JPS62290B2 - - Google Patents

Info

Publication number
JPS62290B2
JPS62290B2 JP4253378A JP4253378A JPS62290B2 JP S62290 B2 JPS62290 B2 JP S62290B2 JP 4253378 A JP4253378 A JP 4253378A JP 4253378 A JP4253378 A JP 4253378A JP S62290 B2 JPS62290 B2 JP S62290B2
Authority
JP
Japan
Prior art keywords
pressure
packer
ground
pressure plate
rubber sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4253378A
Other languages
Japanese (ja)
Other versions
JPS54135407A (en
Inventor
Masahiro Yunoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIJI CONSULTANT
Original Assignee
MEIJI CONSULTANT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIJI CONSULTANT filed Critical MEIJI CONSULTANT
Priority to JP4253378A priority Critical patent/JPS54135407A/en
Publication of JPS54135407A publication Critical patent/JPS54135407A/en
Publication of JPS62290B2 publication Critical patent/JPS62290B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、土木工事の設計・旋工上、或いは
地辷り・斜面崩壊などの災害防止対策上必要な地
盤の剪断特性即ち、内部摩擦角φ、粘着力Cの値
を試錐孔内の自然条件下で直接的に求めるための
試験方法に関するものである。
[Detailed Description of the Invention] This invention aims to improve the shear characteristics of the ground, that is, the values of the internal friction angle φ and the adhesive force C, which are necessary for the design and turning of civil engineering works, or for disaster prevention measures such as landslides and slope failures. This relates to a test method for directly determining the amount of water under natural conditions in a borehole.

従来、土木工事、とりわけ建物・橋梁・ダムな
どの基礎地盤、港湾施設・沈埋トンネル・パイプ
ラインその他の埋立地や海域における支持地盤、
道路・鉄道・上下水道などの埋設管・盛土その他
の軟弱土質地域における構造物支持地盤などの調
査・設計・施工においては、これら対象地盤のも
つ力学的性質、特に剪断特性としてのφとCの値
を把握することが最も重要な事項とされており、
また、地辷りや斜面崩壊についても、その安定性
を検討する上ではφおよびCの値を知ることが必
須条件である。しかし、現在のところ、ごく軟弱
な粘土について各種ベーン試験により、Cの値を
求める方法はあるが、一般的な土質や風化岩の自
然条下における原地盤で、φおよびCの値を精度
よく測定する試験方法は確立されていない。そこ
でサンプラーなどによる採取試料の室内土質試
験・岩石試験が行なわれている。これには一面剪
断試験(φ、C測定)、二面剪断試験(C測定)、
三軸圧縮試験(φ、C測定)などがあるが、砂
層・砂礫層・砂礫混り粘性土・風化岩などでは自
然状態のままの不撹乱試料を採取することが困難
であり、実際上充分な試験はできない。
Traditionally, civil engineering work has been carried out, especially foundation ground for buildings, bridges, dams, etc., support ground for port facilities, immersed tunnels, pipelines, and other reclaimed land and sea areas.
In the investigation, design, and construction of buried pipes for roads, railways, water and sewage systems, embankments, and other supporting ground for structures in soft soil areas, it is important to consider the mechanical properties of the target ground, especially the shear characteristics of φ and C. Understanding the value is considered the most important thing,
Furthermore, when considering the stability of landslides and slope failures, it is essential to know the values of φ and C. However, at present, there is a method to determine the C value using various vane tests for very soft clay, but it is possible to accurately calculate the values of φ and C in the original ground under the natural conditions of general soil types and weathered rocks. There is no established test method for measuring it. Therefore, indoor soil and rock tests are being conducted on samples collected using samplers. This includes one-plane shear test (φ, C measurement), two-plane shear test (C measurement),
Triaxial compression tests (φ, C measurements) are available, but it is difficult to collect undisturbed samples in their natural state from sand layers, gravel layers, clayey soils with gravel, weathered rocks, etc., and it is not sufficient in practice. I can't do a proper test.

また、標準貫入試験のN値との相関実験式やイ
スキメーによるプルサウンデイング、ヘリカルサ
ウンデイングまたはコーンペネトロメーターなど
の原位置サウンデイング試験から、種々の実験式
によつてφやCの値が推定的に決められている
が、これらは主として間接的な試験方法であり、
ばらつきも多く、信頼性が乏しい欠点がある。
In addition, the values of φ and C can be calculated using various experimental formulas based on the correlation experimental formula with the N value of the standard penetration test and in-situ sounding tests such as pull sounding by Iskime, helical sounding, or cone penetrometer. Although determined presumptively, these are primarily indirect test methods;
The disadvantage is that there are many variations and poor reliability.

そのほか、試錐孔内に水圧加圧式パツカーを挿
入して孔壁を圧着し、これを孔軸に沿い上方に引
抜く場合の剪断抵抗力即ち、剪断破壊強度の測定
を加圧段階ごとに実施して加圧力と剪断破壊強度
の関係からφおよびCを測定する試験方法が開発
されているが、この方法では引抜のためパツカー
圧着位置が漸次上方に移動して同一地点の測定が
できないこと、パツカー上部に起こる応力分布が
成層状態により、またパツカーの圧着力の相異に
より複雑に変化し、測定値に大きいバラツキを生
じること、孔壁の乱れや加圧による圧密と上部へ
の押圧し変形によつてパツカー上端部に異常の反
力を発生すること、孔口地表面における引抜のた
めの反力がとりにくく装置が大型化することなど
の難点がある。
In addition, a hydraulic packer was inserted into the borehole to compress the hole wall, and the shear resistance force, that is, the shear fracture strength when the packer was pulled upward along the hole axis, was measured at each pressurization stage. A test method has been developed to measure φ and C from the relationship between applied force and shear fracture strength, but with this method, the position of Patsucar crimping gradually moves upward due to pull-out, making it impossible to measure at the same point. The stress distribution that occurs in the upper part changes in a complicated manner depending on the stratification state and the difference in the compression force of the packing car, resulting in large variations in the measured values, as well as consolidation due to disturbance of the hole wall and pressurization, and deformation due to pressure on the upper part. Therefore, there are drawbacks such as an abnormal reaction force being generated at the upper end of the packer, and the reaction force for pulling out at the hole ground surface being difficult to absorb, resulting in an increase in the size of the device.

また、大変位や地辷りなどの解析上重要とされ
ている剪断破壊後の残留剪断強度、およびその場
合のφ、Cの値が測定できないなどの欠点があ
り、充分な試験による信頼性の高い結果は期待し
難い。
In addition, there are drawbacks such as the inability to measure the residual shear strength after shear failure, which is important in the analysis of large displacements and landslides, and the values of φ and C in such cases. The results are hard to expect.

本発明は上述の各種試験方法における欠点・問
題点を解決するために開発したものであり、その
特徴とするところは 試料を採取しなくても、或いは採取できなく
ても、自然状態の地盤に対して直接試験が可能
である。
The present invention was developed in order to solve the drawbacks and problems of the various test methods mentioned above, and its feature is that it can be applied to the ground in its natural state even if a sample is not collected or cannot be collected. direct testing is possible.

各加圧段階ごとに同一地点で試験ができ、試
験中加圧断面に変化がない。
Tests can be performed at the same point for each pressurization stage, and there is no change in the pressurized cross section during the test.

試験パツカーの上下に保持パツカーを附帯さ
せることにより、孔壁の保持と、圧密変位や地
盤内に発生する加圧応力の異状分布を防止し平
均化が行えるので、信頼性の高い結果が期待で
きる。
By attaching holding packers above and below the test packer, it is possible to hold the hole wall, prevent consolidation displacement and abnormal distribution of pressurized stress that occurs in the ground, and average it out, so highly reliable results can be expected. .

最大剪断強度と残留剪断強度の測定が可能で
あり、それぞれのφおよびCの値が求められ
る。
It is possible to measure the maximum shear strength and the residual shear strength, and the respective values of φ and C are determined.

試験装置が簡略化され、操作が簡単となるほ
か、特に孔口地表面に反力設備を必要としな
い。
In addition to simplifying the test equipment and making it easier to operate, there is no need for reaction equipment on the ground surface of the hole.

試験パツカー部の取替えにより、ごとく軟弱
な地盤から、亀裂の発達した風化岩などにも適
用可能である。
By replacing the test packer part, it can be applied to anything from soft ground to weathered rock with developed cracks.

などが挙げられる。Examples include.

以下に本発明の原理、試験装置構成および操作
例、試験結果の解析について述べる。
The principle of the present invention, the configuration and operation example of the test equipment, and the analysis of test results will be described below.

(1) 本発明の原理 第1図は本発明の原理を模式的に示したもので
ある。本図中1は加圧パツカーで2になる加圧板
を表面に附帯し、3は捩り棒(ロツド)である。
これを試錐孔内の所定試験位置に挿入し、水圧
(または気体圧、油圧)などによりPnなる圧力で
加圧パツカーを膨張させ、加圧板を孔壁に圧着し
た場合に、孔壁地盤の圧着面付近に生じる半径方
向応力は σn=Pn+Po−Pgn ここに σn:孔壁周辺の地盤内半径方向応力(Kg/
cm2) Pn:加圧パツカーへの給圧(Kg/cm2) Po:地下水位を考慮した静水圧(Kg/cm2) Psn:パツカーゴムの単位面積当り反力
(Kg/cm2) である。いま、この加圧パツカーに、捩り棒を介
してMnなる回転モーメントを与えたとすると、
加圧板に接する孔壁面の地盤内に剪断歪力が発生
し、その中心に対する合計モーメントは上記の回
転モーメントとつり合う。すなわち、孔壁面の単
位面積に生じる剪断歪力は τn=C+σn・tanφ ここに τn:孔壁面に沿う地盤内単位面積当りの剪
断歪力(Kg/cm2) C:孔壁面に沿う地盤内単位面積当りの粘着
力(Kg/cm2) φ:孔壁周辺地盤の内部摩擦角(度) であり、加圧板外周の膨張半径をγn、長さを
とすると Mn=∫τn・・γn・dθ =2π・γn・・τn =2π・γn・・(C+σn・tanφ) の関係が成立する。そこで、回転モーメントを与
えるトルクを歪制御または応力制御によつて漸次
増加させると、弾性限度以上の剪断歪力によつて
孔壁面周辺の地盤は剪断破壊される。この場合、
加圧パツカーの圧力を同一地層内で試験位置をず
らせながら段階的に増加させて加圧板を圧着し、
回転モーメントを与えて剪断破壊を生ぜしめた場
合の剪断破壊強度(最大剪断歪力)をそれぞれτ
,τ、……τo、回転モーメントをM1,M2
…Mo、その時の加圧板外周膨張半径をγ,γ
……γoとすると M1=2πγ・・τ =2πγ・・(C+σ・tanφ) M2=2πγ・・τ =2πγ・・(C+σ・tanφ) 〓 Mo=2πγo・・τo =2πγo・・(C+σo・tanφ) の関係式が得られる。すなわち τo=C+σo・tanφ=M/2π・γ・ 〔n=1、2……〕 である。この式でMoはトルク(外力×回転半
径)から、γoは加圧パツカーの加圧板外周半径
の測定からそれぞれ知れる量であり、従つてτo
とσoとの関係は試験結果から容易に求められ
る。このτoとσoとの関係式はσoを横軸に、τo
=Mo/2π・γo・を縦軸とした場合の一つの
直線式を表わしており、その直線の傾斜からtan
φが、また、σo=0すなわち縦軸τoと直線の交
点からCの値がそれぞれ求められることになる
〔第2図〕。
(1) Principle of the present invention Figure 1 schematically shows the principle of the present invention. In this figure, 1 is a pressure packer with a pressure plate 2 attached to the surface, and 3 is a torsion rod.
This is inserted into a predetermined test position in the borehole, and when the pressure packer is expanded at a pressure of Pn using water pressure (or gas pressure, hydraulic pressure), etc., and the pressure plate is crimped to the hole wall, the crimping of the hole wall ground The radial stress generated near the surface is σn=Pn+Po−Pgn where σn: Radial stress in the ground around the hole wall (Kg/
cm 2 ) Pn: Pressure supplied to pressurized packer (Kg/cm 2 ) Po: Hydrostatic pressure considering groundwater level (Kg/cm 2 ) Psn: Reaction force per unit area of Packer rubber (Kg/cm 2 ) . Now, if we apply a rotational moment Mn to this pressure packer through a torsion rod,
A shearing strain is generated in the ground on the hole wall surface in contact with the pressure plate, and the total moment with respect to the center balances the above-mentioned rotational moment. In other words, the shear strain generated per unit area of the hole wall is τn=C+σn・tanφ where τn: Shear strain per unit area in the ground along the hole wall (Kg/cm 2 ) C: Unit in the ground along the hole wall Adhesive force per area (Kg/cm 2 ) φ: internal friction angle (degrees) of the ground around the hole wall, where the expansion radius of the pressure plate's outer periphery is γn and the length is Mn = ∫ 20 τn... The following relationship holds: γn·dθ =2π·γn··τn =2π·γn··(C+σn·tanφ). Therefore, when the torque that provides the rotational moment is gradually increased by strain control or stress control, the ground around the hole wall surface is shear-ruptured by a shear strain force that exceeds the elastic limit. in this case,
The pressure of the pressure car is increased step by step while shifting the test position within the same stratum, and the pressure plate is crimped.
The shear fracture strength (maximum shear strain force) when a rotational moment is applied to cause shear fracture is τ
1 , τ 2 , ...τ o , rotational moment M 1 , M 2 ...
... Mo , the expansion radius of the pressure plate outer periphery at that time is γ 1 , γ
2 ...If γ o , then M 1 =2πγ 1 ...τ 1 =2πγ 1 ...(C+σ 1・tanφ) M 2 =2πγ 2・・τ 2 =2πγ 2・・(C+σ 2・tanφ) 〓 M o The following relational expression is obtained: =2πγ o ··τ o =2πγ o ··(C+σ o ·tanφ). That is, τ o =C+σ o ·tanφ=M o /2π·γ o · [n=1, 2...]. In this equation, M o is a quantity known from the torque (external force x radius of rotation), and γ o is a quantity known from the measurement of the outer circumferential radius of the pressurizing plate of the pressurizing packer. Therefore, τ o
The relationship between and σ o can be easily determined from the test results. This relational expression between τ o and σ o is based on σ o on the horizontal axis, and τ o
It represents a linear equation when the vertical axis is = M o /2π・γ o・, and from the slope of the straight line, tan
The values of φ and C can be determined from σ o =0, that is, the intersection of the vertical axis τ o and the straight line [FIG. 2].

また、加圧パツカーの回転による加圧板の回転
変位をδoとすると、δoをパラメーターとしたτ
oとδoとの関係曲線(実際の試験では各加圧段階
でPnを一定とするのでσoは一定となる)におい
て、τoの最大値は最大剪断破壊強度τo naX
を、剪断破壊を起こした後のほぼ一定となつた部
分の剪断強度は残留剪断強度τo resを与える
〔第3図〕。
Also, if the rotational displacement of the pressure plate due to the rotation of the pressure packer is δ o , then τ with δ o as a parameter
In the relationship curve between o and δ o (in the actual test, Pn is constant at each pressure stage, so σ o is constant), the maximum value of τ o is the maximum shear fracture strength τ o naX
The shear strength of the part that becomes almost constant after shear failure occurs gives the residual shear strength τ o res [Figure 3].

以上のように本発明の原理は加圧状態にあるパ
ツカー加圧板を孔壁に圧着し、これに回転モーメ
ントを与えて捩ることにより、孔壁地盤の最大剪
断破壊強度、残留剪断強度を測定してφおよびC
の値を求めるものである。
As described above, the principle of the present invention is to press the pressurized pressure plate to the hole wall, apply a rotational moment to it, and twist it to measure the maximum shear fracture strength and residual shear strength of the hole wall ground. teφ and C
The purpose is to find the value of .

(2) 試験装置構成および操作例 第4図は本発明の主体である加圧回転パツカー
部を示す。また、第5図および第6図は試験孔内
にこの加圧回転パツカーをセツトした場合の各部
装置例を模式的に表わし、試験方法を説明したも
のである。
(2) Test equipment configuration and operation example Figure 4 shows the pressurizing rotary packer section which is the main subject of the present invention. Further, FIGS. 5 and 6 schematically show examples of various parts and devices when this pressurizing rotary packer is set in the test hole, and explain the test method.

第4図の加圧回転パツカー部を構成する各部分
の名称および作動状況は次の如くである。
The names and operating conditions of each part constituting the pressurizing rotary packer section shown in FIG. 4 are as follows.

1は加圧・回転パツカーであり、4なるゴムス
リーブおよび5なる加圧板を外周に附帯する。加
圧板5は6板に分割されており、その表面は6な
る凹凸状の削溝を有している。
1 is a pressurizing/rotating packer, and a rubber sleeve 4 and a pressure plate 5 are attached to the outer periphery. The pressure plate 5 is divided into six plates, and the surface thereof has six uneven grooves.

また、これらの加圧板が回転により横方向にず
れることを防止するため、孔9に円棒7をピスト
ン状に挿入する。円棒7は8なる座板を介しゴム
スリーブ4を貫通して加圧板5に固定される。
Further, in order to prevent these pressure plates from shifting laterally due to rotation, a circular rod 7 is inserted into the hole 9 in the shape of a piston. The circular rod 7 passes through the rubber sleeve 4 via a seat plate 8 and is fixed to the pressure plate 5.

なお、加圧・回転パツカー1は導水兼用の回転
ロツド11、回転ジヨイント12と一体となつて
回転するようネジ止めされている。
The pressurizing/rotating packer 1 is screwed to rotate together with a rotary rod 11 and a rotary joint 12 which also serve as water guides.

2は上部加圧固定パツカーであり、11の導水
兼用回転ロツドとはスラストベアリング22によ
り分離され自由である。24はこのパツカーに附
帯するゴムスリーブである。
Reference numeral 2 designates an upper pressurizing fixed packer, which is separated from the water guiding/rotating rod 11 by a thrust bearing 22 and is free. 24 is a rubber sleeve attached to this police car.

3は下部加圧・固定パツカーで、11は導水兼
用回転ロツド(下部延長ロツド)とはボールベア
リング25により分離され自由である。
3 is a lower pressurizing/fixing packer, and 11 is free and separated from the water guiding/rotating rod (lower extension rod) by a ball bearing 25.

27はこのパツカーに附帯するゴムスリーブ
で、また、36はパツカー下端保護キヤツプであ
る。
27 is a rubber sleeve attached to this packer, and 36 is a protective cap for the lower end of the packer.

19は非回転の外管(ケーシングパイプ)で、
下端において加圧・固定パツカー2にネジ止め固
定される。
19 is a non-rotating outer pipe (casing pipe),
It is screwed and fixed to the pressurizing/fixing packer 2 at the lower end.

17は上下可動の内管(ロツド)で16なるロ
ツドカツプリングにより上下可動桿14に接続さ
れる。
17 is a vertically movable inner tube (rod) connected to the vertically movable rod 14 by a rod coupling 16.

14の上下可動桿は、外管19に取付けた回転
抑止板20と接するボールベアリング18を附帯
しており、上下移動が低摩擦で自由であるが回転
は抑止される。さらに、14の下部は回転ジヨイ
ント12の中に挿入され、12に削開された斜溝
15の中に凸起させたボールベアリング15を附
帯する。従つて、14の上下可動桿が上方に移動
すると12なる回転ジヨイントおよびこれに接続
固定された加圧・回転パツカー1は右方回転を起
こすことになる。
The vertically movable rod 14 is attached with a ball bearing 18 that contacts a rotation inhibiting plate 20 attached to an outer tube 19, and can freely move vertically with low friction, but its rotation is inhibited. Further, the lower part of the rotary joint 12 is inserted into the rotary joint 12, and a ball bearing 15 is attached thereto, which is protruded into an oblique groove 15 cut out in the rotary joint 12. Therefore, when the vertically movable rod 14 moves upward, the rotation joint 12 and the pressure/rotation packer 1 connected and fixed thereto will rotate to the right.

28はナイロンチユーブであり、地表ポンプか
ら送られた圧力水(気体または油に変えることも
可)を通し、29なる分岐管によつて、一方は2
なる上部加圧・固定パツカーの溝23を通して2
4なるゴムスリーブを膨張させて孔壁に圧着固定
させる。同時に他方は回転のために螺線状の弛み
をもたせたナイロンチユーブ30を通して導水兼
用回転ロツド11内に導き、加圧・回転パツカー
1に穿孔された導水孔19、ピストン孔9を通し
てゴムスリーブ4を膨張させ、加圧板5を孔壁に
圧着させるとともに、導水兼用回転ロツド下端の
閉塞ネジ21の中央導水ナイロンチユーブ31を
介して3ある下部加圧・固定パツカー内の溝26
を通して27なるゴムスリーブを膨張させ孔壁に
圧着固定させる。
28 is a nylon tube, through which pressurized water (can be changed to gas or oil) sent from a surface pump is passed, and one side is connected to 2 by a branch pipe 29.
2 through the groove 23 of the upper pressurized/fixed packer.
The rubber sleeve No. 4 is inflated and crimped and fixed to the hole wall. At the same time, the other water is introduced into the rotary rod 11 through the nylon tube 30, which has a spiral slack for rotation, and the rubber sleeve 4 is passed through the water introduction hole 19 and piston hole 9 drilled in the pressure/rotation packer 1. The pressure plate 5 is inflated and pressed against the hole wall, and the groove 26 in the three lower pressurizing/fixing packers is inserted through the central water guide nylon tube 31 of the closing screw 21 at the lower end of the water guide rotary rod.
Through this, the rubber sleeve 27 is expanded and fixed to the hole wall by pressure.

32は加圧・回転パツカーの膨張、従つて加圧
板の外径を測定する変位トランスジユーサー(例
えば摺動抵抗型、差動トランス型など)である。
このリード線(ケーブル)は34なる水中ソケツ
トを介し地表へのケーブル35に接続される。
32 is a displacement transducer (eg, sliding resistance type, differential transformer type, etc.) for measuring the expansion of the pressurizing/rotating packer and therefore the outer diameter of the pressurizing plate.
This lead wire (cable) is connected via an underwater socket 34 to a cable 35 to the surface.

37は間隙水圧トランスジユーサーであり、半
導体圧力変換器、ボーラストーンを一体として取
付金具39によりゴムスリーブを貫通して加圧板
5に表面保護金網38と共に取付ける。
Reference numeral 37 denotes a pore water pressure transducer, which is integrated with a semiconductor pressure transducer and a bola stone and is attached to the pressure plate 5 together with a surface protection wire mesh 38 by passing through a rubber sleeve with a mounting bracket 39.

このリード線は、回転ロツド内に挿入されシリ
コン樹脂によつて防水的に固められた温度補償回
路部33を経て、さらに水中ソケツト34を介し
て地表へのケーブル35に接続される。
This lead wire is connected to a cable 35 to the earth's surface via a temperature compensation circuit section 33 inserted into the rotating rod and waterproofed with silicone resin, and then via an underwater socket 34.

間隙水圧の測定は、パツカー加圧前においては
静水圧を、加圧段階においては過剰間隙水圧の変
化をみるものである。
The measurement of pore water pressure is to observe the static water pressure before applying pressure to the pack, and to observe the change in excess pore water pressure during the pressurizing stage.

第5図は、試錐孔内に加圧・回転パツカー部を
挿入し、水圧送水ポンプ51によりナイロンチユ
ーブ28を通して分岐管29に圧力水を送り、加
圧・回転パツカー1、加圧・固定パツカー2,3
のゴムスリーブを膨張させ、加圧板、ゴムスリー
ブをそれぞれ孔壁地盤に圧着固定させ、この状態
で、17の内管(ロツド)を上方に引揚げ、これ
によつて回転ジヨイント12,導水兼用回転ロツ
ド11とネジ止め一体となつた加圧・回転パツカ
ーに回転モーメントを与えるための地表装置例を
示したものである。
FIG. 5 shows that the pressurizing/rotating packer section is inserted into the borehole, and the hydraulic water pump 51 sends pressurized water through the nylon tube 28 to the branch pipe 29. ,3
The rubber sleeve is inflated, the pressure plate and the rubber sleeve are crimped and fixed to the ground of the hole wall, and in this state, the inner pipe (rod) 17 is pulled upward, thereby rotating the rotating joint 12, which also serves as a water guide and rotates. This figure shows an example of a surface device for applying rotational moment to a pressurizing/rotating packer that is integrated with a rod 11 and screwed together.

41は試錐の孔口付近に挿入されたドライブパ
イプ、42はロツド・ホルダーである。
41 is a drive pipe inserted near the mouth of the borehole, and 42 is a rod holder.

43は、油圧式センターホールジヤツキ、44
はギヤー式油圧ポンプを示す。なおこれらは荷重
状態により、スクリユージヤツキなどに置き替え
ることもできる。
43 is a hydraulic center hole jack, 44
indicates a gear type hydraulic pump. Note that these can be replaced with screw jacks or the like depending on the load condition.

45は内管(ロツド)の止め金具で、センター
ホールジヤツキ上に設置し、チヤツクネジ46に
より内管に固定する。
Reference numeral 45 denotes a stopper for the inner tube (rod), which is installed on the center hole jack and fixed to the inner tube with a chuck screw 46.

47は、センターホールジヤツキの油圧測定ト
ランスジユーサーであり、半導体圧力変換器で圧
力変化を電気信号としてとり出すものである。
47 is a hydraulic pressure measuring transducer of the center hole jack, which is a semiconductor pressure transducer that extracts pressure changes as an electrical signal.

48は内管にネジ止め固定された変位測定用ア
ームであり、内管の上下移動量をダイヤルゲージ
49に伝え、ダイヤルゲージに内臓する変位トラ
ンスジユーサー(差動トランスなど)によつて電
気信号として外部に取出す。
48 is a displacement measurement arm fixed to the inner tube with screws, which transmits the amount of vertical movement of the inner tube to the dial gauge 49, and generates an electric signal by a displacement transducer (differential transformer, etc.) built into the dial gauge. Externally as a

50は外管上端に設置する架台であり、センタ
ーホールジヤツキ43を定量する。
Reference numeral 50 denotes a stand installed at the upper end of the outer tube, which measures the center hole jack 43.

51の水圧送水ポンプは加圧・回転パツカー部
に圧力水を送るものであり、送・排水目盛付円筒
52と、レシーバー53および水圧ゲージ54を
附帯する。なお、このポンプは減圧装置付きガス
ボンベなどに替えることも可能である。
The water pressure water pump 51 sends pressure water to the pressurizing/rotating pumper section, and is equipped with a cylinder 52 with feed/drainage scales, a receiver 53, and a water pressure gauge 54. Note that this pump can also be replaced with a gas cylinder equipped with a pressure reducing device.

55は変位量、圧力を直読測定する増巾器であ
り、それぞれ検出回路を保護し、また56なる記
録器(打点式など)に接続して値を自記させる。
Reference numeral 55 denotes an amplifier for directly reading and measuring the amount of displacement and pressure, which protects the respective detection circuits, and is also connected to a recorder (such as a dot type) 56 to record the values.

以上の試験装置 成における操作は次のようで
ある。
The operations for constructing the above test equipment are as follows.

加圧・回転パツカー部1、2、3を外管19
に接続し、かつ外管を継ぎ足して試錐孔内所定
位置に挿入後、ロツド・ホルダーで保持すると
ともに、内管17を継ぎ足して、ロツド・カツ
プリング16にネジ込み固定する。
The pressurizing/rotating packer parts 1, 2, and 3 are attached to the outer tube 19.
After connecting with the outer tube and inserting it into a predetermined position in the borehole, it is held with a rod holder, and the inner tube 17 is added and screwed into the rod coupling 16 and fixed.

外管上端に架台50をのせ、更にセンターホ
ール・ジヤツキ43を置き、内管を止め金具4
5で固定するとともに、ダイヤルゲージ49、
油圧測定トランスジユーサー47および油圧ポ
ンププ44のホースを取付ける。
Place the frame 50 on the upper end of the outer tube, place the center hole jack 43, and fasten the inner tube with the metal fitting 4.
5, and dial gauge 49,
Attach the hydraulic pressure measurement transducer 47 and the hoses of the hydraulic pump 44.

水圧送水ポンプにパツカー送水用ナイロンチ
ユーブを接続する。
Connect the Patsuka water supply nylon tube to the water pressure water pump.

増巾器55、記録器56を接続し、かつダイ
ヤルゲージ49(内管の移動量従つて加圧・回
転パツカーの回転変位δ測定用)、油圧測定用
トランスジユーサー49(内管引揚圧従つて加
圧・回転パツカーの剪断力γ測定用)、加圧・
回転パツカーの膨縮変位トランスジユーサー3
2(加圧板外径d測定用)、間隙水圧トランス
ジユーサー37(間隙水圧U測定用)のケーブ
ル端子をそれぞれ増巾器55に接続結線する。
Amplifier 55 and recorder 56 are connected, and a dial gauge 49 (for measuring the amount of movement of the inner tube and the rotational displacement δ of the pressurizing/rotating packer) and a transducer 49 for measuring oil pressure (for measuring the inner tube lifting pressure) (For measuring shear force γ of rotary pack car), pressurizing,
Expansion/contraction displacement transducer 3 of rotary pack car
The cable terminals of the pore water pressure transducer 2 (for measuring the outer diameter d of the pressure plate) and the pore water pressure transducer 37 (for measuring the pore water pressure U) are connected to the amplifier 55, respectively.

各部電気回路、ダイヤルゲージの検正を行い
測定にかかる。
Each part's electrical circuit and dial gauge will be verified and measurements will begin.

水圧ポンプ51を稼動して所定の水圧となる
よう、加圧・回転パツカー1、加圧・固定パツ
カー2,3を膨張させ、加圧板により地盤を圧
着する。この時の水圧ゲージ54の指針を読取
り、同時に加圧板外径d値と間隙水圧U値の変
化をある時間記録させる。なお、加圧・固定パ
ツカー2,3の孔壁圧着は、加圧・回転パツカ
ー1の周辺部における応力分布を一様な状態に
保つ。
The water pressure pump 51 is operated to inflate the pressurizing/rotating packer 1 and the pressurizing/fixed packers 2 and 3 so that a predetermined water pressure is achieved, and the ground is pressed by the pressurizing plate. At this time, the pointer of the water pressure gauge 54 is read, and at the same time, changes in the pressure plate outer diameter d value and the pore water pressure U value are recorded for a certain period of time. Note that the pressurization/fixation packers 2 and 3 press the hole walls to maintain a uniform stress distribution in the periphery of the pressurization/rotation packer 1.

次に油圧ポンプ44を稼動し、センターホー
ルジヤツキ43によつて内管を上方にほぼ1
mm/minの速度を保持するようダイヤルゲージ
49の動きで歪制御を行いながら引揚げる。こ
の時、加圧・回転パツカー1に附帯する加圧板
は、地盤を圧着した状態で、斜溝13による右
方への回転モーメントが加わるため回転変位を
生じる。この変位がある限度を超えると、加圧
板に接する近傍の地盤内に円筒状の剪断破壊領
域が発生する。
Next, the hydraulic pump 44 is operated, and the center hole jack 43 moves the inner pipe upward by approximately 1
It is hoisted while controlling strain by moving the dial gauge 49 so as to maintain a speed of mm/min. At this time, the pressure plate attached to the pressure/rotation packer 1 is rotated due to the rotational moment applied to the right by the diagonal groove 13 while it is pressed against the ground. When this displacement exceeds a certain limit, a cylindrical shear failure region occurs in the ground in the vicinity of the pressure plate.

このような剪断破壊に至るまで、およびその
後の過程に地盤反力、回転変位および過剰間隙
水圧に推移状態はセンターホールジヤツキに取
付けられた油圧測定トランスジユーサー47の
電気信号e〓、ダイヤルゲージ49および間隙
水圧トランスジユーサー37のそれぞれの電気
信号e〓、eUとして把えられ、記録される。
The transition state of ground reaction force, rotational displacement, and excess pore water pressure in the process leading up to such shear failure and after that is determined by the electric signal e〓 of the hydraulic pressure measurement transducer 47 attached to the center hole jack, and the dial gauge. 49 and the pore water pressure transducer 37, and are captured and recorded as electric signals e〓, eU, respectively.

以上の測定操作が終了した時点で、加圧・回
転パツカー部を上位に移動させて固定し、再び
パツカーの加圧力を次の段階の水圧に上昇させ
て同様な測定を実施する。
When the above measurement operation is completed, the pressurizing/rotating packer section is moved to the upper position and fixed, and the pressurizing force of the packer is increased to the next level of water pressure and the same measurement is performed.

このパツカー加圧段階は地盤内の同一地層に
ついて3〜5種の圧力で行う。なお、加圧力を
零とした場合も同時に測定し、装置各部の自
重、摩擦力によるτp〜δoの関係を求め上記測
定値を補正する。
This packer pressurization step is performed at 3 to 5 different pressures for the same stratum in the ground. Note that measurements are also made at the same time when the pressing force is set to zero, and the relationship between τ p to δ o due to the weight of each part of the device and the frictional force is determined, and the above measured values are corrected.

第6図は、比較的浅部の地層について地表試験
装置を簡略化した場合の例を示したものである。
FIG. 6 shows an example of a simplified ground test device for relatively shallow geological formations.

即ち、この例では、加圧・回転パツカーを直接
内管を介して地表把手により捩るものである。1
7は内管で、これに二本のアーム60,62を備
えた固定環59をチヤツク56によりネジ止め固
定する。この上部にボールベアリング58により
自由に回転する捩り把手桿57を置き、把手桿と
固定環のアーム60の間に検力計(プルービング
リング)を取付けることによつて、把手桿に加え
られた人力による回転力を内管に伝えることがで
きるようにしたものである。この場合は第5図の
回転ジヨイントは不要であり、ロツドカツプリン
グ40に取り換える。62は回転変位を測定する
ための固定環のアームであり、架台50の支持桿
64に取付けたダイヤルゲージ63に接触させて
内管の回転変位従つて加圧・回転パツカー加圧板
の回転変位を測定する。なお、検力計61および
変位用ダイヤルゲージ63はそれぞれトランスジ
ユーサーにより変化量を電気信号として取出し、
加圧板外径、間隙水圧の電気信号とともに増巾し
て記録計に自記させることが可能である。
That is, in this example, the pressurizing/rotating packer is twisted by the ground handle directly through the inner tube. 1
Reference numeral 7 denotes an inner tube, to which a fixed ring 59 having two arms 60 and 62 is screwed and fixed by a chuck 56. A torsion handle rod 57 that rotates freely by a ball bearing 58 is placed on top of this, and a proving ring is installed between the handle rod and the arm 60 of the fixed ring. This allows the rotational force caused by this to be transmitted to the inner tube. In this case, the rotation joint shown in FIG. 5 is not necessary and is replaced with a rod coupling 40. Reference numeral 62 denotes a fixed ring arm for measuring rotational displacement, which is brought into contact with a dial gauge 63 attached to the support rod 64 of the pedestal 50 to measure the rotational displacement of the inner tube and the rotational displacement of the pressurizing/rotating packer pressurizing plate. Measure. In addition, the force meter 61 and the displacement dial gauge 63 each use a transducer to extract the amount of change as an electric signal,
It is possible to amplify the electrical signals of the pressure plate outer diameter and pore water pressure and record them on the recorder.

なお、この試験装置による場合も、その操作は
先の例と同様、パツカーの加圧力を段階的に変
え、その都度試験位置をずらせて測定する。
In addition, when using this test device, the operation is the same as in the previous example, in which the pressurizing force of the packer is changed stepwise, and the test position is shifted each time for measurement.

(3) 試験結果の解析 前項2に記述した試験装置構成の試験操作によ
る測定結果から、孔壁地盤の圧着による半径方向
力δo、地盤内の最大剪大破壊強度τo nax、残
留剪断強度τo resと剪断破壊に至る過程および
その後の孔壁地盤変位δoが求められ、また間隙
水圧Uの動態も同時に知ることができる。そこ
で、本発明の原理の項1において記述した解析方
法、すなわち第2図σo〜τoの関係、第3図σo
をパラメーターとしたδo〜τoの関係から、最大
剪断破壊強度τo naxに対する地盤の内部摩擦角
φ、粘着力Cと、残留剪断強度τo resに対する
φ′、C′がそれぞれ求められる。なお、この場合
のφ、Cおよびφ′C′は室内三軸内圧縮試験の
〔CU〕試験によつて求められる値に対比されるも
のである。
(3) Analysis of test results From the measurement results from the test operation of the test equipment configuration described in the previous section 2, the radial force due to the crimping of the hole wall ground δ o , the maximum shear failure strength in the ground τ o nax , and the residual shear strength τ o res and the process leading to shear failure and the subsequent hole wall ground displacement δ o can be determined, and the dynamics of the pore water pressure U can also be known at the same time. Therefore, the analysis method described in Section 1 of the principle of the present invention, that is, the relationship between σ o and τ o in Figure 2, and the relationship between σ o in Figure 3
From the relationship between δ o and τ o with δ o to τ o as parameters, the internal friction angle φ and adhesive force C of the ground for the maximum shear failure strength τ o nax , and φ' and C' for the residual shear strength τ o res are determined, respectively. Note that φ, C and φ′C′ in this case are compared with the values determined by the [CU] test of the indoor triaxial compression test.

また、間隙水圧の動態は有効圧力を解析検討す
る場合の参考資料として役立てることができる。
In addition, the dynamics of pore water pressure can be used as reference material when analyzing effective pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の試験方法原理図、第2図・
第3図は試験結果の解析説明図、第4図は本発明
の主体である加圧・回転パツカー部を、第5図・
第6図は試験装置の構成および操作例を示す。
Figure 1 is a diagram of the principle of the test method of the present invention, Figure 2.
Fig. 3 is an explanatory diagram of analysis of the test results, Fig. 4 shows the pressurizing/rotating packer section which is the main body of the present invention, and Fig. 5/
FIG. 6 shows the configuration and operation example of the test device.

Claims (1)

【特許請求の範囲】 1 気体圧・水圧または油圧などの流体圧により
半径方向に自由に膨縮するゴムスリーブ式パツカ
ーの外表面に数個に分割した凹凸状の削溝を有す
る円弧状加圧板を円筒状に配列し、この加圧板
を、パツカーゴムスリーブ内部で放射状に伸縮可
能な加圧板と同数のピストン状円棒にパツカーゴ
ムスリーブを夾み込む形で取付ネヂにより固定
し、全体としてゴムスリーブ式パツカーとピスト
ン式パツカーを一体化して、加圧回転パツカーを
構成させる。 この加圧回転パツカーを所定深度の試錐孔内に
挿入し、孔壁地盤に加圧板を特定圧力で圧着した
後、加圧回転パツカー部、従つて加圧板に回転モ
ーメントを与えて円周方向に捩り、加圧板と接す
る地盤内に円筒状の剪断破壊を発生させ、この場
合の回転変位に対する最大剪断強度、残留剪断強
度を計測する。 同様な操作を段階的な半径方向加圧力の下でそ
れぞれ実施して、加圧力を剪断強度との関係を求
め、これから自然条件下における地盤の内部摩擦
角φ、粘着力Cの値を解柝決定する試験方法。
[Scope of Claims] 1. An arc-shaped pressure plate having uneven grooves divided into several parts on the outer surface of a rubber sleeve-type packer that freely expands and contracts in the radial direction by fluid pressure such as gas pressure, water pressure, or hydraulic pressure. are arranged in a cylindrical shape, and this pressure plate is fixed with a mounting screw in such a way that the Paccar rubber sleeve is embedded in the same number of piston-shaped cylinders as the pressure plates that can expand and contract radially inside the Paccar rubber sleeve, and the entire As a result, a rubber sleeve-type packer and a piston-type packer are integrated to form a pressurized rotary packer. This pressurized rotary packer is inserted into a borehole at a predetermined depth, and the pressure plate is pressed against the hole wall ground with a specific pressure, and then a rotational moment is applied to the pressurized rotary packer part, and therefore the pressure plate, so that it rotates in the circumferential direction. A cylindrical shear fracture is generated in the ground in contact with the torsion and pressure plate, and the maximum shear strength and residual shear strength with respect to rotational displacement in this case are measured. Similar operations are carried out under stepwise radial pressing forces to determine the relationship between the pressing force and shear strength, and from this the values of the internal friction angle φ and cohesive force C of the ground under natural conditions are determined. Test method to determine.
JP4253378A 1978-04-11 1978-04-11 Pressurizing revolution direct shearing test method of ground in drilling hole Granted JPS54135407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4253378A JPS54135407A (en) 1978-04-11 1978-04-11 Pressurizing revolution direct shearing test method of ground in drilling hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4253378A JPS54135407A (en) 1978-04-11 1978-04-11 Pressurizing revolution direct shearing test method of ground in drilling hole

Publications (2)

Publication Number Publication Date
JPS54135407A JPS54135407A (en) 1979-10-20
JPS62290B2 true JPS62290B2 (en) 1987-01-07

Family

ID=12638708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253378A Granted JPS54135407A (en) 1978-04-11 1978-04-11 Pressurizing revolution direct shearing test method of ground in drilling hole

Country Status (1)

Country Link
JP (1) JPS54135407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290489U (en) * 1985-11-27 1987-06-10
JPS63149423U (en) * 1987-03-19 1988-10-03
JP2013144921A (en) * 2011-12-14 2013-07-25 National Agriculture & Food Research Organization Method and apparatus for measuring shear strength in present location of ground

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707683A1 (en) 2003-12-26 2006-10-04 Masuda Giken Co., Ltd. Testing method and apparatus ground liquefaction and dynamic characteristics in original position utilizing boring hole
WO2007091589A1 (en) * 2006-02-08 2007-08-16 Kiso-Jiban Consultants Co., Ltd. Searching method for acquiring ground information
JP4694513B2 (en) * 2006-02-08 2011-06-08 良刀 前田 Survey method to obtain ground information
CN105067435A (en) * 2015-08-07 2015-11-18 西南交通大学 Soil in-suit boring shearing testing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290489U (en) * 1985-11-27 1987-06-10
JPS63149423U (en) * 1987-03-19 1988-10-03
JP2013144921A (en) * 2011-12-14 2013-07-25 National Agriculture & Food Research Organization Method and apparatus for measuring shear strength in present location of ground

Also Published As

Publication number Publication date
JPS54135407A (en) 1979-10-20

Similar Documents

Publication Publication Date Title
AU2005224276B2 (en) Improved ball penetrometer for soft soils testing
Mair et al. Pressuremeter testing: methods and interpretation
CN111206627B (en) Centrifugal model test device and method for influencing existing pile foundation by tunnel-foundation pit multiple excavation
JPS62290B2 (en)
Kelleher et al. Strength measurement in very soft upper seabed sediments
US3481188A (en) Measuring device of load capacity of the earth layer
Andresen Exploration, sampling and in-situ testing of soft clay
Kovari et al. A new method of measuring deformations in diaphragm walls and piles
Wilson Investigation of embankment performance
Poulos et al. Geotechnical parameter assessment for tall building foundation design
Taheri et al. Characterization of a sedimentary soft rock by a small in-situ triaxial test
Haimson Determination of in-situ stresses around underground excavations by means of hydraulic fracturing
Zuidberg et al. EURIPIDES, load tests on large driven piles in dense silica sands
Wallace et al. In situ methods for determining deformation modulus used by the Bureau of Reclamation
Taheri et al. Development of an apparatus for down-hole triaxial tests in a rock mass
Mills et al. Development of the ANZI strain cell for three dimensional in situ stress determinations in deep exploration boreholes
Erer et al. A review of in situ stress measurement techniques with reference to coal measures rocks
Tatsuoka et al. Experimental Underground Excavations in Sedimentary Softrock at Sagamihara.
JPS6343526B2 (en)
JPH0344165B2 (en)
Dixon Pressure meter testing of soft bedrock
Goodman Development of techniques for evaluating seismic hazards of creeping landslides and old dams
Wallace et al. Tests for tunnel support and lining requirements
Roberts Progress in the application of photoelastic techniques to rock mechanics
Lo et al. A field method for the determination of rock-mass modulus