JP4445603B2 - Telephoto zoom lens - Google Patents
Telephoto zoom lens Download PDFInfo
- Publication number
- JP4445603B2 JP4445603B2 JP18282899A JP18282899A JP4445603B2 JP 4445603 B2 JP4445603 B2 JP 4445603B2 JP 18282899 A JP18282899 A JP 18282899A JP 18282899 A JP18282899 A JP 18282899A JP 4445603 B2 JP4445603 B2 JP 4445603B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- negative
- lens group
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、一眼レフレックスカメラやデジタルカメラ等に用いられるズーム比が3倍程度のコンパクトな望遠ズームレンズに関するものである。
【0002】
【従来の技術】
従来より、一眼レフレックスカメラやデジタルカメラ等のズーム比が3倍程度の望遠ズームレンズは特開昭60−114814号公報に開示されるように4群ズームレンズが多く、正の屈折力の第1レンズ群が3枚、負の屈折力の第2レンズ群が3枚、正の屈折力の第3レンズ群が2枚、正の屈折力の第4レンズ群が7枚の計15枚程度で構成されることが多かった。
【0003】
【発明が解決しようとする課題】
特開昭60−114814号公報に開示される様な、15枚程度のレンズで構成される4群構成のズームレンズは、広角端から望遠端へ変倍する際に、多群ズームのために、可動部分が増え、鏡筒構造が複雑になり、生産性が悪くなり、コストが嵩む等の問題がある。
【0004】
そこで、本発明はズーム比が3倍程度で構成枚数が10枚と少ないながらも、高性能でコンパクトなズームレンズを提供することを目的とするものである。
【0005】
構成枚数が少ないが、高性能でコンパクトなズームレンズを設計するには、各群の適切なパワー配置とレンズ構成が必要である。そこで、本発明は物体側より順に負レンズと正レンズからなる第1群、負の単レンズと接合レンズからなる負の屈折力の第2群、正の屈折力の第3群は前部と後部よりなり、前部は正の屈折力の接合レンズと単レンズ、後部は物体側に凹面を向けた2枚の負メニスカスレンズが大きな空気間隔で配置された構成からなり、広角端から望遠端への変倍に際し、上記第1レンズ群と第2レンズ群との空気間隔を拡大させ、第2レンズ群と第3レンズ群の間隔を縮小させつつ、第1、第3レンズ群が物体方向に移動するズーム方式と共に、各群パワーに
(1) 0.65<|fII/fw|<0.75
(2) 0.77<|fIII /fw|<0.80
(3) 1.00<|fIII /fII|<1.20
(4) 2.60<|fI /fIII |<3.20
の条件を与えた。
ただし、
fw :広角端の焦点距離
fI :第1レンズ群の焦点距離
fII :第2レンズ群の焦点距離
fIII :第3レンズ群の焦点距離
である。
【0006】
また、レンズ構成の自由度が大きい第3レンズ群を、前部は正の屈折力の接合レンズと単レンズ、後部は物体側に凹面を向けた2枚の負メニスカスレンズが大きな空気間隔で配置された構成とし、負レンズの焦点距離を
(5) 1.60<|f9/fIII |<2.00
(6) 1.60<|f10/fIII |<2.0
とする事で高性能かつコンパクトにできた。
ただし、
f9 :第3レンズ群後部の物体側負レンズの焦点距離
f10:第3レンズ群後部の像側負レンズの焦点距離
である。
【0007】
条件式(1)〜(4)は3つの群の焦点距離を規定するものである。条件式(1)はバリエーターとして変倍に大きく寄与する第2群の焦点距離の条件である。下限を越えると第2レンズのパワーが強い負になるのでレンズ系の小型化に効果があるが、ペッツパール和が負になり像面湾曲が補正過剰になるので好ましくない。上限を越えると第2レンズ群の負のパワーが弱くなって各面の曲率半径の絶対値が大きくなるので第2群に起因する収差は良好に補正できるが、反面変倍のための移動量が大きくなり大型化や他群との相互作用でのマイナス面が目立ってくる。
【0008】
条件式(2)は第3群レンズのパワーを規定するが、第3群はマスターレンズとしての主たる役割に加え、コンペンセータの機能とズーミングの収差変動を小さくする変倍の機能を備えているのでそのパワーの設定は重要である。下限を越えると第3レンズ群のパワーが強くなって全ズーム領域でコマ収差が大きくなり、特にワイド側で球面収差補正が困難である。上限を越えると第3レンズ群のパワーが弱くなることから移動量の増大とシステムの大型化を招くので好ましくない。
【0009】
条件式(3)は第3レンズ群と第2レンズ群の屈折力比に関する条件である。本発明では広角から望遠へのズーミングに伴って第2群と第3群の屈折力比のバランスをとる事により、ズーム全域で良好な収差補正が実現されている。条件式(3)の上限を越えると2群の屈折力が強くなり、テレでのバックフオーカスが大きくなり、コンパクト化にとって好ましくない。また、下限を超えると3群の屈折力が強くなり、ズーミング時の軸外の収差変動を良好に補正する事が困難になり、性能向上を阻害してしまう。
【0010】
条件式(4)は第2群負パワーを挟んだ第1群と第3群の正パワーの関係を規定し、コマ収差、歪曲収差の良好な補正を保証する条件である。下限を越えて第1群のパワーが第3群に対して相対的に強くなると望遠側での球面収差の補正に好ましくなく、逆に上限を越えると広角側の球面収差に好ましくない。また、上限を越えると近距離時の繰り出し量が増大することによる性能劣化、鏡筒設計上の困難等が生じる。
【0011】
条件式(5),(6)は第3群の後部を構成する2つの負レンズのパワー規定である。構成が薄肉レンズ的に制約される第1、第2群と違って第3群は大きなレンズ全長で構成することが必然である。したがって、第3群の構成はレンズ性能やコンパクトさに大きく関わり重要である。本発明は第3群を正パワーの前部と、凹面を物体側に向けた2枚のメニスカス負レンズを大きな空気間隔で配する構成によって高性能化とコンパクト化を実現した。条件式(5),(6)の条件は2つのレンズパワーがほぼ等しいものであることを示しているが、下限を越えると第3群を構成する前部の正パワーが強くなりズーミングによる収差の変動が大きくなって好ましくない。上限を越えると第3群の構成要素の各パワーがゆるくなり、系が大型化するのが避けられず、非点収差の補正にとっても好ましくない。また、2つの負レンズが凹面を物体側に向けた形状であることは軸外性能を良好に補正する条件であり、両者のパワーのバランスが崩れるとコマ収差が劣化するので好ましくない。
【0012】
【実施例】
以下に本発明の高変倍率ズームレンズの数値実施例1、数値実施例2、数値実施例3を示す。
【0013】
図1は数値実施例1のレンズ構成図、図2は数値実施例2のレンズ構成図、図3は数値実施例3のレンズ構成図である。図1乃至図3中のI は正の屈折力の第1レンズ群、IIは負の屈折力の第2レンズ群、III は正の屈折力の第3レンズ群である。図4は本発明の数値実施例1の広角端の収差図、図5は本発明の数値実施例1の望遠端の収差図、図6は本発明の数値実施例2の広角端の収差図、図7は本発明の数値実施例2の望遠端の収差図、図8は本発明の数値実施例3の広角端の収差図、図9は本発明の数値実施例3の望遠端の収差図である。
【0014】
本実施例に示すように、非球面を用いることなく、少ない構成枚数で収差補正の良好なズーム比3程度の望遠レンズが実現できた。
【0015】
数値実施例1乃至3において、fは焦点距離、FnoはFナンバー、ωは半画角であり、riは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より順に第i番目のレンズ厚および空気間隔、ni,viは各々物体側より順に第i番目のレンズ屈折率とアッベ数である。
【0016】
【0017】
【0018】
【0019】
【発明の効果】
本発明によれば、物体側より順に正、負、正からなる3群ズーム方式で、ズーム比が3倍程度の高性能コンパクトな望遠ズームが従来のズームより4乃至5枚少ない構成枚数で大きなコストダウンが可能である。
【図面の簡単な説明】
【図1】本発明の数値実施例1のレンズ構成図である。
【図2】本発明の数値実施例2のレンズ構成図である。
【図3】本発明の数値実施例3のレンズ構成図である。
【図4】本発明の数値実施例1の広角端の収差図である。
【図5】本発明の数値実施例1の望遠端の収差図である。
【図6】本発明の数値実施例2の広角端の収差図である。
【図7】本発明の数値実施例2の望遠端の収差図である。
【図8】本発明の数値実施例3の広角端の収差図である。
【図9】本発明の数値実施例3の望遠端の収差図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compact telephoto zoom lens having a zoom ratio of about 3 times used for a single-lens reflex camera, a digital camera, or the like.
[0002]
[Prior art]
Conventionally, a telephoto zoom lens having a zoom ratio of about 3 times, such as a single-lens reflex camera or a digital camera, has many four-group zoom lenses as disclosed in JP-A-60-1114814, and has a positive refractive power. About 15 in total: 3 for 1 lens group, 3 for 2nd lens group for negative refractive power, 2 for 3rd lens group for positive refractive power, 7 for 4th lens group for positive refractive power It was often composed of.
[0003]
[Problems to be solved by the invention]
As disclosed in Japanese Patent Laid-Open No. 60-1114814, a four-group zoom lens composed of about 15 lenses is used for multi-group zoom when zooming from the wide-angle end to the telephoto end. However, there are problems such as an increase in movable parts, a complicated barrel structure, poor productivity, and high cost.
[0004]
Accordingly, an object of the present invention is to provide a high-performance and compact zoom lens while the zoom ratio is about 3 times and the number of components is as small as ten.
[0005]
In order to design a high-performance and compact zoom lens with a small number of components, it is necessary to have an appropriate power arrangement and lens configuration for each group. Therefore, in the present invention, the first group including the negative lens and the positive lens in order from the object side, the second group of negative refractive power including the negative single lens and the cemented lens, and the third group of positive refractive power are the front part. consists rear, front is a cemented lens and a single lens having a positive refractive power, the rear consists arrangement two negative meniscus lens having a concave surface directed toward the object side are arranged with a large air gap, the telephoto end from the wide-angle end In zooming, the first and third lens groups are moved in the object direction while increasing the air gap between the first lens group and the second lens group and reducing the gap between the second lens group and the third lens group. (1) 0.65 <| fII / fw | <0.75
(2) 0.77 <| fIII / fw | <0.80
(3) 1.00 <| fIII / fII | <1.20
(4) 2.60 <| fI / fIII | <3.20
Conditions were given.
However,
fw: focal length at the wide angle end fI: focal length of the first lens group fII: focal length of the second lens group fIII: focal length of the third lens group
[0006]
Also, the third lens group with a large degree of freedom in lens configuration is arranged with a large air gap between the cemented lens and the single lens with positive refractive power at the front, and two negative meniscus lenses with the concave surface facing the object side at the rear. The focal length of the negative lens is (5) 1.60 <| f9 / fIII | <2.00
(6) 1.60 <| f10 / fIII | <2.0
It was possible to make it high performance and compact.
However,
f9: focal length of the object-side negative lens at the rear of the third lens group f10: focal length of the image-side negative lens at the rear of the third lens group.
[0007]
Conditional expressions (1) to (4) define the focal lengths of the three groups. Conditional expression (1) is a condition for the focal length of the second group that greatly contributes to zooming as a variator. If the lower limit is exceeded, the power of the second lens becomes strongly negative, which is effective in reducing the size of the lens system, but it is not preferable because the Petzpearl sum becomes negative and the field curvature becomes overcorrected. If the upper limit is exceeded, the negative power of the second lens group becomes weak and the absolute value of the radius of curvature of each surface increases, so that aberrations due to the second group can be corrected well, but the amount of movement for variable magnification on the other hand The negative side of the increase in size and interaction with other groups will become conspicuous.
[0008]
Conditional expression (2) defines the power of the third lens group, but the third lens group has not only the main role as a master lens, but also a function of a compensator and a zooming function for reducing zooming aberration fluctuations. The power setting is important. If the lower limit is exceeded, the power of the third lens group becomes strong and coma increases in the entire zoom range, and it is difficult to correct spherical aberration, especially on the wide side. Exceeding the upper limit is not preferable because the power of the third lens group becomes weak, which increases the amount of movement and increases the size of the system.
[0009]
Conditional expression (3) is a condition regarding the refractive power ratio of the third lens group and the second lens group. In the present invention, a good aberration correction is realized over the entire zoom range by balancing the refractive power ratio between the second group and the third group with zooming from wide angle to telephoto. If the upper limit of conditional expression (3) is exceeded, the refractive power of the second group becomes strong, and the back focus on the telescope becomes large, which is not preferable for downsizing. If the lower limit is exceeded, the refractive power of the third group becomes strong, making it difficult to correct aberration fluctuations off-axis during zooming, and hindering performance improvement.
[0010]
Conditional expression (4) defines the relationship between the positive powers of the first group and the third group with the second group negative power interposed therebetween, and is a condition that guarantees good correction of coma and distortion. If the power of the first lens group exceeds the lower limit and becomes relatively stronger than the third lens group, it is not preferable for correcting the spherical aberration on the telephoto side, and conversely if it exceeds the upper limit, it is not preferable for spherical aberration on the wide angle side. Further, when the upper limit is exceeded, performance deterioration due to an increase in the feeding amount at a short distance, difficulty in designing the lens barrel, and the like occur.
[0011]
Conditional expressions (5) and (6) are power specifications of the two negative lenses constituting the rear part of the third group. Unlike the first and second groups, where the configuration is limited by a thin lens, the third group must be configured with a large overall lens length. Therefore, the configuration of the third group is important because it is greatly related to lens performance and compactness. In the present invention, high performance and compactness are realized by a configuration in which the third lens unit has a positive power front portion and two meniscus negative lenses having a concave surface facing the object side with a large air gap. Conditional expressions (5) and (6) indicate that the two lens powers are substantially equal. However, if the lower limit is exceeded, the positive power of the front part constituting the third group becomes stronger and aberrations due to zooming. This is not preferable because of a large fluctuation. If the upper limit is exceeded, the respective powers of the components of the third group become loose, and it is inevitable that the system becomes large, and this is not preferable for correcting astigmatism. In addition, it is a condition that the two negative lenses have a concave surface facing the object side to correct the off-axis performance satisfactorily. If the balance between the two powers is lost, the coma aberration deteriorates, which is not preferable.
[0012]
【Example】
Numerical Example 1, Numerical Example 2, and Numerical Example 3 of the high variable magnification zoom lens of the present invention are shown below.
[0013]
1 is a lens configuration diagram of Numerical Example 1, FIG. 2 is a lens configuration diagram of Numerical Example 2, and FIG. 3 is a lens configuration diagram of Numerical Example 3. 1 to 3, I is a first lens group having a positive refractive power, II is a second lens group having a negative refractive power, and III is a third lens group having a positive refractive power. 4 is an aberration diagram at the wide-angle end of Numerical Example 1 of the present invention, FIG. 5 is an aberration diagram at the telephoto end of Numerical Example 1 of the present invention, and FIG. 6 is an aberration diagram at the wide-angle end of Numerical Example 2 of the present invention. 7 is an aberration diagram at the telephoto end of Numerical Example 2 of the present invention, FIG. 8 is an aberration diagram at the wide-angle end of Numerical Example 3 of the present invention, and FIG. 9 is an aberration at the telephoto end of Numerical Example 3 of the present invention. FIG.
[0014]
As shown in the present embodiment, a telephoto lens having a zoom ratio of about 3 and good aberration correction can be realized with a small number of components without using an aspherical surface.
[0015]
In Numerical Examples 1 to 3, f is a focal length, Fno is an F number, ω is a half angle of view, ri is a radius of curvature of the i-th lens surface in order from the object side, and di is an i-th in order from the object side. The th lens thickness, the air gap, and ni and vi are respectively the i th lens refractive index and the Abbe number in order from the object side.
[0016]
[0017]
[0018]
[0019]
【The invention's effect】
According to the present invention, a high-performance compact telephoto zoom with a zoom ratio of about 3 times is larger with the number of
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram of Numerical Example 1 of the present invention.
FIG. 2 is a lens configuration diagram of Numerical Example 2 of the present invention.
FIG. 3 is a lens configuration diagram of Numerical Example 3 of the present invention.
FIG. 4 is an aberration diagram at the wide-angle end according to Numerical Example 1 of the present invention.
FIG. 5 is an aberration diagram at the telephoto end according to Numerical Example 1 of the present invention.
FIG. 6 is an aberration diagram at the wide-angle end according to Numerical Example 2 of the present invention.
FIG. 7 is an aberration diagram at the telephoto end according to Numerical Example 2 of the present invention.
FIG. 8 is an aberration diagram at a wide angle end according to Numerical Example 3 of the present invention.
FIG. 9 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.
Claims (1)
(1) 0.65<|fII/fw|<0.75
(2) 0.77<|fIII /fw|<0.80
(3) 1.00<|fIII /fII|<1.20
(4) 2.60<|fI /fIII |<3.20
(5) 1.60<|f9/fIII |<2.00
(6) 1.60<|f10/fIII |<2.0
ただし、
fw :広角端の焦点距離
fI :第1レンズ群の焦点距離
fII :第2レンズ群の焦点距離
fIII :第3レンズ群の焦点距離
f9 :第3レンズ群後部の物体側負レンズの焦点距離
f10:第3レンズ群後部の像側負レンズの焦点距離
である。A second lens unit of negative refractive power for the first unit having a positive refractive power composed of two negative lenses and a positive lens in order from the object side, a negative single lens and a cemented lens, the third lens unit of positive refractive power becomes, the third group consists of front and rear, front is a cemented lens and a single lens having a positive refractive power, the rear is two negative meniscus lens having a concave surface directed toward the object side are arranged in a large air gap In the zooming from the wide-angle end to the telephoto end, the air gap between the first lens group and the second lens group is enlarged, and the gap between the second lens group and the third lens group is reduced. A telephoto zoom lens characterized in that the first and third lens units move in the object direction and satisfy the following conditions.
(1) 0.65 <| fII / fw | <0.75
(2) 0.77 <| fIII / fw | <0.80
(3) 1.00 <| fIII / fII | <1.20
(4) 2.60 <| fI / fIII | <3.20
(5) 1.60 <| f9 / fIII | <2.00
(6) 1.60 <| f10 / fIII | <2.0
However,
fw: Focal length fI at the wide angle end: Focal length fII of the first lens group: Focal length fIII of the second lens group: Focal length f3 of the third lens group f9: Focal length f10 of the object side negative lens at the rear of the third lens group : The focal length of the image-side negative lens at the rear of the third lens unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18282899A JP4445603B2 (en) | 1999-06-29 | 1999-06-29 | Telephoto zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18282899A JP4445603B2 (en) | 1999-06-29 | 1999-06-29 | Telephoto zoom lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001013410A JP2001013410A (en) | 2001-01-19 |
JP4445603B2 true JP4445603B2 (en) | 2010-04-07 |
Family
ID=16125185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18282899A Expired - Lifetime JP4445603B2 (en) | 1999-06-29 | 1999-06-29 | Telephoto zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4445603B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4687194B2 (en) | 2005-03-30 | 2011-05-25 | 株式会社ニコン | Zoom lens |
JP5040430B2 (en) * | 2007-05-14 | 2012-10-03 | コニカミノルタアドバンストレイヤー株式会社 | Variable-magnification optical system, imaging device, and digital device |
-
1999
- 1999-06-29 JP JP18282899A patent/JP4445603B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001013410A (en) | 2001-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2621247B2 (en) | Zoom lens | |
JP3147167B2 (en) | Zoom lens | |
JPH07111502B2 (en) | Zoom lens for compact camera | |
JPH0588085A (en) | Zoom lens | |
JPH1020193A (en) | Zoom lens | |
JP3160846B2 (en) | Telephoto zoom lens | |
JP3503911B2 (en) | Eyepiece zoom lens system | |
JP3184581B2 (en) | Zoom lens | |
JP3394624B2 (en) | Zoom lens | |
JPS6119967B2 (en) | ||
JP3799102B2 (en) | Zoom lens | |
JP3029148B2 (en) | Rear focus zoom lens | |
JP2004061681A (en) | Zoom lens and optical equipment with same | |
JPH0640170B2 (en) | High-magnification wide-angle zoom lens | |
KR100256205B1 (en) | Small type zoom lens | |
JP3219574B2 (en) | Zoom lens | |
JP4171942B2 (en) | Zoom lens | |
JP4330196B2 (en) | Zoom lens | |
JP3593400B2 (en) | Rear focus zoom lens | |
JP3883142B2 (en) | Zoom lens | |
JPH0634883A (en) | Super wide-angle variable power zoom lens | |
JP4445603B2 (en) | Telephoto zoom lens | |
JP4444416B2 (en) | Zoom lens | |
JP4379957B2 (en) | Rear focus zoom lens and optical apparatus using the same | |
JP4360086B2 (en) | Zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4445603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140122 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |