であるか公共下水道に受け入れ可能な地域にしかインク廃液生産工場を立地できないということであり、結果的にコスト削減には結びつかない場合がある。
特開平4-313302号公報 特開平4-330903号公報 特開平06-198101号公報 特開2003-155656号公報
In addition, in the method of concentrating with a reverse osmosis membrane, permeated water and distilled water are generated from the concentration distillation apparatus, and the permeated water or distilled water is hardly colored, but alcohols are almost independent and contain a high concentration. Organic wastewater that cannot be discharged directly into rivers and other public waters. This permeated water and distilled water are difficult to biologically treat, and it is necessary to take measures such as mixing with other waste water and performing biological treatment with low load or discharging it to public sewers with terminal treatment plants. This means that an ink waste liquid production factory can be located only in an area where a large-scale biological treatment facility can be installed or can be accepted by public sewerage, and as a result, it may not lead to cost reduction.
Japanese Unexamined Patent Publication No. 4-313302 Japanese Unexamined Patent Publication No. 4-330903 JP 06-198101 A JP 2003-155656 A

上記状況に鑑み、本発明では、染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水について、廃棄物処理専門業者への液状廃棄物の処理委託をなくし廃棄物処理委託量を減少させ、公共用水域に放流または中水再利用ができるまで浄化し脱色する、経済的な排水処理方法を提供することを課題とする。   In view of the above situation, in the present invention, for high-concentration organic wastewater that contains at least one of a dye and a pigment and is colored, the amount of waste disposal commissioned by eliminating the disposal of liquid waste to a waste disposal specialist It is an object to provide an economical wastewater treatment method that purifies and decolors until it is discharged into the public water area or reused in the middle water.

すなわち、本発明は、
染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水の処理方法において、
前記有機系排水の生物処理を行なう工程と、
前記生物処理の処理水にオゾンを加え脱色処理する工程と
を有することを特徴とする高濃度着色有機排水の処理方法に関する。
That is, the present invention
In a method for treating high-concentration organic wastewater that contains at least one of a dye and a pigment and is colored,
Performing a biological treatment of the organic waste water;
The present invention relates to a treatment method for high-concentration colored organic wastewater, comprising a step of adding ozone to the biological treatment water and performing a decolorization treatment.

また、本発明は、
染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水を処理するための装置において、
前記有機系排水の生物処理を行なう手段と、
前記生物処理の処理水にオゾンを加え脱色処理する手段と
を有することを特徴とする高濃度着色有機排水の処理装置に関する。
The present invention also provides:
In an apparatus for treating high-concentration organic wastewater that contains at least one of a dye and a pigment and is colored,
Means for biological treatment of the organic waste water;
The present invention relates to a treatment apparatus for high-concentration colored organic wastewater, characterized by comprising means for adding ozone to the biological treatment water and performing a decolorization treatment.

[作用]
一般的に、有機性排水の経済的な排水処理方法としては好気性生物処理法が有力である。従来の技術のうち逆浸透膜からの透過水または蒸留濃縮装置からの蒸留水はアルコール類が高濃度でほぼ単独にあるため生物処理が困難である。しかしながら、インクにはアルコール類の他グリセリン、グリコールを適当な比率で含んでいるため、同程度の濃度に調整した場合、むしろインク廃液のほうがその透過水または蒸留水よりも生物分解しやすい。
[Action]
In general, an aerobic biological treatment method is effective as an economical wastewater treatment method for organic wastewater. Among conventional techniques, permeated water from a reverse osmosis membrane or distilled water from a distillation concentrator is difficult to biologically process because alcohols are high in concentration and almost alone. However, since the ink contains glycerin and glycol in an appropriate ratio in addition to alcohols, the ink waste liquid is more likely to biodegrade than the permeated water or distilled water when adjusted to the same concentration.

染料の脱色についてはオゾン処理がより効果をあげられるが、インクをオゾンにより直接分解法した場合オゾンの消費量が多く有機物はほとんど完全には分解しない。この理由として、インク廃液等ではグリセリンやグリコール、アルコール等の有機物や顔料がオゾンを消費することにより染料の酸化にまで十分なオゾンが供給されないため、染料単独のオゾン処理に比べて結果としてオゾンが増大するものと考えられる。   Ozone treatment can be more effective for decolorization of dyes. However, when ink is directly decomposed with ozone, the consumption of ozone is large and organic substances are hardly decomposed. This is because, in ink waste liquids, organic substances such as glycerin, glycol, alcohol, and pigments consume ozone, so that sufficient ozone is not supplied until the oxidation of the dye. It is thought to increase.

すなわち、インク廃液等は逆浸透膜または蒸留濃縮装置によりアルコール類だけを分離して生物処理により処理するのではなく、グリセリンやグリコールを分離せずに生物処理する事でより容易な処理が可能となる。また、生物処理の過程では顔料は汚泥に吸着除去される。   In other words, ink waste liquids can be treated more easily by biological treatment without separating glycerin or glycol without separating only alcohols using reverse osmosis membranes or distillation concentrators. Become. In the biological treatment process, the pigment is adsorbed and removed by the sludge.

ところで、オゾン処理ではあらかじめインク廃液等のグリセリンやグリコール、アルコールといった有機物および顔料が除かれていれば、少量のオゾンを添加するだけで脱色処理できる。   By the way, in the ozone treatment, if organic substances such as glycerin, glycol and alcohol such as ink waste liquid and pigments are removed in advance, the decolorization treatment can be performed by adding a small amount of ozone.

すなわち、ここに、染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水について、前記有機系排水の生物処理をおこない、前記生物処理の処理水に少量のオゾンを加え経済的に脱色処理する方法を発明するに至った。   That is, the organic wastewater is biologically treated for high-concentration organic wastewater containing and colored with at least one of a dye or a pigment, and a small amount of ozone is added to the treated water for economic treatment. Invented a method for decoloring.

この方法では、生物処理により染料も部分的に酸化されるため、脱色に必要なオゾン消費量はより少なくなる効果もある。   In this method, since the dye is also partially oxidized by the biological treatment, there is an effect that ozone consumption required for decolorization is further reduced.

活性汚泥法をはじめ生物処理では、余剰汚泥がでる。これは液状廃棄物ではないものの産業廃棄物として廃棄物処理専門業者への処理委託が必要である。汚泥は濃縮と脱水といった一般的な手法によって大幅な減量をはかることできるため液状廃棄物よりその扱いはかなり有利であるが、生物処理の方法や物理化学処理の組合せで汚泥そのものの発生量を大幅に少なくすることも可能である。   Surplus sludge is produced in biological treatment including the activated sludge method. Although this is not liquid waste, it must be treated as an industrial waste by a waste disposal specialist. Since sludge can be drastically reduced by general methods such as concentration and dehydration, its treatment is considerably more advantageous than liquid waste, but the amount of sludge generated is greatly increased by combining biological treatment methods and physicochemical treatment. It is also possible to reduce it to less.

系外への余剰汚泥の排出量を抑制できるようにする方法のひとつとしてオゾンを併用した汚泥処理技術がある。この方法によればオゾンによる脱色効果も期待できる。すなわち生物処理後の処理水をオゾン脱色処理し、残オゾンのあるオゾン処理水と余剰汚泥を混合し余剰汚泥中の微生物細胞膜を破壊したのちこれを生物処理に戻し分解する方法である。この方法だとオゾンによりインク廃液の脱色と汚泥の減少がおこなえ、CODのさらなる処理も期待できる。   There is a sludge treatment technology that uses ozone in combination as one of the methods for reducing the amount of excess sludge discharged outside the system. According to this method, a decoloring effect by ozone can be expected. That is, this is a method in which treated water after biological treatment is subjected to ozone decoloration treatment, ozone treated water with residual ozone and surplus sludge are mixed, microbial cell membranes in surplus sludge are destroyed, and then returned to biological treatment for decomposition. With this method, ozone waste water can be decolorized and sludge can be reduced, and further processing of COD can be expected.

また、生物処理のうちバチルス属細菌主体の活性汚泥法は、高濃度有機性排水を効率的に処理し余剰汚泥の発生が少ないことが知られている。バチルス属細菌は内生胞子形成菌であるがバチルス属細菌が生成する酵素の有機物分解能力が高いため高濃度有機性排水処理に利用されており、その高い分解性から余剰汚泥の発生は大幅に低減することが期待できる。   Moreover, it is known that the activated sludge method mainly composed of Bacillus bacteria among biological treatments efficiently treats high-concentration organic wastewater and generates less excess sludge. Bacillus bacteria are endospore-forming bacteria, but the enzymes produced by Bacillus bacteria are used for high-concentration organic wastewater treatment because of their high ability to decompose organic matter. It can be expected to reduce.

有機系排水処理に有効な微生物の一つであるバチルス属細菌は一般の活性汚泥中でも少数存在するが菌体濃度が薄い。しかし本発明で採用する方法のように、高濃度の有機系排水を基質にして大量のシリカまたはマグネシウムを与えると、細胞の解体と胞子化が促進され増殖し活性化することが知られている。   Bacteria belonging to the genus Bacillus, which is one of the effective microorganisms for organic wastewater treatment, are present in small numbers in general activated sludge, but the cell concentration is low. However, it is known that when a large amount of organic wastewater is used as a substrate and a large amount of silica or magnesium is applied as in the method employed in the present invention, cell disassembly and spore formation are promoted and proliferated and activated. .

本発明では、インク廃液のような高濃度有機性の産業排水、言い換えれば人工的な化学物質の排水に対してバチルス属細菌主体の活性汚泥法を応用したことを試みたものであり、産業排水といえども高濃度有機性排水であれば効率的な処理が可能であり、産業排水についても活性汚泥をバチルス属細菌主体のものにつくりかえることできる。   In the present invention, an attempt is made to apply the activated sludge method mainly based on the genus Bacillus to industrial organic wastewater such as ink waste liquid, that is, artificial chemical wastewater. However, high-concentration organic wastewater can be efficiently treated, and industrial wastewater can be made from activated sludge that is mainly composed of Bacillus bacteria.

本発明では、その生物処理についてバチルス属細菌を主体とした活性汚泥法とする方法とした場合、オゾン処理部との組合せによって脱色、高濃度有機物の分解が促進される。   In the present invention, when the biological treatment is performed by an activated sludge method mainly composed of Bacillus bacteria, decolorization and decomposition of high-concentration organic substances are promoted by combination with the ozone treatment unit.

本発明によれば、染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水について浄化し脱色することができ、液状廃棄物の発生がなく河川等公共用水域に放流可能または中水として再利用可能であり、オゾン使用量が少なく省エネルギーでありこれを経済的におこなえることになる。   According to the present invention, it is possible to purify and decolorize high-concentration organic wastewater containing and coloring at least one of a dye or a pigment, and can be discharged into public water areas such as rivers without generation of liquid waste. It can be reused as middle water, and it uses less ozone and saves energy, making it economical.

本発明において生物処理とは、好気性微生物による有機物の酸化分解を主な反応とする方法で、一般的な活性汚泥処理でよく、循環式硝化脱窒法、嫌気好気活性汚泥法、回分式活性汚泥法その他の活性汚泥法変法を含む。また、生物膜法でもかまわない。   In the present invention, the biological treatment is a method in which the main reaction is oxidative decomposition of organic substances by aerobic microorganisms, and may be a general activated sludge treatment, such as a circulation nitrification denitrification method, an anaerobic aerobic activated sludge method, a batch-type activity Includes sludge process and other activated sludge process modifications. The biofilm method may also be used.

そのなかでも、バチルス属細菌を主体にした活性汚泥法が望ましい。   Among them, the activated sludge method mainly composed of Bacillus bacteria is desirable.

生物処理の後段では固液分離手段を用いてその処理水と汚泥を分離するが、固液分離手段としては、沈殿池、加圧浮上法、膜分離法のいずれであってもよく、膜分離はマイクロフィルター、限外ろ過膜のいずれであってもよい。   In the latter stage of biological treatment, the treated water and sludge are separated using a solid-liquid separation means. The solid-liquid separation means may be any of a sedimentation basin, a pressurized flotation method, and a membrane separation method. May be either a microfilter or an ultrafiltration membrane.

オゾン処理に用いるオゾンの発生は、放電法、電解法のいずれでもよい。発生したオゾンガスの液への溶解方法は、対象液を密閉状態で循環させ、エゼクターでオゾンガスを吸引し溶解させる方法でも、オゾンガスを曝気する方法でもよいが、エゼクターでオゾンガスを吸引し溶解させる方法が望ましい。   Ozone used for the ozone treatment may be generated by either a discharge method or an electrolysis method. The method of dissolving the generated ozone gas in the liquid may be a method in which the target liquid is circulated in a sealed state and the ozone gas is sucked and dissolved with an ejector, or the ozone gas is aerated. desirable.

さて、顔料は生物処理の過程で汚泥に吸着され、一部は長時間にわたり生物分解を受け、一部は余剰汚泥として排出される。余剰汚泥の発生をおさえた活性汚泥法を採用した場合、また、顔料濃度が高く生物分解よりも早く汚泥に蓄積していった場合には、生物処理の効率を悪化させる。   Now, the pigment is adsorbed by the sludge in the course of biological treatment, partly undergoes biodegradation for a long time, and part is discharged as excess sludge. When the activated sludge method that suppresses the generation of excess sludge is adopted, or when the pigment concentration is high and the sludge is accumulated earlier than biodegradation, the biological treatment efficiency is deteriorated.

生物処理の効率をあげるためには、あらかじめ顔料だけは除去しておいたほうがよい。その場合、あらかじめ限外ろ過膜または精密ろ過膜によって顔料を分離した高濃度有機系排水について、前記有機系排水の生物処理をおこない、前記生物処理の処理水にオゾンを加え脱色処理する方法が考えられる。ただし、限外ろ過膜または精密ろ過膜の前処理では僅かとはいえ顔料を含んだ液状廃棄物が発生する。生物処理の効率をとるか液状廃棄物の発生を許すかはトレードオフの問題でありケースにより決定する。   In order to increase the efficiency of biological treatment, it is better to remove only the pigment in advance. In that case, a method of performing biological treatment of the organic wastewater on the high concentration organic wastewater from which the pigment has been separated in advance by an ultrafiltration membrane or a microfiltration membrane, and decolorizing by adding ozone to the biological treatment water is considered. It is done. However, in the pretreatment of the ultrafiltration membrane or the microfiltration membrane, a liquid waste containing a pigment is generated although it is slight. Whether to improve the efficiency of biological treatment or allow the generation of liquid waste is a trade-off issue and depends on the case.

図1は本発明の高濃度有機排水の処理方法を実施するに好適な高濃度有機排水の処理装置の一例を示すフロー図である。ただし、本発明の方法を実現する装置は必ずしもこの形によるとは限らない。   FIG. 1 is a flow diagram showing an example of a high concentration organic wastewater treatment apparatus suitable for carrying out the high concentration organic wastewater treatment method of the present invention. However, the apparatus for realizing the method of the present invention is not necessarily in this form.

図1において、染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水を原水1として、原水ポンプ2と原水移送配管3により曝気槽4に導入される。   In FIG. 1, high-concentration organic wastewater containing at least one of a dye and a pigment and colored is introduced as raw water 1 into an aeration tank 4 by a raw water pump 2 and a raw water transfer pipe 3.

曝気槽4は散気装置5を備え、好気性微生物からなる活性汚泥6の混合液で満たされている。散気装置5はブロワ7とエアー配管8で結ばれ、ブロワ7より送られた空気を曝気槽4内に吹き込むことで活性汚泥6と原水1を混合し活性汚泥6に酸素を供給する。ここで原水1は好気性微生物の活動によって浄化され活性汚泥6との混合液のまま連絡配管9により沈殿池10に導かれる。沈殿池10では比重差により上澄み液11と沈殿した汚泥12に分離される。   The aeration tank 4 includes an aeration device 5 and is filled with a mixed liquid of activated sludge 6 made of aerobic microorganisms. The air diffuser 5 is connected to the blower 7 and the air pipe 8 and blows the air sent from the blower 7 into the aeration tank 4 to mix the activated sludge 6 and the raw water 1 and supply oxygen to the activated sludge 6. Here, the raw water 1 is purified by the activity of aerobic microorganisms and led to the sedimentation basin 10 through the connecting pipe 9 while being mixed with the activated sludge 6. In the sedimentation basin 10, the supernatant liquid 11 and the precipitated sludge 12 are separated by the specific gravity difference.

沈殿池10はからエアリフトポンプ13により汚泥12が引き抜かれ汚泥移送配管14により曝気槽4へ返流する。汚泥12の一部はこの段階でこの装置の系外へ出されて濃縮槽や脱水機等を用いた汚泥処理がおこなわれる場合もある。その他の汚泥12は曝気槽4内で再び活性汚泥6となる。沈殿池10により分離した上澄み液11は上澄み液移送配管15により中間槽16に送られここで一時貯留される。   The sludge 12 is extracted from the sedimentation basin 10 by the air lift pump 13 and returned to the aeration tank 4 by the sludge transfer pipe 14. A part of the sludge 12 may be taken out of the system at this stage and subjected to sludge treatment using a concentration tank, a dehydrator, or the like. Other sludge 12 becomes activated sludge 6 again in the aeration tank 4. The supernatant liquid 11 separated by the sedimentation basin 10 is sent to the intermediate tank 16 by the supernatant liquid transfer pipe 15 and temporarily stored therein.

密閉されたオゾン反応槽17と循環ポンプ18は吸引側循環配管20によって連結しており、循環ポンプ18とオゾンガス吸引混合溶解装置(エゼクター)19は吐出側循環配管21によって連結し、吐出側循環配管21はそのままオゾン反応槽17に戻っている。オゾン反応槽入口弁22は吸い込み側循環配管20を分岐した位置に設置し、オゾン反応槽出口弁23は処理水配管26を分岐した位置に設置する。   The sealed ozone reaction tank 17 and the circulation pump 18 are connected by a suction-side circulation pipe 20, and the circulation pump 18 and the ozone gas suction mixing and dissolving device (ejector) 19 are connected by a discharge-side circulation pipe 21, and the discharge-side circulation pipe 21 returns to the ozone reaction tank 17 as it is. The ozone reaction tank inlet valve 22 is installed at a position where the suction-side circulation pipe 20 is branched, and the ozone reaction tank outlet valve 23 is installed at a position where the treated water pipe 26 is branched.

通常はオゾン反応槽入口弁22およびオゾン反応槽出口弁23は閉められた状態とする。   Usually, the ozone reaction tank inlet valve 22 and the ozone reaction tank outlet valve 23 are closed.

まず、オゾン反応槽17を上澄み液11で満たした後、循環ポンプ18を作動させ、オゾン発生機24を作動させ発生したオゾンガスはオゾンガス配管25をとおってオゾンガス吸引混合溶解装置(エゼクター)19から負圧により吸引され上澄み液11と混合する。オゾン反応槽17の内部では上澄み液11の染料等がオゾンにより酸化分解し脱色がはじまる。また速やかに循環ポンプ18に吸引され、オゾンガス吸引混合溶解装置(エゼクター)19から負圧により吸引されたオゾンと再び混合しオゾン反応槽17に導かれる。この循環を繰り返すことで、オゾン反応槽17内の上澄み液11は連続的にオゾンと混合し繰り返し反応することで脱色される。   First, after the ozone reaction tank 17 is filled with the supernatant liquid 11, the circulation pump 18 is activated, the ozone generator 24 is activated, and the generated ozone gas is discharged from the ozone gas suction mixing and dissolving device (ejector) 19 through the ozone gas pipe 25. It is sucked by pressure and mixed with the supernatant liquid 11. In the ozone reaction tank 17, the dye of the supernatant liquid 11 is oxidatively decomposed by ozone and decolorization begins. In addition, it is quickly sucked into the circulation pump 18, mixed again with ozone sucked from the ozone gas suction mixing and dissolving device (ejector) 19 by negative pressure, and led to the ozone reaction tank 17. By repeating this circulation, the supernatant liquid 11 in the ozone reaction tank 17 is decolorized by continuously mixing with ozone and reacting repeatedly.

処理水27はオゾン反応槽出口弁23を開放することで排出される。循環ポンプ18が作動できる最低水位まで処理水27を排出した後、オゾン反応槽出口弁23を再び閉じてからオゾン反応槽入口弁22を開けると、上澄み液11が中間槽16から循環ポンプ18に吸引され再びオゾン反応槽17を満たす。その後、同様にオゾン処理をおこなうことで再び上澄み液11の染料等がオゾンにより酸化分解し脱色され、これを繰り返すこととなる。   The treated water 27 is discharged by opening the ozone reaction tank outlet valve 23. After draining the treated water 27 to the lowest water level at which the circulation pump 18 can operate, when the ozone reaction tank outlet valve 23 is closed again and then the ozone reaction tank inlet valve 22 is opened, the supernatant liquid 11 is transferred from the intermediate tank 16 to the circulation pump 18. The ozone reaction tank 17 is filled again by suction. Thereafter, the ozone treatment is performed in the same manner, so that the dye or the like of the supernatant liquid 11 is again oxidized and decolored by ozone, and this is repeated.

未反応のオゾンを含む排ガス28は、排ガス処理装置29により除害されたのち排気30となる。   The exhaust gas 28 containing unreacted ozone is exhausted after being detoxified by the exhaust gas treatment device 29.

[実施例1]
高濃度有機性排水としてのインク廃液は表1の水質であり、これを図1の装置により原水1として1.0m3/日の流量で処理した。
[Example 1]
The ink waste liquid as the high-concentration organic waste water has the water quality shown in Table 1. This was treated as raw water 1 at a flow rate of 1.0 m 3 / day using the apparatus shown in FIG.

好気性生物処理として、曝気槽4の容量を3.0m3としてバチルス属細菌主体の活性汚泥法で処理した。この活性汚泥はインク廃液のほか、適量の窒素、りんの他、シリカ粉末を1日あたり30g/L投入し、3ヶ月間この条件で馴致したものである。ここで使用したシリカ粉末は芙蓉パーライト株式会社製の商品名バチルアップであるが、別に調合したシリカ粉末等でもシリカ成分を溶出する鉱物等でもかまわない。 As an aerobic biological treatment, the aeration tank 4 was treated with an activated sludge method mainly composed of Bacillus bacteria with a capacity of 3.0 m 3 . In addition to ink waste liquid, this activated sludge was charged with 30 g / L of silica powder in addition to appropriate amounts of nitrogen and phosphorus, and was acclimatized under these conditions for 3 months. The silica powder used here is a trade name Bacillup manufactured by Sakai Perlite Co., Ltd., but may be a silica powder or the like separately prepared, or a mineral that elutes the silica component.

固液分離装置である沈殿池10は1.0m3、水面積負荷1.0m3/m2/日のものを使用した。沈殿池からエアリフトポンプにより汚泥が引き抜かれ前記曝気槽へ流入させ汚泥が循環するようにしてある。 The sedimentation basin 10 which is a solid-liquid separator was 1.0 m 3 and the water area load was 1.0 m 3 / m 2 / day. The sludge is drawn from the sedimentation basin by an air lift pump and flows into the aeration tank so that the sludge is circulated.

沈殿池の上澄み11は中間槽16に一時溜め置いた後、オゾン反応装置へ送られる。   The supernatant 11 of the sedimentation tank is temporarily stored in the intermediate tank 16 and then sent to the ozone reactor.

オゾン反応装置は、密閉されたオゾン反応槽17を1.0m3とし、循環ポンプとエゼクターを取り付けたものを基本構成としており、前記上澄み液はまず密閉タンクに溜められた後、循環ポンプによってエゼクターと密閉タンクの中を循環する。その際、オゾン発生装置でつくられたオゾンガスがエゼクターで吸引され循環によって前記上澄み液に混合溶解する。前記上澄み液中の染料成分はこの時オゾンによって脱色される。 The ozone reaction device has a basic structure in which the sealed ozone reaction tank 17 is 1.0 m 3 and a circulation pump and an ejector are attached. The supernatant is first stored in a sealed tank, and then the ejector is connected to the ejector by the circulation pump. Circulate in a closed tank. At that time, the ozone gas produced by the ozone generator is sucked by the ejector and mixed and dissolved in the supernatant by circulation. The dye component in the supernatant is decolorized by ozone at this time.

このときのオゾン使用量は、20gであった。   The amount of ozone used at this time was 20 g.

脱色された液体は、循環ポンプ吐出側につけたバルブをあけることにより処理水槽へ導かれ、pH処理した後河川等に放流がなされる。また、その後に循環ポンプ吸い込み側につけたバルブをあけることでにより、中間槽の上澄み液を流入させる。   The decolorized liquid is guided to the treated water tank by opening a valve attached to the discharge side of the circulation pump, and is discharged to a river or the like after pH treatment. Moreover, the supernatant liquid of an intermediate | middle tank is made to flow in by opening the valve | bulb attached to the circulation pump suction side after that.

本実施例で採用した高濃度有機性排水の水質と、生物処理部の処理水、オゾン処理部の処理水水質を表1に示す。   Table 1 shows the water quality of the high-concentration organic waste water employed in this example, the treated water of the biological treatment unit, and the treated water quality of the ozone treatment unit.

吸光度は波長により156から711であったものが、0.012から0.205まで落ちており、処理水は透明で色を認めることがない程度まで処理できている。また、有機物濃度についてはBOD3500mg/Lのものが20mg/Lまで処理でき、COD4400mg/Lのものが65mg/Lまで処理できた。これは通常の河川等への放流では問題ないレベルであり十分に浄化されたものと考えられる。また、この処理水を原水にして中水利用等を検討できるレベルでもある。   Although the absorbance was 156 to 711 depending on the wavelength, it dropped from 0.012 to 0.205, and the treated water could be treated to the extent that it was transparent and no color was observed. As for the organic matter concentration, BOD 3500 mg / L can be processed up to 20 mg / L, and COD 4400 mg / L can be processed up to 65 mg / L. This is a level that does not cause any problem in normal discharge into rivers and is considered to have been sufficiently purified. It is also at a level where the treated water can be used as raw water to study the use of medium water.

Figure 2005169304
Figure 2005169304

ここで、排水の着色程度を評価する方法は吸光度によるものとし、測定波長域を380nmから660nmでセル長50mm換算値を用いた。セル長50mm換算値は以下の式のとおりである。   Here, the method for evaluating the degree of coloration of the waste water was based on absorbance, and the measured wavelength range was 380 nm to 660 nm, and the cell length converted to 50 mm was used. The cell length converted to 50 mm is as shown in the following formula.

セル長50mm換算値=吸光度測定値×希釈倍率×50mm/測定で使用したセル長(mm)。   Cell length 50 mm conversion value = absorbance measurement value × dilution ratio × 50 mm / cell length (mm) used in measurement.

[比較例]
比較例として、上記実施例1とおなじインク廃液を蒸留水で3倍に希釈し、直接、オゾン単独で処理した場合の例を表2に示す。
[Comparative example]
As a comparative example, Table 2 shows an example in which the same ink waste liquid as in Example 1 was diluted three times with distilled water and directly treated with ozone alone.

Figure 2005169304
Figure 2005169304

吸光度は波長により、0.023から1.707までは落ちており、この程度でも処理水は透明で色を認めることがなかった。しかし、有機物濃度についてはBODが1180mg/Lに、CODは1350mg/Lになったが、これはインク排水を3倍希釈したものにオゾン処理したものであるから、ほとんど処理されていないことになる。オゾンの使用量は360gであり、上記実施例の18倍ものオゾンを必要とした。また、処理水のpHも上記実施例よりかなり低く、3.2まで低下していた。   The absorbance decreased from 0.023 to 1.707 depending on the wavelength. Even at this level, the treated water was transparent and no color was observed. However, regarding the organic matter concentration, the BOD was 1180 mg / L, and the COD was 1350 mg / L, but this was obtained by ozone treatment of the ink wastewater diluted three times, so it was hardly treated. . The amount of ozone used was 360 g, which required 18 times as much ozone as the above examples. Further, the pH of the treated water was considerably lower than that in the above example, and was lowered to 3.2.

本発明の高濃度有機排水の処理方法を実施するに好適な高濃度有機排水の処理装置の一例を示すフロー図である。It is a flowchart which shows an example of the processing apparatus of the high concentration organic wastewater suitable for implementing the processing method of the high concentration organic wastewater of this invention. 比較例として実施したオゾン装置を示すフロー図である。It is a flowchart which shows the ozone apparatus implemented as a comparative example.

符号の説明Explanation of symbols

1 原水
2 原水ポンプ
3 原水移送配管
4 曝気槽
5 散気装置(管)
6 活性汚泥
7 ブロワ
8 エアー配管
9 連絡配管
10 沈殿池(槽)
11 上澄み液
12 汚泥
13 エアリフトポンプ
14 汚泥移送配管
15 上澄み液移送配管
16 中間槽
17 オゾン反応槽
18 循環ポンプ
19 オゾンガス吸引混合溶解装置(エゼクター)
20 吸い込み側循環配管
21 吐出側循環配管
22 オゾン反応槽入口弁
23 オゾン反応槽出口弁
24 オゾン発生機
25 オゾンガス配管
26 処理水配管
27 処理水
28 排ガス
29 排ガス処理装置
30 排気
1 Raw Water 2 Raw Water Pump 3 Raw Water Transfer Piping 4 Aeration Tank 5 Air Diffuser (Pipe)
6 Activated sludge 7 Blower 8 Air piping 9 Connection piping
10 Sedimentation basin (tank)
11 Supernatant
12 Sludge
13 Air lift pump
14 Sludge transfer piping
15 Supernatant transfer piping
16 Intermediate tank
17 Ozone reactor
18 Circulation pump
19 Ozone gas suction mixing and dissolving device (ejector)
20 Suction side circulation piping
21 Discharge side circulation piping
22 Ozone reaction tank inlet valve
23 Ozone reactor outlet valve
24 Ozone generator
25 Ozone gas piping
26 Treated water piping
27 Treated water
28 exhaust gas
29 Exhaust gas treatment equipment
30 exhaust

Claims (17)

染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水の処理方法において、
前記有機系排水の生物処理を行なう工程と、
前記生物処理の処理水にオゾンを加え脱色処理する工程と
を有することを特徴とする高濃度着色有機排水の処理方法。
In a method for treating high-concentration organic wastewater that contains at least one of a dye and a pigment and is colored,
Performing a biological treatment of the organic waste water;
And a step of decolorizing treatment by adding ozone to the biological treatment water.
前記生物処理が、バチルス属細菌を主体とした活性汚泥法である請求項1に記載の処理方法。   The treatment method according to claim 1, wherein the biological treatment is an activated sludge method mainly comprising Bacillus bacteria. 前記活性汚泥があらかじめ被処理高濃度有機系排水に含まれる汚染成分と同種の有機物により馴致培養されたものである請求項2に記載の処理方法。   The treatment method according to claim 2, wherein the activated sludge is cultivated in advance using an organic material of the same kind as the contaminating component contained in the high-concentration organic wastewater to be treated. 前記オゾンを加え脱色処理する工程において、オゾンの添加がエゼクターによるオゾンの溶解により行なわれる請求項1〜3のいずれかに記載の処理方法。   The processing method according to any one of claims 1 to 3, wherein the ozone is added by dissolving ozone by an ejector in the step of decoloring by adding ozone. 前記生物処理工程の後段に処理水と汚泥を分離する固液分離手段が設けられており、該固液分離手段が沈殿池、加圧浮上法および膜分離法のいずれかである請求項1〜4のいずれかに記載の処理方法。   A solid-liquid separation means for separating treated water and sludge is provided at a subsequent stage of the biological treatment step, and the solid-liquid separation means is any one of a sedimentation basin, a pressurized flotation method and a membrane separation method. 4. The processing method according to any one of 4 above. 前記固液分離手段がマイクロフィルターまたは限外ろ過膜を用いた膜分離法である請求項5に記載の処理方法。   The processing method according to claim 5, wherein the solid-liquid separation means is a membrane separation method using a microfilter or an ultrafiltration membrane. 前記生物処理工程の前にあらかじめ限外ろ過膜または精密ろ過膜により顔料を除去する工程を有する請求項1〜6のいずれかに記載の処理方法。   The processing method in any one of Claims 1-6 which has the process of removing a pigment with an ultrafiltration membrane or a microfiltration membrane beforehand before the said biological treatment process. 前記オゾンを加え脱色処理する工程で発生した排ガス中のオゾンを除害してから排気する請求項1〜7のいずれかに記載の処理方法。   The processing method according to any one of claims 1 to 7, wherein ozone is exhausted after detoxifying ozone in the exhaust gas generated in the step of decoloring by adding ozone. 染料または顔料の少なくともいずれか一方を含み着色している高濃度有機系排水を処理するための装置において、
前記有機系排水の生物処理を行なう手段と、
前記生物処理の処理水にオゾンを加え脱色処理する手段と
を有することを特徴とする高濃度着色有機排水の処理装置。
In an apparatus for treating high-concentration organic wastewater that contains at least one of a dye and a pigment and is colored,
Means for biological treatment of the organic waste water;
A treatment device for high-concentration colored organic wastewater, comprising means for adding ozone to the biological treatment water and performing a decolorization treatment.
前記生物処理手段が、
曝気層と、該曝気層に設けられた散気手段と、該曝気層中に充填され前記有機系排水を分解する能力を有する活性汚泥とを有する請求項9に記載の処理装置。
The biological treatment means is
The processing apparatus of Claim 9 which has an aeration layer, the aeration means provided in this aeration layer, and the activated sludge with which it fills in this aeration layer and has the capability to decompose | disassemble the said organic waste water.
前記活性汚泥がバチルス属細菌を主体としたものである請求項10に記載の処理装置。   11. The treatment apparatus according to claim 10, wherein the activated sludge is mainly composed of Bacillus bacteria. 前記活性汚泥があらかじめ被処理高濃度有機系排水に含まれる汚染成分と同種の有機物により馴致培養されたものである請求項11に記載の処理装置。   12. The treatment apparatus according to claim 11, wherein the activated sludge is preliminarily cultured with an organic substance of the same kind as the contaminating component contained in the high-concentration organic wastewater to be treated. 前記オゾンを加え脱色処理する手段において、オゾンの添加手段がオゾンを溶解させるエゼクターである請求項9〜12のいずれかに記載の処理装置。   The processing apparatus according to any one of claims 9 to 12, wherein, in the means for decoloring by adding ozone, the ozone adding means is an ejector for dissolving ozone. 前記生物処理手段の後段に処理水と汚泥を分離する固液分離手段を有し、該固液分離手段が沈殿池、加圧浮上装置および膜分離装置のいずれかである請求項9〜13のいずれかに記載の処理装置。   The solid-liquid separation means for separating treated water and sludge after the biological treatment means, and the solid-liquid separation means is any one of a sedimentation basin, a pressurized flotation device, and a membrane separation device. The processing apparatus in any one. 前記固液分離手段がマイクロフィルターまたは限外ろ過膜を有する膜分離装置である請求項14に記載の処理装置。   15. The processing apparatus according to claim 14, wherein the solid-liquid separation means is a membrane separation apparatus having a microfilter or an ultrafiltration membrane. 前記生物処理手段の前にあらかじめ限外ろ過膜または精密ろ過膜により顔料を除去する手段を有する請求項9〜15のいずれかに記載の処理装置。   The processing apparatus according to any one of claims 9 to 15, further comprising means for removing the pigment in advance by an ultrafiltration membrane or a microfiltration membrane before the biological treatment means. 前記オゾンを加え脱色処理する手段で発生した排ガス中のオゾンを除害する排ガス処理装置を有する請求項9〜16のいずれかに記載の処理装置。   The processing apparatus according to any one of claims 9 to 16, further comprising an exhaust gas processing apparatus that detoxifies ozone in the exhaust gas generated by the decoloring process by adding ozone.
JP2003414857A 2003-12-12 2003-12-12 Method of treating high concentration colored organic waste water Pending JP2005169304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414857A JP2005169304A (en) 2003-12-12 2003-12-12 Method of treating high concentration colored organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414857A JP2005169304A (en) 2003-12-12 2003-12-12 Method of treating high concentration colored organic waste water

Publications (1)

Publication Number Publication Date
JP2005169304A true JP2005169304A (en) 2005-06-30

Family

ID=34734534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414857A Pending JP2005169304A (en) 2003-12-12 2003-12-12 Method of treating high concentration colored organic waste water

Country Status (1)

Country Link
JP (1) JP2005169304A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195881A (en) * 2008-02-25 2009-09-03 Sumitomo Chemical Co Ltd Treatment method of phenol fluoride containing drainage
CN102381750A (en) * 2011-08-31 2012-03-21 甘肃省农业科学院生物技术研究所 Method for deodorizing of organic fermentation liquor of plants
JP2012179538A (en) * 2011-03-01 2012-09-20 Air Water Inc Apparatus and method for waste water disposal
CN103803696A (en) * 2014-02-28 2014-05-21 郑州大学 Advanced decolorizing method for paper-making waste water secondary biochemical effluent
CN104086047A (en) * 2014-07-16 2014-10-08 绍兴水处理发展有限公司 Grading, upgrading and advanced treatment method for sewage
CN104591478A (en) * 2014-12-22 2015-05-06 福建宇邦纺织科技有限公司 Method for recycling full chemical fiber dyeing wastewater after treatment
CN105492394A (en) * 2013-07-08 2016-04-13 得利满公司 Method and equipment for the biological denitrification of waste water
CN107188339A (en) * 2017-07-11 2017-09-22 西安建筑科技大学 A kind of composite ozone air-floating integral unit
CN107973452A (en) * 2017-12-29 2018-05-01 津市中南新鲁包装印刷有限公司 Printing ink wastewater treatment system and method
CN108503058A (en) * 2018-04-09 2018-09-07 王雄新 Sludge dewatering combination air flotation processing device and treatment process
CN110217945A (en) * 2019-06-20 2019-09-10 浙江泰诚环境科技有限公司 A kind of Iohexol wastewater treatment method
CN111453903A (en) * 2020-05-03 2020-07-28 林淑琴 Working method of printing and dyeing industry sewage treatment device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195881A (en) * 2008-02-25 2009-09-03 Sumitomo Chemical Co Ltd Treatment method of phenol fluoride containing drainage
JP2012179538A (en) * 2011-03-01 2012-09-20 Air Water Inc Apparatus and method for waste water disposal
CN102381750A (en) * 2011-08-31 2012-03-21 甘肃省农业科学院生物技术研究所 Method for deodorizing of organic fermentation liquor of plants
CN105492394A (en) * 2013-07-08 2016-04-13 得利满公司 Method and equipment for the biological denitrification of waste water
CN103803696A (en) * 2014-02-28 2014-05-21 郑州大学 Advanced decolorizing method for paper-making waste water secondary biochemical effluent
CN104086047A (en) * 2014-07-16 2014-10-08 绍兴水处理发展有限公司 Grading, upgrading and advanced treatment method for sewage
CN104086047B (en) * 2014-07-16 2015-11-25 绍兴水处理发展有限公司 A kind of sewage sub-prime carries mark and deep treatment method
CN104591478A (en) * 2014-12-22 2015-05-06 福建宇邦纺织科技有限公司 Method for recycling full chemical fiber dyeing wastewater after treatment
CN107188339A (en) * 2017-07-11 2017-09-22 西安建筑科技大学 A kind of composite ozone air-floating integral unit
WO2019011023A1 (en) * 2017-07-11 2019-01-17 西安建筑科技大学 Composite ozone flotation integrated device
CN107188339B (en) * 2017-07-11 2019-06-07 西安建筑科技大学 A kind of composite ozone air-floating integral unit
US10814337B2 (en) 2017-07-11 2020-10-27 Xi'an University Of Architecture And Technology Composite ozone flotation integrated device
CN107973452A (en) * 2017-12-29 2018-05-01 津市中南新鲁包装印刷有限公司 Printing ink wastewater treatment system and method
CN108503058A (en) * 2018-04-09 2018-09-07 王雄新 Sludge dewatering combination air flotation processing device and treatment process
CN110217945A (en) * 2019-06-20 2019-09-10 浙江泰诚环境科技有限公司 A kind of Iohexol wastewater treatment method
CN110217945B (en) * 2019-06-20 2021-09-17 浙江泰诚环境科技有限公司 Iohexol wastewater treatment method
CN111453903A (en) * 2020-05-03 2020-07-28 林淑琴 Working method of printing and dyeing industry sewage treatment device

Similar Documents

Publication Publication Date Title
Goswami et al. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review
KR101246847B1 (en) Landfill leachate wastewater treatment system and process thereof
US8192626B2 (en) Wastewater chemical/biological treatment method for open water discharge
Jaiyeola et al. Treatment technology for brewery wastewater in a water-scarce country: A review
CN100400441C (en) Process for combined water treatment of chemical oxidizing-biological biological filtering tank
JP4212588B2 (en) Waste water treatment apparatus and waste water treatment method
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
Leyva-Díaz et al. Kinetic study of the combined processes of a membrane bioreactor and a hybrid moving bed biofilm reactor-membrane bioreactor with advanced oxidation processes as a post-treatment stage for wastewater treatment
KR101394888B1 (en) 1,4-dioxane-containing wastewater treatment method and disposal plant
CN103112991A (en) Coking wastewater treatment system and coking wastewater treatment method
CN101402506A (en) Process for treating dimethyl sulfoxide wastewater with photocatalysis and oxidization combined film bioreactor
JP2005169304A (en) Method of treating high concentration colored organic waste water
CN106430835A (en) Embedded ozone membrane bioreactor (MBR) device and embedded ozone MBR treatment method
Tatoulis et al. A hybrid system comprising an aerobic biological process and electrochemical oxidation for the treatment of black table olive processing wastewaters
CN107585970A (en) The technique of hardly degraded organic substance advanced treating in a kind of Industrial reverse osmosis concentrated water
KR101210536B1 (en) Sewage treat device for marine use
JP5840004B2 (en) Organic wastewater purification method and apparatus
CN104909517A (en) Industrial production wastewater advanced treatment device
CN214004361U (en) Domestic sewage treatment device
CN104045206A (en) UV (ultraviolet)/O3+BAF (biological aerated filter) advanced oxidation sewage treatment facility
CN114409207A (en) Printing ink effluent disposal system
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
CN214611952U (en) Sewage treatment system that membrane method fenton allies oneself with usefulness
CN214528611U (en) Printing and dyeing wastewater treatment combination equipment
Sudhir et al. Treatment of pharmaceutical pollutants from industrial wastewater