JP4442078B2 - Colloidal damper - Google Patents

Colloidal damper Download PDF

Info

Publication number
JP4442078B2
JP4442078B2 JP2002204617A JP2002204617A JP4442078B2 JP 4442078 B2 JP4442078 B2 JP 4442078B2 JP 2002204617 A JP2002204617 A JP 2002204617A JP 2002204617 A JP2002204617 A JP 2002204617A JP 4442078 B2 JP4442078 B2 JP 4442078B2
Authority
JP
Japan
Prior art keywords
porous body
liquid
pores
container
colloidal damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002204617A
Other languages
Japanese (ja)
Other versions
JP2004044732A (en
Inventor
卓三 岩壷
成人 出来
クラウデュ ヴァレンティン スウーチュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Fuji Silysia Chemical Ltd
Original Assignee
Oiles Corp
Fuji Silysia Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Fuji Silysia Chemical Ltd filed Critical Oiles Corp
Priority to JP2002204617A priority Critical patent/JP4442078B2/en
Publication of JP2004044732A publication Critical patent/JP2004044732A/en
Application granted granted Critical
Publication of JP4442078B2 publication Critical patent/JP4442078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容器内にシリカゲル等の多孔質体と水等の液体とを混在させて封入して、液体の表面張力に抗して多孔質体の細孔へ液体を侵入させて、機械的エネルギを消失させるようにしたコロイダルダンパに関する。
【0002】
【発明が解決しようとする課題】
例えば国際出願公開WO96/18040号公報及びWO01/55616号公報に記載されている斯かるコロイダルダンパは、その動作周波数レンジが広い等の従来の流体ダンパと異なる種々の好ましい特性を有しているので、種々の分野への応用が期待されている。
【0003】
しかしながら、コロイダルダンパは、液体の表面張力に抗して多孔質体の細孔へ液体を侵入させて機械的エネルギを消失させるという新規な原理を利用したものであるために、その機械的エネルギの消失効率については、未だよく解明されていないのが現状である。
【0004】
本発明者等は、コロイダルダンパについて鋭意研究を重ねた結果、多孔質体の細孔の容積と液体の体積との比に着目すれば好ましい特性を得られるという知見に基づいて本発明に至ったのであり、したがって、本発明の目的とするところは、機械的エネルギを効率よく吸収できるコロイダルダンパを提供することにある。
【0005】
【課題を解決するための手段】
本発明のコロイダルダンパは、容器と、この容器内に収容されていると共に、多数の細孔を有した多孔質体と、容器内に多孔質体と混在して収容されていると共に、無加圧時において多孔質体の細孔から多孔質体の外部へ排除される一方、加圧時において多孔質体の外部から多孔質体の細孔へ侵入する液体と、この液体に、減衰させるべき往復動の力を伝達して液体を加圧する伝達手段とを具備しており、ここで、多孔質体の細孔を規定する表面は、液体に対して疎液性を有しており、多孔質体と液体とは、多孔質体の細孔の容積をVとし、液体の体積をVとすると、その比V/Vが0.2以上であって2.5以下の範囲をもって容器内に収容されており、多孔質体の外部から多孔質体の細孔への液体の侵入及び多孔質体の細孔からの多孔質体の外部への液体の排除において伝達手段からのエネルギを消散させるようになっており、多孔質体はシリカゲルであり、液体は水からなる。
【0006】
斯かるコロイダルダンパによれば、伝達手段により伝達された力でもって容器内に収容された液体が加圧されると、この加圧された液体は、その表面張力に抗して多孔質体の細孔に侵入し、伝達手段からの力がなくなると、容器内の液体は、その表面張力により多孔質体の細孔から排除される。この液体の加圧及び減圧サイクルにおいて伝達手段からのエネルギが消散される。
【0007】
コロイダルダンパにおいて消散されるエネルギの効率(以下、消散エネルギ効率という)ηは、容器内に収容された多孔質体の細孔の容積と液体の体積との比に依存することが本発明者等によって知見され、多孔質体の細孔の容積をVとし、液体の体積をVとすると、比V/Vが0.2以上であって2.5以下であると、高い消散エネルギ効率ηが得られ、多孔質体がシリカゲルであって、液体が水の場合に、実験によれば60%以上の消散エネルギ効率ηが得られることが確認された。
【0008】
コロイダルダンパにおいて、伝達手段を介して伝達されるエネルギをEとし、コロイダルダンパで消散されるエネルギをEとすると、消散エネルギ効率ηは、η=100・E/E〔%〕となる。
【0009】
比V/Vが0.2よりも小さくなると、急激に消散エネルギ効率ηが悪くなり、比V/Vが2.5を超えても消散エネルギ効率ηの向上を期待し難く、反って、大きな往動距離を得ることができない結果、例えば大振幅の機械的振動エネルギを効率よく吸収することができなくなる。
【0010】
比V/Vが0.35以上であって1.5以下の範囲にあれば、より高い消散エネルギ効率ηを得ることができる上に、比較的大きな振幅の振動エネルギを吸収することができて好ましく、比V/Vが実質的に1であると、大きな振幅の振動を最大の消散エネルギ効率ηをもって減衰させることができる。多孔質体がシリカゲルであって、液体が水の場合に、比V/Vが0.35以上であって1.5以下の範囲にあれば、65%以上の消散エネルギ効率ηが得られ、また、比V/Vが実質的に1であると、75%以上の消散エネルギ効率ηが得られることが実験により確認された。
【0011】
本発明において、多孔質体としては、シリカゲル、アエロゲル、セラミックス、多孔質ガラス、ゼオライト、多孔質PTFE、多孔質蝋、多孔質ポリスチレン及びアルミナ並びに黒鉛、木炭、フラーレン及びカーボンナノチューブを含むカーボンを好ましい例として挙げることができ、ここで、シリカゲルからなる多孔質体を好ましい例として挙げることができる。具体的には、液体クロマトグラフィー用素材として用いられるシリカゲルが好適に使用でき、富士シリシア化学社製の「Sylosphere」、「スーパーマイクロビーズシリカゲル」、「マイクロビーズシリカゲル」、「Chromatorex」(いずれも商品名)、鈴木油脂工業社製の「ゴッドボール」(商品名)等が挙げられる。
【0012】
斯かる多孔質体の表面における細孔の平均径(直径)をd1とすると、多孔質体は、細孔の平均径d1の10倍以上であって10000倍以下の範囲にある平均径(直径)d2を有する略球形粒状体からなっていると好ましく、細孔の平均径d1の100倍以上であって5000倍以下の範囲にある平均径d2を有する略球形粒状体からなっているとさらに好ましい。具体的な例を示すと、富士シリシア化学社製のSylosphere C1504(商品名)の平均径d2は4.0μm、平均径d1は13.4nmであり、富士シリシア化学社製のChromatorex BU0020(商品名)の平均径d2は19.9μm、平均径d1は10.5nmであり、鈴木油脂工業社製のゴッドボールB−6C(商品名)の平均径d2は2.3μm、平均径d1は13.1nmであり、鈴木油脂工業社製のゴッドボールB−25C(商品名)の平均径d2は13.0μm、平均径d1は13.1nmである。
【0013】
多孔質体は、夫々が平均径d2をもった略球形粒状体のものがばらばらになって多数個容器内にコロイド状に分散されて収容されていてもよいのであるが、これに代えて、複数個の略球形粒状体からなる塊を形成して、この塊の少なくとも一個を容器内に収容してコロイダルダンパを構成してもよい。
【0014】
多孔質体の細孔は、多孔質体内においてラビリンス(迷路)を構成するように配されていてもよいが、好ましくエネルギを消散させるには、多孔質体は、細孔の平均径d1よりも大きな径を有する少なくとも一個の中空部を有して、斯かる中空部に細孔が連通していることが好ましく、特に、多孔質体は、中空部を有した略球形粒状体からなって、細孔は、中空部を有した略球形粒状体において、一端で中央中空部に開口し、他端で、略球形粒状体外に開口しているとよく、また斯かる多孔質体において、細孔は、中空部から放射方向に伸びているとよい。前者のラビリンス構造を有するものとしては、前述の富士シリシア化学社製のSylosphereが、後者の中空部構造を有するものとしては、前述の鈴木油脂工業社製のゴッドボールが例示される。
【0015】
本発明におけるコロイダルダンパでは、液体が加圧されると、この加圧された液体は、その表面張力に抗して多孔質体の細孔に侵入し、伝達手段からの力がなくなると、容器内の液体は、その表面張力により多孔質体の細孔から排除されるのであるが、好ましい消散エネルギ効率ηを得るためには、液体の細孔への流出入において、細孔を規定する多孔質体の表面を液体がスリップして連続的に流れることが好ましく、したがって、液体分子の平均自由行程をLpとすると、細孔は、クヌーセン数Kn=Lp/(d1・1/2)が0.01よりも大きく、0.1よりも小さくなる平均径d1を有していると、流体ダンパ及び空気ダンパとしてではなくコロイダルダンパとして好ましい結果が得られる。
【0016】
換言すれば、細孔の平均径d1は、0.01よりも大きく、0.1よりも小さい値のクヌーセン数Kn=Lp/(d1・1/2)となるように、液体との関連で決定するのがよい。
【0017】
細孔を規定する多孔質体の表面は、液体の細孔への流出入において、濡れないこと、換言すれば、疎液性を有していることが、液体の細孔への流出入の可逆性を得る上で好ましい。容器内に多孔質体と共に収容される液体としては、水、不凍液、極性流体、水銀、溶融鉛等を含む溶融金属、溶融ウッドメタル等を含む溶融合金、溶融塩及び溶融フラックス等を好ましい例として挙げることができる。前述した多孔質体とこれら液体の中から、多孔質体の細孔を規定する表面が使用する液体に対して疎液性を示すような組合わせを選択すればよい。例えば、液体として水銀を選択した場合は、多孔質体の材質はいずれであっても水銀に対して疎液性を示す。液体として水を選択した場合は、多孔質体として多孔質PTFEや多孔質ポリスチレンを選択すると、液体(水)に対して疎液性を有するが、多孔質体としてシリカゲルを選択すると、シリカゲルが親水性のため、液体に対して疎液性を有しない。このように多孔質体自身が使用する液体に対して疎液性を有しない場合は、多孔質体に疎液性を付与するために、少なくとも細孔を規定する多孔質体の表面を、実際的には、細孔における表面を含めて多孔質体の全表面を使用する液体に対して疎液性を有する疎液性物質で被覆して疎液化処理するとよい。
【0018】
斯かる疎液性物質としては、有機ケイ素化合物、有機フッ素化合物等が例示され、具体的には、トリメチルクロロシラン、ジメチルオクタデシルクロロシラン等が挙げられるが、分子鎖の長い物質からなるものが好ましい。
【0019】
前述のように多孔質体としてシリカゲルを、液体として水を夫々使用する場合、使用できるシリカゲルとして具体的に、ジメチルオクタデシルクロロシランで疎液化処理された富士シリシア化学社製の「Chromatorex ODS−BU0020MT」(商品名:d2=19.9μm、d1=7.0nm)、ジメチルオクタデシルクロロシランで疎液化処理された富士シリシア化学社製の「Sylosphere C1504−ODS」(商品名:d2=4.0μm、d1=8.9nm)、トリメチルクロロシランで疎液化処理された富士シリシア化学社製の「Sylosphere C1504−DBA4.5」(商品名:d2=4.0μm、d1=12.8nm)、鈴木油脂工業社製の「ゴッドボール B−6C」、「ゴッドボール B−25C」(いずれも商品名)をジメチルオクタデシルクロロシランで疎液化処理したもの(前者ではd2=2.3μm、d1=8.7nm、後者ではd2=13.0μm、d1=8.7nm)等が挙げられる。
【0020】
多孔質体と液体とを収容する容器は、好ましくはシリンダ形状を有しており、斯かるシリンダ形状の容器において、伝達手段は、容器内を容器外と画成した収容室を形成するピストンを有しており、この場合、収容室に多孔質体と液体とが収容されるようになっているとよい。伝達手段としては、上記に代えて、容器内を二室に画成するピストンを有していてもよく、この場合には、二室の各室に多孔質体と液体とが収容されるようになっているとよい。
【0021】
多孔質体の細孔に流体をより効果的に流入させて消散エネルギを大きくするために液体を所定の大きさで予め加圧しておくとよい。この加圧の程度は、あまり大きすぎると多孔質体の細孔に予め流体が多量に流入してしまって、反って消散エネルギ効率ηが悪くなる。好ましい例では、7kN程度の力が伝達手段に生じるように液体を予め加圧しておくとよい。
【0022】
次に本発明及びその実施の形態を、図に示す例を参照して更に詳細に説明する。なお、本発明はこの例に何等限定されないのである。
【0023】
【発明の実施の形態】
図1及び図2において、本例のコロイダルダンパ1は、容器2と、容器2内に収容されていると共に、多数の細孔3を有した多孔質体4と、容器2内に収容されていると共に、無加圧時において細孔3から多孔質体4の外部へ排除される一方、加圧時において多孔質体4の外部から細孔3へ侵入する液体7と、液体7に、減衰させるべき往復動の力Fを伝達し液体7を加圧する伝達手段8とを具備しており、ここで、多孔質体4の細孔3を規定する表面5及び多孔質体4の外面6、即ち細孔3を規定する表面5を含めて多孔質体4の全外面は、液体7に対して疎液性を有している。
【0024】
容器2は、円板状の底部21を一体的に有するシリンダ形状の本体22と、一端が底部21に閉鎖された本体22の他端を閉鎖するように、ねじ、ピン等により本体22の他端に固着された円板状の蓋体23とを具備している。蓋体23には、貫通孔24が形成されている。
【0025】
伝達手段8は、容器2内を容器2外と画成した収容室31を形成するピストン32と、ピストン32に嵌着されたOリング33と、ピストン32に一端が固着されいると共に、蓋体23を摺動自在に貫通して容器2外に伸長したピストンロッド34とを有しており、収容室31に多孔質体4と液体7とが収容されている。
【0026】
多孔質体4は、容器2内の収容室31に分散して収容されている複数個、本例では多数個の略球形粒状体41からなり、各略球形粒状体41は、シリカゲルからなって、略中央に中空部42と複数の細孔3とを有しており、細孔3は、一端で中空部42に開口し、他端で、略球形粒状体41外に開口して、中空部42から放射方向に伸びており、斯かる複数の細孔3から多孔質体4の多数の細孔3が構成されている。
【0027】
多孔質体4を構成する多数の略球形粒状体41の夫々の外面6及び細孔3の表面5は、疎液性物質であって分子鎖の長い物質である有機ケイ素化合物又は有機フッ素化合物で被覆されており、細孔3の平均径をd1とすると、略球形粒状体41は、細孔3の平均粒径d1の10倍以上であって10000倍以下の範囲にある平均径d2を有している。なお、中空部42を規定する略球形粒状体41の面もまた、斯かる疎液性物質で被覆されていてもよい。
【0028】
液体7は、水からなっており、この水分子の平均自由行程をLpとすると、細孔3は、クヌッセン数Kn=Lp/(d1・1/2)が0.01よりも大きく、0.1よりも小さくなる平均径d1を有している。
【0029】
多孔質体4と液体7とは、多孔質体4の細孔3の全容積をVとし、液体7の体積をVとすると、その比V/Vが0.2以上であって2.5以下の範囲をもって、本例では、比V/Vが実質的に1となるように、容器2内の収容室31に収容されている。
【0030】
以上のコロイダルダンパ1では、ピストンロッド34に力Fが加えられると、この力Fがピストン32を介して液体7に加えられて液体7が加圧される。この加圧でもって液体7は、その表面張力に抗して細孔3へ侵入し、これにより、図3に示すように収容室31の容積を減少するようにピストン32は移動される。
【0031】
ピストンロッド32へ付与された力Fがなくなると、表面張力に抗して細孔3へ侵入した液体7は、その表面張力により細孔3から排除されて、これにより、ピストン32は前記と逆に収容室31の容積を増大するように移動されて図1に示すように初期位置に復帰される。
【0032】
そして、コロイダルダンパ1では、力Fの仕事エネルギが細孔3への液体7の侵入でもって消費されるために、ピストンロッド34の移動ストロークSと力Fとの関係は、力Fによる液体7の加圧行程では、図4に示す曲線51で表される一方、力Fの除去による液体7の減圧行程では、図4に示す曲線52で表されることになる。即ち、コロイダルダンパ1は、伝達手段8を介して伝達されるエネルギEを曲線51と曲線52とに囲まれる面積に相当するエネルギEだけ消散させて、ピストンロッド34を移動させる力Fを減衰させることになる。
【0033】
ところで、種々の比V/Vについて実験より消散エネルギEを求めて、この消散エネルギEから消散エネルギ効率η=100・E/E〔%〕を求めたところ、図5の曲線55が得られた。
【0034】
曲線55から明らかであるように、比V/Vが0.2以上であって2.5以下であると、60%以上の消散エネルギ効率ηが得られ、比V/Vが0.35以上であって1.5以下の範囲にあれば、65%以上の消散エネルギ効率ηが得られ、比V/Vが実質的に1であると、略75%の消散エネルギ効率ηが得られることが確認できた。
【0035】
上記のコロイダルダンパ1では、容器2内の収容室31に、多数個の略球形粒状体41を、塊にすることなしに、分散して収容して多孔質体4を構成し、しかも、斯かる多孔質体4と液体7とが収容される収容室31を一個で形成したが、これに代えて、図6に示すように、容器2内に、ピストン32により画成された収容室61及び62を設け、収容室61及び62の夫々に略球形粒状体41の塊からなる多孔質体4と液体7とを収容してコロイダルダンパ1を構成してもよく、この場合、貫通孔24を有しない蓋体23を用いると共に、蓋体23にOリング63を嵌着して収容室62から液体7が容器2外に漏洩しないようにするとよい。
【0036】
なお、収容室61及び62の夫々には、複数個の略球形粒状体41の塊からなる多孔質体4を一個又は複数個収容してもよく、また、図6に示す収容室61及び62の夫々に複数個の略球形粒状体41を塊にすることなしに分散して収容して、斯かる分散された複数個の略球形粒状体41からなる多孔質体4をもってコロイダルダンパ1を構成してもよく、また一方、図1に示す収容室31に複数個の略球形粒状体41の塊からなる多孔質体4の一個又は複数個を収容してコロイダルダンパ1を構成してもよく、更には、略球形粒状体41の塊からなる多孔質体4の一個又は複数個と、分散された複数個の略球形粒状体41とを混在させて収容室31又は収容室61及び62に収容してコロイダルダンパ1を構成してもよい。
【0037】
【発明の効果】
本発明によれば、機械的エネルギを効率よく吸収できるコロイダルダンパを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の好ましい例の断面説明図である。
【図2】図1に示す例の略球形粒状体の断面説明図である。
【図3】図1に示す例の動作説明図である。
【図4】図1に示す例の動作説明図である。
【図5】図1に示す例の効果説明図である。
【図6】本発明の実施の形態の好ましい他の例の断面説明図である。
【符号の説明】
1 コロイダルダンパ
2 容器
3 細孔
4 多孔質体
5 表面
6 外面
7 液体
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a porous body such as silica gel and a liquid such as water are mixed and sealed in a container, and the liquid is infiltrated into the pores of the porous body against the surface tension of the liquid. The present invention relates to a colloidal damper that dissipates energy.
[0002]
[Problems to be solved by the invention]
For example, such colloidal dampers described in International Application Publication Nos. WO96 / 18040 and WO01 / 55616 have various preferable characteristics different from conventional fluid dampers such as a wide operating frequency range. Application to various fields is expected.
[0003]
However, the colloidal damper uses a new principle that the liquid is allowed to enter the pores of the porous body against the surface tension of the liquid and the mechanical energy is lost. The current situation is that the disappearance efficiency is not well understood.
[0004]
As a result of intensive research on colloidal dampers, the present inventors have arrived at the present invention based on the knowledge that a favorable characteristic can be obtained by paying attention to the ratio between the volume of the pores of the porous body and the volume of the liquid. Therefore, an object of the present invention is to provide a colloidal damper that can efficiently absorb mechanical energy.
[0005]
[Means for Solving the Problems]
The colloidal damper of the present invention is accommodated in a container, a porous body having a large number of pores, and a porous body in the container mixed with the porous body. It is excluded from the pores of the porous body to the outside of the porous body at the time of pressurization, while the liquid that enters the pores of the porous body from the outside of the porous body at the time of pressurization and to this liquid Transmission means for transmitting a reciprocating force to pressurize the liquid, wherein the surface defining the pores of the porous body is lyophobic to the liquid and is porous the quality body and a liquid, the pore volume of the porous body and V P, when the volume of the liquid and V L, the range that the ratio V P / V L is 2.5 or less comprising at least 0.2 It is housed in a container with a pore penetration and the porous body of the liquid from the outside of the porous body into the pores of the porous body In the elimination of liquid into et porous body outside being adapted to dissipate energy from the transmission means, the porous body is silica gel, liquid ing water.
[0006]
According to such a colloidal damper, when the liquid stored in the container is pressurized with the force transmitted by the transmission means, the pressurized liquid is against the surface tension of the porous body. When entering the pores and the force from the transmission means disappears, the liquid in the container is excluded from the pores of the porous body by the surface tension. In this liquid pressurization and decompression cycle, energy from the transmission means is dissipated.
[0007]
The efficiency of energy dissipated in the colloidal damper (hereinafter referred to as dissipative energy efficiency) η depends on the ratio between the volume of the pores of the porous body accommodated in the container and the volume of the liquid. It has been found by the pore volume of the porous body and V P, when the volume of the liquid and V L, the ratio V P / V L is 2.5 a 0.2 or more or less, higher dissipation Energy efficiency η was obtained, and when the porous body was silica gel and the liquid was water, it was confirmed by experiments that a dissipated energy efficiency η of 60% or more was obtained.
[0008]
In the colloidal damper, when the energy transmitted through the transmission means is E 0 and the energy dissipated by the colloidal damper is E, the dissipated energy efficiency η is η = 100 · E / E 0 [%].
[0009]
When the ratio V P / V L is smaller than 0.2, the dissipated energy efficiency η suddenly deteriorates, and even if the ratio V P / V L exceeds 2.5, it is difficult to expect improvement in the dissipated energy efficiency η. On the other hand, as a result of not being able to obtain a large forward movement distance, for example, it is impossible to efficiently absorb, for example, mechanical vibration energy having a large amplitude.
[0010]
If the ratio V P / V L is not less than 0.35 and not more than 1.5, higher dissipation energy efficiency η can be obtained and vibration energy having a relatively large amplitude can be absorbed. Preferably, if the ratio V P / V L is substantially 1, large amplitude vibrations can be damped with maximum dissipation energy efficiency η. When the porous body is silica gel and the liquid is water, the dissipation energy efficiency η of 65% or more can be obtained if the ratio V P / V L is in the range of 0.35 or more and 1.5 or less. In addition, when the ratio V P / V L is substantially 1, it has been confirmed by experiments that a dissipative energy efficiency η of 75% or more can be obtained.
[0011]
In the present invention, preferred examples of the porous body include silica gel, aerogel, ceramics, porous glass, zeolite, porous PTFE, porous wax, porous polystyrene and alumina, and carbon including graphite, charcoal, fullerene and carbon nanotubes. Here, a porous body made of silica gel can be cited as a preferred example. Specifically, silica gel used as a material for liquid chromatography can be suitably used. “Sylosphere”, “Super Micro Bead Silica Gel”, “Micro Bead Silica Gel”, “Chromatorex” (all products are manufactured by Fuji Silysia Chemical Ltd.) Name), “Godball” (trade name) manufactured by Suzuki Oil & Fat Co., Ltd., and the like.
[0012]
When the average diameter (diameter) of the pores on the surface of such a porous body is d1, the porous body has an average diameter (diameter) in the range of not less than 10 times and not more than 10,000 times the average diameter d1 of the pores. ) It is preferable that it is made of a substantially spherical particle having d2, and if it is made of a substantially spherical particle having an average diameter d2 in the range of 100 times or more and 5000 times or less of the average diameter d1 of the pores. preferable. As a specific example, Syrosphere C1504 (trade name) manufactured by Fuji Silysia Chemical Co. has an average diameter d2 of 4.0 μm and an average diameter d1 of 13.4 nm, and Chromatorex BU0020 (trade name) manufactured by Fuji Silysia Chemical Ltd. ) Has an average diameter d2 of 19.9 μm and an average diameter d1 of 10.5 nm. The average diameter d2 of God Ball B-6C (trade name) manufactured by Suzuki Yushi Kogyo Co., Ltd. is 2.3 μm, and the average diameter d1 is 13. The average diameter d2 of God Ball B-25C (trade name) manufactured by Suzuki Yushi Kogyo Co., Ltd. is 13.0 μm, and the average diameter d1 is 13.1 nm.
[0013]
The porous body may be a substantially spherical granular material each having an average diameter d2, which may be dispersed and accommodated in a colloidal form in a large number of containers. A colloidal damper may be configured by forming a lump composed of a plurality of substantially spherical particles and housing at least one of the lump in a container.
[0014]
The pores of the porous body may be arranged so as to constitute a labyrinth (maze) in the porous body. However, in order to dissipate energy preferably, the porous body is smaller than the average diameter d1 of the pores. It is preferable to have at least one hollow part having a large diameter, and the pores communicate with such a hollow part, in particular, the porous body is composed of a substantially spherical granular body having a hollow part, In the substantially spherical granular material having a hollow portion, the pore is preferably open to the central hollow portion at one end and opened to the outside of the substantially spherical granular material at the other end. May extend from the hollow portion in the radial direction. Examples of the former having a labyrinth structure include the above-mentioned Sylosphere manufactured by Fuji Silysia Chemical Co., Ltd., and examples of the latter having a hollow portion structure include the above-mentioned God Ball manufactured by Suzuki Oil & Fat Co., Ltd.
[0015]
In the colloidal damper according to the present invention, when the liquid is pressurized, the pressurized liquid enters the pores of the porous body against its surface tension, and when the force from the transmission means is lost, the container The liquid in the inside is excluded from the pores of the porous body due to its surface tension. It is preferable that the liquid slips and flows continuously on the surface of the material. Therefore, if the mean free path of the liquid molecule is Lp, the pore has a Knudsen number Kn = Lp / (d1 · 1/2) of 0. Having an average diameter d1 greater than .01 and less than 0.1 provides favorable results as a colloidal damper rather than as a fluid and air damper.
[0016]
In other words, the average diameter d1 of the pores is related to the liquid so that the Knudsen number Kn = Lp / (d1 · 1/2) is greater than 0.01 and smaller than 0.1. It is good to decide.
[0017]
The surface of the porous body that defines the pores does not get wet when the liquid flows into and out of the liquid pores, in other words, has lyophobic properties. It is preferable for obtaining reversibility. Preferred examples of the liquid contained in the container together with the porous body include water, antifreeze, polar fluid, molten metal including mercury, molten lead, molten alloy including molten wood metal, molten salt, molten flux, and the like. Can be mentioned. A combination that exhibits lyophobic properties with respect to the liquid used by the surface defining the pores of the porous body may be selected from the above-described porous body and these liquids. For example, when mercury is selected as the liquid, any material of the porous body is lyophobic with respect to mercury. When water is selected as the liquid, if porous PTFE or porous polystyrene is selected as the porous body, the liquid (water) is lyophobic. However, when silica gel is selected as the porous body, the silica gel is hydrophilic. Therefore, it is not lyophobic with respect to liquid. Thus, when the porous body itself does not have lyophobic properties with respect to the liquid used, in order to impart lyophobic properties to the porous body, at least the surface of the porous body that defines the pores is actually Specifically, the entire surface of the porous body including the surface of the pores may be coated with a lyophobic substance having lyophobic properties to perform lyophobic treatment.
[0018]
Examples of such lyophobic substances include organic silicon compounds and organic fluorine compounds, and specific examples include trimethylchlorosilane, dimethyloctadecylchlorosilane, and the like, but those made of substances having a long molecular chain are preferred.
[0019]
As described above, when using silica gel as the porous material and water as the liquid, specifically, “Chromatorex ODS-BU0020MT” (manufactured by Fuji Silysia Chemical Co., Ltd.), which has been lyophobized with dimethyloctadecylchlorosilane, can be used. “Sylosphere C1504-ODS” (trade name: d2 = 4.0 μm, d1 = 8) manufactured by Fuji Silysia Chemical Co., Ltd., which has been subjected to a lyophobic treatment with dimethyloctadecylchlorosilane, product names: d2 = 19.9 μm and d1 = 7.0 nm. .9 nm), “Sylosphere C1504-DBA4.5” (trade name: d2 = 4.0 μm, d1 = 12.8 nm) manufactured by Fuji Silysia Chemical Co., Ltd., which has been lyophobized with trimethylchlorosilane, Godball B-6C "," Godball B- 5C "(both trade names) were lyophobized with dimethyloctadecylchlorosilane (d2 = 2.3 μm, d1 = 8.7 nm in the former, d2 = 13.0 μm, d1 = 8.7 nm in the latter), etc. It is done.
[0020]
The container for storing the porous body and the liquid preferably has a cylinder shape, and in such a cylinder-shaped container, the transmission means includes a piston that forms a storage chamber in which the inside of the container is defined as the outside of the container. In this case, the porous body and the liquid are preferably stored in the storage chamber. As the transmission means, instead of the above, a piston that defines the inside of the container in two chambers may be provided. In this case, the porous body and the liquid are accommodated in each chamber of the two chambers. It is good to be.
[0021]
In order to increase the dissipated energy by more effectively flowing the fluid into the pores of the porous body, it is preferable to pressurize the liquid in a predetermined size in advance. If the degree of pressurization is too large, a large amount of fluid flows in advance into the pores of the porous body, and the dissipation energy efficiency η is deteriorated. In a preferred example, the liquid is preferably pressurized in advance so that a force of about 7 kN is generated in the transmission means.
[0022]
Next, the present invention and its embodiments will be described in more detail with reference to the examples shown in the drawings. The present invention is not limited to this example.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2, the colloidal damper 1 of this example is accommodated in a container 2, a container 2, a porous body 4 having a large number of pores 3, and a container 2. together are, while being eliminated without pressurized odor Te from the pores 3 to the outside of the porous body 4, the liquid 7 entering from the outside of the porous body 4 into the pores 3 in the pressurization, the liquid 7, And a transmission means 8 for transmitting the reciprocating force F to be damped and pressurizing the liquid 7. Here, the surface 5 defining the pores 3 of the porous body 4 and the outer surface 6 of the porous body 4. That is, the entire outer surface of the porous body 4 including the surface 5 that defines the pores 3 is lyophobic with respect to the liquid 7.
[0024]
The container 2 includes a cylinder-shaped main body 22 integrally having a disk-shaped bottom portion 21, and other than the main body 22 by screws, pins, etc. so as to close the other end of the main body 22 closed at one end to the bottom portion 21. And a disc-shaped lid 23 fixed to the end. A through hole 24 is formed in the lid body 23.
[0025]
The transmission means 8 includes a piston 32 that forms a storage chamber 31 that defines the inside of the container 2 from the outside of the container 2, an O-ring 33 that is fitted to the piston 32, and one end that is fixed to the piston 32, and a lid body. And a piston rod 34 that extends slidably through the container 2 and extends outside the container 2, and the porous body 4 and the liquid 7 are accommodated in the accommodation chamber 31.
[0026]
The porous body 4 is composed of a plurality of, in this example, a large number of substantially spherical particles 41 accommodated in the accommodating chambers 31 in the container 2, and each of the substantially spherical particles 41 is made of silica gel. The hollow portion 42 has a hollow portion 42 and a plurality of pores 3 at substantially the center, and the pore 3 opens to the hollow portion 42 at one end, opens to the outside of the substantially spherical granular body 41 at the other end, and is hollow. A plurality of pores 3 of the porous body 4 are constituted by the plurality of pores 3 extending in the radial direction from the portion 42.
[0027]
The outer surface 6 and the surface 5 of the pores 3 of the large number of substantially spherical particles 41 constituting the porous body 4 are made of an organosilicon compound or an organofluorine compound that is a lyophobic substance and a substance having a long molecular chain. Assuming that the average diameter of the pores 3 is d1, the substantially spherical granular material 41 has an average diameter d2 that is not less than 10 times the average particle diameter d1 of the pores 3 and not more than 10,000 times. is doing. The surface of the substantially spherical granular body 41 that defines the hollow portion 42 may also be coated with such a lyophobic substance.
[0028]
The liquid 7 is made of water. If the mean free path of the water molecules is Lp, the pore 3 has a Knudsen number Kn = Lp / (d1 · 1/2) larger than 0.01, The average diameter d1 is smaller than 1.
[0029]
The porous body 4 and the liquid 7, the total volume of the pores 3 of the porous body 4 and V P, when the volume of the liquid 7 and V L, the ratio V P / V L is a 0.2 or higher In this example, it is accommodated in the accommodating chamber 31 in the container 2 so that the ratio V P / V L is substantially 1 in a range of 2.5 or less.
[0030]
In the colloidal damper 1 described above, when a force F is applied to the piston rod 34, the force F is applied to the liquid 7 via the piston 32, and the liquid 7 is pressurized. With this pressurization, the liquid 7 enters the pores 3 against its surface tension, whereby the piston 32 is moved so as to reduce the volume of the storage chamber 31 as shown in FIG.
[0031]
When the force F applied to the piston rod 32 disappears, the liquid 7 that has entered the pores 3 against the surface tension is removed from the pores 3 due to the surface tension. 1 is moved to increase the volume of the storage chamber 31 and returned to the initial position as shown in FIG.
[0032]
In the colloidal damper 1, since the work energy of the force F is consumed by the penetration of the liquid 7 into the pore 3, the relationship between the movement stroke S of the piston rod 34 and the force F is the liquid 7 by the force F. 4 is represented by a curve 51 shown in FIG. 4 while the pressure reduction stroke of the liquid 7 by the removal of the force F is represented by a curve 52 shown in FIG. That is, the colloidal damper 1 dissipates the energy E 0 transmitted through the transmission means 8 by the energy E corresponding to the area surrounded by the curves 51 and 52 and attenuates the force F that moves the piston rod 34. I will let you.
[0033]
By the way, when the dissipated energy E is obtained from experiments for various ratios VP / VL and the dissipated energy efficiency η = 100 · E / E 0 [%] is obtained from the dissipated energy E, the curve 55 in FIG. Obtained.
[0034]
As is clear from the curve 55, when the ratio V P / V L is 0.2 or more and 2.5 or less, a dissipated energy efficiency η of 60% or more is obtained, and the ratio V P / V L is If it is 0.35 or more and is in the range of 1.5 or less, a dissipated energy efficiency η of 65% or more is obtained, and if the ratio V P / V L is substantially 1, approximately 75% of dissipated energy is obtained. It was confirmed that the efficiency η was obtained.
[0035]
In the colloidal damper 1 described above, the porous body 4 is configured by dispersing and storing a large number of substantially spherical particles 41 in the storage chamber 31 in the container 2 without making them into a lump. The single storage chamber 31 in which the porous body 4 and the liquid 7 are stored is formed, but instead of this, as illustrated in FIG. 6, the storage chamber 61 defined by the piston 32 in the container 2. And 62 may be provided, and the colloidal damper 1 may be configured by accommodating the porous body 4 and the liquid 7 each including the lump of the substantially spherical granular body 41 in each of the accommodation chambers 61 and 62. It is preferable to use a lid body 23 that does not have a liquid crystal and to attach an O-ring 63 to the lid body 23 so that the liquid 7 does not leak out of the container 2 from the storage chamber 62.
[0036]
Each of the storage chambers 61 and 62 may store one or a plurality of porous bodies 4 made of a plurality of substantially spherical granular bodies 41, and the storage chambers 61 and 62 shown in FIG. The colloidal damper 1 is composed of a porous body 4 composed of a plurality of substantially spherical particles 41 dispersed in such a manner that a plurality of substantially spherical particles 41 are dispersedly accommodated without being agglomerated. On the other hand, the colloidal damper 1 may be configured by accommodating one or a plurality of porous bodies 4 made up of a plurality of substantially spherical granular bodies 41 in the accommodating chamber 31 shown in FIG. Furthermore, one or a plurality of porous bodies 4 made of a mass of substantially spherical granular bodies 41 and a plurality of dispersed substantially spherical granular bodies 41 are mixed to form the accommodating chamber 31 or the accommodating chambers 61 and 62. The colloidal damper 1 may be housed.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the colloidal damper which can absorb mechanical energy efficiently can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of a preferred example of an embodiment of the present invention.
FIG. 2 is a cross-sectional explanatory view of the substantially spherical granular material of the example shown in FIG.
FIG. 3 is an operation explanatory diagram of the example shown in FIG. 1;
4 is an operation explanatory diagram of the example shown in FIG. 1. FIG.
FIG. 5 is an effect explanatory diagram of the example shown in FIG. 1;
FIG. 6 is an explanatory cross-sectional view of another preferred example of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Colloidal damper 2 Container 3 Pore 4 Porous body 5 Surface 6 Outer surface 7 Liquid

Claims (14)

容器と、この容器内に収容されていると共に、多数の細孔を有した多孔質体と、容器内に多孔質体と混在して収容されていると共に、無加圧時において多孔質体の細孔から多孔質体の外部へ排除される一方、加圧時において多孔質体の外部から多孔質体の細孔へ侵入する液体と、この液体に、減衰させるべき往復動の力を伝達して液体を加圧する伝達手段とを具備しており、多孔質体の細孔を規定する表面は、液体に対して疎液性を有しており、多孔質体と液体とは、多孔質体の細孔の容積をVとし、液体の体積をVとすると、その比V/Vが0.2以上であって2.5以下の範囲をもって容器内に収容されており、多孔質体の外部から多孔質体の細孔への液体の侵入及び多孔質体の細孔からの多孔質体の外部への液体の排除において伝達手段からのエネルギを消散させるようになっており、多孔質体はシリカゲルであり、液体は水からなり、細孔における表面を含めて多孔質体の全表面は、有機ケイ素化合物又は有機フッ素化合物からなる疎液性物質で被覆されているコロイダルダンパ。A container, a porous body that is accommodated in the container, and has a large number of pores; and is contained in the container together with the porous body; While being excluded from the pores to the outside of the porous body, the liquid that enters the pores of the porous body from the outside of the porous body during pressurization and the reciprocating force to be attenuated are transmitted to this liquid. The surface defining the pores of the porous body is lyophobic with respect to the liquid, and the porous body and the liquid are a porous body. of the pore volume and V P, when the volume of the liquid and V L, is housed in a container with a range that the ratio V P / V L is a by 2.5 or less than 0.2, porosity Intrusion of liquid into the pores of the porous body from the outside of the porous body and exclusion of liquid from the pores of the porous body to the outside of the porous body The porous body is silica gel, the liquid is water, and the entire surface of the porous body including the surface of the pores is composed of an organosilicon compound or an organic fluorine. A colloidal damper coated with a lyophobic substance composed of a compound . 比V/Vが0.35以上であって1.5以下の範囲にある請求項1に記載のコロイダルダンパ。The colloidal damper according to claim 1, wherein the ratio V P / V L is in a range of 0.35 or more and 1.5 or less. 比V/Vが実質的に1である請求項1に記載のコロイダルダンパ。The colloidal damper according to claim 1, wherein the ratio V P / V L is substantially 1. 多孔質体は、細孔の平均径d1の10倍以上であって10000倍以下の範囲にある平均径d2を有する略球形粒状体からなる請求項1から3のいずれか一項に記載のコロイダルダンパ。  The colloidal according to any one of claims 1 to 3, wherein the porous body is formed of a substantially spherical granular body having an average diameter d2 that is not less than 10 times and not more than 10,000 times the average diameter d1 of the pores. damper. 多孔質体は、細孔の平均径d1の100倍以上であって5000倍以下の範囲にある平均径d2を有する略球形粒状体からなる請求項1から3のいずれか一項に記載のコロイダルダンパ。  The colloidal according to any one of claims 1 to 3, wherein the porous body is formed of a substantially spherical granular material having an average diameter d2 that is not less than 100 times and not more than 5000 times the average diameter d1 of the pores. damper. 多孔質体は、複数個の略球形粒状体の塊であり、この塊が少なくとも一個容器内に収容されている請求項1から5のいずれか一項に記載のコロイダルダンパ。  The colloidal damper according to any one of claims 1 to 5, wherein the porous body is a mass of a plurality of substantially spherical granular materials, and at least one mass is accommodated in the container. 多孔質体は、容器内に分散して収容されている複数個の略球形粒状体からなる請求項1から6のいずれか一項に記載のコロイダルダンパ。  The colloidal damper according to any one of claims 1 to 6, wherein the porous body is composed of a plurality of substantially spherical granular bodies dispersedly accommodated in a container. 多孔質体は、中空部を有した略球形粒状体からなり、細孔は、中空部を有した略球形粒状体において、一端で中央中空部に開口し、他端で略球形粒状体外に開口している請求項1から7のいずれか一項に記載のコロイダルダンパ。  The porous body is formed of a substantially spherical granular body having a hollow portion, and the pore is opened to the central hollow portion at one end and opened to the outside of the substantially spherical granular body at the other end in the substantially spherical granular body having a hollow portion. The colloidal damper according to any one of claims 1 to 7. 細孔は、中空部から放射方向に伸びている請求項8に記載のコロイダルダンパ。  The colloidal damper according to claim 8, wherein the pore extends in a radial direction from the hollow portion. 細孔は、液体分子の平均自由行程をLpとすると、クヌーセン数Kn=Lp/(d1・1/2)が0.01よりも大きく、0.1よりも小さくなる平均径d1を有している請求項1から9のいずれか一項に記載のコロイダルダンパ。  The pore has an average diameter d1 where Knudsen number Kn = Lp / (d1 · 1/2) is larger than 0.01 and smaller than 0.1, where Lp is the mean free path of the liquid molecule. The colloidal damper according to any one of claims 1 to 9. 疎液性物質は、分子鎖の長い物質からなる請求項1から10のいずれか一項に記載のコロイダルダンパ。The colloidal damper according to any one of claims 1 to 10 , wherein the lyophobic substance is made of a substance having a long molecular chain . 伝達手段は、容器内を容器外と画成した収容室を形成するピストンを有しており、収容室に多孔質体と液体とが収容されている請求項1から1のいずれか一項に記載のコロイダルダンパ。 Transmission means has a piston which forms a receiving chamber which forms the outside of the container and view the vessel, a porous body and any one of claims 1 and liquid is contained 1 1 in the accommodating chamber Colloidal damper described in 1. 伝達手段は、容器内を二室に画成するピストンを有しており、二室の各室に多孔質体と液体とが収容されている請求項1から11のいずれか一項に記載のコロイダルダンパ。 Transmission means includes a piston defining a container into two chambers, according to any one of claims 1 to 11, in each chamber of the two chambers and the porous body and the liquid are accommodated Colloidal damper. 液体は予め加圧されている請求項1から13のいずれか一項に記載のコロイダルダンパ。The colloidal damper according to any one of claims 1 to 13 , wherein the liquid is pressurized in advance .
JP2002204617A 2002-07-12 2002-07-12 Colloidal damper Expired - Fee Related JP4442078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204617A JP4442078B2 (en) 2002-07-12 2002-07-12 Colloidal damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204617A JP4442078B2 (en) 2002-07-12 2002-07-12 Colloidal damper

Publications (2)

Publication Number Publication Date
JP2004044732A JP2004044732A (en) 2004-02-12
JP4442078B2 true JP4442078B2 (en) 2010-03-31

Family

ID=31710167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204617A Expired - Fee Related JP4442078B2 (en) 2002-07-12 2002-07-12 Colloidal damper

Country Status (1)

Country Link
JP (1) JP4442078B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8770359B2 (en) 2006-09-06 2014-07-08 School Juridical Person Of Fukuoka Kogyo Daigaku Colloidal damper
JP5164044B2 (en) * 2006-09-06 2013-03-13 学校法人福岡工業大学 Colloidal damper
JP5018040B2 (en) * 2006-11-24 2012-09-05 オイレス工業株式会社 Trimming press processing equipment
JP2008175266A (en) * 2007-01-17 2008-07-31 Oiles Ind Co Ltd Liquid pressure spring and its manufacturing method
JP5087976B2 (en) * 2007-04-09 2012-12-05 オイレス工業株式会社 Washer device and friction damper equipped with the washer device
JP5066395B2 (en) 2007-06-14 2012-11-07 学校法人福岡工業大学 Active control colloidal damper
JP4962188B2 (en) * 2007-07-25 2012-06-27 オイレス工業株式会社 Liquid pressure spring and manufacturing method thereof
JP2009036259A (en) * 2007-07-31 2009-02-19 Kayaba Ind Co Ltd Buffer
EP2623817B1 (en) 2010-09-29 2017-12-20 Toyota Jidosha Kabushiki Kaisha Colloidal damper
JP2012097853A (en) * 2010-11-03 2012-05-24 Toyota Motor Corp Colloidal damper
JP5920688B2 (en) 2011-04-07 2016-05-18 学校法人福岡工業大学 Colloidal damper
CN112228492A (en) * 2020-09-22 2021-01-15 汕头大学 Controllable enhancement type microstructure energy dissipation device based on magnetic fluid

Also Published As

Publication number Publication date
JP2004044732A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4442078B2 (en) Colloidal damper
JP4645014B2 (en) Colloidal damper
JP5066395B2 (en) Active control colloidal damper
JP5131503B2 (en) Colloidal damper
JP3838443B2 (en) Heterogeneous structures for storing or dissipating energy, methods of using such structures, and associated apparatus
Dichiara et al. Fixed bed adsorption of diquat dibromide from aqueous solution using carbon nanotubes
JP4569092B2 (en) Colloidal damper
JP5110118B2 (en) Colloidal damper
Panda et al. Superhydrophobic hybrid silica-cellulose aerogel for enhanced thermal, acoustic, and oil absorption characteristics
JP5164044B2 (en) Colloidal damper
CA2140486A1 (en) Reagent device and method for the production thereof
Iwatsubo et al. Dynamic characteristics of a new damping element based on surface extension principle in nanopore
JP4444785B2 (en) Colloidal damper
JP2012097853A (en) Colloidal damper
US20140067340A1 (en) Method for designing cylinder device and cylinder device
Han et al. Effects of surface treatment of MCM-41 on motions of confined liquids
JP2004353712A (en) Fluid for shock absorber
CA2133298A1 (en) Method for producing an active composite
KR200326759Y1 (en) Colloidal Damper Using Mesoporous Inorganic Material
US20230112874A1 (en) Hydropneumatic suspension component
KR20040106093A (en) Colloidal Damper Using Mesoporous Inorganic Material
KR20040106097A (en) Method for hydrophobic coating of mesoporous silica gel
JPS63275823A (en) Buffer
Eroshenko et al. Importance of synthesis of lyophobic porous materials and corresponding liquids for development of thermomolecular energy devices of new generation
Kim Energy absorption behaviors of nanoporous materials functionalized (NMF) liquids

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4442078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S534 Written request for registration of change of nationality

Free format text: JAPANESE INTERMEDIATE CODE: R313534

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees