JP4446626B2 - Rock crack measuring method and apparatus - Google Patents

Rock crack measuring method and apparatus Download PDF

Info

Publication number
JP4446626B2
JP4446626B2 JP2001151837A JP2001151837A JP4446626B2 JP 4446626 B2 JP4446626 B2 JP 4446626B2 JP 2001151837 A JP2001151837 A JP 2001151837A JP 2001151837 A JP2001151837 A JP 2001151837A JP 4446626 B2 JP4446626 B2 JP 4446626B2
Authority
JP
Japan
Prior art keywords
hole
crack
pressurizer
electrodes
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151837A
Other languages
Japanese (ja)
Other versions
JP2002349178A (en
Inventor
孝 一 新
山 芳 樹 中
仲 正 弘 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001151837A priority Critical patent/JP4446626B2/en
Publication of JP2002349178A publication Critical patent/JP2002349178A/en
Application granted granted Critical
Publication of JP4446626B2 publication Critical patent/JP4446626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地下又は地上に構造物を建造する場合又はダム等を建造する場合あるいは岩盤応力測定をする場合、あるいは地熱開発の場合に実施する、岩盤の亀裂を計測する位置にボーリング孔を掘削し、そのボーリング孔の内壁に密着して作用する孔内加圧器をボーリング孔に挿入し、その孔内加圧器を加圧して孔内壁の亀裂を開口する岩盤の亀裂を計測する方法及び装置に関する。
【0002】
【従来の技術】
岩盤の孔内壁の亀裂を観察する方法のうち、ボアホールテレビを用いる場合には、密着した亀裂を検出できないことが多い。内圧をかけて亀裂を開口させてその形状を表面に写し取る型どりパッカーを用いる場合には、かけた内圧で亀裂が開かない場合でもその時点で亀裂が開口したかどうかわからないので、一旦型どりパッカーを孔から引き出した上で、やり直さなければならない。また、亀裂が開口していた場合でも、亀裂が実際に開口した時の圧力はわからない。さらにまた、開口した亀裂が複数あっておのおのが異なる内圧で開口していた場合でも、各亀裂が実際に開口した圧力を知ることができない。このように従来の技術では、亀裂の形状と、それがいかなる内圧で開口するかという力学特性を同時に計測することができない。また、異なる内圧で開口する複数の亀裂がある場合に、各亀裂の開口する圧力を知ることができない。
【0003】
【発明が解決しようとする課題】
本発明は、上述した様な従来技術の問題点に鑑みて提案されたものであり、岩盤の強度及び亀裂の形状およびその開口圧力、閉合圧力等の正確なデータを得るための、岩盤の亀裂を計測する方法及び装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明の方法は、岩盤の亀裂を計測する位置にボーリング孔を掘削し、そのボーリング孔の内壁に密着して作用する孔内加圧器をボーリング孔に挿入し、その孔内加圧器を加圧して孔内壁の亀裂を開口する岩盤の亀裂計測方法において、弾性筒体の表面に間隔をおいて複数の電極が設けられている孔内加圧器を準備し、孔内加圧器を加圧して孔壁岩盤に電極を圧着し、亀裂の開口に伴う各電極間のインピーダンスの変化を検出し、そのインピーダンスの変化によって亀裂を計測している。
【0005】
また、本発明の方法は、さらに前記加圧作業の終了後、減圧して亀裂の閉合に伴う各電極間のインピーダンスの変化を計測している。
【0006】
また、そのために本発明では、岩盤の亀裂を計測する位置にボーリング孔を掘削し、そのボーリング孔の内壁に密着して作用する孔内加圧器をボーリング孔に挿入し、その孔内加圧器を加圧して孔内壁の亀裂を開口する岩盤の亀裂計測装置において、前記孔内加圧器の弾性筒体の表面に間隔をおいて複数の電極が配置されており、それらの電極はマトリックススイッチを介してインピーダンスの測定器に接続されている。
【0007】
【発明の実施の形態】
以下、添付図面を参照にして、本発明の実施の形態の一例を説明する。図1乃至3に示すように、本発明に使用される孔内加圧器1は、電極パッカーと称され、膨張可能な弾性筒体であるゴム筒2の両端に固定金具3、4が取り付けられ、そのゴム筒2内には心棒5が挿入されている。そして、一方の固定金具3に当接したプレート6がボルト7で心棒5に固定され、心棒5の段部5aに当接したプレート8がボルト9で固定金具4に固定され、固定金具3、4と心棒5との当接面にはシール用のOリング10が介装されている。このようにしてゴム筒2は心棒5に気密に、かつ強固に取り付けられている。また、心棒5にはゴム筒2へ加圧流体を圧送する流路5bが形成され、流路5bはパイプ11及び切替弁12を介して加圧器13に接続されている。
【0008】
ゴム筒2の表面には、多数個の電極15が所定間隔で設けられている。図に示されるように、この実施の形態では、円周方向に各8個の電極15が軸方向に3列設けられ、各電極15は信号線16を介して計測器17に接続されている。また、流路5bには圧力変換器18が設けられ、その圧力変換器の圧力信号も信号線16を介して計測器17に入力するようになっている。
【0009】
なお、孔内加圧器1は、例えばその長さは500mm、ゴム筒2の外径は58mm、長さは250mm、固定金具3、4の外径は64mmである。そして、ゴム筒2の表面には、中心及び中心から上下60mmの位置に各8個の電極15が円周に設けられている。
【0010】
計測器17はマトリックススイッチ17aと抵抗・圧力測定器17bで構成されている。マトリックススイッチ17aが切り替わることにより、隣り合う2つの電極15が抵抗・圧力測定器17bに接続され、抵抗・圧力測定器17bで電極15間のインピーダンスが演算され、圧力変換器18の圧力信号と共にインピーダンスを記録するようになっている。
【0011】
次に本発明の動作を説明する。図4に示すように計測する岩盤20にボーリング孔21を穿け、挿入棒22を使用して孔内加圧器1をボーリング孔21に挿入する。そして、切替弁12を孔内加圧器側に開くと、加圧器13の高圧水はパイプ11、心棒5の流路5bを介してゴム筒2内に流入し、ゴム筒2は膨らみボーリング孔21に密着し、さらに膨らんでボーリング孔21内壁に有る既存の亀裂を開口させたり、新たな亀裂を発生させる。
【0012】
このように加圧器13から高圧水を孔内加圧器1に送る過程において、計測器17のマトリックススイッチ17aは順次切替えられ、各電極15間のインピーダンスが演算され、圧力変換器18の圧力信号と共にインピーダンスを順次記録する。そして、圧力とインピーダンスとの関係に基づいて岩盤20の亀裂の有無及び形状を計測する。また切替弁12を切り替えることにより孔内加圧器内部の高圧水を徐々に減圧し、加圧により開口した亀裂を閉合することが出来る。以後、切換弁12を開閉して加圧減圧を数回繰り返し計測することにより、精度の良い圧力とインピーダンスの関係を計測することが出来る。
【0013】
図5に示すように、ボーリング孔21に挿入された孔内加圧器1を加圧し、孔壁の亀裂20aが開いた場合には、ゴム筒2は電極15bと15c間の抵抗・圧力測定器17bで演算されるインピーダンスが増大する。そして、圧力変換器18の圧力信号と共にインピーダンスが抵抗・圧力測定器17bで記録され、図6に示すようにデータが得られる。即ち、図6に示すように亀裂のない15a−15b間に比べ、電極15b−15c間は亀裂の開口したa点から電極間の抵抗が大幅に増大する。また、孔内加圧器内部の高圧水を減圧し、加圧により開口した亀裂を徐々に閉合することにより、電極15bと15c間の抵抗・圧力測定器17bで演算されるインピーダンスが大きく減少する。すなわち図6に示すように亀裂のない部分の電極15a〜15b間に比べ、電極15b−15c間は亀裂の閉合したa´点から電極間の抵抗の変化が減少する。
【0014】
また、図7に示すように、亀裂20xがボーリング孔21に対して斜めに有る場合には、孔内加圧器1にA〜Cの3列に設けられた各電極(1〜8)に対し、図8に符号xで示すように亀裂開口位置が順次移動して検出され、その傾き・方向を知ることができる。
【0015】
この位置の計測が終わったならば、切替弁12を大気へ開放して孔内加圧器1を収縮し、ボーリング孔21の奥へ孔内加圧器1を移動し、再び切替弁12を切替えて計測をする。このようにして岩盤20の亀裂の有無、形状、及び亀裂が開口ないし閉合するときの圧力を計測する。
【0016】
また、孔内加圧器1に設けられている電極15の設置間隔を密にすることにより、亀裂の方向及び傾きをより精度よく計測することができるようになる。
そして、1つ置き又は2つ置きの電極15間のインピーダンスを求めることにより、電極15間に跨った大きな亀裂の有無、形状を検出することもできる。
さらに、各電極15間のインピーダンスを求め、それらから亀裂の有無、形状を総合的に判断することにより、よりきめの細かい検出が可能となる。
なお、この実施の形態では、孔内加圧器1を高圧水で加圧しているが、高圧空気、高圧油等で加圧してもよい。
【0017】
【発明の効果】
以下に本発明の効果を記載する。
本発明の岩盤の亀裂計測方法および亀裂計測装置は、岩盤に穿けたボーリング孔に複数の電極を設けた孔内加圧器を挿入し、孔内加圧器を加圧ないし減圧して亀裂を開口、閉合し、圧力と電極間のインピーダンスの変化の関係に基づいて岩盤の亀裂を計測しているので、亀裂の形状およびその開口、閉合圧力および岩盤強度等の正確なデータを得ることができる。
【0018】
このように亀裂の形状とそれが開口・閉合する圧力等を正確に知ることにより、本発明が属する技術分野において例えば次のようなメリットが生じる。
【0019】
a. グラウト施工や地熱開発などにおける亀裂特性の計測
岩盤内には不連続面があるのが普通である。例えば、ボーリング孔からセメントモルタルなどを圧入して岩盤の補強や止水をするグラウト施工において、そのモルタルがどの不連続面を通ってどの方向に充填されていくのか、ということが重要な問題になる場合がある。また、高温の岩盤内にボーリング孔から常温の水を圧入して、別のボーリング孔から高温の蒸気や熱水を回収するタイプの地熱技術においても、圧入した水がどの方向に流れていくのかが重要な関心事となる。
岩盤内の不連続面に応じてボーリング孔の内壁には複数の既存亀裂が観察される。圧入したセメントモルタルや水は、圧入圧力に応じて開口した既存亀裂に流れ込むので、どのような圧力で圧入するかによって流れていく方向が変る場合がある。そのため、孔内壁の各亀裂がいくら以上の圧力で開口するのか、またいくら以下の圧力で閉じるのかを知ることが重要となる。本発明はそれを可能にする。
【0020】
b. 岩盤応力の正確な測定
水圧破砕法で岩盤応力を測定する場合、簡単のため縦方向の破砕亀裂が生じる場合について述べると、亀裂が発生した時の内圧Pb、その亀裂を一旦閉じた後に再開口した時の内圧Pr、シャットイン圧力Ps及び岩盤の引張り強度Tを用いることにより、孔軸に垂直な面内での最大応力SHと最小応力Shが次のように表されることになる。
SH=3Sh−Pb+T (1)
SH=3Sh−Pr (2)
Sh=Ps (3)
これは、水圧破砕法による岩盤応力測定の基本概念であり広く用いられているものである。しかし、Psの測定値は一般に信頼されているものの、Pb、特にPrの測定値には大きな誤差が含まれることが指摘されている。すなわち、Pbは水の浸透条件によっては式(1)と異なる式を用いるべき場合がある。またPrは水圧の時間変化曲線から読み取ることは非常に困難であり、読み取ったとしても式(2)が成立しない。このため水圧破砕法で求める岩盤応力のうち、SHにはよい精度があるとはみなされていない。従来の水圧破砕法ではSHは求められないと断定する研究報告もある。
【0021】
本発明の亀裂計測方法では、孔内壁に水圧を加圧しないので上に述べたようなPb、Prの測定上の問題が生じず、測定したPb、Prに正しく式(1)、(2)を適用することができる。そのため、SHを正確に求めることが可能となる。また同時に岩盤の引張り強度Tも求めることが出来る。
【図面の簡単な説明】
【図1】本発明の岩盤の亀裂計測装置の孔内加圧器の一実施形態を示す斜視図。
【図2】孔内加圧器の縦断面図。
【図3】孔内加圧器の横断面図。
【図4】本発明による岩盤の亀裂計測方法を説明する模式図。
【図5】孔壁の亀裂開口部分を示す断面図。
【図6】亀裂開口、閉合による電極間抵抗の変化を示すグラフ。
【図7】ボーリング孔に対して亀裂が傾斜している場合の検出を説明する図。
【図8】図7のA〜C各位置での亀裂検出を示す図。
【符号の説明】
1・・・孔内加圧器
2・・・ゴム筒
3、4・・・固定金具
5・・・心棒
5a・・・段部
5b・・・流路
6、8・・・プレート
7、9・・・ボルト
10・・・Oリング
11・・・パイプ
12・・・切替弁
13・・・加圧器
15・・・電極
16・・・信号線
17・・・計測器
17a・・・マトリックススイッチ
17b・・・抵抗・圧力測定器
18・・・圧力変換器
20・・・岩盤
21・・・ボーリング孔
22・・・挿入棒
[0001]
BACKGROUND OF THE INVENTION
The present invention excavates a borehole at a position where a crack in a rock mass is to be measured when constructing a structure underground or above the ground, when building a dam, etc., when measuring rock stress, or when developing geothermal energy. In addition, the present invention relates to a method and apparatus for measuring a crack in a rock that opens a crack in an inner wall of the hole by inserting an in-hole pressurizer acting in close contact with the inner wall of the borehole into the borehole and pressurizing the in-hole pressurizer. .
[0002]
[Prior art]
Of the methods for observing cracks in the inner wall of a rock, when using a borehole television, it is often impossible to detect a close crack. When using a mold packer that opens the crack by applying internal pressure and copies its shape to the surface, even if the crack does not open due to the applied internal pressure, it is not known whether the crack has opened at that point. You have to pull it out and start over. Moreover, even when the crack is opened, the pressure when the crack is actually opened is not known. Furthermore, even if there are a plurality of open cracks, each of which is opened at a different internal pressure, the pressure at which each crack actually opened cannot be known. As described above, in the conventional technique, it is impossible to simultaneously measure the shape of the crack and the mechanical characteristic of the internal pressure at which the crack opens. Moreover, when there are a plurality of cracks that open at different internal pressures, the pressure at which each crack opens cannot be known.
[0003]
[Problems to be solved by the invention]
The present invention has been proposed in view of the problems of the prior art as described above, and is used to obtain accurate data such as rock mass strength and crack shape and its opening pressure and closing pressure. It aims at providing the method and apparatus which measure this.
[0004]
[Means for Solving the Problems]
In the method of the present invention, a borehole is excavated at a position where a crack in a rock mass is measured, an in-hole pressurizer acting in close contact with the inner wall of the borehole is inserted into the borehole, and the in-hole pressurizer is pressurized. In the method for measuring cracks in a rock mass that opens a crack on the inner wall of the hole, an in-hole pressurizer having a plurality of electrodes provided at intervals on the surface of the elastic cylinder is prepared, and the in-hole pressurizer is pressurized to provide a hole. An electrode is crimped to the wall bedrock, the change in impedance between the electrodes due to the opening of the crack is detected, and the crack is measured by the change in impedance.
[0005]
Further, in the method of the present invention, after the pressurization operation is completed, the pressure is reduced and the change in impedance between the electrodes due to the closure of the crack is measured.
[0006]
For this purpose, in the present invention, a borehole is excavated at a position to measure a crack in the rock, and an in-hole pressurizer that works in close contact with the inner wall of the borehole is inserted into the borehole. In the rock crack measuring device that pressurizes and opens the crack in the inner wall of the hole, a plurality of electrodes are arranged at intervals on the surface of the elastic cylinder of the in-hole pressurizer, and these electrodes pass through a matrix switch. Connected to an impedance measuring instrument.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the accompanying drawings. As shown in FIGS. 1 to 3, the in-hole pressurizer 1 used in the present invention is called an electrode packer, and fixing brackets 3 and 4 are attached to both ends of a rubber cylinder 2 which is an inflatable elastic cylinder. A mandrel 5 is inserted into the rubber cylinder 2. Then, the plate 6 in contact with one of the fixing brackets 3 is fixed to the mandrel 5 with bolts 7, and the plate 8 in contact with the step 5 a of the mandrel 5 is fixed to the fixing brackets 4 with bolts 9, An O-ring 10 for sealing is interposed on the contact surface between 4 and the mandrel 5. In this way, the rubber cylinder 2 is attached to the mandrel 5 in an airtight and firm manner. The mandrel 5 is formed with a flow path 5 b for pumping pressurized fluid to the rubber cylinder 2, and the flow path 5 b is connected to the pressurizer 13 through the pipe 11 and the switching valve 12.
[0008]
A large number of electrodes 15 are provided on the surface of the rubber cylinder 2 at predetermined intervals. As shown in the figure, in this embodiment, eight electrodes 15 in the circumferential direction are provided in three rows in the axial direction, and each electrode 15 is connected to a measuring instrument 17 through a signal line 16. . In addition, a pressure transducer 18 is provided in the flow path 5 b, and a pressure signal of the pressure transducer is also input to the measuring instrument 17 through the signal line 16.
[0009]
The in-hole pressurizer 1 has, for example, a length of 500 mm, an outer diameter of the rubber cylinder 2 of 58 mm, a length of 250 mm, and an outer diameter of the fixing brackets 3 and 4 of 64 mm. On the surface of the rubber cylinder 2, eight electrodes 15 are provided around the center at positions 60 mm above and below the center.
[0010]
The measuring instrument 17 includes a matrix switch 17a and a resistance / pressure measuring instrument 17b. By switching the matrix switch 17a, two adjacent electrodes 15 are connected to the resistance / pressure measuring device 17b, and the impedance between the electrodes 15 is calculated by the resistance / pressure measuring device 17b. Is to be recorded.
[0011]
Next, the operation of the present invention will be described. As shown in FIG. 4, a boring hole 21 is made in the rock 20 to be measured, and the in-hole pressurizer 1 is inserted into the boring hole 21 using the insertion rod 22. When the switching valve 12 is opened to the in-hole pressurizer side, the high-pressure water in the pressurizer 13 flows into the rubber cylinder 2 through the pipe 11 and the flow path 5b of the mandrel 5, and the rubber cylinder 2 swells and the boring hole 21. The existing crack in the inner wall of the borehole 21 is opened or a new crack is generated.
[0012]
Thus, in the process of sending the high pressure water from the pressurizer 13 to the in-hole pressurizer 1, the matrix switch 17a of the measuring instrument 17 is sequentially switched, the impedance between the electrodes 15 is calculated, and together with the pressure signal of the pressure transducer 18 Record impedance sequentially. And the presence or absence and shape of the crack of the rock mass 20 are measured based on the relationship between pressure and impedance. Further, by switching the switching valve 12, the high-pressure water inside the in-hole pressurizer can be gradually reduced, and the crack opened by the pressurization can be closed. Thereafter, by opening and closing the switching valve 12 and repeatedly measuring the pressurization and depressurization several times, it is possible to accurately measure the relationship between the pressure and the impedance.
[0013]
As shown in FIG. 5, when the in-hole pressurizer 1 inserted in the boring hole 21 is pressurized and the crack 20a in the hole wall is opened, the rubber tube 2 is a resistance / pressure measuring device between the electrodes 15b and 15c. The impedance calculated in 17b increases. Then, the impedance is recorded by the resistance / pressure measuring instrument 17b together with the pressure signal of the pressure transducer 18, and data is obtained as shown in FIG. That is, as shown in FIG. 6, the resistance between the electrodes is greatly increased from the point a where the cracks are opened between the electrodes 15b and 15c, as compared to between the cracks 15a and 15b. Moreover, the impedance calculated by the resistance / pressure measuring instrument 17b between the electrodes 15b and 15c is greatly reduced by reducing the pressure of the high-pressure water inside the in-hole pressurizer and gradually closing the cracks opened by pressurization. That is, as shown in FIG. 6, the change in resistance between the electrodes decreases from the point a 'where the cracks are closed between the electrodes 15b and 15c, as compared to between the electrodes 15a to 15b where there is no crack.
[0014]
In addition, as shown in FIG. 7, when the crack 20 x is oblique to the boring hole 21, the electrodes (1 to 8) provided in the three rows A to C in the in-hole pressurizer 1. 8, the crack opening position is sequentially moved and detected as indicated by a symbol x, and its inclination and direction can be known.
[0015]
When the measurement of this position is completed, the switching valve 12 is opened to the atmosphere, the in-hole pressurizer 1 is contracted, the in-hole pressurizer 1 is moved to the back of the boring hole 21, and the switching valve 12 is switched again. Measure. In this way, the presence or absence of cracks in the rock mass 20, the shape, and the pressure when the cracks open or close are measured.
[0016]
Further, by increasing the installation interval of the electrodes 15 provided in the in-hole pressurizer 1, the direction and inclination of the crack can be measured with higher accuracy.
Further, by obtaining the impedance between every other electrode or every other electrode 15, it is possible to detect the presence and shape of a large crack across the electrodes 15.
Furthermore, finer detection is possible by obtaining the impedance between the electrodes 15 and comprehensively judging the presence / absence and shape of cracks from them.
In this embodiment, the in-hole pressurizer 1 is pressurized with high-pressure water, but may be pressurized with high-pressure air, high-pressure oil, or the like.
[0017]
【The invention's effect】
The effects of the present invention are described below.
The crack measuring method and crack measuring apparatus of the rock according to the present invention, an in-hole pressurizer provided with a plurality of electrodes is inserted into a borehole drilled in the rock, and the crack is opened by pressurizing or depressurizing the in-hole pressurizer. Since the rock is cracked based on the relationship between the pressure and the change in impedance between the electrodes, accurate data such as the shape of the crack and its opening, the closing pressure and the rock strength can be obtained.
[0018]
Thus, by knowing exactly the shape of the crack and the pressure at which it opens and closes, for example, the following merits occur in the technical field to which the present invention belongs.
[0019]
a. Measurement of crack characteristics in grout construction and geothermal development There are usually discontinuities in the rock. For example, in grout construction where cement mortar or the like is injected from a borehole to reinforce rock mass or stop water, an important issue is which discontinuity of the mortar is filled in which direction. There is a case. Also, in the geothermal technology where hot water or hot water is recovered from another borehole by inserting normal temperature water into the hot rock mass, the direction in which the injected water flows Is an important concern.
Several existing cracks are observed on the inner wall of the borehole depending on the discontinuity in the rock. The pressed cement mortar and water flow into the existing cracks that open according to the press-fitting pressure, so the direction of flow may change depending on what pressure is used. Therefore, it is important to know how much pressure each crack of the inner wall of the hole opens with a higher pressure and how much it closes with a lower pressure. The present invention makes this possible.
[0020]
b. Accurate measurement of rock stress When rock stress is measured by the hydraulic fracturing method, for the sake of simplicity, the case where a longitudinal fracture crack occurs will be described. The internal pressure Pb when the crack occurs, the reopening after the crack is closed once By using the internal pressure Pr, the shut-in pressure Ps, and the tensile strength T of the rock mass, the maximum stress SH and the minimum stress Sh in the plane perpendicular to the hole axis are expressed as follows.
SH = 3Sh−Pb + T (1)
SH = 3Sh-Pr (2)
Sh = Ps (3)
This is a basic concept of rock stress measurement by the hydraulic fracturing method and is widely used. However, although the measured value of Ps is generally reliable, it has been pointed out that the measured value of Pb, particularly Pr, includes a large error. That is, for Pb, there may be a case where an expression different from the expression (1) should be used depending on water permeation conditions. In addition, it is very difficult to read Pr from the time change curve of the water pressure, and even if read, Equation (2) does not hold. For this reason, SH is not considered to have good accuracy among the rock stresses obtained by the hydraulic fracturing method. Some research reports conclude that SH is not required in conventional hydraulic fracturing methods.
[0021]
In the crack measuring method of the present invention, since no water pressure is applied to the inner wall of the hole, the above-mentioned problems in measuring Pb and Pr do not occur, and the measured Pb and Pr are correctly expressed by the formulas (1) and (2). Can be applied. Therefore, it is possible to accurately obtain SH. At the same time, the tensile strength T of the rock can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of an in-hole pressurizer of a rock crack measuring apparatus of the present invention.
FIG. 2 is a longitudinal sectional view of an in-hole pressurizer.
FIG. 3 is a cross-sectional view of the in-hole pressurizer.
FIG. 4 is a schematic diagram for explaining a method for measuring cracks in rock according to the present invention.
FIG. 5 is a cross-sectional view showing a crack opening portion of a hole wall.
FIG. 6 is a graph showing changes in resistance between electrodes due to crack opening and closing.
FIG. 7 is a diagram for explaining detection when a crack is inclined with respect to a boring hole.
8 is a diagram showing crack detection at each of the positions A to C in FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... In-hole pressurizer 2 ... Rubber cylinder 3, 4 ... Fixing metal fitting 5 ... Mandrel 5a ... Step part 5b ... Flow path 6, 8 ... Plate 7, 9, .... Bolt 10 ... O-ring 11 ... Pipe 12 ... Switching valve 13 ... Pressurizer 15 ... Electrode 16 ... Signal line 17 ... Measuring instrument 17a ... Matrix switch 17b ... Resistance / pressure measuring instrument 18 ... Pressure transducer 20 ... Rock 21 ... Boring hole 22 ... Inserting rod

Claims (3)

岩盤の亀裂を計測する位置にボーリング孔を掘削し、そのボーリング孔の内壁に密着して作用する孔内加圧器をボーリング孔に挿入し、その孔内加圧器を加圧して孔内壁の亀裂を開口する岩盤の亀裂計測方法において、弾性筒体の表面に間隔をおいて複数の電極が設けられている孔内加圧器を準備し、孔内加圧器を加圧して孔壁岩盤に電極を圧着し、亀裂の開口に伴う各電極間のインピーダンスの変化を検出し、そのインピーダンスの変化によって亀裂を計測することを特徴とする岩盤の亀裂計測方法。Drill a boring hole at the position to measure the crack in the bedrock, insert an in-hole pressurizer that works in close contact with the inner wall of the borehole, and pressurize the in-hole pressurizer to crack the inner wall of the hole. In the method for measuring cracks in open rocks, prepare an in-hole pressurizer with a plurality of electrodes provided at intervals on the surface of the elastic cylinder, and pressurize the in-hole pressurizer to crimp the electrodes to the hole wall rock A method for measuring a crack in a rock mass, comprising detecting a change in impedance between the electrodes accompanying the opening of the crack and measuring the crack based on the change in impedance. 前記加圧作業の終了後、減圧して亀裂の閉合に伴う各電極間のインピーダンスの変化を計測する請求項1記載の岩盤の亀裂計測方法。The method for measuring cracks in a rock mass according to claim 1, wherein after the pressurizing operation is completed, the pressure is reduced and a change in impedance between the electrodes due to the closure of the cracks is measured. 岩盤の亀裂を計測する位置にボーリング孔を掘削し、そのボーリング孔の内壁に密着して作用する孔内加圧器をボーリング孔に挿入し、その孔内加圧器を加圧して孔内壁の亀裂を開口する岩盤の亀裂計測装置において、前記孔内加圧器の弾性筒体に間隔をおいて複数の電極が配置されており、それらの電極はマトリックススイッチを介してインピーダンスの測定器に接続されていることを特徴とする岩盤の亀裂計測装置。Drill a boring hole at the position to measure the crack in the bedrock, insert an in-hole pressurizer that works in close contact with the inner wall of the borehole, and pressurize the in-hole pressurizer to crack the inner wall of the hole. In the crack measuring device for the open rock, a plurality of electrodes are arranged at intervals in the elastic cylinder of the in-hole pressurizer, and these electrodes are connected to an impedance measuring device via a matrix switch. A rock crack measuring device characterized by that.
JP2001151837A 2001-05-22 2001-05-22 Rock crack measuring method and apparatus Expired - Fee Related JP4446626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151837A JP4446626B2 (en) 2001-05-22 2001-05-22 Rock crack measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151837A JP4446626B2 (en) 2001-05-22 2001-05-22 Rock crack measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2002349178A JP2002349178A (en) 2002-12-04
JP4446626B2 true JP4446626B2 (en) 2010-04-07

Family

ID=18996606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151837A Expired - Fee Related JP4446626B2 (en) 2001-05-22 2001-05-22 Rock crack measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4446626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545249A (en) * 2015-12-31 2016-05-04 中国石油天然气股份有限公司 Crack sample plate clamping device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925266B1 (en) * 2006-10-31 2009-11-05 한국지질자원연구원 Apparatus for measuring in-situ stress of rock using thermal crack
JP5350136B2 (en) * 2009-08-24 2013-11-27 一般財団法人電力中央研究所 Packer integrated hydraulic testing equipment
FR3089301B1 (en) * 2018-11-30 2023-04-21 Electricite De France System and method for determining characteristics of a crack
CN113027417B (en) * 2021-03-04 2024-02-27 长江水利委员会长江科学院 Water-retaining pressure-releasing device and method suitable for deep water drilling ground stress test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545249A (en) * 2015-12-31 2016-05-04 中国石油天然气股份有限公司 Crack sample plate clamping device

Also Published As

Publication number Publication date
JP2002349178A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
CN107299833B (en) Bushing leak detection device and method
US7580796B2 (en) Methods and systems for evaluating and treating previously-fractured subterranean formations
EP2364394B1 (en) Single packer structure with sensors
US10914164B2 (en) High-efficiency pre-drilling pressure meter test apparatus and method for deep rock mass
CN110006760B (en) Method for accurately measuring deep hole hydraulic fracturing induced fracture heavy tension pressure
US8408296B2 (en) Methods for borehole measurements of fracturing pressures
AU1194897A (en) Use of acoustic emission in rock formation analysis
GB2429472A (en) Flow control in downhole sample testing
CN104005747B (en) A kind of confined pressure hydraulic fracturing experiments device and using method thereof
JP4446626B2 (en) Rock crack measuring method and apparatus
JP4562158B2 (en) Rock crack measuring method and apparatus
CN111708077A (en) Sound wave method testing method for tunnel surrounding rock loosening ring
Gheibi et al. Numerical modeling of radial fracturing of cement sheath caused by pressure tests
AU710013B2 (en) Method for acoustic determination of the length of a fluid conduit
Ito et al. Deep rock stress measurement by hydraulic fracturing method taking account of system compliance effect
CN113281176B (en) Method for verifying measurement result of hydraulic fracturing method and loading device
CN114720285B (en) Grouting and water plugging device for broken rock in mine coupling state and test method
Clarke et al. Pressuremeter Testing in Ground Investigation. Part 1-Site Operations.
CN206440589U (en) A kind of country rock initial infiltration coefficient test structure
JP3353714B2 (en) Pore water measurement method and apparatus
JP3065208B2 (en) On-site permeability test equipment
Maralanda et al. Selection of equipments for hydrofracturing tests In permeable rocks
CN215830491U (en) High-pressure airtight simulation device of underground packing system
CN210981775U (en) A test device that is used for section of jurisdiction slip casting pipe check valve sealing plug to resist water pressure
CN114813365B (en) Device and method for measuring fault displacement and fault shearing strength

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees