JP3065208B2 - On-site permeability test equipment - Google Patents
On-site permeability test equipmentInfo
- Publication number
- JP3065208B2 JP3065208B2 JP4778994A JP4778994A JP3065208B2 JP 3065208 B2 JP3065208 B2 JP 3065208B2 JP 4778994 A JP4778994 A JP 4778994A JP 4778994 A JP4778994 A JP 4778994A JP 3065208 B2 JP3065208 B2 JP 3065208B2
- Authority
- JP
- Japan
- Prior art keywords
- packer
- pressure
- water
- pipe
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Geophysics And Detection Of Objects (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガス圧力を用いて気密
パイプ内水位を調節する方式の透水試験の改良に関する
ものである。更に詳しく述べると本発明は、試験区間を
設定するパッカーに気密パイプを接続して、ガス圧力に
より気密パイプ内の水位を変化させる手法と、圧力セン
サにより試験区間圧力を検出する手法とを組み合わせ、
検出圧力の経時変化から地層の透水係数を求める装置に
おいて、気密パイプに遮断弁を設置し、該遮断弁を閉止
状態とすることによって、短時間で平衡水位(水頭)を
測定できるように工夫した技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a water permeability test in which the water level in an airtight pipe is adjusted using gas pressure. More specifically, the present invention combines a method of connecting a gas-tight pipe to a packer for setting a test section, changing a water level in the gas-tight pipe by gas pressure, and a method of detecting a test section pressure by a pressure sensor,
In a device that determines the permeability of the formation from the change over time in the detected pressure, a shut-off valve is installed in the airtight pipe, and the shut-off valve is closed so that the equilibrium water level (water head) can be measured in a short time. It is about technology.
【0002】この現場透水試験は、各種の土木建築工事
に先立って、あるいは種々の科学的要求によって地層内
にボーリング孔を掘削して行う地下水調査の分野におい
て有用である。特に、透水係数kが10-5cm/sec のオ
ーダー以下の難透水性の地層での現場透水試験に有効で
ある。[0002] This in-situ permeability test is useful in the field of groundwater investigation in which a borehole is excavated in a stratum prior to various civil engineering construction works or according to various scientific requirements. In particular, it is effective for an in-situ permeability test in a poorly permeable stratum having a permeability coefficient k of the order of 10 −5 cm / sec or less.
【0003】[0003]
【従来の技術】地層の透水係数を求めるための従来技術
としては、JFT試験と呼ばれる方法がある。これには
中心部を縦貫する通水管の上端にトリップ弁を設けたパ
ッカーを用いる。このパッカーに地上まで達するパイプ
を接続してボーリング孔内の所定の深さに降ろす。その
際、トリップ弁は閉じた状態としておく。また前記パイ
プ内の水位を測定するため、多数の電極を所定の間隔で
配設した水位検出装置を挿入する。ボーリング孔内をパ
ッカーで遮水状態にした後、地上からメッセンジャーを
落下させトリップ弁を開放する。すると、ボーリング孔
のパッカーより下部の地層の透水性によって決まる速度
で、パイプ内を水が上昇し、その水位変化を経時的に電
極と導電率計で測定することにより透水係数が求まる。2. Description of the Related Art As a conventional technique for determining the permeability of a formation, there is a method called a JFT test. For this, a packer with a trip valve at the upper end of a water pipe running through the center is used. A pipe reaching the ground is connected to the packer and lowered to a predetermined depth in the borehole. At that time, the trip valve is kept closed. Further, in order to measure the water level in the pipe, a water level detection device having a large number of electrodes arranged at predetermined intervals is inserted. After the borehole is sealed with a packer, the messenger drops from the ground and the trip valve is opened. Then, the water rises in the pipe at a speed determined by the permeability of the stratum below the packer of the borehole, and the change in the water level is measured over time with an electrode and a conductivity meter to determine the permeability.
【0004】このJFT法は、比較的精度よく、深さ数
十mまでの地層の透水性を測定できる唯一の試験方法と
して利用されてきた。しかし近年、各種の事情から、更
に大深度での透水性の測定が要求されるようになってき
ており、JFT試験では以下のような点で、これらの要
望に応えるには限界がある。 深度が大きくなるとトリップ弁の開放が困難となる。
またボーリング孔内にパッカーを挿入して試験を行う
と、パイプ内に水が入るため、取り出してトリップ弁を
閉じ、挿入し直さない限り再び試験を行うことはできな
い。 トリップ弁はパッカー直上にあるため、バルブを開放
した瞬間、ボーリング孔壁にほぼその深度の水圧が孔の
内側に向かって発生する。そのため孔壁が破壊されてし
まうことがあり、精度のよい測定ができなくなる虞れが
ある。 パイプ内に挿入した多数の電極によって水位の変化を
検知できるが、電極は間隔をおいて設けられているので
連続的な測定が行えない。従って、特に水位の変化速度
が小さいときには大きな測定誤差が生じることになる。The JFT method has been used as the only test method capable of measuring the permeability of a formation up to several tens of meters relatively accurately. However, in recent years, it has been required to measure the water permeability at a greater depth due to various circumstances, and there is a limit in meeting the demands in the JFT test in the following points. As the depth increases, it becomes difficult to open the trip valve.
Also, if a test is performed by inserting a packer into the borehole, water will enter the pipe. Therefore, the test cannot be performed again without taking out the pipe, closing the trip valve, and reinserting it. Since the trip valve is located immediately above the packer, the moment the valve is opened, a water pressure of approximately the same depth is generated on the borehole wall toward the inside of the hole. Therefore, the hole wall may be broken, and there is a possibility that accurate measurement cannot be performed. The change in water level can be detected by a large number of electrodes inserted into the pipe, but continuous measurement cannot be performed because the electrodes are provided at intervals. Therefore, a large measurement error occurs particularly when the rate of change of the water level is low.
【0005】そこで上記のような欠点を解消し、測定深
度に影響されず、繰り返し試験を行うことができ、また
孔壁の破壊が生じず地質の強弱に自在に対応でき、連続
的な測定を簡便に且つ高精度で行える技術として、本発
明者等は先に「地層の透水試験方法及びその装置」(特
開平2−304112号公報)を提案した。これは、水
圧検出パッカーとそれに接続した気密パイプを用い、ガ
ス圧力により気密パイプ内の水位を変化させる手法と、
圧力センサにより試験区間圧力を直接検出する手法とを
組み合わせたものである。[0005] Therefore, the above-mentioned drawbacks are solved, the test can be repeatedly performed without being affected by the measurement depth, the fracture of the hole wall does not occur, and the strength of the geology can be freely adjusted. As a technique that can be performed simply and with high accuracy, the present inventors have previously proposed "a method and apparatus for testing the permeability of formations" (Japanese Patent Application Laid-Open No. 2-304112). This uses a water pressure detection packer and an airtight pipe connected to it, and uses a gas pressure to change the water level in the airtight pipe,
This is a combination of a method of directly detecting a test section pressure with a pressure sensor.
【0006】透水試験装置は、次のような構成である。
パッカーの中心部を縦貫する通水管の上部に気密パイプ
を接続して、上端を地上まで立ち上げる。気密パイプの
上部に切換弁を設けて、地上の加圧ガス源側又は大気側
に切り換え可能とする。そしてパッカーで区切られる試
験区間の水圧を検出する圧力センサと、その検出信号を
記録する圧力記録装置を設ける。[0006] The permeability test apparatus has the following configuration.
An airtight pipe is connected to the upper part of the water pipe running through the center of the packer, and the upper end is raised to the ground. A switching valve is provided at the upper part of the airtight pipe so that it can be switched to a pressurized gas source on the ground or to the atmosphere. A pressure sensor for detecting a water pressure in a test section separated by the packer and a pressure recording device for recording a detection signal thereof are provided.
【0007】まずパッカーをボーリング孔内に挿入す
る。パッカー挿入時、切換弁は大気側に開放されてお
り、気密パイプ内は大気圧である。従って気密パイプ内
の水位は自然水位と一致している。次に切換弁を加圧ガ
ス源側に切り換えて気密パイプ内にガス圧を加え、気密
パイプ内の水位を押し下げ、そのガス圧調整により水位
設定を行う。そこでパッカーを膨張させてボーリング孔
を遮水状態にし、試験区間を設定する。その後、切換弁
を操作して気密パイプ内を大気圧に開放する。試験区間
圧力は、ほぼ気密パイプ内水頭まで一旦降下するが、孔
壁からの地下水の供給に応じて気密パイプ内水位は上昇
し、それに伴って試験区間圧力も上昇する。その圧力の
経時的変化を記録して透水係数を求める。First, a packer is inserted into a borehole. When the packer is inserted, the switching valve is open to the atmosphere, and the inside of the airtight pipe is at atmospheric pressure. Therefore, the water level in the airtight pipe matches the natural water level. Next, the switching valve is switched to the pressurized gas source side to apply gas pressure to the hermetic pipe, depress the water level in the hermetic pipe, and set the water level by adjusting the gas pressure. Then, the packer is inflated to make the borehole water-impervious and the test section is set. Thereafter, the switching valve is operated to open the airtight pipe to the atmospheric pressure. The test section pressure temporarily drops to almost the head inside the airtight pipe, but the water level in the airtight pipe rises in response to the supply of groundwater from the hole wall, and the test section pressure also rises accordingly. The change with time of the pressure is recorded to determine the hydraulic conductivity.
【0008】[0008]
【発明が解決しようとする課題】ところで、透水試験で
は平衡水位(水頭)の測定は欠かすことができない。平
衡水位の測定誤差は、透水係数の算出にはそれほど大き
な誤差としては現れないが、これを求めなければ透水係
数を算出できないからである。上記のようなガス圧力に
より初期水位を調整決定する透水試験方法であっても、
特に、地層が難透水性の場合(例えば、透水係数k=1
0-5cm/sec 以下)には、ボーリング孔内で水位が平衡
に達するまでに非常に長い時間がかかり、測定作業が極
めて困難となっている。因に、透水係数kが10-6cm/
sec のオーダーの場合、平衡水位が得られるまでには約
2日もかかる。そのため難透水性地層の試験では、平衡
水位は概略測定になりがちである。However, in the permeability test, measurement of the equilibrium water level (head) is indispensable. This is because the measurement error of the equilibrium water level does not appear as a large error in the calculation of the hydraulic conductivity, but the hydraulic conductivity cannot be calculated unless it is determined. Even in the case of the permeability test method in which the initial water level is adjusted and determined by the gas pressure as described above,
In particular, when the formation is poorly permeable (for example, the permeability coefficient k = 1)
To 0 -5 cm / sec or less), it takes a very long time to the water level to reach equilibrium within the borehole, the measurement work has become extremely difficult. By the way, the permeability coefficient k is 10 -6 cm /
In the order of sec, it takes about two days for the equilibrium water level to be obtained. Therefore, the equilibrium water level tends to be roughly measured in the test of a poorly permeable formation.
【0009】本発明の目的は、上記のような技術的課題
を解決し、難透水性の地層であっても平衡水位の測定が
短時間で完了し、且つ正確な値が得られ、その結果、透
水試験全体の作業時間を大幅に短縮でき、高精度の測定
結果が得られるような現場透水試験装置を提供すること
である。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned technical problems, and to complete the measurement of the equilibrium water level in a short time even in a poorly permeable formation, and to obtain an accurate value. the working time of the entire permeability test can significantly reduce, to provide a field permeability test equipment such as high-precision measurement result is obtained.
【0010】[0010]
【課題を解決するための手段】本発明は、ガス圧力を用
いて気密パイプ内水位を調節する方式の現場透水試験装
置である。透水試験装置本体は、中心部を縦貫する通水
管を具備しボーリング孔内に挿入されるパッカーと、下
端が前記通水管の上端と連結し上端が地上まで達する気
密パイプと、地上に設置した加圧ガス源と、前記気密パ
イプ内を加圧ガス源側又は大気側に切換え可能な切換え
弁と、前記パッカーで区切られる試験区間の水圧を検出
する圧力センサと、該圧力センサの検出信号を記録する
圧力記録装置とを具備している。本発明の特徴は、この
ような透水試験装置において、内部が通水路となる可撓
性チューブを外側からのガス圧力を用いて圧搾閉塞可能
な構造の遮断弁を、透水試験を行う際に想定される気密
パイプ内の最低水位と前記パッカーとの間の位置に設置
したものである。このパッカーとしては、例えば、中心
部を縦貫する通水管、その外側を取り囲み両端で固着さ
れて加圧ガスの供給により膨張可能なゴムチューブ、該
ゴムチューブ下方の圧力を検出する圧力センサを具備す
る構造の水圧検出パッカーが好ましい。SUMMARY OF THE INVENTION The present invention is an in-situ permeation test apparatus for controlling the water level in an airtight pipe by using gas pressure. The main body of the water permeability test device is provided with a packer which is provided with a water pipe running through the center and is inserted into a borehole, an airtight pipe whose lower end is connected to the upper end of the water pipe and whose upper end reaches the ground. A pressurized gas source, a switching valve capable of switching the inside of the hermetic pipe to the pressurized gas source side or the atmospheric side, a pressure sensor for detecting a water pressure in a test section separated by the packer, and recording a detection signal of the pressure sensor. And a pressure recording device. The feature of the present invention is that in such a water permeability test apparatus, a cutoff valve having a structure capable of squeezing and closing a flexible tube having a water passage inside by using gas pressure from the outside is assumed when performing a water permeability test. It is installed at a position between the lowest water level in the hermetic pipe and the packer. The packer includes, for example, a water pipe running through the center, a rubber tube surrounding the outside, fixed at both ends and expandable by supply of pressurized gas, and a pressure sensor for detecting a pressure below the rubber tube. A water pressure detection packer with a structure is preferred.
【0011】パッカーは単一パッカー構造として、該パ
ッカーとボーリング孔底との間を試験区間とする構成で
もよいし、前記パッカーの下方に所定間隔をおいて別の
下部パッカーを配設したダブルパッカー構造として、両
パッカーの間を試験区間とする構成でもよい。ダブルパ
ッカー構造の場合には、遮断弁は上部パッカーの上方に
設ける。The packer may have a single packer structure, and a test section may be provided between the packer and the bottom of the boring hole, or a double packer having another lower packer disposed at a predetermined interval below the packer. As a structure, a configuration may be adopted in which a test section is provided between both packers. In the case of the double packer structure, the shut-off valve is provided above the upper packer.
【0012】本発明で用いる遮断弁としては、ゴムチュ
ーブの上下両端近傍が円錐台状にやや拡開するように、
それぞれテーパ面をもつ外側部材と、それぞれ楔形先端
部をもつ内筒部材とで挾持すると共に、両外側部材の内
面に凹部を設けて、組み合わせた外側部材の内面とゴム
チューブ外面との間に円筒状のガスチャンバーを形成
し、一方の外側部材の内部軸方向に、外部の加圧ガス源
と前記ガスチャンバーとを連通するガス供給路を形成し
た構造がある。チューブはゴム製が好ましいが、軟質合
成樹脂製などでもよい。The shut-off valve used in the present invention is designed such that the upper and lower ends of the rubber tube are slightly expanded in the shape of a truncated cone.
An outer member having a tapered surface and an inner cylindrical member having a wedge-shaped tip are sandwiched, and concave portions are provided on the inner surfaces of both outer members, so that a cylinder is provided between the inner surface of the combined outer member and the outer surface of the rubber tube. There is a structure in which a gas chamber is formed, and a gas supply path is formed in the inner axial direction of one of the outer members to communicate an external pressurized gas source with the gas chamber. The tube is preferably made of rubber, but may be made of a soft synthetic resin.
【0013】[0013]
【作用】ボーリング孔内において、遮断弁を開放状態の
まま、気密パイプ内に加圧ガスを供給すると、該気密パ
イプ内の水位が下がる。パッカーは、その膨張によって
ボーリング孔の上下間を遮水状態とし、それによって試
験区間を設定する。単一パッカーの場合は、該パッカー
とボーリング孔底との間が試験区間となり、ダブル・パ
ッカーの場合は、両パッカーの間が試験区間となる。気
密パイプ内圧力を大気に開放すると、試験区間圧力は急
激に低下し、該試験区間の地層から地下水が流入して気
密パイプ内の水位が除々に上昇する。圧力センサは、こ
の時の圧力を検出し、圧力記録装置はその経時的変化を
記録する。この試験区間圧力の経時変化から透水係数が
求まる。When pressurized gas is supplied into the hermetic pipe while the shut-off valve is kept open in the borehole, the water level in the hermetic pipe falls. The packer inflates the space between the top and bottom of the borehole by the expansion, thereby setting a test section. In the case of a single packer, the test section is between the packer and the bottom of the boring hole. In the case of a double packer, the test section is between the two packers. When the pressure in the hermetic pipe is released to the atmosphere, the pressure in the test section rapidly decreases, groundwater flows in from the stratum in the test section, and the water level in the hermetic pipe gradually increases. The pressure sensor detects the pressure at this time, and the pressure recording device records the change over time. The hydraulic conductivity is determined from the change over time in the test section pressure.
【0014】透水係数を求める間だけ、試験区間圧力の
経時変化を測定すれば、その後は、測定を続行する必要
はない。遮断弁を閉じると、気密パイプ内を上昇しよう
とする水の流れが阻止されるので、地層からの地下水の
流入は生じず、単に試験区間圧力のみ上昇する。この圧
力は、ほんの僅かの水の流動しか伴わないため速やかに
上昇し、やがて一定の値となる。この一定値が試験区間
の平衡水頭(水位)であり、圧力センサは、この平衡水
頭を検出する。If the time-dependent change of the test section pressure is measured only while the hydraulic conductivity is determined, it is not necessary to continue the measurement thereafter. When the shut-off valve is closed, the flow of water that is going to rise in the hermetic pipe is blocked, so that no inflow of groundwater from the formation occurs, and only the test section pressure rises. This pressure rises quickly with only a small flow of water and eventually reaches a constant value. This constant value is the equilibrium head (water level) of the test section, and the pressure sensor detects this equilibrium head.
【0015】[0015]
【実施例】図1は本発明に係る現場透水試験装置の一実
施例を示す全体構成図であり、単一のパッカーを用いる
例である。透水試験装置本体は、中心部を縦貫する通水
管10を具備しボーリング孔12内に挿入されるパッカ
ー14と、下端で前記通水管10に連結し上端が地上ま
で達する気密パイプ16と、地上に設置した加圧ガス源
18(例えば窒素ガスボンベ)と、前記気密パイプ16
内を前記加圧ガス源側又は大気側に切換え可能な三方切
換え弁20を具備している。更に、前記パッカー14で
区切られる試験区間の水圧を検出する圧力センサ22を
設け、該圧力センサ22の検出信号を記録するために地
上に圧力記録装置24を設置する。FIG. 1 is an overall configuration diagram showing an embodiment of an on-site permeability test apparatus according to the present invention, in which a single packer is used. The main body of the water permeability test device is provided with a water pipe 10 penetrating through the center portion thereof, and a packer 14 inserted into the borehole 12, an airtight pipe 16 connected to the water pipe 10 at the lower end and reaching the upper end to the ground, An installed pressurized gas source 18 (for example, a nitrogen gas cylinder) and the hermetic pipe 16
A three-way switching valve 20 is provided which can switch the inside to the pressurized gas source side or the atmosphere side. Further, a pressure sensor 22 for detecting a water pressure in a test section divided by the packer 14 is provided, and a pressure recording device 24 is installed on the ground to record a detection signal of the pressure sensor 22.
【0016】前記パッカー14は、通水管10の外側を
取り囲み、両端で固着されて加圧ガスの供給により膨張
するゴムチューブからなり、それが膨張してボーリング
孔壁に密着することで、そのパッカー位置でボーリング
孔12の上下を遮水する構造である。従って、本実施例
では、パッカー14とボーリング孔底との間が試験区間
となる。ここで圧力センサ22は該パッカー14の上端
に取り付けられているが、導水路(破線で示す)26を
介してパッカー14の下端と連通しており(パッカー1
4の下端で開口している)、該パッカー14の下方の圧
力(試験区間の圧力)を検出する。The packer 14 is formed of a rubber tube which surrounds the outside of the water pipe 10 and is fixed at both ends and expands by the supply of pressurized gas. It is a structure that blocks water above and below the boring hole 12 at the position. Therefore, in this embodiment, the test section is between the packer 14 and the bottom of the boring hole. Here, the pressure sensor 22 is attached to the upper end of the packer 14, but communicates with the lower end of the packer 14 via a water conduit (shown by a broken line) 26 (packer 1).
4 is opened at the lower end of the packer 14), and the pressure below the packer 14 (the pressure in the test section) is detected.
【0017】さて本発明では、内部が通水路となる可撓
性チューブを外側からのガス圧力を用いて圧搾閉塞可能
な構造の遮断弁30を、透水試験を行う際に想定される
気密パイプ16内の最低水位と前記パッカー16との間
の位置に設置しており、この点に特徴がある。遮断弁3
0の詳細を図2に示す。遮断弁30は、ゴムチューブ3
2の上下両端近傍が円錐台状にやや拡開するように、そ
れぞれ内周面にテーパ面をもつ外側部材34,35と、
それぞれ楔形先端部をもつ内筒部材36,37とで挾持
する構造である。上下の外側部材34,35は、Oリン
グシール38を介して気密的に螺合させ、両外側部材3
4,35の内周面に凹部40を設けて、両外側部材3
4,35の内面とゴムチューブ32外面との間で円筒状
のガスチャンバーを形成する。凹部40は、中央部が深
く、上下両端部がテーパー状に浅くなっている断面形状
である。そして、上方の外側部材34の軸方向にガスチ
ャンバーと連通するガス供給路42を形成し、加圧ガス
チューブ44(図1参照)を接続するための接続部46
を設ける。外部加圧チューブ44は、地上側で開閉弁4
8を介して加圧ガス源18に接続する。According to the present invention, the shut-off valve 30 having a structure in which a flexible tube having a water passage inside can be squeezed and closed by using gas pressure from the outside is connected to an airtight pipe 16 which is assumed to be used in a water permeability test. It is installed at a position between the lowest water level in the inside and the packer 16, and is characterized in this point. Shut-off valve 3
0 is shown in FIG. The shut-off valve 30 is a rubber tube 3
Outer members 34 and 35 each having a tapered surface on its inner peripheral surface so that the vicinity of both upper and lower ends of 2 are slightly expanded in a truncated cone shape;
In this structure, the inner cylinder members 36 and 37 each having a wedge-shaped tip end are sandwiched. The upper and lower outer members 34 and 35 are airtightly screwed via an O-ring seal 38 so that both outer members 3
A concave portion 40 is provided on the inner peripheral surface of each of the outer members 3 and 4.
A cylindrical gas chamber is formed between the inner surfaces of the rubber tubes 4 and 35 and the outer surface of the rubber tube 32. The concave portion 40 has a cross-sectional shape in which the central portion is deep and the upper and lower ends are tapered and shallow. Then, a gas supply path 42 communicating with the gas chamber is formed in the axial direction of the upper outer member 34, and a connecting portion 46 for connecting a pressurized gas tube 44 (see FIG. 1).
Is provided. The external pressurizing tube 44 is connected to the on-off valve 4 on the ground side.
It is connected to a pressurized gas source 18 via 8.
【0018】ゴムチューブ32は、ここでは両端が外向
きにやや拡開し、両端部に近くなるほどやや厚めになる
ような成形品を使用しているが、極く単純な円筒ストレ
ート形状であってもよい。その断面の中心に対して18
0度対称位置に、軸方向に延びる溝(薄肉部)を形成し
て、外部からのガス圧力によって、溝の箇所で折れ曲が
って圧搾し易くする。なお、外側部材34,35のテー
パ面に3箇所ずつ断面V型の円周溝を形成し、外側部材
34,35と内筒部材36,37とでゴムチューブ32
の両端を挾持したときに、ゴムを該円周溝に食い込ませ
てずれないようにする。Here, the rubber tube 32 uses a molded product in which both ends are slightly expanded outwardly and becomes slightly thicker toward the both ends, but has a very simple cylindrical straight shape. Is also good. 18 with respect to the center of the section
A groove (thin portion) extending in the axial direction is formed at the 0-degree symmetrical position, and is bent at the position of the groove by gas pressure from the outside to facilitate squeezing. In addition, a circumferential groove having a V-shaped cross section is formed at three places on the tapered surfaces of the outer members 34 and 35, and the outer member 34 and 35 and the inner cylindrical members 36 and 37 are used to form the rubber tube 32.
When the both ends are clamped, the rubber is cut into the circumferential groove to prevent slippage.
【0019】この遮断弁30では、ガス供給路42を軸
方向に形成し、接続部46も軸方向に引き出しているた
め、側方に突出部分が無い。またゴムチューブ32の両
端をテーパ面を使用して中心軸に対して斜めに押さえる
構造なので、径方向の押さえ代が小さくてよく、そのた
めに内径(通水路の直径)に対して外径を小さく(細径
化)でき(例えば外径54mmφ程度)、通常の小口径
(66mmφ)ボーリング孔での使用が可能となる。また
加圧ガスにより作動させる方式なので、電磁弁などと異
なり大深度でも確実に、且つ容易に開閉させることがで
きる。In the shutoff valve 30, the gas supply passage 42 is formed in the axial direction, and the connecting portion 46 is also drawn out in the axial direction. Also, since the structure is such that both ends of the rubber tube 32 are pressed obliquely with respect to the central axis using a tapered surface, the pressing margin in the radial direction may be small, and therefore the outer diameter is smaller than the inner diameter (diameter of the water passage). (For example, the outer diameter is about 54 mmφ), and it can be used in a normal small-diameter (66 mmφ) boring hole. Further, since the system is operated by a pressurized gas, unlike a solenoid valve or the like, it can be reliably and easily opened and closed even at a large depth.
【0020】本装置による現場透水試験方法について説
明する。基本的な透水試験方法は、前述した従来方法と
同様であってよい。まず遮断弁30を開放状態とし、且
つ三方切換え弁20で気密パイプ16内を大気圧とした
まま、パッカー14をボーリング孔12内の所定の深度
まで挿入する。パッカー14の位置とボーリング孔底と
の間が試験区間となる。次に、三方切換え弁20を操作
して気密パイプ16内に加圧ガス源18から窒素ガスを
供給して水位を自然水位L0 から透水試験初期水位L1
まで押し下げる。この透水試験初期水位L1 は、遮断弁
30よりも上に位置する。そしてパッカー14を膨張さ
せて、その位置でボーリング孔12の上下間を遮水状態
にする。これによって試験区間が設定される。なおパッ
カー14の膨張は、図示されていないが、地上からチュ
ーブなどを通して供給される加圧ガスによってなされ
る。圧力センサ22は、試験区間の圧力を検出して、そ
の圧力の経時変化を圧力記録装置24で記録する。The on-site permeability test method using the present apparatus will be described. The basic permeability test method may be the same as the conventional method described above. First, the packer 14 is inserted into the boring hole 12 to a predetermined depth while the shutoff valve 30 is opened and the airtight pipe 16 is kept at atmospheric pressure by the three-way switching valve 20. The test section is between the position of the packer 14 and the bottom of the boring hole. Next, the three-way switching valve 20 is operated to supply nitrogen gas from the pressurized gas source 18 into the hermetic pipe 16 to change the water level from the natural water level L 0 to the initial water level L 1 for the permeability test.
Press down. This water permeability test initial water level L 1 is located above the shutoff valve 30. Then, the packer 14 is inflated, and the space between the upper and lower portions of the boring hole 12 is made watertight at that position. As a result, a test section is set. Although not shown, the packer 14 is expanded by pressurized gas supplied from the ground through a tube or the like. The pressure sensor 22 detects the pressure in the test section, and records the change over time in the pressure with the pressure recording device 24.
【0021】図3は、圧力センサ22で検出する水頭
(水位)の時間変化の様子を示している。三方切換え弁
20を操作して、気密パイプ16内の圧力を大気に開放
する。地層が難透水性の場合には、孔壁からの地下水の
供給が少ないため、気密パイプ16内の水位は上昇し難
く、圧力検出値は気密パイプ16内水頭近傍まで急激に
降下する。そして、試験区間の孔壁から徐々に地下水が
流入し、気密パイプ16内の水位も徐々に上昇するの
で、圧力センサ22による圧力検出値も徐々に上昇する
ことになる。この水頭の経時変化曲線から透水係数を求
める。それに必要な測定時間T1 は、数十秒から数十分
程度である。つまり、ある程度綺麗な測定曲線が得られ
れば、それで十分である。そのまま放置しておくと、破
線で示すように、更に平衡水頭に向かって水頭はゆっく
りと上昇し続ける。従来技術では、引き続いてそれを観
測し続けていたのであるが、本発明では、透水係数を求
めるために必要な測定時間T1 経過後は、遮断弁30を
閉じてよい。FIG. 3 shows how the head (water level) detected by the pressure sensor 22 changes with time. By operating the three-way switching valve 20, the pressure in the airtight pipe 16 is released to the atmosphere. When the stratum is poorly permeable, the supply of groundwater from the hole wall is small, so that the water level in the hermetic pipe 16 is unlikely to rise, and the detected pressure value rapidly drops to near the head of the hermetic pipe 16. Then, the groundwater gradually flows in from the hole wall of the test section, and the water level in the airtight pipe 16 gradually rises, so that the pressure detected value by the pressure sensor 22 also gradually rises. The hydraulic conductivity is determined from the time-dependent change curve of the water head. And the measurement time T 1 required is about several tens of minutes from several tens of seconds. In other words, it is sufficient if a fairly clean measurement curve can be obtained. If left untouched, the head will continue to slowly rise further toward the equilibrium head, as indicated by the dashed line. In the prior art, but is in the range had continued to measure it subsequently, in the present invention, the measurement time T 1 after necessary for obtaining permeability may close the shut-off valve 30.
【0022】遮断弁30を閉じるためには、開閉弁48
を操作して加圧ガスチューブ44、接続部46、及びガ
ス供給路42を経由してガスチャンバー内に加圧ガスを
供給すればよい。その圧力によってゴムチューブ32が
両側から偏平に潰れて通水路を遮断する。このようにし
て遮断弁30を閉じると、気密パイプ16内を上昇しよ
うとする水の流れが阻止されるので、地層からの地下水
の流入は、水の圧縮率に相当するほんの僅かしか生じ
ず、単に試験区間圧力のみ上昇する。図3に示すよう
に、この圧力上昇は、水の流動がほとんど伴わないため
速やかに生じ、やがて(時間T2 )で一定の値となる。
この一定となった圧力が試験区間の平衡水頭(水位)に
他ならない。圧力センサ22は、この平衡水頭を検出す
る。平衡水頭に達するまでの時間T2 は、数分〜数十分
程度である。従って、これら透水係数の測定に必要な時
間T1 及び平衡水頭に達するまでの時間T2 は、透水性
の大小によって左右されるが、両者合わせても(T1 +
T2 )2〜3時間を超えることはない。なお、水頭変化
の測定と平衡水位の測定の順序は逆でもよい。To close the shut-off valve 30, the on-off valve 48
To supply the pressurized gas into the gas chamber via the pressurized gas tube 44, the connecting portion 46, and the gas supply path 42. Due to the pressure, the rubber tube 32 is flattened from both sides and cuts off the water passage. When the shut-off valve 30 is closed in this way, the flow of water that is going to rise in the airtight pipe 16 is prevented, so that the inflow of groundwater from the stratum occurs only slightly, corresponding to the water compression rate. Only the test section pressure rises. As shown in FIG. 3, this pressure rise occurs quickly because there is almost no flow of water, and eventually becomes constant at time (time T 2 ).
This constant pressure is nothing less than the equilibrium head (water level) of the test section. The pressure sensor 22 detects this equilibrium head. Time T 2 to reach the equilibrium water head, is about several minutes to several tens of minutes. Therefore, the time T 2 of the reach time T 1 and the balance water head required for measuring these permeability, it depends on the permeability of the large and small, even combined both (T 1 +
T 2 ) does not exceed 2-3 hours. Note that the order of the measurement of the head change and the measurement of the equilibrium water level may be reversed.
【0023】図1の例では、装置構成上、圧力センサ2
2をパッカー14の上方に設けているため、検出される
圧力はパッカー下部の導水口での水圧から圧力センサ2
2までの水頭圧を減じたものとなる。しかし、導水路の
長さは一定であるから、その水頭圧は一定であり、相対
値としてみるならば何ら問題はない。もし必要があれ
ば、前記水頭圧を加算するような補正を行えばよい。In the example of FIG. 1, the pressure sensor 2
Since the pressure sensor 2 is provided above the packer 14, the detected pressure is based on the water pressure at the water introduction port below the packer.
The head pressure of up to 2 is reduced. However, since the length of the headrace channel is constant, its head pressure is constant, and there is no problem in terms of relative values. If necessary, a correction such as adding the head pressure may be performed.
【0024】上記の試験方法は、試験区間内の圧力が徐
々に回復する際の水頭(水位)変化を求める回復法の場
合であるが、本発明装置は、気密パイプ内の水を試験区
間内に圧送する注水法の場合にも使用できる。更に上記
の実施例では、単一パッカーを用いて、それとボーリン
グ孔底との間に試験区間を設定する例であるが、ダブル
・パッカーにより、ボーリング孔の任意の地点間に試験
区間を設定することもできる。その場合には、前記パッ
カーの下方に所定間隔をおいて下部パッカーを配設して
試験区間を設定し、遮断弁を上部パッカーの上方に設け
ればよい。The above-described test method is a recovery method for obtaining a change in water head (water level) when the pressure in the test section gradually recovers. It can also be used in the case of the water injection method in which the water is pumped. Further, in the above embodiment, the test section is set between the single packer and the bottom of the boring hole, but the test section is set between arbitrary points of the boring hole by the double packer. You can also. In such a case, a test section may be set by disposing a lower packer at a predetermined interval below the packer, and a shutoff valve may be provided above the upper packer.
【0025】[0025]
【発明の効果】本発明は上記のように、内部が通水路と
なる可撓性チューブを外側からのガス圧力を用いて圧縮
閉塞可能な構造の遮断弁を、透水試験を行う際に想定さ
れる気密パイプ内の最低水位と前記パッカーとの間の位
置に設置し、地下水の流動ではなく圧力測定により平衡
水頭(水位)を求めるようにしたので、難透水性の地層
であっても平衡水位の測定が短時間で済み、且つ正確な
値が得られ、透水試験全体の時間が短縮され、且つ結果
の精度を上げることができる。例えば透水係数kが10
-6cm/sec 程度の地層の場合、平衡水位を正確に求める
ためには、従来技術では2日程度必要としたのに対し、
本発明によれば数分〜数十分でよく、作業効率が著しく
向上する。As described above, the present invention is conceived when performing a water permeability test on a shut-off valve having a structure in which a flexible tube having a water passage inside can be compressed and closed by using gas pressure from the outside. It is installed at a position between the lowest water level in the airtight pipe and the packer, and the equilibrium head (water level) is obtained by measuring the pressure, not the flow of the groundwater. Can be measured in a short time and an accurate value can be obtained, the time of the whole permeability test can be shortened, and the accuracy of the result can be improved. For example, if the permeability coefficient k is 10
In the case of a stratum of about -6 cm / sec, in order to accurately obtain the equilibrium water level, the conventional technology required about two days,
According to the present invention, several minutes to several tens of minutes may be sufficient, and the working efficiency is significantly improved.
【図1】本発明に係る現場透水試験装置の一実施例を示
す全体説明図。FIG. 1 is an overall explanatory view showing one embodiment of an on-site permeability test apparatus according to the present invention.
【図2】それに組み込む遮断弁の一例を示す構造図。FIG. 2 is a structural view showing an example of a shut-off valve incorporated therein.
【図3】透水試験における水頭(水圧)−経過時間の関
係の一例を示すグラフ。FIG. 3 is a graph showing an example of a relationship between a water head (water pressure) and an elapsed time in a water permeability test.
10 通水管 12 ボーリング孔 14 パッカー 16 気密パイプ 18 加圧ガス源 20 三方切換え弁 22 圧力センサ 24 圧力記録装置 26 導水路 30 遮断弁 DESCRIPTION OF SYMBOLS 10 Water pipe 12 Boring hole 14 Packer 16 Airtight pipe 18 Pressurized gas source 20 Three-way switching valve 22 Pressure sensor 24 Pressure recording device 26 Water conduit 30 Shut-off valve
フロントページの続き (56)参考文献 特開 平1−312115(JP,A) 特開 平2−304112(JP,A) 実開 平3−93828(JP,U) (58)調査した分野(Int.Cl.7,DB名) E02D 1/00 - 1/08 G01V 9/02 Continuation of the front page (56) References JP-A-1-312115 (JP, A) JP-A-2-304112 (JP, A) JP-A-3-93828 (JP, U) (58) Fields surveyed (Int .Cl. 7 , DB name) E02D 1/00-1/08 G01V 9/02
Claims (3)
ング孔内に挿入されるパッカーと、下端が前記通水管の
上端と連結し上端が地上まで達する気密パイプと、地上
に設置した加圧ガス源と、前記気密パイプ内を加圧ガス
源側又は大気側に切換え可能な切換え弁と、透水試験を
行う際の気密パイプ内の最低水位と前記パッカーとの間
に位置する遮断弁と、前記パッカーで区切られる試験区
間の水圧を検出する圧力センサと、該圧力センサの検出
信号を記録する圧力記録装置とを有する透水試験装置に
おいて、前記遮断弁は、内部が前記通水管と漣通する通水路とな
る可撓性チューブの上下両端を内筒部材と外側部材とで
挾むように保持し、外側部材の内面と可撓性チューブの
外面との間に加圧ガスを導くことで、外側からのガス圧
力を用いて可撓性チューブを圧搾閉塞可能とし通水路の
開閉を行う構造をなしている ことを特徴とする現場透水
試験装置。1. A packer having a water pipe penetrating through a central part thereof and inserted into a borehole, an airtight pipe having a lower end connected to an upper end of the water pipe and an upper end reaching the ground, and a pressurized pipe installed on the ground. A gas source, a switching valve capable of switching the inside of the hermetic pipe to a pressurized gas source side or an atmosphere side, and a water permeability test.
Between the lowest water level in the airtight pipe and the packer when performing
A shut-off valve located in a pressure sensor for detecting the pressure of the test interval delimited by the packer, the permeability test apparatus and a pressure recording apparatus for recording a detection signal of the pressure sensor, the shut-off valve, an internal It is a water channel that communicates with the water pipe.
The upper and lower ends of the flexible tube are separated by an inner cylindrical member and an outer member.
Hold it so that it sandwiches the inner surface of the outer member and the flexible tube.
By introducing pressurized gas between the outside and the outside, the gas pressure from the outside
The flexible tube can be compressed and closed using force to
An on-site permeation test device characterized by a structure that opens and closes .
別の下部パッカーを配設して、両パッカーによって試験
区間を設定し、遮断弁を上部パッカーの上方に設置した
請求項1記載の現場透水試験装置。2. The site according to claim 1, wherein another lower packer is disposed at a predetermined interval below the packer, a test section is set by both packers, and a shut-off valve is installed above the upper packer. Permeability test equipment.
中心に対して180度対称位置に軸方向に延びる溝を形
成したゴムチューブであって、該ゴムチューブの上下両
端近傍が円錐台状にやや拡開するように、それぞれテー
パ面をもち該テーパ面に断面V型の円周溝を形成した外
側部材と、それぞれ断面楔形の先端部をもつ内筒部材と
で挾持すると共に、両外側部材のゴムチューブ中央部分
に対向する内面に凹部を設けて、組み合わせた両外側部
材の内面とゴムチューブ外面との間でガスチャンバーを
形成し、一方の外側部材の軸方向に、外部の加圧ガス源
から前記ガスチャンバーに連通するガス供給路を形成し
た構造をなしている請求項1又は2記載の現場透水試験
装置。3. The flexible tube of the shut-off valve has a cross-section
Form a groove that extends in the axial direction at a 180-degree symmetric position with respect to the center
A rubber tube form, as the upper and lower end vicinity of the rubber tube is slightly flared frustoconical, outer forming a circumferential groove of a V-type to the tapered surface Chi also a tapered surface, respectively <br /> and side member, while sandwiched between the inner tubular member each having a distal end portion of the cross-section wedge-shaped, rubber tube central portions of both the outer member
A concave portion is provided on the inner surface opposite to the gas chamber, and a gas chamber is formed between the inner surface of the combined outer members and the outer surface of the rubber tube. In the axial direction of one outer member, the gas chamber is formed from an external pressurized gas source. The on-site water permeability test apparatus according to claim 1 or 2, wherein the apparatus has a structure in which a gas supply path communicating with the gas is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4778994A JP3065208B2 (en) | 1994-02-22 | 1994-02-22 | On-site permeability test equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4778994A JP3065208B2 (en) | 1994-02-22 | 1994-02-22 | On-site permeability test equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07233519A JPH07233519A (en) | 1995-09-05 |
JP3065208B2 true JP3065208B2 (en) | 2000-07-17 |
Family
ID=12785150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4778994A Expired - Lifetime JP3065208B2 (en) | 1994-02-22 | 1994-02-22 | On-site permeability test equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3065208B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5208606B2 (en) * | 2008-07-18 | 2013-06-12 | 鹿島建設株式会社 | Tracer test method |
CN107765328B (en) * | 2017-12-01 | 2023-08-01 | 黄河勘测规划设计研究院有限公司 | Portable impact micro-water test tester |
CN112630118B (en) * | 2020-11-16 | 2022-07-26 | 苏州开洛泰克科学仪器科技有限公司 | Gas permeability measuring device and measuring method for compact material |
CN113189289B (en) * | 2021-04-28 | 2023-07-04 | 东北大学 | Hydrodynamic force dispersion on-site measurement system |
CN113670789B (en) * | 2021-07-28 | 2024-05-10 | 金石钻探(唐山)股份有限公司 | Method and device for pressurized water test |
CN115872487B (en) * | 2023-02-07 | 2023-05-30 | 华北有色工程勘察院有限公司 | System and method for treating underground water of seepage tailing pond |
-
1994
- 1994-02-22 JP JP4778994A patent/JP3065208B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07233519A (en) | 1995-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3093130B2 (en) | Packer-type groundwater sampling device and sampling method | |
Stannard | Tensiometers—theory, construction, and use | |
US5644947A (en) | Tensiometer and method of determining soil moisture potential in below-grade earthen soil | |
US6026900A (en) | Multiple liner method for borehole access | |
CA2056966C (en) | Downhole measurements using very short fractures | |
Take et al. | A new device for the measurement of negative pore water pressures in centrifuge models | |
JP3065208B2 (en) | On-site permeability test equipment | |
Brackley et al. | In situ measurement of total natural horizontal stresses in an expansive clay | |
JP3044504B2 (en) | Permeability test equipment | |
Pearson et al. | Improvements in the Lugeon or packer permeability test | |
US4043192A (en) | Apparatus for providing directional permeability measurements in subterranean earth formations | |
EP0346099A3 (en) | Low-water-pressure controlled hydrologic test method | |
JPH09210989A (en) | Method and device for water permeation test with constant water level | |
JP2001280053A (en) | Method for measuring ground-water pressure | |
JP4562158B2 (en) | Rock crack measuring method and apparatus | |
JP3353714B2 (en) | Pore water measurement method and apparatus | |
JP4446626B2 (en) | Rock crack measuring method and apparatus | |
Stannard | Theory, construction and operation of simple tensiometers | |
JP3845674B2 (en) | Tensiometer for soil moisture measurement | |
US3915010A (en) | Bellows assembly | |
JPH0431349Y2 (en) | ||
JPS6329047B2 (en) | ||
JP2733000B2 (en) | Hydraulic packer and expansion / contraction method thereof | |
JP3187171B2 (en) | In-hole permeability test equipment | |
JPH0657934B2 (en) | Water permeability test equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |