JP4446048B2 - Evaporation source moving mechanism of vacuum evaporation system - Google Patents

Evaporation source moving mechanism of vacuum evaporation system Download PDF

Info

Publication number
JP4446048B2
JP4446048B2 JP2003195899A JP2003195899A JP4446048B2 JP 4446048 B2 JP4446048 B2 JP 4446048B2 JP 2003195899 A JP2003195899 A JP 2003195899A JP 2003195899 A JP2003195899 A JP 2003195899A JP 4446048 B2 JP4446048 B2 JP 4446048B2
Authority
JP
Japan
Prior art keywords
evaporation
vacuum
piston
evaporation source
deposition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003195899A
Other languages
Japanese (ja)
Other versions
JP2005029837A (en
Inventor
豊 布施
敏夫 笠原
清 細川
修 白井
茂 大谷
一仁 青名端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP2003195899A priority Critical patent/JP4446048B2/en
Publication of JP2005029837A publication Critical patent/JP2005029837A/en
Application granted granted Critical
Publication of JP4446048B2 publication Critical patent/JP4446048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は真空蒸着による成膜装置の蒸発源機構に関し、特に光学薄膜製造装置の蒸発源機構に関する。
【0002】
【従来の技術】
図1に従来の光学薄膜製造装置の概略構成図を示す。
同図において、1は真空排気口11とガス導入口2を備えた真空槽、3は成膜基板6を保持する基板ドーム、7は蒸発物質を装填する蒸発源、4はマッチングボックス5を介して基板ドーム3へ高周波電力を供給する高周波電源、8は蒸発物質を遮蔽するシャッターを示している。基板ドーム3は回転機構10により回転可能に設置され、回転する基板ドーム3へ高周波電力を供給する高周波電力給電機構9が設けられる。
同図に示す装置は、高周波電力を直接基板ドームに印加することにより成膜基板表面に負の直流電界を自己誘起させ、その高いエネルギーで高充填密度な薄膜を形成させるものであり、その構成は特開2001-73136号公報に開示される。
成膜は、モニタ用の基板に堆積する光学薄膜を図示しない光学式膜厚計で観測制御しながら行い、所望の膜厚となった時点でシャッター8を閉じ終了させる。
蒸発源7は、基板ドーム3と対向する位置に固定配置されていた。
【0003】
【発明が解決しようとする課題】
光学薄膜製造装置は、その光学的仕様を満たすために高精度の成膜が要求される。成膜に影響を与える要因は様々であるが、蒸発源位置による影響は大きく、従来から最適な蒸発源位置を得るためのシミュレーション等が行われている。シミュレーションは、蒸発物質の材料等から蒸発係数を算出し、成膜基板面内における蒸発物質密度が均一になる蒸発源位置を見つけ出すためのものである。従来装置では、シミュレーション結果の他にも過去のデータ等を加味して最適な蒸発源位置を決定し、その位置に蒸発源を固定配置して成膜を行っていた。
【0004】
しかし、実際の成膜工程において、電子ビーム蒸発源のビーム幅や位置、蒸発物質溶解面の形状や高さの違い等により蒸発係数が変化するため、成膜の過程で最適な蒸発源位置が変化し、歩留まりが低下するという問題が生じていた。
更に従来装置では蒸発源位置を仕様に合わせて固定していたため、仕様を変更するには装置を製作し直さなくてはならないという問題もあった。そのため、蒸発源の固定位置を変更可能に設計された装置もあるが、そのような装置を用いても、一度真空引きをしてしまった後では蒸発源の位置を変更することが出来ず、蒸発源の位置を変更するためには、真空槽を開放し、真空引きをやり直さなければならないという不都合があった。
また、蒸発物質の材料等成膜条件を変更する度に蒸発源位置を変更しなくてはならない為、その都度固定を外して配置し直すという手間もあった。
【0005】
本発明は上記のような従来装置の問題点を解決するもので、成膜工程中に外部操作により蒸発源位置を微調整することを目的とするものである。
【0006】
【課題を解決する為の手段】
課題解決のため本発明は、蒸発源を回転駆動源及び昇降駆動源に接続し、真空槽内部を気密に保持したまま回転駆動及び昇降駆動させることにより、真空雰囲気を保ったまま蒸発源の位置を可変に設定できる蒸発源機構を提供するものである。
具体的には、真空槽下部に設置されるシリンダーと、シリンダー内部を気密に昇降駆動するピストンと、ピストンに嵌合しピストンと一体となって昇降駆動する回転ドラムとを備え、回転ドラムを回転駆動源に接続してピストンとは独立に気密に回転駆動させ、回転ドラム上部に蒸発源を配置することにより、ピストンの昇降駆動により蒸発源を昇降駆動させ、回転ドラムの回転駆動により蒸発源を回転駆動させることを特徴とする。
【0007】
【発明の実施の形態】
(1)実施例の構成の説明
図2及び図3を参照に本発明実施例を説明する。
図2は本発明蒸発源機構の概略図であり、図3は本発明の真空シール部を説明する概略図である。
蒸発物質を装填する蒸発源28は旋回自在かつ昇降自在に設置された回転ドラム12上部に取り付けられる。回転ドラム12は真空槽下部に設けられたシリンダー25の内部に位置し、シリンダー25と回転ドラム12との間にはピストン13が配される。
【0008】
ピストン13には回転ドラム12との接触面にベアリング14が上下に2つ固定される。また、ピストン13の内周及び外周にはそれぞれOリング26,27が配される。ベアリングの数及びOリングの数は任意に設定すればよい。ピストン内周のOリング26は回転ドラム12との接触面を真空シールし、外周のOリング27はシリンダー25との接触面を真空シールする。下方のベアリング14は回転ドラム12に固定されたピストン押え15に支持され、ピストン13が抜けない構造になっている。回転ドラム12には、ピストン押え15の上方にもうひとつのピストン押え16を設け、2つのピストン押え15,16の間にピストン13を嵌合する。これにより、ピストン13が上下どちらに移動しても、上下に配したピストン押え15,16を介してピストン14と回転ドラム12とが一体となって移動する構成となっている。ピストン押え15,16は、ピストン13を上下から挟み込む形状であればよく、回転ドラム12に突出部を設けても、独立した押え部材をねじ等により回転ドラム12に固定してもよい。あるいは回転ドラム12にピストン13を嵌合する溝を設けてもよい。
【0009】
回転ドラム12に固定された下方のピストン押え15には平歯車17が取り付けられ、平歯車17はACサーボモーター24に接続される。ACサーボモーター24により平歯車17を回転させると、平歯車17に固定されたピストン押え15及び回転ドラム12が回転し、回転ドラム12上部の蒸発源28が旋回する構成となっている。ピストン押え15を回転ドラム12と一体化した場合は、平歯車17を直接回転ドラム12に固定すればよい。
回転ドラム12の旋回時、真空槽のシールはピストン13内周に配されたOリング26により行う。
【0010】
図4に蒸発源28の概略平面図を示す。
同図に示す蒸発源28は、蒸発物質29を円周部に装填し、図示しない電子ビーム等により蒸発物質29を蒸散させるものである。回転ドラム12により蒸発源28を回転させると、蒸発物質29の位置が円弧上に移動する構成となっている。蒸発源28は、図5に示すように蒸発物質29を直線ガイド30上に設け、回転運動を直線運動に変換し蒸発物質29を直線上に移動させてもよい。
【0011】
次に、回転ドラム12昇降の構成について説明する。
ピストン13の下方にはサポート18を介して移動プレート19が固定される。移動プレート19は、4本のボールネジ20に取り付けられ、ボールネジ20には駆動プーリー21及びPXベルト22が接続される。ACサーボモーター23により1点のボールネジ20を回転させると、PXベルト22を介して4本のボールネジ20が回転し、移動プレート19が垂直方向に駆動する。移動プレート19の昇降に連動してピストン13及び回転ドラムが12一体となって昇降し、回転ドラム12上部の蒸発源28が垂直方向に駆動する構成となっている。
回転ドラム12の昇降時、真空槽のシールはピストン外周に配されたOリング27により行う。
【0012】
本発明の蒸発源機構は、昇降駆動時は回転ドラム12がピストン13と一体になって駆動し、回転駆動時は回転ドラム12のみがピストン13とは独立して駆動することにより、上下方向、旋回方向への単独移動が可能となっている。更に、本発明で真空槽のシールを行うことにより、圧力変動なく蒸発源28の位置を変化させることが可能となる。
【0013】
上記実施例では回転駆動源にACサーボモーター23,24を用いたが他の駆動源を用いてもよい。また、移動プレート19の昇降駆動もボールネジ20を用いた構成に限られるものではない。本発明の駆動源及び駆動機構は真空槽外部に設置されるため、昇降駆動、回転駆動する機構であれば自由に選択可能である。
【0014】
(2)実施例の作用・動作の説明
図6に本発明蒸発源機構を搭載した光学薄膜製造装置の実施例を示す。従来装置と同様のものには同一符号を付し説明を省略する。
本発明による蒸発源の旋回及び昇降の位置設定は、操作盤31により行う。成膜開始前、シミュレーション等により得た最適な蒸発源位置に蒸発源28を配置することは従来と同様である。成膜開始後、操作盤31により良好な配置へ蒸発源28を旋回、昇降し微調整を行う。
本発明により、蒸発源位置を真空槽外部から操作可能となったため、成膜工程中に真空雰囲気を壊さずに蒸発源28の位置を調整することができるようになった。蒸発源位置の微調整は、成膜中に操作しても、いったん成膜を停止し蒸発源位置を操作した後補正成膜として再び成膜を開始してもどちらでもよい。
【0015】
蒸発源位置の操作は、例えば、蒸発物質29の量に応じて変化させればよい。成膜開始から時間が経過すると蒸発物質29の量が減少し、蒸散が変化するが、成膜中に蒸発源位置を操作することにより、一定の成膜条件を保つことが可能となる。
【0016】
(3)他の実施例の説明、他の用途への転用例の説明
上記実施例では光学薄膜製造装置を用いたが、光学薄膜以外の真空蒸着装置を用いてもよい。
【0017】
【発明の効果】
本発明により真空状態を保持したまま蒸発源位置を可変に設定することができるようになったため、成膜工程中に蒸発源を良好な位置へ微調整することが可能となり、高精度な成膜を行うことが可能となった。更に蒸発材料等に合わせて蒸発源の位置を容易に変化させることが可能な為、任意の成膜条件に対応可能な装置を提供することができる。
【図面の簡単な説明】
【図1】従来の光学薄膜製造装置概略図
【図2】本発明の蒸発源機構概略図
【図3】 本発明の真空シール説明図
【図4】蒸発源概略平面図
【図5】直線ガイドを設けた蒸発源概略平面図
【図6】本発明の光学薄膜製造装置
【符号の説明】
1 真空槽
2 ガス導入口
3 基板ドーム
4 高周波電源
5 マッチングボックス
6 成膜基板
7 蒸発源
8 シャッター
9 高周波電力給電機構
10 基板ドーム回転機構
11 真空排気口
12 回転ドラム
13 ピストン
14 ベアリング
15 ピストン押え
16 ピストン押え部
17 平歯車
18 サポート
19 移動プレート
20 ボールネジ
21 駆動プーリー
22 PXベルト
23 ACサーボモーター
24 ACサーボモーター
25 シリンダー
26 内周Oリング
27 外周Oリング
28 蒸発源
29 蒸発物質
30 直線ガイド
31 操作盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaporation source mechanism of a film forming apparatus using vacuum evaporation, and more particularly to an evaporation source mechanism of an optical thin film manufacturing apparatus.
[0002]
[Prior art]
FIG. 1 shows a schematic configuration diagram of a conventional optical thin film manufacturing apparatus.
In the figure, 1 is a vacuum chamber provided with a vacuum exhaust port 11 and a gas introduction port 2, 3 is a substrate dome for holding a film-forming substrate 6, 7 is an evaporation source for loading an evaporating substance, and 4 is via a matching box 5. Reference numeral 8 denotes a high-frequency power source for supplying high-frequency power to the substrate dome 3, and a shutter for shielding the evaporated substance. The substrate dome 3 is rotatably installed by a rotation mechanism 10, and a high frequency power feeding mechanism 9 that supplies high frequency power to the rotating substrate dome 3 is provided.
The apparatus shown in the figure self-induces a negative DC electric field on the surface of the film-forming substrate by applying high-frequency power directly to the substrate dome, and forms a thin film with high energy and high packing density. Is disclosed in Japanese Patent Laid-Open No. 2001-73136.
Film formation is performed while observing and controlling the optical thin film deposited on the monitor substrate with an optical film thickness meter (not shown), and when the desired film thickness is reached, the shutter 8 is closed and finished.
The evaporation source 7 was fixedly disposed at a position facing the substrate dome 3.
[0003]
[Problems to be solved by the invention]
An optical thin film manufacturing apparatus is required to form a film with high accuracy in order to satisfy the optical specifications. There are various factors that affect film formation, but the influence of the position of the evaporation source is large, and simulations and the like for obtaining an optimal evaporation source position have been performed conventionally. The simulation is for finding the evaporation source position where the evaporation coefficient is calculated from the material of the evaporation substance and the like, and the evaporation substance density is uniform in the film formation substrate surface. In the conventional apparatus, an optimum evaporation source position is determined in consideration of past data and the like in addition to the simulation result, and film formation is performed with the evaporation source fixedly arranged at that position.
[0004]
However, in the actual film formation process, the evaporation coefficient changes depending on the beam width and position of the electron beam evaporation source, the shape and height of the evaporating substance dissolution surface, etc. There has been a problem that the yield has been reduced.
Further, since the position of the evaporation source is fixed according to the specification in the conventional apparatus, there is a problem that the apparatus must be manufactured again in order to change the specification. Therefore, there are devices designed to change the fixed position of the evaporation source, but even if such a device is used, the position of the evaporation source cannot be changed after evacuation once. In order to change the position of the evaporation source, there is a disadvantage that the vacuum chamber must be opened and evacuation must be performed again.
Further, since the evaporation source position must be changed every time the film forming conditions such as the material of the evaporation substance are changed, there is a trouble of unfixing and rearranging each time.
[0005]
The present invention solves the problems of the conventional apparatus as described above, and aims to finely adjust the evaporation source position by an external operation during the film forming process.
[0006]
[Means for solving the problems]
In order to solve the problem, the present invention connects the evaporation source to the rotation drive source and the elevation drive source, and performs the rotation drive and elevation drive while keeping the inside of the vacuum chamber airtight, thereby maintaining the position of the evaporation source while maintaining the vacuum atmosphere. It is intended to provide an evaporation source mechanism that can be set variably.
Specifically, it has a cylinder installed in the lower part of the vacuum chamber, a piston that moves the cylinder in an airtight manner, and a rotating drum that is fitted to the piston and driven to move up and down integrally with the piston. It is connected to a drive source and driven in an airtight manner independently of the piston, and an evaporation source is arranged on the upper part of the rotating drum. It is characterized by being driven to rotate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
(1) Description of Configuration of Embodiment An embodiment of the present invention will be described with reference to FIGS.
FIG. 2 is a schematic view of the evaporation source mechanism of the present invention, and FIG. 3 is a schematic view for explaining a vacuum seal portion of the present invention.
The evaporation source 28 for loading the evaporation substance is attached to the upper part of the rotary drum 12 installed so as to be swivelable and movable up and down. The rotary drum 12 is located inside a cylinder 25 provided at the lower part of the vacuum chamber, and a piston 13 is disposed between the cylinder 25 and the rotary drum 12.
[0008]
Two bearings 14 are fixed to the piston 13 on the contact surface with the rotary drum 12 in the vertical direction. Further, O-rings 26 and 27 are disposed on the inner periphery and the outer periphery of the piston 13, respectively. The number of bearings and the number of O-rings may be set arbitrarily. The O-ring 26 on the inner periphery of the piston vacuum seals the contact surface with the rotating drum 12, and the O-ring 27 on the outer periphery vacuum seals the contact surface with the cylinder 25. The lower bearing 14 is supported by a piston presser 15 fixed to the rotary drum 12 so that the piston 13 cannot be removed. The rotary drum 12 is provided with another piston retainer 16 above the piston retainer 15, and the piston 13 is fitted between the two piston retainers 15 and 16. Thereby, even if the piston 13 moves up and down, the piston 14 and the rotary drum 12 move integrally through the piston pressers 15 and 16 arranged up and down. The piston retainers 15 and 16 may have any shape as long as the piston 13 is sandwiched from above and below, and a protrusion may be provided on the rotating drum 12 or an independent retaining member may be fixed to the rotating drum 12 with a screw or the like. Alternatively, a groove for fitting the piston 13 may be provided in the rotating drum 12.
[0009]
A spur gear 17 is attached to the lower piston presser 15 fixed to the rotary drum 12, and the spur gear 17 is connected to an AC servomotor 24. When the spur gear 17 is rotated by the AC servo motor 24, the piston retainer 15 and the rotary drum 12 fixed to the spur gear 17 are rotated, and the evaporation source 28 above the rotary drum 12 is turned. When the piston presser 15 is integrated with the rotary drum 12, the spur gear 17 may be directly fixed to the rotary drum 12.
When the rotary drum 12 is turned, the vacuum chamber is sealed by an O-ring 26 disposed on the inner periphery of the piston 13.
[0010]
FIG. 4 shows a schematic plan view of the evaporation source 28.
The evaporation source 28 shown in the figure is one in which an evaporating substance 29 is loaded on the circumference and the evaporating substance 29 is evaporated by an electron beam (not shown). When the evaporation source 28 is rotated by the rotary drum 12, the position of the evaporation material 29 is moved on an arc. As shown in FIG. 5, the evaporation source 28 may be provided with an evaporation material 29 on a linear guide 30 to convert the rotary motion into a linear motion and move the evaporation material 29 on a straight line.
[0011]
Next, the structure of raising and lowering the rotating drum 12 will be described.
A moving plate 19 is fixed below the piston 13 via a support 18. The moving plate 19 is attached to four ball screws 20, and a driving pulley 21 and a PX belt 22 are connected to the ball screws 20. When one point of the ball screw 20 is rotated by the AC servo motor 23, the four ball screws 20 are rotated via the PX belt 22, and the moving plate 19 is driven in the vertical direction. The piston 13 and the rotating drum 12 are moved up and down integrally with the movement plate 19 ascending and descending, and the evaporation source 28 above the rotating drum 12 is driven in the vertical direction.
When the rotary drum 12 is moved up and down, the vacuum chamber is sealed by an O-ring 27 disposed on the outer periphery of the piston.
[0012]
In the evaporation source mechanism of the present invention, the rotary drum 12 is driven integrally with the piston 13 during the up-and-down drive, and only the rotary drum 12 is driven independently of the piston 13 during the rotary drive. A single movement in the turning direction is possible. Further, by sealing the vacuum chamber according to the present invention, the position of the evaporation source 28 can be changed without pressure fluctuation.
[0013]
In the above embodiment, the AC servomotors 23 and 24 are used as the rotational drive source, but other drive sources may be used. Further, the raising / lowering drive of the moving plate 19 is not limited to the configuration using the ball screw 20. Since the drive source and the drive mechanism of the present invention are installed outside the vacuum chamber, any mechanism can be freely selected as long as it is a lift drive and a rotation drive mechanism.
[0014]
(2) Description of Operation and Operation of Embodiment FIG. 6 shows an embodiment of an optical thin film manufacturing apparatus equipped with the evaporation source mechanism of the present invention. Components similar to those of the conventional apparatus are denoted by the same reference numerals and description thereof is omitted.
The position of turning and raising / lowering of the evaporation source according to the present invention is set by the operation panel 31. It is the same as before that the evaporation source 28 is arranged at the optimum evaporation source position obtained by simulation or the like before the start of film formation. After the start of film formation, the operation source 31 is used to finely adjust the evaporation source 28 by turning it up and down to a good position.
According to the present invention, since the position of the evaporation source can be operated from the outside of the vacuum chamber, the position of the evaporation source 28 can be adjusted without breaking the vacuum atmosphere during the film forming process. The fine adjustment of the evaporation source position may be performed during film formation, or may be stopped once and after the operation of the evaporation source position, the film formation is started again as the correction film formation.
[0015]
The operation of the evaporation source position may be changed according to the amount of the evaporation substance 29, for example. As time elapses from the start of film formation, the amount of the evaporation substance 29 decreases and transpiration changes, but by operating the evaporation source position during film formation, it is possible to maintain a constant film formation condition.
[0016]
(3) Description of other examples, description of examples of diversion to other applications In the above examples, an optical thin film manufacturing apparatus was used, but a vacuum vapor deposition apparatus other than the optical thin film may be used.
[0017]
【The invention's effect】
The present invention makes it possible to variably set the evaporation source position while maintaining the vacuum state, so that it is possible to finely adjust the evaporation source to a good position during the film formation process, and to form a film with high accuracy. It became possible to do. Furthermore, since the position of the evaporation source can be easily changed in accordance with the evaporation material or the like, an apparatus that can cope with any film forming condition can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a conventional optical thin film manufacturing apparatus. FIG. 2 is a schematic diagram of an evaporation source mechanism of the present invention. FIG. 3 is an explanatory diagram of a vacuum seal of the present invention. [FIG. 6] Optical thin film manufacturing apparatus of the present invention [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Gas inlet 3 Substrate dome 4 High frequency power supply 5 Matching box 6 Film forming substrate 7 Evaporation source 8 Shutter 9 High frequency power feeding mechanism 10 Substrate dome rotation mechanism 11 Vacuum exhaust port 12 Rotating drum 13 Piston 14 Bearing 15 Piston presser 16 Piston retainer 17 Spur gear 18 Support 19 Moving plate 20 Ball screw 21 Drive pulley 22 PX belt 23 AC servo motor 24 AC servo motor 25 Cylinder 26 Inner peripheral O-ring 27 Outer peripheral O-ring 28 Evaporating source 29 Evaporating substance 30 Linear guide 31 Operation panel

Claims (7)

真空蒸着装置における成膜方法であって、A film forming method in a vacuum evaporation apparatus,
該真空蒸着装置内を真空にし、The vacuum deposition apparatus is evacuated,
以下任意の順序で、In any order,
処理対象基板が搭載された基板ドームを回転し、Rotate the substrate dome on which the target substrate is mounted,
蒸発源回転軸の円周部に配置された蒸発物質を蒸発させ、Evaporate the evaporating substance placed on the circumference of the evaporation source rotation shaft,
該蒸発源の回転角を調整して、基板ドーム回転軸に対する該蒸発物質の蒸発位置を決め、Adjusting the rotation angle of the evaporation source to determine the evaporation position of the evaporation material with respect to the substrate dome rotation axis;
該蒸発源の高さを調整して、該基板ドームに対する該蒸発位置の高さを決めるAdjusting the height of the evaporation source to determine the height of the evaporation position relative to the substrate dome
成膜方法。Film forming method.
真空蒸着装置であって、A vacuum deposition apparatus,
真空槽、Vacuum chamber,
処理対象基板が搭載され、回転される基板ドーム、A substrate dome on which a substrate to be processed is mounted and rotated,
蒸発源であって、蒸発物質が該蒸発源回転軸の円周部に配置される昇降可能な蒸発源、及びAn evaporating source, wherein the evaporating substance is disposed on a circumference of the evaporating source rotating shaft and is capable of moving up and down; and
該真空槽を真空に維持した状態で、該蒸発源の回転角と高さを調整して該蒸発物質の蒸発位置と該基板ドームとの位置関係を決定する機構A mechanism for determining the positional relationship between the evaporation position of the evaporation material and the substrate dome by adjusting the rotation angle and height of the evaporation source while maintaining the vacuum chamber in a vacuum.
を備えた真空蒸着装置。A vacuum deposition apparatus equipped with
請求項2記載の真空蒸着装置において、In the vacuum evaporation system according to claim 2,
前記蒸発源が回転ドラム上に配置され、The evaporation source is disposed on a rotating drum;
前記機構が、The mechanism is
前記回転ドラムの一部が挿通されるシリンダー、及びA cylinder through which a part of the rotating drum is inserted, and
該シリンダー内面及び該回転ドラムの一部の外面に密着配置されて該真空槽の気密を維持するピストンA piston that is arranged in close contact with the inner surface of the cylinder and a part of the outer surface of the rotating drum to maintain the airtightness of the vacuum chamber
を備え、With
該回転ドラムが昇降動作する際には、該ピストンが該回転ドラムと一体化されるとともに該シリンダーに対して摺動され、When the rotary drum moves up and down, the piston is integrated with the rotary drum and slid with respect to the cylinder,
該回転ドラムが回転動作する際には、該回転ドラムが該ピストンに対して回転されるように構成された真空蒸着装置。A vacuum deposition apparatus configured to rotate the rotating drum relative to the piston when the rotating drum rotates.
請求項3記載の真空蒸着装置において、前記回転ドラムが前記ピストンを上下から挟み込む第1及び第2のピストン押えを備えた真空蒸着装置 4. The vacuum vapor deposition apparatus according to claim 3, wherein the rotary drum includes first and second piston pressers that sandwich the piston from above and below . 請求項3記載の真空蒸着装置であって、
前記ドラムとの外周面と前記ピストンの内周面の間に装着される気密保持用のOリング(26)を備えた真空蒸着装置
The vacuum evaporation apparatus according to claim 3, wherein
A vacuum deposition apparatus comprising an O-ring (26) for airtightness that is mounted between the outer peripheral surface of the drum and the inner peripheral surface of the piston .
請求項3記載の真空蒸着装置であって、
前記ピストンの外周面と前記シリンダーの内周面の間に装着される気密保持用Oリング(27)を備えた真空蒸着装置
The vacuum evaporation apparatus according to claim 3, wherein
A vacuum deposition apparatus comprising an airtight holding O-ring (27) mounted between the outer peripheral surface of the piston and the inner peripheral surface of the cylinder .
請求項3記載の真空蒸着装置であって、さらに、
前記ピストンを支持するサポート、
該サポートが固定される移動プレート、及び
該移動プレートを昇降駆動させるボールネジ
を備えた真空蒸着装置
The vacuum evaporation apparatus according to claim 3, further comprising:
A support for supporting the piston;
A moving plate to which the support is fixed, and
Ball screw for moving the moving plate up and down
A vacuum deposition apparatus equipped with
JP2003195899A 2003-07-11 2003-07-11 Evaporation source moving mechanism of vacuum evaporation system Expired - Fee Related JP4446048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195899A JP4446048B2 (en) 2003-07-11 2003-07-11 Evaporation source moving mechanism of vacuum evaporation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195899A JP4446048B2 (en) 2003-07-11 2003-07-11 Evaporation source moving mechanism of vacuum evaporation system

Publications (2)

Publication Number Publication Date
JP2005029837A JP2005029837A (en) 2005-02-03
JP4446048B2 true JP4446048B2 (en) 2010-04-07

Family

ID=34206597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195899A Expired - Fee Related JP4446048B2 (en) 2003-07-11 2003-07-11 Evaporation source moving mechanism of vacuum evaporation system

Country Status (1)

Country Link
JP (1) JP4446048B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080007820A (en) * 2006-07-18 2008-01-23 세메스 주식회사 The rotation evaporator for vapor deposition of thin film and apparatus for vapor deposition of thin film using rotation evaporators
KR101490441B1 (en) 2008-10-29 2015-02-11 주성엔지니어링(주) Appratus for treatmenting substrate
KR101760257B1 (en) * 2017-02-15 2017-07-21 (주)프라임광학 Glass product vacuum evaporation coating apparatus using electron beam and vacuum evaporation coating method
KR101821926B1 (en) * 2017-06-02 2018-01-24 캐논 톡키 가부시키가이샤 Vacuum deposition apparatus and device manufacturing method using the same
CN107858654B (en) * 2017-10-31 2023-06-02 东莞市汇成真空科技有限公司 Driving system of vacuum cathode arc coating machine arc source component for coating inner wall of large tank body
JP6627181B1 (en) * 2018-07-31 2020-01-08 キヤノントッキ株式会社 Evaporation source and evaporation equipment
KR102203725B1 (en) * 2018-11-29 2021-01-15 주식회사 선익시스템 Apparatus for thin film deposition
WO2020230359A1 (en) * 2019-05-13 2020-11-19 株式会社アルバック Deposition unit, and vacuum deposition device provided with said deposition unit
US20220145443A1 (en) * 2019-05-13 2022-05-12 Ulvac, Inc. Vapor deposition unit and vacuum vapor deposition apparatus provided with vapor deposition unit

Also Published As

Publication number Publication date
JP2005029837A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4446048B2 (en) Evaporation source moving mechanism of vacuum evaporation system
US7229532B2 (en) Sputtering apparatus
WO2007023553A1 (en) Alignment device for vacuum deposition
TWI467692B (en) Substrate processing method and substrate processing device
CN112159967B (en) Ion beam deposition equipment for infrared metal film and film deposition method
JP2007182617A (en) Method and apparatus for forming film by sputtering
JP5028584B2 (en) Vacuum deposition apparatus for liquid crystal alignment film and film forming method thereof
KR101840976B1 (en) Moving body support apparatus, vacuum evaporation apparatus including the same and evaporation method
CN113913756A (en) Vacuum coating machine
KR20220104146A (en) Vacuum processing apparatus, vacuum system, gas partial pressure control assembly, and method of controlling gas partial pressure in a vacuum processing chamber
KR20160098347A (en) Film deposition preparation method for inline type film deposition device, inline type film deposition device, and carrier
KR101925111B1 (en) Thin film depositing apparatus and method of depositing the fhin film using the same
WO2012090379A1 (en) Sputtering device and sputtering method
JPH0310710B2 (en)
JP2004095419A (en) Vacuum film-forming device equipped with alignment mechanism
JP2005195469A (en) Electron beam irradiation equipment and electron beam irradiation method
JP2011132580A (en) Film-forming apparatus and film-forming method
JP3036895B2 (en) Sputtering equipment
JP4661405B2 (en) Vacuum deposition apparatus and electro-optical device manufacturing method
KR20100065695A (en) Magnet shutter and substrate processing apparatus using the same
CN113388820B (en) Base device for improving uniformity of filling film, sputtering equipment and sputtering process
JP2000054130A (en) Load-lock chamber and vacuum treating device
JP7389917B2 (en) sputtering equipment
KR102244623B1 (en) Sputtering arrangement for sputtering a material on a substrate surface
CN220166264U (en) Lens coating machine for processing security protection lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees