JPS6329047B2 - - Google Patents

Info

Publication number
JPS6329047B2
JPS6329047B2 JP55009583A JP958380A JPS6329047B2 JP S6329047 B2 JPS6329047 B2 JP S6329047B2 JP 55009583 A JP55009583 A JP 55009583A JP 958380 A JP958380 A JP 958380A JP S6329047 B2 JPS6329047 B2 JP S6329047B2
Authority
JP
Japan
Prior art keywords
pipe
water
hydraulic conductivity
pressure
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55009583A
Other languages
Japanese (ja)
Other versions
JPS56107147A (en
Inventor
Seikichi Komatsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Kiso Sekkei Co Ltd
Original Assignee
Taisei Kiso Sekkei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Kiso Sekkei Co Ltd filed Critical Taisei Kiso Sekkei Co Ltd
Priority to JP958380A priority Critical patent/JPS56107147A/en
Publication of JPS56107147A publication Critical patent/JPS56107147A/en
Publication of JPS6329047B2 publication Critical patent/JPS6329047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は地中における透気・透水或いは間隙水
圧または湧水量等を測定するための合理的な方法
およびその装置に関する。 例えば土木作業工事においてケーソン或いは圧
気シールド等の工法を実施するに際しては当該堀
削個所の地質、水頭、間隙水圧のほか湧水量等を
予じめ検知し、種々の工法を実施するための透水
係数或いは透気係数を求めて安全かつ合理的な工
事条件を設定することは重要なことである。 これに関する従来の方法は例えば地中に試験パ
イプを垂直に挿入し、該パイプ内に滞留した水を
一定の容器で汲み上げてパイプ内の水位を一定の
高さまで下降せしめ、そこから回復する単位時間
当りの水位を測定し、これによつて透水係数を求
めるようにしたりしていたが必ずしも能率的では
なく、また測定結果についても正確を期すること
は困難であつた。そこで本発明者はその後地中に
挿入されたパイプ内に満たした水を圧気圧により
下降せしめ、その下降速度或いは水を自然水位下
一定の高さまで下降させた後、その圧気を解除し
てパイプ内における回復水位の程度および速さな
どにより種々の試験をおこなうことを試みたが、
この場合においては土木作業をおこなう場所の条
件如何によつて例えば透水性の低い地層にあつて
は細いパイプを使用しなければ正確な測定できな
い等若干の不都合もあるのでその後の実験および
研究により如何なる場所にも適用可能な地質試験
方法およびその装置を開発するに至つたものであ
る。 以下において本発明の具体的な内容を図示の一
実施例をもとに説明すると、第1図において9は
試験対象地層の深さより約40cm上方まで堀削した
ボーリング孔、13はパイプであつて先端に多孔
質のポーラスポイント11およびコーン12を取
り付けてあり、これを前記ボーリング孔9の孔底
までおろし、さらにそこから約40cmの深さまで垂
直に打込んでポーラスポイントを設定してある。 尚この場合におけるポーラスポイントの部分は
特殊な多孔質材で形成されており、しかも当該部
分には予じめ泥水の悪影響をうけないように特殊
なカバーが施こされている。尚10は泥水を示
す。 さらにパイプ13の内部には細管14が同軸に
配設されており、しかもその下端部は既述したポ
ーラスポイント11に通じている。 7は細管14の上端に気密に接続させたヘツド
であるが、パイプ13の上端に気密に接続する場
合にはその径に応じた別のヘツド7を準備するも
のとし、ヘツド7はパイプ13用のものと細管1
4用のものとを2種用意してパイプ13または細
管14のみのいずれか一方に切りかえ自在に上端
部を気密裡に包囲できるように構成する。 さらにヘツド7には、その一側にコンプレツサ
ー1から圧送されるエアーパイプP1を、また他
側には排気パイプP2をそれぞれ連結してある。 前記したコンプレツサー1は必要に応じてこれ
をガスボンベに代えてもよい。尚2はレギユレタ
ーバルブ、3は送気圧計、4は流量計、5は水位
計、6は透気圧計、8は排気バルブをそれぞれ示
す。 上記した状態においていま仮りに地中における
透水係数を求める場合の実施例を説明すると、先
ずパイプ13内に十分に水を満たした後、第1図
に示されているヘツド7をパイプ13用のものに
交換したうえで排気バルブ8を“閉”とし、逆に
レギユレターバルブ2を“開”にして予測される
間隙水圧のおよそ2分の1程度の圧気圧をコンプ
レツサー1を起動させてヘツド7内へ供給すると
パイプ13内の水は圧気圧によつて地中へ圧送さ
れるのでその水位が次第に降下する。 そこでこの水位の降下状況を単位時間毎に例え
ば、0、30秒、1分、2分、3分、5分、7分、
10分、以下5分毎に測定し、最早や上記の一定圧
気圧のみではそれ以上水位が降下しなくなる水
位、即ち平衡水位に達するまでの連続測定をおこ
ない、その測定値如何によつて下降透水係数を求
める(以下単に第1の工程という)。 この第1の工程により求められる下索透水係数
をもとに種々の工事条件を設定することが可能と
なるが、この工程における問題点はパイプ13内
の水を地中に浸透させるための手段として一定の
圧気圧をかける必要があり、パイプ13とヘツド
7およびエアーパイプP1との各連結部が完全に
気密に保たれなければならないこと、さらに一定
圧の圧気圧を保つためには常に送気圧計3を観視
しなければならないこと等の種々の条件を満たさ
なければならないが、現場作業としては必ずしも
その正確を期しがたいところである。 そこで上記した第1の工程により得られた下降
透水係数をもとにして修正する後述の第3の工程
によつて得られる最終的な透水係数の求め方が実
際上において高精度の測定を可能ならしめるもの
である。 即ち、上記第1の工程を経た後さらにコンプレ
ツサー1からの圧気圧を増加して前記平衡水位に
降下したパイプ13内の水をポーラスポイント1
1まで完全に降下させ(第2の工程)、そこを基
準として今度は排気バルブ8を“開”にしてパイ
プ13内の圧気を解除し、不圧(大気圧)の状態
にした瞬間より水位が回復して逆にパイプ13内
を上昇し始めるのでその単位時間当りの上昇水位
を前記第1の工程の場合と同様に測定して回復透
水係数を求める(第3の工程)。 そして第3の工程において求めた回復透水係数
を前記第1の工程において求めた下降透水係数に
よつて、或いは第1の工程において求めた下降透
水係数を前記第3の工程において求めた回復透水
係数によつて、例えば両者における係数差の中間
点にするなどして修正し、以つて最終の透水係数
を求める方法は一層高精度の透水係数の測定を可
能ならしめるものである。 上記した方法により求められた透水係数を実際
の工事条件に応用する場合の一例を示すと、例え
ば透水係数と透気係数とは表1の関係にあるから
透気係数に換算してこれをケーソン或いは圧気シ
ールド等の工法を実施するのに際し、地中から湧
水が作業室内等に浸入するのを阻止するために必
要且つ充分な圧気量の供給条件の設定に役立てる
ことができる。
The present invention relates to a rational method and apparatus for measuring air permeability, water permeability, pore water pressure, spring water amount, etc. underground. For example, when implementing construction methods such as caissons or pressure shields in civil engineering work, the geology, water head, pore water pressure, and spring water volume of the excavated area are detected in advance, and the hydraulic conductivity coefficient is determined in order to implement various construction methods. Alternatively, it is important to determine the air permeability coefficient and set safe and reasonable construction conditions. Conventional methods for this purpose include, for example, inserting a test pipe vertically into the ground, pumping up the water stagnant in the pipe in a certain container, and lowering the water level in the pipe to a certain height, from which it takes a unit time to recover. The current water level was measured and the permeability coefficient was determined from this, but this was not always efficient and it was difficult to ensure the accuracy of the measurement results. Therefore, the inventor of the present invention made the water filled in the pipe inserted into the ground descend using pressure pressure, and after the descending speed or the water descended to a certain height below the natural water level, the pressure was released and the pipe We attempted to conduct various tests depending on the level and speed of recovery in the area.
In this case, there may be some inconveniences depending on the conditions of the location where the civil engineering work is being carried out, for example, in geological formations with low permeability, accurate measurements may not be possible unless a thin pipe is used. This led to the development of a geological testing method and equipment that can be applied to any location. The specific content of the present invention will be explained below based on an illustrated embodiment. In Fig. 1, 9 is a bore hole excavated to about 40 cm above the depth of the stratum to be tested, and 13 is a pipe. A porous point 11 and a cone 12 are attached to the tip, which are lowered to the bottom of the borehole 9 and then vertically driven to a depth of about 40 cm to set the porous point. In this case, the porous point portion is made of a special porous material, and a special cover is applied to the portion in advance to prevent it from being adversely affected by muddy water. Note that 10 indicates muddy water. Furthermore, a thin tube 14 is disposed coaxially inside the pipe 13, and its lower end communicates with the porous point 11 described above. Reference numeral 7 denotes a head that is airtightly connected to the upper end of the thin tube 14; however, when connecting airtightly to the upper end of the pipe 13, another head 7 corresponding to its diameter shall be prepared; things and tubules 1
Two types of pipes 13 and 14 are prepared, and the pipe 13 or the thin tube 14 can be freely switched to enclose the upper end part in an airtight manner. Furthermore, the head 7 is connected to an air pipe P1 , which is fed under pressure from the compressor 1, to one side thereof, and an exhaust pipe P2 , which is connected to the other side thereof. The compressor 1 described above may be replaced with a gas cylinder if necessary. 2 is a regulator valve, 3 is a pressure gauge, 4 is a flow meter, 5 is a water level gauge, 6 is a permeability gauge, and 8 is an exhaust valve. To explain an example in which the coefficient of permeability in the ground is to be determined in the above-mentioned state, first, the pipe 13 is sufficiently filled with water, and then the head 7 shown in FIG. After replacing the exhaust valve 8 with a new one, close the exhaust valve 8, open the regulator valve 2, and start the compressor 1 to generate a pressure of about half of the predicted pore water pressure. When water is supplied into the head 7, the water in the pipe 13 is forced into the ground by pressure, so that the water level gradually falls. Therefore, the falling status of this water level can be measured for each unit time, for example, 0, 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, 7 minutes, etc.
Measurements are taken every 10 minutes, and every 5 minutes thereafter, and continuous measurements are taken until the water level reaches the equilibrium water level, which is the level at which the water level will no longer fall any further with the constant pressure mentioned above. Calculate the coefficients (hereinafter simply referred to as the first step). It is possible to set various construction conditions based on the lower cable permeability coefficient determined in this first step, but the problem with this step is the means for infiltrating the water in the pipe 13 into the ground. It is necessary to apply a constant pressure pressure, and the connections between the pipe 13, the head 7, and the air pipe P1 must be kept completely airtight, and in order to maintain a constant pressure pressure, Various conditions must be met, such as the need to observe the pressure gauge 3, but it is difficult to ensure accuracy in field work. Therefore, the method of determining the final hydraulic conductivity obtained through the third step described below, which is corrected based on the descending hydraulic conductivity obtained in the first step described above, allows highly accurate measurement in practice. It is something that makes you familiar. That is, after passing through the first step, the pressure from the compressor 1 is further increased, and the water in the pipe 13 that has fallen to the equilibrium water level is transferred to the porous point 1.
1 (second step), and from that point, the exhaust valve 8 is opened to release the pressure inside the pipe 13, and the water level drops from the moment it becomes unpressurized (atmospheric pressure). The water recovers and begins to rise inside the pipe 13, so the rising water level per unit time is measured in the same manner as in the first step to determine the recovered hydraulic conductivity (third step). Then, the recovered hydraulic conductivity determined in the third step is determined by the descending hydraulic conductivity determined in the first step, or the descending hydraulic conductivity determined in the first step is determined by the recovered hydraulic conductivity determined in the third step. Accordingly, a method of correcting the coefficient by, for example, setting it at the midpoint between the coefficient differences between the two, and thereby obtaining the final hydraulic conductivity, makes it possible to measure the hydraulic conductivity with even higher precision. An example of applying the permeability coefficient determined by the above method to actual construction conditions is, for example, since the permeability coefficient and air permeability coefficient have the relationship shown in Table 1, it is converted to an air permeability coefficient and applied to the caisson. Alternatively, when carrying out a construction method such as a pressure air shield, it can be used to set conditions for supplying a necessary and sufficient amount of pressurized air to prevent spring water from entering the work room or the like from underground.

【表】 上記の実施例による場合は比較的透水性の高い
地層に対し、ヘツド7をパイプ13の上端に接続
しておこなう最も一般的な測定について述べた
が、特に透水性の低い地層に対しては水の上昇或
いは下降が著しく敏感な細管14を使用するもの
とし、該細管14の上端に専用のヘツド7を取り
つけて(第1図に示した状態)前記したパイプ1
3を使用する場合と同様の方法にて測定作業をお
こなうものとする。 また上記の実施例においては特に地中の透気係
数を求める場合について説明したが、本発明の応
用範囲は必ずしもこれに限定されるものでないこ
とはいうまでもない。 上記した通り本発明は地中に挿入されたパイプ
内での水位変化により地中における透水、透気、
あるいは湧水量を測定する場合において、下降透
水係数と回復透水係数とをもつて相互に補正しつ
つ最終的な透水係数を求めるようにしたために高
精度な透水係数を得ることができること、さらに
地中に挿入されるパイプ内には細管を同軸に有
し、しかも上記パイプまたは細管のみのいずれか
一方に切りかえ自在に上端部を気密裡に包囲する
ヘツドを備え、該ヘツド内に所定の圧気圧を供給
するようにしたために土木作業工事における種々
の工法実施に際し、当該堀削個所の地質、水頭、
間隙水圧、湧水量その他の測定に際しそのいかな
る場合にも測定個所の透水性の程度に応じ、例え
ば透水性の高い通常の場所では太いパイプを、ま
た透水性の低い個所においては細管を使用するこ
とにより水の管内における上昇又は下降の状況を
適正に把握して測定の正確を期することができ、
従つて測定個所如何により別個の装置を準備しな
ければならない等をはじめとする種々の不都合を
須く解消することができる。
[Table] In the case of the above embodiment, the most common measurement was described in which the head 7 was connected to the upper end of the pipe 13 for relatively highly permeable strata, but especially for geological strata with low permeability. In this case, a capillary tube 14 which is extremely sensitive to the rise or fall of water is used, and a special head 7 is attached to the upper end of the capillary tube 14 (as shown in FIG. 1).
Measurement work shall be carried out in the same manner as when using 3. Furthermore, in the above embodiments, the case where the air permeability coefficient of the ground was particularly determined was explained, but it goes without saying that the scope of application of the present invention is not necessarily limited to this. As mentioned above, the present invention improves water permeability and air permeability underground by changing the water level in a pipe inserted underground.
Alternatively, when measuring the amount of spring water, the final hydraulic conductivity is obtained by mutually correcting the descending hydraulic conductivity and the recovery hydraulic conductivity, which makes it possible to obtain a highly accurate hydraulic conductivity. The pipe inserted into the pipe has a thin tube coaxially therein, and is equipped with a head that airtightly surrounds the upper end of the pipe so that it can be switched between the pipe and the thin tube alone, and a predetermined pressure is applied to the inside of the head. Therefore, when implementing various construction methods in civil engineering work, the geology, water head,
When measuring pore water pressure, spring water volume, etc., depending on the degree of permeability of the measurement location, for example, thick pipes should be used in normal locations with high permeability, and thin tubes should be used in locations with low permeability. This makes it possible to properly understand the rising or falling situation of water in the pipe and ensure accurate measurements.
Therefore, various inconveniences such as having to prepare a separate device depending on the measurement location can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である試験装置の概
略を示す縦断面図である。 1…コンプレツサー、7…ヘツド、8…排気バ
ルブ、9…ボーリング孔、11…ポーラスポイン
ト、13…パイプ、14…細管。
FIG. 1 is a vertical cross-sectional view schematically showing a test device that is an embodiment of the present invention. 1... Compressor, 7... Head, 8... Exhaust valve, 9... Boring hole, 11... Porous point, 13... Pipe, 14... Thin tube.

Claims (1)

【特許請求の範囲】 1 地中に挿入されたパイプ内での水位変化によ
り地中における透水、透気、あるいは湧水量を測
定する場合において、 パイプ内に水を満たし、これを所定圧気圧下に
おいて単位時間毎の水位下降状況を測定して下降
透水係数を求める第1の工程と、第1の工程終了
後圧気圧を増大してパイプ内の残留水を完全に地
中に排水する第2の工程と、第2の工程終了後パ
イプ内の圧気を解除し、単位時間毎の回復水位変
化により回復透水係数を求める第3の工程とから
なり、第1の工程により得た下降透水係数と第3
の工程により得た回復透水係数とをもつて相互に
補正しつつ最終的な透水係数を得るようにしたこ
とを特徴とする地質試験方法。 2 地中に挿入されたパイプ内での水位変化によ
り地中における透水、透気、あるいは湧水量を測
定するものにおいて、地中に挿入されるパイプ
と、該パイプ内に同軸に設けられた細管と、上記
パイプまたは細管のみのいずれか一方に切りかえ
自在に上端部を気密裡に包囲しうるヘツドと、該
ヘツド内に所定の圧気圧を供給しうる手段とから
成る地質試験装置。
[Scope of Claims] 1. When measuring underground water permeability, air permeability, or spring water amount by changes in water level in a pipe inserted underground, the pipe is filled with water and then heated under a predetermined pressure. The first step is to measure the falling water level per unit time to determine the descending hydraulic conductivity, and the second step is to increase the pressure after the first step and completely drain the residual water in the pipe into the ground. After the completion of the second step, the pressure inside the pipe is released and the recovered hydraulic conductivity is calculated based on the change in the recovered water level per unit time. Third
A geological testing method characterized in that the final hydraulic conductivity is obtained by mutually correcting the recovered hydraulic conductivity obtained through the process. 2. For measuring underground water permeability, air permeability, or amount of spring water by changes in water level within a pipe inserted underground, a pipe inserted underground and a thin tube installed coaxially within the pipe. A geological testing device comprising: a head capable of airtightly enclosing the upper end of the head, which can be switched to either the pipe or the thin tube; and means capable of supplying a predetermined pressure into the head.
JP958380A 1980-01-30 1980-01-30 Geological test method & device Granted JPS56107147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP958380A JPS56107147A (en) 1980-01-30 1980-01-30 Geological test method & device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP958380A JPS56107147A (en) 1980-01-30 1980-01-30 Geological test method & device

Publications (2)

Publication Number Publication Date
JPS56107147A JPS56107147A (en) 1981-08-25
JPS6329047B2 true JPS6329047B2 (en) 1988-06-10

Family

ID=11724328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP958380A Granted JPS56107147A (en) 1980-01-30 1980-01-30 Geological test method & device

Country Status (1)

Country Link
JP (1) JPS56107147A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191712A (en) * 1985-02-18 1986-08-26 Taniguchi Chishitsu Chiyousa Jimusho:Kk Method and device of performing in-place test for permeation of water
JPH04237712A (en) * 1991-01-18 1992-08-26 Tokyo Gas Co Ltd Method and device for sensing of bearing ground liquefaction
JPH0610335A (en) * 1992-06-23 1994-01-18 Tokyo Gas Co Ltd Method and device for detecting liquefaction of ground
JPH0617413A (en) * 1992-07-01 1994-01-25 Tokyo Gas Co Ltd Ground liquefaction detection method and device thereof
JP6348002B2 (en) * 2014-06-30 2018-06-27 前田建設工業株式会社 Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547703A (en) * 1977-06-21 1979-01-20 Dia Consultant Kk Method of continuously measuring pressure of spring water at hole bottom and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547703A (en) * 1977-06-21 1979-01-20 Dia Consultant Kk Method of continuously measuring pressure of spring water at hole bottom and its device

Also Published As

Publication number Publication date
JPS56107147A (en) 1981-08-25

Similar Documents

Publication Publication Date Title
Mair et al. Pressuremeter testing: methods and interpretation
Vaughan et al. Pore pressure changes and the delayed failure of cutting slopes in overconsolidated clay
US4392376A (en) Method and apparatus for monitoring borehole conditions
CN106869909B (en) Testing device and testing method for determining hydrogeological parameters of inclined filling fracture
US3858441A (en) Soil testing apparatus
US5758538A (en) Tensiometer and method of determining soil moisture potential in below-grade earthen soil
US4367647A (en) Static penetrometer
Cheung et al. Laboratory study of hydraulic fracturing pressure data—how valid is their conventional interpretation?
US4455869A (en) Method for determining borehole or cavity configuration through inert gas interface
CN214748953U (en) Underground in-situ soil sample film covering device
JPS6329047B2 (en)
US2280075A (en) Detection of gas in drilling fluids
US4986120A (en) Low-water-pressure controlled hydrologic test method
CN211178852U (en) Verification and calibration device for pore water pressure gauge
Pearson et al. Improvements in the Lugeon or packer permeability test
Plaksin et al. Framework for innovative determination of natural gas content in coal seams
CN214503289U (en) Water pressure test device
US2446588A (en) Method of determining the permeability of substrata
US5253519A (en) Method and apparatus for in-situ measurement of ground heave characteristics
JP2001280053A (en) Method for measuring ground-water pressure
Stannard Theory, construction and operation of simple tensiometers
US2855780A (en) Apparatus for bottom-hole pressure measurement
JPS62290B2 (en)
JP2733000B2 (en) Hydraulic packer and expansion / contraction method thereof
JPH01182735A (en) Apparatus for testing water permeability