JP4442051B2 - Glass substrate, information recording medium using the same, and optical communication element - Google Patents

Glass substrate, information recording medium using the same, and optical communication element Download PDF

Info

Publication number
JP4442051B2
JP4442051B2 JP2001138410A JP2001138410A JP4442051B2 JP 4442051 B2 JP4442051 B2 JP 4442051B2 JP 2001138410 A JP2001138410 A JP 2001138410A JP 2001138410 A JP2001138410 A JP 2001138410A JP 4442051 B2 JP4442051 B2 JP 4442051B2
Authority
JP
Japan
Prior art keywords
glass substrate
glass
information recording
amount
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001138410A
Other languages
Japanese (ja)
Other versions
JP2002338297A (en
Inventor
章 杉本
博 遊亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2001138410A priority Critical patent/JP4442051B2/en
Publication of JP2002338297A publication Critical patent/JP2002338297A/en
Application granted granted Critical
Publication of JP4442051B2 publication Critical patent/JP4442051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はガラス基板に関し、より詳細には情報記録用媒体や光通信用素子などの基板として用いるガラス基板に関するものである。
【0002】
【従来の技術】
従来、磁気ディスク用基板としてアルミニウム合金が広く用いられていたが、アルミニウム合金は変形しやすく、また硬さが不十分であるため研磨後の基板表面の平滑性が十分とは言えなかった。また、ヘッドが機械的に磁気ディスクに接触する際、磁性膜が基板から剥離しやすいという問題もあった。そこで、変形が少なく、平滑性が良好で、かつ機械的強度の大きいガラス基板の開発が進められている。
【0003】
ガラス基板としては、基板表面のアルカリ元素を他のアルカリ元素と置換することにより機械的強度を向上させた化学強化ガラスと、非晶質のガラス中に微細な結晶質粒子を析出させた結晶化ガラスが開発されている。しかし、化学強化ガラスでは基板表面のアルカリイオンが、磁性膜を成膜する際の加熱工程時に表面に移動して溶出したり、あるいは磁性膜を侵食したり、磁性膜の付着強度を劣化させたりする問題があった。また、結晶化ガラスでは、生成した微結晶粒子と非晶質ガラスとの摩耗性の違いから、基板表面の研磨後の凹凸が大きく平滑性が十分とは言えなかった。また、上記のいずれのガラスも、化学強化処理工程または結晶化工程といった後処理プロセスが必要となるため低コスト化が難しい。
【0004】
一方、化学強化や結晶化の強化処理を行わないガラス基板では、低コスト化は図れるものの、線熱膨張係数が一般に60〜70×10-7/℃程度であるため、SUS鋼などでできたクランプやスピンドルモータ部材の線熱膨張係数(100〜120×10-7/℃程度)との差が大きく、記録媒体の記録装置への取付け時や情報記録時に不具合が生じることがあった。
【0005】
また光フィルタや光スイッチなどの光通信用素子でも基板としてガラス基板が用いられているが、ガラス基板から溶出したアルカリ成分によって前記素子が劣化することがあった。また、ガラス基板上に形成される膜の密度が大きくなるほど、温度・湿度の変化による波長シフトが抑制されるところ、従来広く用いられている真空蒸着法では形成できる膜の密度に限界があった。
【0006】
【発明が解決しようとする課題】
本発明はこのような従来の問題に鑑みてなされたものであり、線熱膨張係数がモータ部材のそれに近く、しかもアルカリ成分の溶出が少なく、低コストであるガラス基板を提供することをその目的とするものである。
【0007】
また本発明の目的は、耐久性に優れ、高い記録密度を有する情報記録用媒体を提供することにある。
【0008】
さらに本発明の他の目的は、経時変化が少なく、温度・湿度の変化による波長シフトが抑制された光通信用素子を提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するため本発明のガラス基板では、線熱膨張係数が80〜120×10-7/℃の範囲であり、アルカリ溶出量が0.7〜1.5μg/cm2の範囲で、表面および内部の組成が均質である構成とした。なお、表面および内部の組成が均質とは、強化処理を行っていないとの意味である。また、以下「%」は特に断りのない限り「mol%」を意味するものとする。
【0010】
ここで線熱膨張係数は、示差膨張測定装置を用いて、荷重:5g、温度範囲:25〜100℃、昇温速度:5℃/minの条件で測定した値である。またアルカリ溶出量は、80℃の逆浸透膜水50ml中に試料ガラスを24h浸漬した後、ICP発光分光分析装置で溶出液を分析し算出した値である。なお加速試験とするため、測定する試料ガラスは、表面を#600の研磨材で研磨し、予め表面を荒れた状態とした。この測定方法によるアルカリ溶出量とJIS R 3502のアルカリ溶出試験によるアルカリ溶出量とは相関関係があり、この測定方法による溶出量0.7〜1.5μg/cm2は、JIS R 3502のアルカリ溶出試験によるアルカリ溶出量0.2〜0.3mgにおおよそ相当する。
【0011】
また前記目的を達成するため本発明のガラス基板では、mol%で、SiO2:55.0〜75.0%、B23:1.0〜5.1%、Al23:3.0〜16.0%、Li2O:5.0〜15.0%、Na2O:14.0%以下、K2O:12.0%以下、Li2O+Na2O+K2O:16.0〜25.0%、T25:0.001〜2.0%のガラス組成を有し、P 、RO(RはCa、 Mg、Ba、Sr、Zn、Pbから選ばれる金属)を含有せず、更にFe、Mn、Ce、Ti、V、Cr、Co、Ni、Ag、Sn、Cu、Zn、Te、Er、Nd及びPbの金属成分を含有しない構成とした。
【0013】
また本発明によれば、前記のいずれかに記載のガラス基板の表面に、直接又は他の層を介して情報記録層を形成したことを特徴とする情報記録用媒体が提供される。また前記のいずれかに記載のガラス基板を基板として用いたことを特徴とする光通信用素子が提供される。
【0014】
【発明の実施の形態】
ガラスにアルカリ成分を多く含有させると線熱膨張係数は大きくなるものの、アルカリ溶出量も同時に増えるため、線熱膨張係数を大きくし且つアルカリ溶出量を少なくすることはこれまで困難とされていた。ところが本発明者等が種々検討を重ねた結果、特定のアルカリ金属酸化物の各含有量および総含有量を特定の範囲にすると、線熱膨張係数を高くできると同時に、アルカリ溶出量を抑えられるという新たな知見を得、さらにAl23、B23及びTa25を特定量含有させると、化学的耐久性が向上しアルカリ溶出量がさらに抑制されるという知見を得て本発明をなすに至った。
【0015】
以下、本発明のガラス基板の成分についてその限定した理由について説明する。まず、SiO2はガラスを形成する必須成分である。含有量が55.0%未満であるとガラスの構造が軟弱となりアルカリ溶出量が増加する。他方、含有量が75.0%を超えるとガラスの溶融性が悪く。また、化学的耐久性を向上させるガラス成分の含有量が相対的に少なくなるのでアルカリ溶出量が増加する。そこで含有量を55.0〜75.0%の範囲と定めた。より好ましい範囲としては60.0〜68.0%の範囲である。
【0016】
23はガラスの溶融性を改善し、化学的耐久性を向上させる作用を奏する。含有量が1.0%未満であるとこのような作用が得られず、アルカリ溶出量が増加する。他方、含有量が10.0%を超えても化学的耐久性が低下し、アルカリ溶出量が増加する。そこで含有量を1.0〜10.0%の範囲と定めた。より好ましい範囲としては4.0〜5.1%の範囲である。
【0017】
Al23はガラスの化学的耐久性を向上させる作用を奏する。含有量が3.0%未満であるとこのような作用が得られずアルカリ溶出量が増加する。他方、含有量が16.0%を超えるとガラスの溶融性が悪くなる。そこで含有量を3.0〜16.0%の範囲と定めた。より好ましい範囲としては5.0〜11.0%の範囲である。
【0018】
Li2O、Na2O、K2Oのアルカリ金属酸化物は、いずれもガラスの溶融性を向上させ、線熱膨張係数を大きくする作用を奏する。Li2Oを他のアルカリ金属酸化物と共存させるとアルカリ溶出量を大幅に低減できるので、Li2Oは必須成分とし、Na2O及びK2Oは少なくとも一方を含有させることにした。そして、ここで重要なことは、アルカリ金属酸化物の含有量を増やすとアルカリ溶出量も通常は増えるのであるが、アルカリ金属酸化物を本発明で規定する含有量の範囲とするとアルカリ溶出量の増加が抑えられるのである(いわゆるアルカリ混合効果)。以下、各アルカリ金属酸化物の含有量について説明する。
【0019】
Li2Oの含有量は5.0〜15.0%の範囲とした。含有量が5.0%よりも少ないと線熱膨張係数を大きくすることができず、またガラスの溶融性が改善できない。他方、含有量が15.0%を超えるとアルカリ溶出量が増加する。より好ましい含有量は9.0〜13.5%の範囲である。
【0020】
Na2O及びK2Oの含有量はそれぞれ14.0%及び12.0%以下とした。Na2O及びK2Oの含有量が14.0%及び12.0%をそれぞれ超えると、アルカリ溶出量が増加する。より好ましい含有量は、Na2Oは4.0〜9.0%の範囲、K2Oは3.0〜7.0%の範囲である。
【0021】
そしてLi2O、Na2O、K2Oの総含有量は16.0〜25.0%の範囲とした。この総含有量が16.0%より少ないと、線熱膨張係数を高くしながらアルカリ溶出量を抑えるアルカリ混合効果が得られない。他方、総含有量が25.0%を超えるとアルカリ溶出量が増加する。
【0022】
また、本発明のガラス基板では必要によりCaOを6%以下の範囲でさらに含有させてもよい。CaOはガラスの溶融性を向上させる作用を奏し、含有量が6%を超えるとアルカリ溶出量が増加する。より好ましい含有量は5.5%以下である。
【0023】
Ta25は化学的耐久性を向上させる作用を奏する。この作用はこれまで知られていなかったTa25の作用である。この作用は、0.001%といった極微の含有であっても得られるが、含有量が2%を超えるとガラスの溶融性が悪くなる。より好ましい含有量は0.1〜1.5%の範囲である。
【0024】
本発明のガラス基板には必要により、As23、Sb23などの清澄剤、あるいは耐候性を向上させるためにTiO2、CaO以外のアルカリ土類金属酸化物といった従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加しても構わない。
【0025】
本発明のガラス基板の製造方法に特に限定はなく、これまで公知の製造方法を用いることができる。例えば、各成分の原料として各々相当する酸化物、炭酸塩、硝酸塩、水酸化物等を使用し、所望の割合に秤量し、粉末で十分に混合して調合原料とする。これを例えば1,300〜1,550℃に加熱された電気炉中の白金坩堝などに投入し、溶融清澄後、撹拌均質化して予め加熱された鋳型に鋳込み、徐冷してガラスブロックにする。次に、ガラス転移点付近まで再加熱し、徐冷して歪み取りを行う。そして得られたガラスブロックを円盤形状にスライスして、内周および外周を同心円としてコアドリルを用いて切り出す。さらに、両面を粗研磨した後ポリッシングを行ってガラス基板とする。
【0026】
本発明のガラス基板を情報記録用媒体の基板として用いる場合には、線熱膨張係数は80〜120×10-7/℃の範囲が好ましい。線熱膨張係数がこの範囲から外れると、情報記録用媒体を取り付ける駆動部の材料のそれとの差が大きくなり、情報記録用媒体の固定が緩み、記録の読み書きができなくなるおそれがあるからである。
【0027】
また本発明のガラス基板を情報記録用媒体の基板として用いる場合には、アルカリ溶出量は1.5μg/cm2以下とするのが好ましい。アルカリ溶出量が1.5μg/cm2を超えると基板表面に形成された磁性膜などの記録膜が劣化するおそれがあるからである。
【0028】
本発明のガラス基板は、その大きさに限定はなく3.5,2.5,1.8インチ、あるいはそれ以下の小径ディスクとすることもでき、またその厚さは2mmや1mm、0.63mm、あるいはそれ以下といった薄型とすることもできる。
【0029】
次に、本発明の情報記録用媒体について説明する。本発明の情報記録用媒体の大きな特徴は、基板として前記のガラス基板を用いたことにある。このような構成により優れた耐久性および高記録密度が実現される。以下、図面に基づき本発明の情報記録用媒体について説明する。
【0030】
図1は磁気ディスクの斜視図である。この磁気ディスクDは、円形のガラス基板1の表面に磁性膜2を直接形成したものである。磁性膜2の形成方法としては従来公知の方法を用いることができ、例えば磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法が挙げられる。スピンコート法での膜厚は約0.3〜1.2μm程度、スパッタリング法での膜厚は0.04〜0.08μm程度、無電解めっき法での膜厚は0.05〜0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成が好ましい。
【0031】
磁性膜に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜は、非磁性膜(例えば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄−希土類系や、SiO2、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散された構造のグラニュラーなどであってもよい。また、磁性膜は、内面型および垂直型のいずれの記録形式であってもよい。
【0032】
また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。
【0033】
さらに必要により下地層や保護層を設けてもよい。磁気ディスクにおける下地層は磁性膜に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。
【0034】
磁性膜の摩耗や腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。
【0035】
以上、本発明の情報記録用媒体の一実施態様として磁気ディスクについて説明したが、本発明の情報記録用媒体はこれに限定されるものではなく、前記ガラス基板を用いた光磁気ディスクや光ディスクなども本発明の情報記録用媒体にもちろん含まれる。
【0036】
次に本発明の光通信用素子について説明する。本発明の光通信用素子の大きな特徴は、その基板として前記のガラス基板を用いたことにある。すなわち、前記ガラス基板では、アルカリ溶出量が1.5μg/cm2以下と少なく基板から溶出したアルカリ成分によって基板上の膜が劣化することがない。また、従来のガラス基板(約60〜70×10-7/℃程度)に比べて線熱膨張係数が80〜120×10-7/℃の範囲と大きいので、蒸着工程で加熱されたガラス基板が冷却されて縮む量が大きくなり、このガラス基板の収縮により基板表面に形成された膜が圧縮されてその密度が大きくなる。この結果、温度・湿度の変化による波長シフトが抑制されるのである。
【0037】
以下、波長多重分割(「DWDM」;Dense Wavelength Division Multiplexing)用の光フィルタを例に本発明の光通信用素子について説明する。誘電体多層膜を用いた光フィルタは高屈折率層と低屈折率層とを有し、これらの層を積層した構造を有している。これらの層を形成する方法としては、特に限定はなく従来公知の方法、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法などを用いることができる。この中でも生産性が高いことから真空蒸着法が推奨される。真空蒸着は、真空中で蒸着材料を加熱し、発生した蒸気を基体上に凝縮・付着させて薄膜を形成する方法である。蒸着材料の加熱方法には、抵抗加熱、外熱ルツボ、電子ビーム、高周波、レーザーなどの各種方法がある。具体的な蒸着条件として、真空度は1×10-3〜5×10-3Pa程度である。蒸着中は真空度が一定となるように電磁弁を制御して導入酸素量を調整する。そして層厚モニターにより所定層厚となったところでシャターを閉じて蒸着を終了する。
【0038】
各膜厚としては特に限定はないが、光学的膜厚が波長の1/4とするのが基本であって、一般的に1μm程度までである。また、総層数は一般的に100層を超える。用いる膜材料としては例えば、誘電体や半導体、金属であって、この中でも誘電体が特に好ましい。
【0039】
以上、本発明の光通信用素子の一実施態様としてDWDM用の光フィルタについて説明したが、本発明の光通信用素子はこれに限定されるものではなく、前記ガラス基板を用いた光スイッチ、合分波素子なども本発明の光通信用素子にもちろん含まれる。
【0040】
【実施例】
実施例1〜,比較例1〜26
定められた量の原料粉末をるつぼに秤量して入れ、混合したのち、電気炉中で1,550℃で溶解した。原料が充分に溶解したのち、撹拌羽をガラス融液に挿入し、約1時間撹拌した。その後、撹拌羽を取り出し、30分間静置したのち、治具に融液を流しこむことによってガラスブロックを得た。その後各ガラスのガラス転移点付近までガラスブロックを再加熱し、徐冷して歪取りを行った。得られたガラスブロックを約1.5mmの厚さの円盤形状にスライスし、内周,外周を同心円としてカッターを用いて切り出した。そして、両面を粗研磨及びポリッシングを行って実施例及び比較例のガラス基板を作製した。作製したガラス基板について下記特性評価を行った。なお比較例15のガラス基板については化学強化処理を行った。結果を合わせて表1、表2、表3に示す。
【0041】
(比重)
エタノールを浸液とするアルキメデス法により測定した。
【0042】
(ヤング率)および(比弾性率)
JIS R 1602 ファインセラミックスの弾性試験方法の動的弾性率試験方法に準じて測定した。また比弾性率はヤング率を比重で割ることにより算出した。
【0043】
(線熱膨張係数)
示差膨張測定装置を用いて、荷重:5g、温度範囲:25〜100℃、昇温速度:5℃/minの条件で測定した。
【0044】
(溶融性)
溶融させたガラスを1,550℃で2h保持した後、熱した鉄板上に流し出し、溶融ガラスの粘性の度合いを目視により観察し、粘性の低いものから順に「◎」、「○」、「×」で評価した。なお、「×」は生産上支障が生じると考えられるものについてのみ付した。
【0045】
(アルカリ溶出量)
ガラス表面を#600の研磨材で研磨し、予め表面を荒れた状態とした後、80℃の逆浸透膜水50ml中に試料ガラスを24h浸漬した後、ICP発光分光分析装置で溶出液を分析しアルカリ溶出量を算出した。
【0046】
【表1】

Figure 0004442051
【0047】
【表2】
Figure 0004442051
【0048】
1によれば、実施例1〜のガラス基板では、ヤング率及び、値が高いほど振動に強いとされる比弾性率は、いずれも実用上まったく問題のないレベルであった。また、線熱膨張係数は80〜91×10-7/℃の範囲と、従来のガラス基板に比べ大きい値となった。さらに、アルカリ溶出量は1.5μg/cm2以下と従来のガラス基板に比べ少なかった。一方、ガラスの溶融性についても問題のないレベルであった。
【0049】
【表3】
Figure 0004442051
【0050】
によれば、比較例1のガラス基板では、SiO2の含有量が53.2%と少ないためガラスの構造が軟弱となりアルカリ溶出量が増加した。一方、SiO2の含有量が77.1%と多い比較例2のガラス基板では、ガラスの溶融性が悪くなると共に、化学的耐久性を向上させるガラス成分の含有量が相対的に少なくなるのでアルカリ溶出量が増加した。比較例3のガラス基板では、ガラスの溶融性を改善し、化学的耐久性を向上させるB23を含有しないので、アルカリ溶出量が多かった。またB23を11.3%と多く含有する比較例4のガラス基板でも、同様にアルカリ溶出量が多かった。Al23の含有量が0.8%と少ない比較例5のガラス基板ではアルカリ溶出量が多かった。逆にAl23の含有量が17.8%と多い比較例6のガラス基板では、アルカリ溶出量は他の比較例のものに比べて少なかったものの、ガラスの溶融性が悪かった。
【0051】
Li2Oを含有しない比較例7のガラス基板ではアルカリ溶出量が多くなる一方、Li2Oを15.5%と多量に含有した比較例8のガラス基板では、線熱膨張係数が充分には大きくならず、しかもアルカリ溶出量が多かった。また、Li2Oを含有せず、且つNa2Oを17.0%と多量に含有した比較例9のガラス基板では、アルカリ溶出量が多かった。さらにK2Oを13.4%と多量に含有した比較例10ガラス基板では線熱膨張係数が小さく、またアルカリ溶出量も多かった。Li2Oを含有せず、且つアルカリ金属酸化物の総含有量が14.0%と少ない比較例11のガラス基板では、アルカリ溶出量が少なかったものの線熱膨張係数が充分ではなく、またガラスの溶融性も悪かった。逆に、アルカリ金属酸化物の総含有量が25.5%と多かった比較例12のガラス基板では、アルカリ溶出量が多かった。
【0052】
CaOの含有量が6.4%と多い比較例13のガラス基板では、線熱膨張係数が小さく、またアルカリ溶出量が多かった。Ta25の含有量が3.0%と多い比較例14のガラス基板では、ガラスの溶融性が悪くなるとともに、アルカリ溶出量が多かった。化学強化した比較例15のガラス基板ではアルカリ溶出量が多かった。
【0053】
【発明の効果】
発明に係るガラス基板では、特定のガラス組成を有する構成としたので、線熱膨張係数が高く且つアルカリ成分の溶出は少なく、加えて作製コストを抑えることができる。
【0055】
本発明に係る情報記録用媒体では、基板として前記ガラス基板を用いる構成としたので、耐久性に優れ、高い記録密度が得られる。
【0056】
また本発明に係る光通信用素子では、基板として前記ガラス基板を用いる構成としたので、経時変化が少なく、温度・湿度の変化による波長シフトを抑制できる。
【図面の簡単な説明】
【図1】 本発明の情報記録用媒体の一例を示す斜視図である。
【符号の説明】
1 ガラス基板
2 磁性膜
D 磁気ディスク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass substrate, and more particularly to a glass substrate used as a substrate for information recording media, optical communication elements, and the like.
[0002]
[Prior art]
Conventionally, an aluminum alloy has been widely used as a magnetic disk substrate, but the aluminum alloy is easily deformed and its hardness is insufficient, so that the smoothness of the substrate surface after polishing cannot be said to be sufficient. In addition, when the head mechanically contacts the magnetic disk, there is a problem that the magnetic film is easily peeled off from the substrate. Therefore, development of a glass substrate with little deformation, good smoothness, and high mechanical strength is underway.
[0003]
Glass substrates include chemically strengthened glass with improved mechanical strength by replacing alkali elements on the substrate surface with other alkali elements, and crystallization with fine crystalline particles deposited in amorphous glass. Glass has been developed. However, in chemically strengthened glass, alkali ions on the surface of the substrate move to the surface during the heating process when the magnetic film is formed and are eluted, or the magnetic film is eroded and the adhesion strength of the magnetic film is deteriorated. There was a problem to do. Further, in the crystallized glass, the unevenness after polishing of the substrate surface is large and the smoothness cannot be said to be sufficient due to the difference in wear between the produced microcrystalline particles and the amorphous glass. In addition, any of the above glasses requires a post-treatment process such as a chemical strengthening treatment step or a crystallization step, so that it is difficult to reduce costs.
[0004]
On the other hand, a glass substrate not subjected to chemical strengthening or crystallization strengthening treatment can be reduced in cost, but the linear thermal expansion coefficient is generally about 60 to 70 × 10 −7 / ° C. The difference between the coefficient of linear thermal expansion (about 100 to 120 × 10 −7 / ° C.) of the clamp and the spindle motor member is large, and a problem sometimes occurs when the recording medium is attached to the recording apparatus or information is recorded.
[0005]
In addition, although a glass substrate is used as a substrate in an optical communication element such as an optical filter or an optical switch, the element may be deteriorated by an alkali component eluted from the glass substrate. In addition, as the density of the film formed on the glass substrate increases, the wavelength shift due to changes in temperature and humidity is suppressed, but there is a limit to the density of the film that can be formed by the conventionally widely used vacuum deposition method. .
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a low-cost glass substrate having a linear thermal expansion coefficient close to that of a motor member and less alkaline component elution. It is what.
[0007]
Another object of the present invention is to provide an information recording medium having excellent durability and high recording density.
[0008]
Furthermore, another object of the present invention is to provide an optical communication element that has little change with time and suppresses wavelength shift due to changes in temperature and humidity.
[0009]
[Means for Solving the Problems]
In order to achieve the object, in the glass substrate of the present invention, the linear thermal expansion coefficient is in the range of 80 to 120 × 10 −7 / ° C., and the alkali elution amount is in the range of 0.7 to 1.5 μg / cm 2 . The composition of the surface and the interior was uniform. In addition, that the composition of the surface and the inside is homogeneous means that the reinforcing treatment is not performed. Hereinafter, “%” means “mol%” unless otherwise specified.
[0010]
Here, the linear thermal expansion coefficient is a value measured using a differential expansion measuring device under conditions of load: 5 g, temperature range: 25 to 100 ° C., temperature increase rate: 5 ° C./min. The alkali elution amount is a value calculated by immersing the sample glass in 50 ml of reverse osmosis membrane water at 80 ° C. for 24 hours and then analyzing the eluate with an ICP emission spectroscopic analyzer. In addition, in order to make it an acceleration test, the surface of the sample glass to be measured was polished with a # 600 abrasive to make the surface rough beforehand. There is a correlation between the alkali elution amount by this measurement method and the alkali elution amount by the alkali elution test of JIS R 3502, and the elution amount 0.7 to 1.5 μg / cm 2 by this measurement method is the alkali elution amount of JIS R 3502. This roughly corresponds to an alkali elution amount of 0.2 to 0.3 mg according to the test.
[0011]
The glass substrate of the present invention for achieving the above object, in mol%, SiO 2: 55.0~75.0% , B 2 O 3: 1.0~ 5.1%, Al 2 O 3: 3 0.0 to 16.0%, Li 2 O: 5.0 to 15.0%, Na 2 O: 14.0% or less, K 2 O: 12.0% or less, Li 2 O + Na 2 O + K 2 O: 16 .0~25.0%, T a 2 O 5 : have a 0.001 to 2.0 percent of the glass composition, P 2 O 5, RO ( R is Ca, Mg, Ba, Sr, Zn, and Pb Selected metal) and further does not contain Fe, Mn, Ce, Ti, V, Cr, Co, Ni, Ag, Sn, Cu, Zn, Te, Er, Nd and Pb metal components . .
[0013]
According to the invention, there is provided an information recording medium characterized in that an information recording layer is formed directly or via another layer on the surface of the glass substrate described above. Moreover, an optical communication element characterized by using the glass substrate as described above as a substrate is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
When a glass contains a large amount of an alkali component, the coefficient of linear thermal expansion increases, but the amount of alkali elution increases simultaneously. Therefore, it has been difficult to increase the coefficient of linear thermal expansion and reduce the amount of alkali elution. However, as a result of repeated studies by the present inventors, when each content and total content of a specific alkali metal oxide are within a specific range, the linear thermal expansion coefficient can be increased and at the same time the alkali elution amount can be suppressed. In addition, we obtained the knowledge that adding a specific amount of Al 2 O 3 , B 2 O 3 and Ta 2 O 5 improves the chemical durability and further suppresses the alkali elution amount. Invented the invention.
[0015]
Hereinafter, the reason why the components of the glass substrate of the present invention are limited will be described. First, SiO 2 is an essential component for forming glass. If the content is less than 55.0%, the glass structure becomes weak and the alkali elution amount increases. On the other hand, if the content exceeds 75.0%, the meltability of the glass is poor. Moreover, since the content of the glass component that improves chemical durability is relatively reduced, the amount of alkali elution increases. Therefore, the content was determined to be in the range of 55.0-75.0%. A more preferable range is 60.0 to 68.0%.
[0016]
B 2 O 3 has the effect of improving the melting property of the glass and improving the chemical durability. If the content is less than 1.0%, such an effect cannot be obtained, and the alkali elution amount increases. On the other hand, even if the content exceeds 10.0%, the chemical durability is lowered and the alkali elution amount is increased. Therefore, the content is determined to be in the range of 1.0 to 10.0%. A more preferable range is 4.0 to 5.1 %.
[0017]
Al 2 O 3 has the effect of improving the chemical durability of the glass. If the content is less than 3.0%, such an effect cannot be obtained and the alkali elution amount increases. On the other hand, if the content exceeds 16.0%, the meltability of the glass becomes worse. Therefore, the content is determined to be in the range of 3.0 to 16.0%. A more preferable range is 5.0 to 11.0%.
[0018]
Alkali metal oxides of Li 2 O, Na 2 O, and K 2 O all have the effect of improving the meltability of the glass and increasing the linear thermal expansion coefficient. When Li 2 O coexists with other alkali metal oxides, the amount of alkali elution can be greatly reduced. Therefore, Li 2 O is an essential component, and Na 2 O and K 2 O are contained at least one. And what is important here is that when the content of alkali metal oxide is increased, the amount of alkali elution usually increases, but when the content of alkali metal oxide is defined in the present invention, the amount of alkali elution is increased. The increase is suppressed (so-called alkali mixing effect). Hereinafter, the content of each alkali metal oxide will be described.
[0019]
The content of Li 2 O was in the range of 5.0 to 15.0%. When the content is less than 5.0%, the linear thermal expansion coefficient cannot be increased, and the melting property of the glass cannot be improved. On the other hand, when the content exceeds 15.0%, the alkali elution amount increases. A more preferable content is in the range of 9.0 to 13.5%.
[0020]
The contents of Na 2 O and K 2 O were 14.0% and 12.0% or less, respectively. When the content of Na 2 O and K 2 O exceeds 14.0% and 12.0%, respectively, the alkali elution amount increases. More preferably, Na 2 O is in the range of 4.0 to 9.0%, and K 2 O is in the range of 3.0 to 7.0%.
[0021]
The total content of Li 2 O, Na 2 O, K 2 O is in the range of 16.0 to 25.0%. When the total content is less than 16.0%, the alkali mixing effect of suppressing the alkali elution amount while increasing the linear thermal expansion coefficient cannot be obtained. On the other hand, when the total content exceeds 25.0%, the alkali elution amount increases.
[0022]
Moreover, in the glass substrate of this invention, you may further contain CaO in 6% or less of range as needed. CaO has the effect | action which improves the meltability of glass, and when content exceeds 6%, the amount of alkali elution will increase. A more preferable content is 5.5% or less.
[0023]
Ta 2 O 5 has an effect of improving chemical durability. This action is that of Ta 2 O 5 that has not been known so far. This effect can be obtained even with a very small content of 0.001%. However, if the content exceeds 2%, the meltability of the glass deteriorates. A more preferable content is in the range of 0.1 to 1.5%.
[0024]
For the glass substrate of the present invention, conventionally known glass components such as clarifiers such as As 2 O 3 and Sb 2 O 3 , or alkaline earth metal oxides other than TiO 2 and CaO in order to improve weather resistance. And additives may be added within a range that does not impair the effects of the present invention.
[0025]
There is no limitation in particular in the manufacturing method of the glass substrate of this invention, A conventionally well-known manufacturing method can be used. For example, the corresponding oxides, carbonates, nitrates, hydroxides, etc. are used as raw materials for each component, weighed to a desired ratio, and thoroughly mixed with powder to obtain a blended raw material. This is put into, for example, a platinum crucible in an electric furnace heated to 1,300 to 1,550 ° C., melted and clarified, stirred and homogenized, cast into a preheated mold, and gradually cooled to a glass block. . Next, it is reheated to the vicinity of the glass transition point, and is slowly cooled to remove strain. Then, the obtained glass block is sliced into a disk shape, and the inner periphery and the outer periphery are concentrically cut out using a core drill. Further, after both surfaces are roughly polished, polishing is performed to obtain a glass substrate.
[0026]
When the glass substrate of the present invention is used as a substrate for an information recording medium, the linear thermal expansion coefficient is preferably in the range of 80 to 120 × 10 −7 / ° C. If the linear thermal expansion coefficient is out of this range, the difference from that of the material of the drive unit to which the information recording medium is attached becomes large, and the information recording medium is loosely fixed, and there is a possibility that reading and writing cannot be performed. .
[0027]
When the glass substrate of the present invention is used as a substrate for an information recording medium, the alkali elution amount is preferably 1.5 μg / cm 2 or less. This is because if the alkali elution amount exceeds 1.5 μg / cm 2 , a recording film such as a magnetic film formed on the substrate surface may be deteriorated.
[0028]
The glass substrate of the present invention is not limited in size, and can be a small-diameter disk of 3.5, 2.5, 1.8 inches or less, and the thickness thereof is 2 mm, 1 mm, 0. It can be as thin as 63 mm or less.
[0029]
Next, the information recording medium of the present invention will be described. A major feature of the information recording medium of the present invention is that the glass substrate is used as a substrate. With such a configuration, excellent durability and high recording density are realized. The information recording medium of the present invention will be described below with reference to the drawings.
[0030]
FIG. 1 is a perspective view of a magnetic disk. This magnetic disk D is obtained by directly forming a magnetic film 2 on the surface of a circular glass substrate 1. As a method for forming the magnetic film 2, a conventionally known method can be used. For example, a method in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on a substrate, or a method by sputtering or electroless plating is used. A method is mentioned. The film thickness by spin coating is about 0.3 to 1.2 μm, the film thickness by sputtering is about 0.04 to 0.08 μm, and the film thickness by electroless plating is 0.05 to 0.1 μm. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.
[0031]
The magnetic material used for the magnetic film is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Ni having a high crystal anisotropy is basically used, and Ni or A Co-based alloy to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO. The magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise. Addition to the above magnetic material, ferrite, iron - rare-earth or be in a non-magnetic film made of SiO 2, BN Fe, Co, FeCo, etc. granular structure magnetic particles are dispersed, such CoNiPt Also good. Further, the magnetic film may be of any recording type of inner surface type and vertical type.
[0032]
In addition, a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
[0033]
Furthermore, you may provide a base layer and a protective layer as needed. The underlayer in the magnetic disk is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. In the case of a magnetic film containing Co as a main component, Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics. Further, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
[0034]
Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
[0035]
As described above, the magnetic disk has been described as one embodiment of the information recording medium of the present invention. However, the information recording medium of the present invention is not limited to this, and a magneto-optical disk or an optical disk using the glass substrate is used. Is naturally included in the information recording medium of the present invention.
[0036]
Next, the optical communication element of the present invention will be described. A major feature of the optical communication element of the present invention is that the glass substrate is used as the substrate. That is, in the glass substrate, the alkali elution amount is as small as 1.5 μg / cm 2 or less, and the film on the substrate is not deteriorated by the alkali component eluted from the substrate. In addition, since the linear thermal expansion coefficient is as large as 80 to 120 × 10 −7 / ° C. compared to a conventional glass substrate (about 60 to 70 × 10 −7 / ° C.), the glass substrate heated in the vapor deposition step As the glass substrate is cooled, the amount of shrinkage increases, and the shrinkage of the glass substrate compresses the film formed on the substrate surface, thereby increasing its density. As a result, wavelength shift due to changes in temperature and humidity is suppressed.
[0037]
Hereinafter, the optical communication element of the present invention will be described taking an optical filter for wavelength division division (“DWDM”) as an example. An optical filter using a dielectric multilayer film has a high refractive index layer and a low refractive index layer, and has a structure in which these layers are laminated. A method for forming these layers is not particularly limited, and a conventionally known method such as a vacuum deposition method, a sputtering method, an ion plating method, or an ion beam assist method can be used. Among these, vacuum deposition is recommended because of its high productivity. Vacuum deposition is a method of forming a thin film by heating a deposition material in vacuum and condensing and adhering the generated vapor onto a substrate. There are various methods such as resistance heating, an external heating crucible, an electron beam, a high frequency, and a laser as a method for heating the deposition material. As specific vapor deposition conditions, the degree of vacuum is about 1 × 10 −3 to 5 × 10 −3 Pa. During the deposition, the amount of introduced oxygen is adjusted by controlling the solenoid valve so that the degree of vacuum is constant. Then, when the predetermined layer thickness is reached by the layer thickness monitor, the shutter is closed and the deposition is finished.
[0038]
Each film thickness is not particularly limited, but the optical film thickness is basically ¼ of the wavelength, and is generally about 1 μm. Moreover, the total number of layers generally exceeds 100 layers. Examples of the film material to be used include dielectrics, semiconductors, and metals. Among these, dielectrics are particularly preferable.
[0039]
As described above, the optical filter for DWDM has been described as one embodiment of the optical communication element of the present invention. However, the optical communication element of the present invention is not limited to this, and an optical switch using the glass substrate, Of course, a multiplexing / demultiplexing element is also included in the optical communication element of the present invention.
[0040]
【Example】
Example 1-9 and Comparative Example 1-26
A specified amount of raw material powder was weighed into a crucible, mixed, and then melted at 1,550 ° C. in an electric furnace. After the raw materials were sufficiently dissolved, a stirring blade was inserted into the glass melt and stirred for about 1 hour. Thereafter, the stirring blade was taken out and allowed to stand for 30 minutes, and then the melt was poured into a jig to obtain a glass block. Thereafter, the glass block was reheated to near the glass transition point of each glass, and slowly cooled to remove strain. The obtained glass block was sliced into a disk shape having a thickness of about 1.5 mm, and the inner and outer circumferences were concentrically cut out using a cutter. Then, both surfaces were subjected to rough polishing and polishing to produce glass substrates of Examples and Comparative Examples. The following characteristics evaluation was performed about the produced glass substrate. In addition, about the glass substrate of the comparative example 15, the chemical strengthening process was performed. The results are shown in Table 1, Table 2, and Table 3.
[0041]
(specific gravity)
It was measured by the Archimedes method using ethanol as an immersion liquid.
[0042]
(Young's modulus) and (Specific modulus)
It measured according to the dynamic elastic modulus test method of the elastic test method of JIS R 1602 fine ceramics. The specific modulus was calculated by dividing Young's modulus by specific gravity.
[0043]
(Linear thermal expansion coefficient)
Using a differential expansion measuring device, the measurement was performed under the conditions of load: 5 g, temperature range: 25 to 100 ° C., temperature increase rate: 5 ° C./min.
[0044]
(Melting property)
After the molten glass is held at 1,550 ° C. for 2 hours, it is poured onto a heated iron plate, the degree of viscosity of the molten glass is visually observed, and “◎”, “○”, “ “×”. In addition, “x” is attached only to those that are considered to cause problems in production.
[0045]
(Alkaline elution amount)
After polishing the glass surface with a # 600 abrasive to roughen the surface in advance, the sample glass was immersed in 50 ml of reverse osmosis membrane water at 80 ° C. for 24 hours, and the eluate was analyzed with an ICP emission spectrometer. The amount of alkali elution was calculated.
[0046]
[Table 1]
Figure 0004442051
[0047]
[Table 2]
Figure 0004442051
[0048]
According to Table 1, in the glass substrates of Examples 1 to 9 , the Young's modulus and the specific elastic modulus, which is considered to be more resistant to vibration as the value is higher, are at a level where there is no practical problem at all. Further, the linear thermal expansion coefficient was in the range of 80 to 91 × 10 −7 / ° C., which was a value larger than that of the conventional glass substrate. Furthermore, the alkali elution amount was 1.5 μg / cm 2 or less, which was smaller than that of the conventional glass substrate. On the other hand, there was no problem with respect to the meltability of the glass.
[0049]
[Table 3]
Figure 0004442051
[0050]
According to Table 2 , the glass substrate of Comparative Example 1 had a low SiO 2 content of 53.2%, so that the glass structure was soft and the alkali elution amount was increased. On the other hand, in the glass substrate of Comparative Example 2 having a high SiO 2 content of 77.1%, the meltability of the glass deteriorates and the glass component content for improving chemical durability is relatively low. Alkaline elution amount increased. The glass substrate of Comparative Example 3 contained a large amount of alkali elution because it did not contain B 2 O 3 which improves the meltability of the glass and improves the chemical durability. Further, the amount of alkali elution was also large in the glass substrate of Comparative Example 4 containing a large amount of B 2 O 3 as 11.3%. In the glass substrate of Comparative Example 5 having a low Al 2 O 3 content of 0.8%, the alkali elution amount was large. On the contrary, in the glass substrate of Comparative Example 6 having a high Al 2 O 3 content of 17.8%, the alkali elution amount was smaller than those of the other Comparative Examples, but the glass meltability was poor.
[0051]
In the glass substrate of Comparative Example 7 that does not contain Li 2 O, the amount of alkali elution increases, whereas the glass substrate of Comparative Example 8 that contains Li 2 O in a large amount of 15.5% has a sufficient linear thermal expansion coefficient. It did not increase, and the amount of alkali elution was large. Moreover, in the glass substrate of Comparative Example 9 which did not contain Li 2 O and contained a large amount of Na 2 O as 17.0%, the amount of alkali elution was large. Further, the glass substrate of Comparative Example 10 containing K 2 O in a large amount of 13.4% had a small coefficient of linear thermal expansion and a large amount of alkali elution. In the glass substrate of Comparative Example 11 which does not contain Li 2 O and the total content of alkali metal oxides is as low as 14.0%, the linear thermal expansion coefficient is not sufficient although the alkali elution amount is small, and the glass The meltability of was also poor. On the contrary, in the glass substrate of Comparative Example 12 in which the total content of alkali metal oxides was as high as 25.5%, the amount of alkali elution was large.
[0052]
In the glass substrate of Comparative Example 13 having a large CaO content of 6.4%, the linear thermal expansion coefficient was small and the amount of alkali elution was large. In the glass substrate of Comparative Example 14 having a large Ta 2 O 5 content of 3.0%, the meltability of the glass deteriorated and the amount of alkali elution was large. In the chemically strengthened glass substrate of Comparative Example 15, the amount of alkali elution was large.
[0053]
【The invention's effect】
Since the glass substrate according to the present invention has a specific glass composition, the linear thermal expansion coefficient is high and the elution of alkali components is small, and in addition, the production cost can be suppressed .
[0055]
In the information recording medium according to the present invention, since the glass substrate is used as the substrate, it has excellent durability and high recording density.
[0056]
In the optical communication element according to the present invention, since the glass substrate is used as a substrate, there is little change with time, and a wavelength shift due to changes in temperature and humidity can be suppressed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an information recording medium of the present invention.
[Explanation of symbols]
1 Glass substrate 2 Magnetic film D Magnetic disk

Claims (3)

mol%で、
SiO 2 :55.0〜75.0%、
2 3 : 1.0〜5.1%、
Al 2 3 :3.0〜16.0%、
Li 2 O:5.0〜15.0%、
Na 2 O:14.0%以下、
2 O:12.0%以下、
Li 2 O+Na 2 O+K 2 O:16.0〜25.0%、
Ta 2 5 :0.001〜2.0%、
のガラス組成を有し、
、RO(RはCa、 Mg、Ba、Sr、Zn、Pbから選ばれる金属)を含有せず、
Fe、Mn、Ce、Ti、V、Cr、Co、Ni、Ag、Sn、Cu、Zn、Te、Er、Nd及びPbの金属成分を含有せず、
線熱膨張係数が80〜120×10-7/℃の範囲であり、表面を♯600の研磨材で研磨した試料ガラスを80℃の逆浸透膜水50ml中に24時間浸漬した後、ICP発光分光分析装置で溶出液を分析し算出したアルカリ溶出量が0.7〜1.5μg/cm2の範囲で、表面および内部の組成が均質であるガラス基板。
mol%,
SiO 2: 55.0~75.0%,
B 2 O 3 : 1.0 to 5.1%,
Al 2 O 3 : 3.0 to 16.0%,
Li 2 O: 5.0 to 15.0%,
Na 2 O: 14.0% or less,
K 2 O: 12.0% or less,
Li 2 O + Na 2 O + K 2 O: 16.0 to 25.0%,
Ta 2 O 5 : 0.001 to 2.0%,
Having a glass composition of
P 2 O 5 , RO (R is a metal selected from Ca, Mg, Ba, Sr, Zn, Pb),
Does not contain Fe, Mn, Ce, Ti, V, Cr, Co, Ni, Ag, Sn, Cu, Zn, Te, Er, Nd and Pb metal components,
A sample glass whose linear thermal expansion coefficient is in the range of 80 to 120 × 10 −7 / ° C. and whose surface is polished with an abrasive of # 600 is immersed in 50 ml of reverse osmosis membrane water at 80 ° C. for 24 hours, followed by ICP emission. A glass substrate whose surface and internal composition are homogeneous when the amount of alkali elution calculated by analyzing the eluate with a spectroscopic analyzer is in the range of 0.7 to 1.5 μg / cm 2 .
請求項1に記載のガラス基板の表面に、直接又は他の層を介して情報記録層を形成したことを特徴とする情報記録用媒体。An information recording medium, wherein an information recording layer is formed directly or via another layer on the surface of the glass substrate according to claim 1 . 請求項1に記載のガラス基板を基板として用いたことを特徴とする光通信用素子。An optical communication element using the glass substrate according to claim 1 as a substrate.
JP2001138410A 2001-05-09 2001-05-09 Glass substrate, information recording medium using the same, and optical communication element Expired - Fee Related JP4442051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138410A JP4442051B2 (en) 2001-05-09 2001-05-09 Glass substrate, information recording medium using the same, and optical communication element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138410A JP4442051B2 (en) 2001-05-09 2001-05-09 Glass substrate, information recording medium using the same, and optical communication element

Publications (2)

Publication Number Publication Date
JP2002338297A JP2002338297A (en) 2002-11-27
JP4442051B2 true JP4442051B2 (en) 2010-03-31

Family

ID=18985353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138410A Expired - Fee Related JP4442051B2 (en) 2001-05-09 2001-05-09 Glass substrate, information recording medium using the same, and optical communication element

Country Status (1)

Country Link
JP (1) JP4442051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643863B2 (en) * 2001-07-11 2011-03-02 富士電機ホールディングス株式会社 SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION MAGNETIC RECORDING MEDIUM, AND METHOD FOR PRODUCING THEM
JP5206261B2 (en) * 2007-10-26 2013-06-12 旭硝子株式会社 Glass for information recording medium substrate, glass substrate for magnetic disk and magnetic disk
WO2019226485A1 (en) 2018-05-22 2019-11-28 Corning Incorporated Low temperature moldable sheet forming glass compositions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183644A (en) * 1984-09-28 1986-04-28 Hoya Corp Glass for color contrast filter
JPH09255354A (en) * 1996-03-18 1997-09-30 Asahi Glass Co Ltd Glass composition for substrate
JPH1029832A (en) * 1996-05-17 1998-02-03 Ishizuka Glass Co Ltd Glass material suitable for laser texture working and glass substrate for magnetic disk using the same
JP3902333B2 (en) * 1998-06-24 2007-04-04 日本電気硝子株式会社 Infrared absorbing glass for reed switch
JP2000236147A (en) * 1999-02-12 2000-08-29 Hoya Corp Glass substrate and manufacture thereof
JP2000322731A (en) * 1999-05-07 2000-11-24 Ishizuka Glass Co Ltd Glass substrate for information recording medium
JP2001019466A (en) * 1999-07-06 2001-01-23 Hitachi Ltd Glass substrate for magnetic disk
JP2001019479A (en) * 1999-07-06 2001-01-23 Minolta Co Ltd Glass composition
JP2002211946A (en) * 2000-11-15 2002-07-31 Nippon Electric Glass Co Ltd Glass for press molding and substrate glass for information recording medium
JP2002167230A (en) * 2000-11-28 2002-06-11 Nippon Electric Glass Co Ltd Glass for press molding and glass substrate for information recording medium

Also Published As

Publication number Publication date
JP2002338297A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP4530618B2 (en) Glass composition and glass substrate
JP6220411B2 (en) Glass for use in information recording medium substrate, information recording medium substrate, information recording medium, and methods for producing the same
US7687419B2 (en) Glass composition, glass susbstrate employing it for an information recording medium, and information recording medium employing it
KR100866175B1 (en) Glass substrate for information recording medium and information recording medium employing same
JP4726399B2 (en) Glass substrate
JP3989988B2 (en) Information recording medium substrate, magnetic disk, and manufacturing method thereof
JP4282273B2 (en) Glass substrate
WO2011037001A1 (en) Glass substrate for information recording media and information recording medium
JP4726400B2 (en) Manufacturing method of glass substrate
JP2006327935A (en) Glass substrate
JP4442051B2 (en) Glass substrate, information recording medium using the same, and optical communication element
JP4161756B2 (en) Glass substrate
JP2006327936A (en) Glass substrate
JP4151440B2 (en) Glass substrate
JP4225086B2 (en) Glass substrate
JP5375698B2 (en) Manufacturing method of glass substrate
JP2005119963A (en) Process for preparation of crystallized glass for information recording disk

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Ref document number: 4442051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees