JP4436509B2 - Low loss ferrite material and ferrite core using the same - Google Patents

Low loss ferrite material and ferrite core using the same Download PDF

Info

Publication number
JP4436509B2
JP4436509B2 JP36166299A JP36166299A JP4436509B2 JP 4436509 B2 JP4436509 B2 JP 4436509B2 JP 36166299 A JP36166299 A JP 36166299A JP 36166299 A JP36166299 A JP 36166299A JP 4436509 B2 JP4436509 B2 JP 4436509B2
Authority
JP
Japan
Prior art keywords
weight
parts
mol
oxygen concentration
ferrite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36166299A
Other languages
Japanese (ja)
Other versions
JP2001176717A (en
Inventor
英博 竹之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36166299A priority Critical patent/JP4436509B2/en
Publication of JP2001176717A publication Critical patent/JP2001176717A/en
Application granted granted Critical
Publication of JP4436509B2 publication Critical patent/JP4436509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Description

【0001】
【発明の属する技術分野】
本発明は、フェライト材料組成物に関し、特に、低損失、高透磁率、高磁束密度、高抵抗及び易焼結を示すフェライト材料、及びこれを用いたフェライトに関する提案である。
【0002】
【従来の技術】
Ni-Zn系のフェライト材料は、インダクター・変圧器・安定器・電磁石・ノイズ除去等のコアとして広く使用されている。
【0003】
特に、近年液晶ディスプレイの電子機器への応用拡大に伴い、バックライト点灯用のトランスの市場が拡大している。パソコン、ワープロ、液晶テレビ、カメラ一体型VTRをはじめ、情報通信機器、ゲーム機など液晶搭載機器が広がりを見せる中、トランス回路の小型化・薄型化・高効率化の要求は低コスト化と同時に一段と強まっている。
【0004】
液晶ディスプレイのバックライトシステムは、輝度、効率、寿命などから冷陰極管方式が主流となっている。冷陰極管を点灯するためには、トランス回路に比較的低圧の直流電圧入力から数千Vの交流高電圧出力を発生する必要があり、低電圧側と高電圧側の接点にあるトランスでは耐絶縁性が信頼性向上の重要な課題である。
【0005】
このため、トランス回路の小型・薄型化・高効率化を実現する上では、トランスの開発が重要なポイントとなっている。
【0006】
このトランスの小型化・薄型化・高効率化を実現するためにはフェライト材料としては、低損失・高透磁率・高飽和磁束密度・高抵抗であることが要求されている。トランス回路に損失の大きいフェライト材料を用いると電力損失が大きくなるため発熱量が増加する。発熱量が増加すると放熱を促進するために放熱スペースを大きくする必要がある。この放熱スペースが大きくなればトランス回路の小型化、薄型化は困難となるため、低損失なフェライトが必要である。また、抵抗が低いと種々の絶縁対策が必要となり、小型化、薄型化が困難となるため高抵抗なフェライト材料が必要である。さらに、トランスは偏磁なので磁束の飽和による発熱が起こりやすいため、小型化、薄型化するためには高透磁率および高飽和磁束密度であるフェライト材料を用いて飽和による発熱を低減する必要がある。
【0007】
【発明が解決しようとする課題】
現在用いられているトランス用材料としては、使用周波数40〜100kHzで低損失なMn-Zn系フェライト材料が使用されている。しかしMn-Zn系フェライトは、フェライト材料の中では電気抵抗が数Ω・cmと低く、トランスとして耐電圧を確保する設計が必要であり、小型化、低コスト化の要求に対し限界状態にある。
【0008】
これに対し、Ni-Zn系フェライトはMn-Zn系フェライトに比べ約106倍も電気抵抗が高く、絶縁性に優れており、トランスとしての絶縁対策が容易に行える。さらに、コア・コイル間、コア・端子間などの絶縁対策が不要なため絶縁距離を短くできることで、トランスの小型化が容易に行えると同時に低コストが可能となるという大きな利点がある。ところが、Ni-Zn系フェライトは、Mn-Zn系フェライトに比べ損失(コア損失)が約10倍と大きく、発熱のためトランスとしての実用性に欠けているという欠点がある。
【0009】
一方、Ni-Zn系フェライトに各種添加物を加えることによって特性を高めることも提案されているが、(特開平4-337605号、特開平5-21221号、特開平6-120021号公報等参照)、いずれも上記問題を解決するものではなかった。
【0010】
そこで、本発明は、コア損失が400kW/m3以下、室温で108Ω・cm以上の高抵抗、2000以上の高い透磁率を示し、3000ガウス以上の飽和磁束密を示し且つ易焼結である低損失のNi-Zn系フェライト材料を得ることを目的とする。
【0011】
【課題を解決する為の手段】
本発明の低損失フェライト材料は、Fe、Zn、Ni、Cu及びMnの酸化物を、それぞれFe2O3、ZnO、NiO、CuO及びMnO換算で、48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOを含有し、且つ残部をなすZnO/NiOのモル比が2〜10であり、平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が1以上であることを特徴とする。
【0012】
本発明の他の低損失フェライト材料は、上記本発明の低損失フェライト材料100重量部に対して、副成分としてCa、Si、Al及びCrの酸化物を、それぞれCaO、SiO2、Al2O3及びCr2O3換算で、0.01〜0.2重量部のCaO、0.05〜0.5重量部のSiO2、0.05〜0.5重量部のAl2O3及び0.01〜0.2重量部のCr2O3を含有する事を特徴とする。
【0013】
本発明の他の低損失フェライト材料は、上記本発明の低損失フェライト材料100重量部に対して更に副成分としてZr及びYの酸化物を、それぞれZrO2及びY2O3換算で、0.001〜0.1重量部のZrO2及び0.001〜0.1重量部のY2O3を含有することを特徴とする。
【0014】
また、上記主成分と副成分の合計含有量(以下、これを成分含有量と記載する)が99〜99.99重量%であり、平均結晶粒径が5〜50μmであり、焼結密度が5.1g/cm3以上であることを特徴とする。
【0015】
更に、本発明のフェライトコアは、本発明の低損失ェライト材料でもって所定形状になしたことを特徴とする。
【0016】
【発明の実施の形態】
本発明の低損失フェライト材料は、Ni-Zn-Cu-Mn系フェライトに対して、結晶粒界と粒内の酸素濃度を所定の比率に調整し、必要に応じて、CaO、SiO2、Al2O3及びCr2O3並びZrO2及びY2O3を添加すること、さらに好ましくは所定の成分含有量、平均結晶粒径そして、焼結密度を満足することによって、コア損失(Pcv)が、400kW/m3以下、好適には350kW/m3以下、更に好適には300kW/m3以下、更に好適には、250kW/m3以下となり、室温で108Ω・cm以上の高抵抗、透磁率が2000以上、好適には2200以上で、3000ガウス以上の飽和磁束密度(Bs)を有し、且つ易焼結である低損失のフェライト材料を得られた点が特徴である。
【0017】
本発明において、主成分の組成比を上記範囲とした理由は、以下の通りである。Fe2O3を48〜50モル%としたのは、Fe2O3が48モル%未満では、Bs及び透磁率が低下し、50モル%を超えると抵抗値の低下及びPcvの増大が生じる為である。
【0018】
CuOを1〜8モル%としたのは、CuOが1モル%未満では、焼結性が低下し、8モル%を超えると透磁率、Bsが低下するためである。
【0019】
MnOを0.1〜1モル%としたのは、この範囲外では透磁率、Bsが低下するためである。
【0020】
また、ZnO/NiO=2〜10としたのは、2未満では、透磁率が低下し、10を超えると、Bsが低下する為である。
【0021】
また、平均結晶粒界酸素濃度/平均結晶粒内酸素濃度を1以上としたのは、1未満では、抵抗値が低下し、渦電流損失が増大し、その結果Pcvが増大するためである。これは、結晶粒界部の酸素濃度が低いと、結晶粒界に価数の異なる元素が存在しやすくなり、結晶粒界部が電子の通り道を形成し、ネットワークを構築する為、抵抗値低下が生じるからである。
【0022】
本発明の低損失フェライト材料において結晶粒内の結晶相はスピネル相などを主結晶相とする。一方、結晶粒界はCa、Si、Al、Cr、Zr、Y、Bi、Mg、K、P、W、PbおよびCo等の金属または酸化物等の化合物うち少なくとも1種以上からなり、さらにFe、Zn、Ni、CuおよびMn等の金属または酸化物等の化合物うち少なくとも1種以上を含有しても良い。
【0023】
なお、この目的の酸素濃度を持った低損失フェライト材料を得るには、本焼成を行う前に所定の脱バインダー工程を行うことで可能になる。ここで、所定の脱バインダー工程とは、昇温速度が50〜100℃/時間、温度が400〜800℃、且つ3〜10時間キープで処理を行う工程である。所定の脱バインダー工程無しに本焼成を行うと、バインダーが成形体から出ていく際、結晶粒界からバインダーが出ていき、その際、結晶粒界が還元されてしまう為、平均結晶粒界酸素濃度が低下し、平均結晶粒界酸素濃度/平均結晶粒内酸素濃度は1以下となり、抵抗値が低下し、Pcvの増大を招くのである。
【0024】
また、この結晶の粒界及び粒内の酸素濃度を測定する方法としては、走査電子顕微鏡(SEM)で結晶を観察しながら、波長分散型X線マイクロアナライザー分析(EPMA)によって酸素濃度を定量することができる。測定条件は、分光器にLDE1を使用し、照射電流が2×10-7A、加速電圧が15kV程度、測定時間が30msecで行い、標準試料としてAl2O3を用い、分析線はKα線を用い、ピーク位置はピークトップを用いる。また、サンプルの蒸着には、カーボンを用いる。
【0025】
さらに、他の方法としては、透過型電子顕微鏡(TEM)を用いることで、酸素濃度を定量することができる。測定条件は、加速電圧200kVで、試料の厚さを0.1μm以下とする。
【0026】
また、上記EPMA、TEMによる酸素濃度の測定条件は、測定試料の状態によって、変化するもので、これを拘束するものではない。
【0027】
また、副成分のCaO、SiO2、Al2O3及びCr2O3は、抵抗値を高くする作用を成し、その結果渦電流損失が低下し、Pcvが低下する。即ち、上記主成分では、Fe2O3の量が比較的多い為、抵抗値低下が起こり、抵抗値低下抑制剤としてCaO、SiO2、Al2O3及びCr2O3を成分とすることで抵抗値を高め、渦電流損失を低下させPcvを低下させている。
【0028】
ここで、CaOを0.01〜0.2重量部としたのは、0.01重量部未満では、Pcvを更に低くできない、0.2重量部を超えると透磁率とBsが低下するためである。
【0029】
また、SiO2を0.05〜0.5重量部としたのは、0.05重量部未満では、Pcvを更に低くできない、0.5重量部を超えると透磁率とBsが低下するためである。
【0030】
また、Al2O3を0.05〜0.5重量部としたのは、0.05重量部未満では、Pcvを更に低くできない、0.5重量部を超えると透磁率とBsが低下するためである。
【0031】
また、Cr2O3を0.01〜0.2重量部としたのは、0.01重量部未満では、Pcvを更に低くできない、0.2重量部を超えると透磁率とBsが低下するためである。
【0032】
また、本発明で副成分として加えるZrO2及びY2O3は、添加することで、さらにPcvを低くすることができる。ZrO2及びY2O3の添加量を共に0.001〜0.1重量部としたのは、0.001重量部未満では、Pcvを更に低くできない、0.1重量部を超えると透磁率とBsが低下する為である。
【0033】
また、本発明においては、さらに低いPcv及び高い透磁率を同時に実現するために、低損失フェライト材料の成分含有量を99〜99.99重量%とする。この数値に限定される理由は、99重量%未満では、非磁性体の影響により、更にPcv及び透磁率を同時に高くすることができない。一方、99.99重量%を超える成分含有量のものを得るには、原料精製上大変困難である為である。
なお、本発明の低損失フェライト材料は上記成分以外のものを含んでもよい。たとえば、Bi2O3、MgO、K2O、P2O5、WO3、PbO、CoO等をいずれも0.05重量部未満の範囲で含んでもよい。
【0034】
また、本発明においては、更に低いPcv及び高い透磁率を同時にを実現するために、低損失フェライト材料の平均結晶粒径を5〜50μmとする。この数値に限定される理由は、5μm未満又は50μmを超えると、更に低いPcv及び高い透磁率を同時に実現することが出来ない為である。
【0035】
また、本発明においては、さらに低いPcv及び高い透磁率を同時にを実現するために、低損失フェライト材料の焼結密度を5.1g/cm3以上とする。この数値に限定される理由は、5.1g/cm3未満では、実効的な磁性体占有率が低くなるため、更に低いPcv及び高い透磁率を同時に実現することが出来ないためである。
【0036】
本発明のNi-Zn系フェライト材料の製造方法は、例えばFe、Zn、Ni、Cu及びMnの酸化物あるいは焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用い、これらを前述した範囲になるように主成分の各原料を調合し、振動ミル等で粉砕混合した後仮焼し、この仮焼粉体に例えばCa、Si、Al、Cr、Zr及びYの酸化物あるいは焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用い、これらを前述した範囲になるように副成分を加え、ボールミルで粉砕した後、バインダーを加えて造粒し、得られた粉体をプレス成形にて所定形状に成形し、400〜800℃の範囲で脱バインダーを行い、950〜1400℃の範囲で本焼成する事によって得られる。
【0037】
また、副成分は仮焼後に加えることを拘束するのではなく、仮焼前に主成分へ加えても特性に何ら影響するものではない。
【0038】
また、本発明は、上記のNi-Zn系フェライト材料を用いてフェライトコアを形成したことを特徴とする。
【0039】
ここで、フェライトコアとしては、図1(a)に示すようなリング状のトロイダルコア1、あるいは、図1(b)に示すようなボビン状コア2とすれば良く、それぞれ巻き線部1a、2aに巻き線を施す事によってコイルとすることができる。
【0040】
この様な本発明のNi-Zn系フェライトコアは、特に、DC-DCコンバーター等、各種電気の電源のトランス等に好適に使用することが出来る。
【0041】
【実施例】
実施例1
表1に示すFe2O3、CuO、MnO及びZnO/NiOから成る主成分を振動ミルで混合した後、800℃〜950℃で仮焼した。この仮焼粉体をボールミルにて粉砕した後、所定のバインダーを加えて造粒し、圧縮成型して図1に示すトロイダルコア1の形状に成形し、この成形体を昇温速度75℃/時間、温度600℃及び5時間キープの脱バインダー工程を行い平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が1以上とした試料と、昇温速度200℃、温度300℃及び1時間キープの脱バインダー工程を行い平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が、1以下とした試料を950℃〜1400℃で焼成し、これによって試料No.1〜22を作製した。この焼成において、焼結性の良否を○と×で2分し、○は1400℃以下でもって焼結する場合であり、×は1400℃を超える温度にまで、高めることで焼結する場合である。なお、いずれの試料も平均結晶粒径は、3μm以上で焼結密度は、5.0g/cm3以上だった。また、上記成分含有量は、98.5重量%以上であった。
【0042】
得られた焼結体をトロイダルコア1とし、これに線径0.2mmの被膜銅線を7ターン巻き付けて100kHzで初透磁率を測定した。次に、トロイダルコア1に、図2に示すように線径0.2mmの被膜銅線を用いて一次側巻き線3を100ターン、二次側巻き線4を30ターン巻き付けて、一次側巻き線3に電源5を、二次側巻き線4に磁束計6をそれぞれ接続し、100Hz、100エルステッドの条件でBsを測定した。次に、Pcvの測定は、Bs測定と同方法で、一次巻き線3を10ターン、二次巻き線4を10ターン巻き付けて、50kHz、150mTの条件で測定した。また、抵抗値は、JIS C-2141の規格に添って測定を行った。
【0043】
結果は、表1に示す通りである。なお、表1中の酸素濃度比は、平均結晶粒界酸素濃度/平均結晶粒内酸素濃度を示すものである。この結果より、Fe2O3の含有量が、48モル%未満の試料(No.1)では、Bs及び透磁率が低かった。一方、Fe2O3が50モル%を超える試料(No.2)は抵抗値が低く、Pcvが大きかった。また、CuOの含有量が、1モル%未満の試料(No.3)では、焼結性が悪く、8モル%を超える試料(No.4)では、透磁率及びBsが低くかった。また、MnOの含有量が、0.1モル%未満で1モル%を超える試料(No.5、6)では、透磁率及びBsが低くかった。また、Zn/Niが2未満の試料(No.7)では、透磁率が低く、10を超える試料(No.8)では、Bsが低かった。また、平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が1未満の試料(No.9、10)では、抵抗値が低く、Pcvが大きかった。
【0044】
これらに対し、Fe2O3、CuO、MnO及びZn/Niのモル比を48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOとZnO/NiOのモル比が2〜10及び平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が1以上とした本発明の実施例(No.11〜22)では、Bsが3000ガウス以上で、透磁率が2000以上で、焼結性も良好で、抵抗値も108Ω・cm以上で、且つPcvも400kW/m3以下と優れた特性が得られる事が分かった。
【0045】
【表1】

Figure 0004436509
【0046】
実施例2
次に、主成分を49.5モル%のFe2O3、5モル%のCuO、0.4モル%のMnO及びZnO/NiO=2.5と固定し、副成分のCaO、SiO2、Al2O3及びCr2O3を表2に示すように幾通りにも変化させ、その他条件は、上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.23〜40を得た。なお、いずれの試料も平均結晶粒界酸素濃度/平均結晶粒内酸素濃度は、1以上で平均結晶粒径は、3μm以上で焼結密度は、5.0g/cm3以上だった。また、上記成分含有量は、98.5重量%以上であった。
【0047】
得られた焼結体に対して、実施例1と同様にしてPcv、透磁率、Bs及び抵抗値を測定したところ、表2に示すような結果が得られた。
【0048】
この結果より、CaOの添加量を0.01〜0.2重量部、SiO2の添加量を0.05〜0.5重量部、Al2O3の添加量を0.05〜0.5重量部及びCr2O3の添加量を0.01〜0.2重量部とした本発明実施例の範囲外の試料(No.23〜30)では、Pcvを更に低くできなかった。
【0049】
これに対し、CaOの添加量を0.01〜0.2重量部、SiO2の添加量を0.05〜0.5重量部、Al2O3の添加量を0.05〜0.5重量部、Cr2O3の添加量を0.01〜0.2重量部とした本発明の実施例(No.31〜40)では、Bsが3000G以上で、透磁率が2000以上で、抵抗値も108Ω・cm以上と高く、Pcvも350kW/m3以下と更に優れた特性が得られることが、分かった。
【0050】
同様に、主成分が48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOを含有し、且つZnO/NiOのモル比が2〜10の範囲において表2のNo.23〜40に示した副成分を添加した結果、Bsが3000ガウス以上で、透磁率が2000以上で、抵抗値も108Ω・cm以上と高くPcvも350kW/m3以下と更に優れた特性が得られた。
【0051】
【表2】
Figure 0004436509
【0052】
実施例3
次に、主成分を49.5モル%のFe2O3と5モル%のCuO、0.4モル%のMnOとZn/Ni=2.5とし、副成分であるCaOを0.05重量部、SiO2を0.2重量部、Al2O3を0.1重量部とCr2O3を0.05重量部に固定し、副成分のZrO2とY2O3を表3に示すように変化させて、その他条件は、上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.41〜49を得た。なお、いずれの試料も平均結晶粒界酸素濃度/平均結晶粒内酸素濃度は、1以上で平均結晶粒径は、3μm以上で焼結密度は、5.0g/cm3以上だった。また、上記成分含有量は、98.5重量%以上であった。
【0053】
得られた焼結体に対して、実施例1と同様にしてPcv、透磁率、Bs及び抵抗値を測定したところ、表3に示すような結果が得られた。
【0054】
この結果より、ZrO2及びY2O3を添加していない本発明の試料(No.41)は、Pcvが340kW/m3と優れた特性が得られた。また、ZrO2の添加量を0.001〜0.1重量部、Y2O3の添加量を0.001〜0.1重量部とした本発明の実施例(No.46〜49)では、Bsが3000ガウス以上、透磁率が、2000以上、抵抗も108Ω・cm以上でPcvは、300kW/m3と低く更に優れた特性が得られた。
【0055】
同様に、主成分が48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOを含有し、且つZnO/NiOのモル比が2〜10で、副成分が0.01〜0.2重量部のCaO、0.05〜0.5重量部のSiO2、0.05〜0.5重量部のAl2O3及び0.01〜0.2重量部のCr2O3の範囲において、表3のNO.41〜49に示したZrO2及びY2O3を添加した結果、焼結性が良好で、Bsが3000ガウス以上で、透磁率も2000以上で、抵抗も108Ω・cm以上、且つPcvも300kW/m3以下と優れた特性が得られた。
【0056】
【表3】
Figure 0004436509
【0057】
実施例4
次に、主成分のFe2O3、CuO、MnO、ZnO/NiOのモル比及び平均結晶粒界酸素濃度/平均結晶粒内酸素濃度並びに成分含有量、平均結晶粒径及び焼結密度を表4に示すように変化させて、その他条件は、上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.50〜61を得た。
【0058】
得られた焼結体に対して、実施例1と同様にしてPcv、透磁率、Bs及び抵抗値を測定したところ、表4に示すような結果が得られた。また、各試料の焼結密度はアルキメデス法によって測定した。
【0059】
この結果より、成分含有量が99〜99.99重量%であり、平均結晶粒径が5〜50μmであり、焼結密度が5.1g/cm3以上の実施例(No.50〜61)では、Bsが3000ガウス以上、透磁率が2200以上、抵抗も108Ω・cm以上でPcvは、350kW/m3以下と更に優れた特性が得られた。
【0060】
同様に、主成分が48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOを含有し、ZnO/NiOのモル比が2〜10で、且つ平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が、1以上の範囲について表4のNo.50〜61の範囲で副成分、成分含有量、平均結晶粒径、結晶密度を変化させた結果、優れた特性が得られた。
【0061】
【表4】
Figure 0004436509
【0062】
実施例5
次に、主成分を49.5モル%のFe2O3、5モル%のCuO、0.4モル%のMnO、ZnO/NiO=2.5に固定し、CaO、SiO2、Al2O3及びCr2O3の添加量、成分含有量、平均結晶粒径と焼結密度を表5に示すように変化させて、その他条件は、上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.62〜71を得た。
【0063】
なお、いずれの試料も平均結晶粒界酸素濃度/平均結晶粒内酸素濃度は、1以上であった。
【0064】
得られた焼結体に対して、実施例1と同様にしてPcv、透磁率、Bs及び抵抗値を測定したところ、表5に示すような結果が得られた。
【0065】
この結果より、成分含有量が99〜99.99重量%であり、平均結晶粒径が5〜50μmであり、焼結密度が5.1g/cm3以上の実施例(No.62〜71)では、Bsが3000ガウス以上、透磁率が2200以上、抵抗も108Ω・cm以上でPcvは、300kW/m3以下と更に優れた特性が得られた。
【0066】
同様に、主成分が48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOを含有し、ZnO/NiOのモル比が2〜10で、且つ平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が、1以上で、副成分が0.01〜0.2重量部のCaO、0.05〜0.5重量部のSiO2、0.05〜0.5重量部のAl2O3及び0.01〜0.2重量部のCr2O3の範囲について表5のNo.62〜71の範囲で副成分、成分含有量、平均結晶粒径、結晶密度を変化させた結果、優れた特性が得られた。
【0067】
【表5】
Figure 0004436509
【0068】
実施例6
次に、主成分を49.5モル%のFe2O3と5モル%のCuO、0.4モル%のMnOとZn/Ni=2.5とし、副成分であるCaOを0.05重量部、SiO2を0.2重量部、Al2O3を0.1重量部とCr2O3を0.05重量部に固定し、ZrO2及びY2O3の添加量、成分含有量、平均結晶粒径と焼結密度を表6に示すように変化させて、その他条件は、上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.72〜79を得た。
【0069】
なお、いずれの試料も平均結晶粒界酸素濃度/平均結晶粒内酸素濃度は、1以上であった。
【0070】
得られた焼結体に対して、実施例1と同様にしてPcv、透磁率、Bs及び抵抗値を測定したところ、表6に示すような結果が得られた。
【0071】
この結果より、成分含有量が99〜99.99重量%であり、平均結晶粒径が5〜50μmであり、焼結密度が5.1g/cm3以上の実施例(No.72〜79)では、Bsが3000ガウス以上、透磁率が2200以上、抵抗も108Ω・cm以上でPcvは、250kW/m3以下と更に優れた特性が得られた。
【0072】
同様に、主成分が48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOを含有し、ZnO/NiOのモル比が2〜10で、且つ平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が、1以上で、副成分が0.01〜0.2重量部のCaO、0.05〜0.5重量部のSiO2、0.05〜0.5重量部のAl2O3及び0.01〜0.2重量部のCr2O3の範囲について表4のNo.72〜79の範囲で副成分、成分含有量、平均結晶粒径、結晶密度を変化させた結果、優れた特性が得られた。
【0073】
【表6】
Figure 0004436509
【0074】
【発明の効果】
以上のように本発明によれば、Fe、Zn、Ni、Cu及びMnの酸化物を、それぞれFe2O3、ZnO、NiO、CuO及びMnO換算で、48〜50モル%のFe2O3、1〜8モル%のCuOと0.1〜1モル%のMnOを含有し、且つZnO/NiOのモル比が2〜10である主成分において、平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が1以上であり、副成分としてCa、Si、Al、Cr、Zr及びYの酸化物を、それぞれCaO、SiO2、Al2O3、Cr2O3、ZrO2及びY2O3換算で、0.01〜0.2重量部のCaO、0.05〜0.5重量部のSiO2、0.05〜0.5重量部のAl2O3、0.01〜0.2重量部のCr2O3、0.001〜0.1重量部のZrO2及び0.001〜0.1重量部のY2O3を含有し、上記主成分と副成分の合計含有量が99〜99.99重量%であり、平均結晶粒径が5〜50μmであり、焼結密度が5.1g/cm3以上であることで、優れた焼結性、透磁率、Bs及び抵抗値を維持したまま、Pcvを400kW/m3以下と優れた特性が得られる。
【0075】
また、本発明によれば、上記低損失フェライト材料でフェライトコアを形成したことによって、絶縁対策が不要で低損失化が可能となる。従って、このフェライトコアを電源用に用いれば、各種電子機器の小型化・薄型化・高効率化に貢献することが出来る。
【図面の簡単な説明】
【図1】(a)(b)は本発明のフェライトコアを示す図である。
【図2】本発明のフェライトコアの特性を測定する方法を示す図である。
【符号の説明】
1:トロイダルコア
1a:巻線部
2:ボビンコア
2a:巻線部
3:一次側巻線
4:二次側巻線
5:電源
6:磁束計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferrite material composition, and more particularly to a ferrite material exhibiting low loss, high magnetic permeability, high magnetic flux density, high resistance, and easy sintering, and a ferrite using the same.
[0002]
[Prior art]
Ni-Zn ferrite materials are widely used as cores for inductors, transformers, ballasts, electromagnets, noise reduction, etc.
[0003]
In particular, with the recent expansion of applications of liquid crystal displays to electronic devices, the market for transformers for lighting backlights is expanding. The demand for miniaturization, thinning, and high efficiency of transformer circuits has been reduced at the same time as the cost of the transformer circuit has been reduced, as personal computer, word processors, LCD TVs, camera-integrated VTRs, information communication equipment, game consoles, etc. It is getting stronger.
[0004]
In the backlight system of the liquid crystal display, the cold cathode tube method is mainly used from the viewpoint of brightness, efficiency, and lifetime. In order to light a cold cathode tube, it is necessary to generate an AC high voltage output of several thousand volts from a relatively low voltage DC voltage input to the transformer circuit. Insulation is an important issue for improving reliability.
[0005]
For this reason, the development of a transformer is an important point in realizing the reduction in size, thickness and efficiency of a transformer circuit.
[0006]
In order to reduce the size, thickness and efficiency of the transformer, the ferrite material is required to have low loss, high magnetic permeability, high saturation magnetic flux density, and high resistance. When a ferrite material having a large loss is used in the transformer circuit, the power loss increases, and the amount of heat generation increases. When the amount of heat generation increases, it is necessary to enlarge the heat radiation space in order to promote heat radiation. If this heat dissipation space becomes large, it is difficult to reduce the size and thickness of the transformer circuit, so low-loss ferrite is required. In addition, if the resistance is low, various insulation measures are required, and it is difficult to reduce the size and thickness of the ferrite. Furthermore, since the transformer is biased, heat generation due to magnetic flux saturation is likely to occur. Therefore, in order to reduce the size and thickness, it is necessary to reduce the heat generation due to saturation using a ferrite material with high permeability and high saturation magnetic flux density. .
[0007]
[Problems to be solved by the invention]
As a transformer material currently used, a low loss Mn-Zn ferrite material is used at a use frequency of 40 to 100 kHz. However, Mn-Zn ferrite has a low electrical resistance of several Ω · cm among ferrite materials, and it is necessary to design a transformer to ensure withstand voltage, and it is in a limit state for the demands for miniaturization and cost reduction. .
[0008]
In contrast, Ni-Zn ferrite is about 106 times that of Mn-Zn ferrite have high electrical resistance, and excellent insulating properties, can be easily insulation measures as transformers. Furthermore, since insulation measures such as between cores and coils and between cores and terminals are not required, the insulation distance can be shortened, which has the great advantage that the transformer can be easily reduced in size and at the same time reduced in cost. However, Ni-Zn ferrite has a disadvantage that the loss (core loss) is about 10 times larger than that of Mn-Zn ferrite and lacks practicality as a transformer due to heat generation.
[0009]
On the other hand, it has also been proposed to improve the characteristics by adding various additives to Ni-Zn ferrite (see JP-A-4-337605, JP-A-521221, JP-A-6-120021, etc.) ), None of which solved the above problem.
[0010]
Therefore, the present invention has a core loss of 400 kW / m 3 or less, a high resistance of 10 8 Ω · cm or more at room temperature, a high permeability of 2000 or more, a saturation magnetic flux density of 3000 gauss or more, and easy sintering. The purpose is to obtain a low-loss Ni-Zn ferrite material.
[0011]
[Means for solving the problems]
Low-loss ferrite material of the present invention, Fe, Zn, Ni, an oxide of Cu and Mn, respectively Fe 2 O 3, ZnO, NiO , with CuO and MnO basis, 48 to 50 mol% Fe 2 O 3, It contains 1 to 8 mol% CuO and 0.1 to 1 mol% MnO, and the remaining ZnO / NiO molar ratio is 2 to 10, and the average grain boundary oxygen concentration / average grain oxygen concentration is It is 1 or more.
[0012]
Another low-loss ferrite material of the present invention is based on 100 parts by weight of the low-loss ferrite material of the present invention, with Ca, Si, Al and Cr oxides as subcomponents, CaO, SiO 2 and Al 2 O, respectively. 3 and Cr 2 O 3 conversion, 0.01 to 0.2 parts by weight of CaO, 0.05 to 0.5 parts by weight of SiO 2 , 0.05 to 0.5 parts by weight of Al 2 O 3 and 0.01 to 0.2 parts by weight of Cr 2 O 3 It is characterized by things.
[0013]
Other low-loss ferrite material of the present invention, Zr and Y oxides as subcomponents with respect to 100 parts by weight of the low-loss ferrite material of the present invention, respectively, in terms of ZrO 2 and Y 2 O 3 , 0.001 ~ It contains 0.1 part by weight of ZrO 2 and 0.001 to 0.1 part by weight of Y 2 O 3 .
[0014]
Further, the total content of the main component and subcomponents (hereinafter referred to as component content) is 99 to 99.99% by weight, the average crystal grain size is 5 to 50 μm, and the sintered density is 5.1 g. It is characterized by being / cm 3 or more.
[0015]
Furthermore, the ferrite core of the present invention is characterized by being formed into a predetermined shape with the low-loss erlite material of the present invention.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The low-loss ferrite material of the present invention is a Ni-Zn-Cu-Mn ferrite, the oxygen concentration in the grain boundary and the grain is adjusted to a predetermined ratio, and if necessary, CaO, SiO 2 , Al By adding 2 O 3 and Cr 2 O 3 as well as ZrO 2 and Y 2 O 3 , more preferably by satisfying the predetermined component content, average grain size and sintering density, the core loss (Pcv) However, 400 kW / m 3 or less, preferably 350 kW / m 3 or less, more preferably 300 kW / m 3 or less, more preferably 250 kW / m 3 or less, and a high resistance of 10 8 Ω · cm or more at room temperature. It is characterized in that a low-loss ferrite material having a magnetic permeability of 2000 or more, preferably 2200 or more, a saturation magnetic flux density (Bs) of 3000 gauss or more, and easy sintering is obtained.
[0017]
In the present invention, the reason why the composition ratio of the main component is in the above range is as follows. The reason why Fe 2 O 3 is 48 to 50 mol% is that when Fe 2 O 3 is less than 48 mol%, Bs and permeability decrease, and when it exceeds 50 mol%, resistance value decreases and Pcv increases. Because of that.
[0018]
The reason why CuO is 1 to 8 mol% is that if CuO is less than 1 mol%, the sinterability is lowered, and if it exceeds 8 mol%, the permeability and Bs are lowered.
[0019]
The reason why MnO is set to 0.1 to 1 mol% is that the magnetic permeability and Bs decrease outside this range.
[0020]
The reason why ZnO / NiO = 2 to 10 is that if it is less than 2, the magnetic permeability decreases, and if it exceeds 10, Bs decreases.
[0021]
Also, the reason why the average grain boundary oxygen concentration / average crystal grain oxygen concentration is set to 1 or more is that if it is less than 1, the resistance value decreases, eddy current loss increases, and as a result, Pcv increases. This is because when the oxygen concentration in the crystal grain boundary is low, elements with different valences are likely to exist in the crystal grain boundary, and the crystal grain boundary part forms a path for electrons and builds a network, so the resistance value decreases. This is because.
[0022]
In the low-loss ferrite material of the present invention, the crystal phase in the crystal grains is a spinel phase or the like as the main crystal phase. On the other hand, the crystal grain boundary is composed of at least one of compounds such as metals or oxides such as Ca, Si, Al, Cr, Zr, Y, Bi, Mg, K, P, W, Pb and Co, and Fe. At least one of metals such as Zn, Ni, Cu and Mn or compounds such as oxides may be contained.
[0023]
In order to obtain a low-loss ferrite material having the target oxygen concentration, it is possible to perform a predetermined debinding step before performing the main firing. Here, the predetermined debinding step is a step of performing the treatment at a temperature rising rate of 50 to 100 ° C./hour, a temperature of 400 to 800 ° C., and keeping for 3 to 10 hours. When the main firing is performed without a predetermined debinding step, the binder comes out of the crystal grain boundary when the binder comes out of the molded body, and at that time, the crystal grain boundary is reduced. The oxygen concentration decreases, the average grain boundary oxygen concentration / average crystal grain oxygen concentration becomes 1 or less, the resistance value decreases, and Pcv increases.
[0024]
In addition, as a method of measuring the grain boundary of the crystal and the oxygen concentration in the grain, the oxygen concentration is quantified by wavelength dispersive X-ray microanalyzer analysis (EPMA) while observing the crystal with a scanning electron microscope (SEM). be able to. Measurement conditions were as follows: LDE1 was used for the spectrometer, irradiation current was 2 × 10 -7 A, acceleration voltage was about 15 kV, measurement time was 30 msec, Al 2 O 3 was used as the standard sample, and the analytical line was Kα line And the peak position is the peak top. Carbon is used for the vapor deposition of the sample.
[0025]
Furthermore, as another method, the oxygen concentration can be quantified by using a transmission electron microscope (TEM). Measurement conditions are an acceleration voltage of 200 kV and a sample thickness of 0.1 μm or less.
[0026]
Moreover, the measurement conditions of the oxygen concentration by the above-mentioned EPMA and TEM change depending on the state of the measurement sample, and do not constrain this.
[0027]
Further, the subcomponents CaO, SiO 2 , Al 2 O 3 and Cr 2 O 3 act to increase the resistance value, resulting in a decrease in eddy current loss and a decrease in Pcv. That is, in the main component, since the amount of Fe 2 O 3 is relatively large, the resistance value is lowered, and CaO, SiO 2 , Al 2 O 3 and Cr 2 O 3 are used as components as resistance value reduction inhibitors. Increases the resistance value, lowers eddy current loss and lowers Pcv.
[0028]
Here, the reason why CaO is set to 0.01 to 0.2 parts by weight is that if it is less than 0.01 parts by weight, Pcv cannot be further lowered, and if it exceeds 0.2 parts by weight, the magnetic permeability and Bs decrease.
[0029]
Further, the reason why SiO 2 is set to 0.05 to 0.5 parts by weight is that Pcv cannot be further reduced if it is less than 0.05 parts by weight, and if it exceeds 0.5 parts by weight, the magnetic permeability and Bs decrease.
[0030]
Further, the reason why Al 2 O 3 is set to 0.05 to 0.5 parts by weight is that if the amount is less than 0.05 parts by weight, Pcv cannot be further lowered, and if it exceeds 0.5 parts by weight, the magnetic permeability and Bs decrease.
[0031]
The reason why Cr 2 O 3 is set to 0.01 to 0.2 parts by weight is that Pcv cannot be further reduced if it is less than 0.01 parts by weight, and if it exceeds 0.2 parts by weight, the magnetic permeability and Bs decrease.
[0032]
In addition, Pcv can be further lowered by adding ZrO 2 and Y 2 O 3 added as subcomponents in the present invention. The reason why both ZrO 2 and Y 2 O 3 are added in amounts of 0.001 to 0.1 parts by weight is that Pcv cannot be further reduced if the amount is less than 0.001 parts by weight, and permeability and Bs decrease if the amount exceeds 0.1 parts by weight. .
[0033]
In the present invention, the component content of the low-loss ferrite material is 99 to 99.99% by weight in order to simultaneously achieve lower Pcv and higher magnetic permeability. The reason for being limited to this value is that if it is less than 99% by weight, Pcv and the magnetic permeability cannot be increased at the same time due to the influence of the non-magnetic material. On the other hand, this is because it is very difficult to purify raw materials to obtain a component content exceeding 99.99% by weight.
Note that the low-loss ferrite material of the present invention may contain other than the above components. For example, Bi 2 O 3 , MgO, K 2 O, P 2 O 5 , WO 3 , PbO, CoO, etc. may all be included in a range of less than 0.05 parts by weight.
[0034]
In the present invention, in order to achieve a lower Pcv and a higher magnetic permeability at the same time, the average crystal grain size of the low-loss ferrite material is set to 5 to 50 μm. The reason why it is limited to this numerical value is that if it is less than 5 μm or exceeds 50 μm, it is impossible to simultaneously realize a lower Pcv and a higher magnetic permeability.
[0035]
In the present invention, the sintered density of the low-loss ferrite material is set to 5.1 g / cm 3 or more in order to achieve lower Pcv and higher magnetic permeability at the same time. The reason why it is limited to this value is that if it is less than 5.1 g / cm 3 , the effective magnetic material occupancy becomes low, so that it is impossible to simultaneously realize a lower Pcv and a higher magnetic permeability.
[0036]
The method for producing the Ni-Zn ferrite material of the present invention uses, for example, Fe, Zn, Ni, Cu, and Mn oxides or metal salts such as carbonates and nitrates that generate oxides by firing, and these are described above. Each raw material of the main component is prepared so as to be in the range, pulverized and mixed by a vibration mill or the like, and then calcined. Use metal salts such as carbonates and nitrates to form oxides, add these subcomponents to the above-mentioned range, pulverize with a ball mill, add a binder, granulate, and obtain the resulting powder. It is obtained by molding into a predetermined shape by press molding, removing the binder in the range of 400 to 800 ° C, and performing the main firing in the range of 950 to 1400 ° C.
[0037]
Further, the subcomponent does not restrict the addition after the calcination, and if added to the main component before the calcination, the properties are not affected at all.
[0038]
Further, the present invention is characterized in that a ferrite core is formed using the above-described Ni-Zn ferrite material.
[0039]
Here, the ferrite core may be a ring-shaped toroidal core 1 as shown in FIG. 1 (a) or a bobbin-like core 2 as shown in FIG. 1 (b). A coil can be formed by winding the wire 2a.
[0040]
Such a Ni-Zn ferrite core of the present invention can be suitably used particularly for transformers for various electric power sources such as DC-DC converters.
[0041]
【Example】
Example 1
The main components composed of Fe 2 O 3 , CuO, MnO and ZnO / NiO shown in Table 1 were mixed by a vibration mill and then calcined at 800 ° C. to 950 ° C. The calcined powder is pulverized by a ball mill, granulated with a predetermined binder, compression-molded, and molded into the shape of the toroidal core 1 shown in FIG. A sample with an average grain boundary oxygen concentration / average crystal grain oxygen concentration of 1 or more by performing a binder removal step for 5 hours at a temperature of 600 ° C and a temperature rising rate of 200 ° C, a temperature of 300 ° C for 1 hour A sample having the average grain boundary oxygen concentration / average crystal grain oxygen concentration of 1 or less was baked at 950 ° C. to 1400 ° C. by performing the binder removal step, thereby preparing Sample Nos. 1 to 22. In this firing, the quality of the sinterability is divided into ○ and × for 2 minutes, ○ is the case of sintering at 1400 ° C or less, × is the case of sintering by raising to a temperature exceeding 1400 ° C is there. All samples had an average crystal grain size of 3 μm or more and a sintered density of 5.0 g / cm 3 or more. The component content was 98.5% by weight or more.
[0042]
The obtained sintered body was used as a toroidal core 1, and a coated copper wire having a wire diameter of 0.2 mm was wound around this for 7 turns, and the initial permeability was measured at 100 kHz. Next, the primary side winding 3 is wound around the toroidal core 1 with 100 turns of the primary winding 3 and 30 turns of the secondary winding 4 using a coated copper wire having a wire diameter of 0.2 mm as shown in FIG. A power source 5 was connected to 3 and a magnetometer 6 was connected to the secondary winding 4, and Bs was measured under conditions of 100 Hz and 100 oersted. Next, Pcv was measured in the same manner as the Bs measurement, with the primary winding 3 wound 10 turns and the secondary winding 4 wound 10 turns under the conditions of 50 kHz and 150 mT. The resistance value was measured according to the standard of JIS C-2141.
[0043]
The results are as shown in Table 1. The oxygen concentration ratio in Table 1 indicates the average crystal grain boundary oxygen concentration / average crystal grain oxygen concentration. From this result, in the sample (No. 1) in which the content of Fe 2 O 3 was less than 48 mol%, Bs and magnetic permeability were low. On the other hand, the sample (No. 2) in which Fe 2 O 3 exceeds 50 mol% had a low resistance value and a large Pcv. In addition, the sinterability was poor in the sample (No. 3) having a CuO content of less than 1 mol%, and the permeability and Bs were low in the sample (No. 4) in which the content was more than 8 mol%. Further, in the samples (Nos. 5 and 6) in which the MnO content was less than 0.1 mol% and more than 1 mol%, the magnetic permeability and Bs were low. Further, the sample with Zn / Ni less than 2 (No. 7) had a low magnetic permeability, and the sample with No. 10 (No. 8) had a low Bs. Moreover, in the samples (Nos. 9 and 10) having an average grain boundary oxygen concentration / average crystal grain oxygen concentration of less than 1, the resistance value was low and Pcv was large.
[0044]
In contrast, the molar ratio of Fe 2 O 3 , CuO, MnO and Zn / Ni is 48-50 mol% Fe 2 O 3 , 1-8 mol% CuO, 0.1-1 mol% MnO and ZnO / NiO. In Examples (Nos. 11 to 22) of the present invention in which the molar ratio of 2 to 10 and the average grain boundary oxygen concentration / average crystal grain oxygen concentration is 1 or more, Bs is 3000 gauss or more, and the magnetic permeability is It was found that excellent characteristics were obtained with 2000 or more, good sinterability, resistance value of 10 8 Ω · cm or more, and Pcv of 400 kW / m 3 or less.
[0045]
[Table 1]
Figure 0004436509
[0046]
Example 2
Next, Fe 2 O 3 in the main component 49.5 mol%, 5 mol% of CuO, and fixed with 0.4 mol% of MnO and ZnO / NiO = 2.5, subcomponents CaO, SiO 2, Al 2 O 3 and Cr 2 O 3 was changed in various ways as shown in Table 2, and other conditions were the same as in Example 1 above, and sample Nos. 23 to 40 having the shape of the toroidal core 1 were obtained. In each sample, the average grain boundary oxygen concentration / average intra-grain oxygen concentration was 1 or more, the average crystal grain size was 3 μm or more, and the sintered density was 5.0 g / cm 3 or more. The component content was 98.5% by weight or more.
[0047]
When the obtained sintered body was measured for Pcv, magnetic permeability, Bs and resistance in the same manner as in Example 1, the results shown in Table 2 were obtained.
[0048]
From this result, the addition amount of CaO is 0.01 to 0.2 parts by weight, the addition amount of SiO 2 is 0.05 to 0.5 parts by weight, the addition amount of Al 2 O 3 is 0.05 to 0.5 parts by weight, and the addition amount of Cr 2 O 3 is 0.01. In the sample (No. 23 to 30) outside the range of the present invention example which was set to ˜0.2 parts by weight, Pcv could not be further lowered.
[0049]
On the other hand, the addition amount of CaO is 0.01 to 0.2 parts by weight, the addition amount of SiO 2 is 0.05 to 0.5 parts by weight, the addition amount of Al 2 O 3 is 0.05 to 0.5 parts by weight, and the addition amount of Cr 2 O 3 is 0.01. In the examples of the present invention (No. 31 to 40) with a weight of ~ 0.2 parts by weight, Bs is 3000 G or more, permeability is 2000 or more, resistance is as high as 10 8 Ω · cm or more, and Pcv is 350 kW / m. It was found that even better characteristics of 3 or less can be obtained.
[0050]
Similarly, the main component is 48 to 50 mol% Fe 2 O 3, containing 1-8 mol% of CuO and 0.1 to 1 mol% of MnO, and the range of the molar ratio of ZnO / NiO 2-10 As a result of adding the subcomponents shown in Nos. 23 to 40 in Table 2, Bs is 3000 Gauss or more, permeability is 2000 or more, resistance is 10 8 Ω · cm or more, and Pcv is 350 kW / m 3 or less. Further excellent characteristics were obtained.
[0051]
[Table 2]
Figure 0004436509
[0052]
Example 3
Next, CuO of the main component 49.5 mol% of Fe 2 O 3 5 mole%, and 0.4 mol% MnO and Zn / Ni = 2.5, 0.05 part by weight of CaO is subcomponent, SiO 2 and 0.2 part by weight Al 2 O 3 was fixed at 0.1 part by weight and Cr 2 O 3 was fixed at 0.05 part by weight, and the accessory components ZrO 2 and Y 2 O 3 were changed as shown in Table 3, and the other conditions were as in the above examples. Sample Nos. 41 to 49 having the shape of the toroidal core 1 were obtained in the same manner as in Example 1. In each sample, the average grain boundary oxygen concentration / average intra-grain oxygen concentration was 1 or more, the average crystal grain size was 3 μm or more, and the sintered density was 5.0 g / cm 3 or more. The component content was 98.5% by weight or more.
[0053]
When the obtained sintered body was measured for Pcv, magnetic permeability, Bs, and resistance in the same manner as in Example 1, the results shown in Table 3 were obtained.
[0054]
From this result, the sample (No. 41) according to the present invention to which ZrO 2 and Y 2 O 3 were not added had an excellent characteristic of Pcv of 340 kW / m 3 . In the examples of the present invention (No. 46 to 49) in which the addition amount of ZrO 2 is 0.001 to 0.1 parts by weight and the addition amount of Y 2 O 3 is 0.001 to 0.1 parts by weight, Bs is 3000 gauss or more, Pcv was as low as 300kW / m 3 with a magnetic permeability of 2000 or more, resistance of 10 8 Ω · cm or more, and even better characteristics were obtained.
[0055]
Similarly, the main component is 48 to 50 mol% Fe 2 O 3, containing 1-8 mol% of CuO and 0.1 to 1 mol% of MnO, and a molar ratio of ZnO / NiO 2 to 10, secondary CaO components 0.01 to 0.2 parts by weight, SiO 2 of 0.05 to 0.5 parts by weight, in the range of Cr 2 O 3 in Al 2 O 3 and 0.01 to 0.2 parts by weight of 0.05 to 0.5 parts by weight, NO.41 of Table 3 As a result of adding ZrO 2 and Y 2 O 3 shown in ~ 49, the sinterability is good, Bs is 3000 Gauss or more, permeability is 2000 or more, resistance is 10 8 Ω · cm or more, and Pcv is also Excellent characteristics of less than 300kW / m 3 were obtained.
[0056]
[Table 3]
Figure 0004436509
[0057]
Example 4
Next, the molar ratio of the main components Fe 2 O 3 , CuO, MnO, ZnO / NiO, average grain boundary oxygen concentration / average intra-grain oxygen concentration, component content, average crystal grain size, and sintered density are shown. The sample No. 50 to 61 having the shape of the toroidal core 1 were obtained in the same manner as in Example 1 except that the conditions were changed as shown in FIG.
[0058]
When the obtained sintered body was measured for Pcv, magnetic permeability, Bs and resistance in the same manner as in Example 1, the results shown in Table 4 were obtained. The sintered density of each sample was measured by Archimedes method.
[0059]
From this result, the component content is 99-99.99% by weight, the average crystal grain size is 5-50 μm, and the sintering density is 5.1 g / cm 3 or more (No. 50-61), Bs 3,000 gauss or higher, permeability 2200 or higher, resistance 10 8 Ω · cm or higher, and Pcv 350kW / m 3 or lower.
[0060]
Similarly, the main component contains 48 to 50 mol% of Fe 2 O 3, 1 to 8 mol% of CuO and 0.1 to 1 mol% of MnO, a molar ratio of ZnO / NiO 2-10, and the average As a result of changing the subcomponent, component content, average crystal grain size, and crystal density in the range of No. 50 to 61 in Table 4 in the range of grain boundary oxygen concentration / average crystal grain oxygen concentration of 1 or more, Excellent properties were obtained.
[0061]
[Table 4]
Figure 0004436509
[0062]
Example 5
Next, Fe 2 O 3 in the main component 49.5 mol%, 5 mol% of CuO, 0.4 mol% of MnO, and fixed to the ZnO / NiO = 2.5, CaO, SiO 2, Al 2 O 3 and Cr 2 O 3 Sample No. 62 having the shape of the toroidal core 1 in the same manner as in Example 1 except that the addition amount, component content, average crystal grain size and sintered density were changed as shown in Table 5. ~ 71 was obtained.
[0063]
In all samples, the average grain boundary oxygen concentration / average intra-grain oxygen concentration was 1 or more.
[0064]
When the obtained sintered body was measured for Pcv, magnetic permeability, Bs, and resistance in the same manner as in Example 1, the results shown in Table 5 were obtained.
[0065]
From this result, the component content is 99-99.99% by weight, the average crystal grain size is 5-50 μm, and the sintered density is 5.1 g / cm 3 or more (No. 62-71), Bs Was more than 3000 gauss, permeability was 2200 or more, resistance was 10 8 Ω · cm or more, and Pcv was 300 kW / m 3 or less.
[0066]
Similarly, the main component contains 48 to 50 mol% of Fe 2 O 3, 1 to 8 mol% of CuO and 0.1 to 1 mol% of MnO, a molar ratio of ZnO / NiO 2-10, and the average Grain boundary oxygen concentration / average crystal grain oxygen concentration is 1 or more, and subcomponents are 0.01 to 0.2 parts by weight of CaO, 0.05 to 0.5 parts by weight of SiO 2 , 0.05 to 0.5 parts by weight of Al 2 O 3 and 0.01. As a result of changing the subcomponent, component content, average crystal grain size, and crystal density in the range of No. 62 to 71 in Table 5 in the range of ~ 0.2 parts by weight of Cr 2 O 3 , excellent characteristics were obtained. .
[0067]
[Table 5]
Figure 0004436509
[0068]
Example 6
Next, CuO of the main component 49.5 mol% of Fe 2 O 3 5 mole%, and 0.4 mol% MnO and Zn / Ni = 2.5, 0.05 part by weight of CaO is subcomponent, SiO 2 and 0.2 part by weight As shown in Table 6, 0.12 parts by weight of Al 2 O 3 and 0.05 parts by weight of Cr 2 O 3 are fixed, and the added amount of ZrO 2 and Y 2 O 3 , component contents, average grain size and sintered density are shown in Table 6. In other conditions, sample Nos. 72 to 79 having the shape of the toroidal core 1 were obtained in the same manner as in Example 1 above.
[0069]
In all samples, the average grain boundary oxygen concentration / average intra-grain oxygen concentration was 1 or more.
[0070]
When the obtained sintered body was measured for Pcv, magnetic permeability, Bs, and resistance in the same manner as in Example 1, the results shown in Table 6 were obtained.
[0071]
From this result, the component content is 99-99.99% by weight, the average crystal grain size is 5-50 μm, and the sintered density is 5.1 g / cm 3 or more (No. 72-79), Bs 3,000 gauss or more, magnetic permeability is 2200 or more, resistance is 10 8 Ω · cm or more, and Pcv is 250 kW / m 3 or less.
[0072]
Similarly, the main component contains 48 to 50 mol% of Fe 2 O 3, 1 to 8 mol% of CuO and 0.1 to 1 mol% of MnO, a molar ratio of ZnO / NiO 2-10, and the average Grain boundary oxygen concentration / average crystal grain oxygen concentration is 1 or more, and subcomponents are 0.01 to 0.2 parts by weight of CaO, 0.05 to 0.5 parts by weight of SiO 2 , 0.05 to 0.5 parts by weight of Al 2 O 3 and 0.01. 0.2 auxiliary ingredient in the range of No.72~79 Table 4 for a range of Cr 2 O 3 parts by weight, component content, average grain size, the results of varying crystal density were obtained excellent characteristics .
[0073]
[Table 6]
Figure 0004436509
[0074]
【The invention's effect】
As described above, according to the present invention, oxides of Fe, Zn, Ni, Cu, and Mn are converted into 48 to 50 mol% Fe 2 O 3 in terms of Fe 2 O 3 , ZnO, NiO, CuO, and MnO, respectively. In the main component containing 1 to 8 mol% CuO and 0.1 to 1 mol% MnO and having a ZnO / NiO molar ratio of 2 to 10, the average grain boundary oxygen concentration / average grain oxygen concentration Is 1 or more, and Ca, Si, Al, Cr, Zr and Y oxides as subcomponents are converted into CaO, SiO 2 , Al 2 O 3 , Cr 2 O 3 , ZrO 2 and Y 2 O 3 , respectively. 0.01 to 0.2 parts by weight of CaO, 0.05 to 0.5 parts by weight of SiO 2 , 0.05 to 0.5 parts by weight of Al 2 O 3 , 0.01 to 0.2 parts by weight of Cr 2 O 3 , 0.001 to 0.1 parts by weight of ZrO 2 and 0.001 Containing 0.1 part by weight of Y 2 O 3 , the total content of the main component and subcomponents is 99 to 99.99% by weight, the average crystal grain size is 5 to 50 μm, and the sintered density is 5.1 g / that it is cm 3 or more, excellent sinterability, permeability, while maintaining the Bs and resistance, the Pcv 400 kW / m3 or less And excellent characteristics.
[0075]
In addition, according to the present invention, since the ferrite core is formed of the low-loss ferrite material, insulation measures are not required and the loss can be reduced. Therefore, if this ferrite core is used for a power supply, it can contribute to miniaturization, thinning, and high efficiency of various electronic devices.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams showing a ferrite core of the present invention.
FIG. 2 is a diagram showing a method for measuring the characteristics of the ferrite core of the present invention.
[Explanation of symbols]
1: Toroidal core 1a: Winding part 2: Bobbin core 2a: Winding part 3: Primary winding 4: Secondary winding 5: Power supply 6: Magnetic flux meter

Claims (3)

Fe、Zn、Ni、Cu及びMnの酸化物を、それぞれFe、ZnO、NiO、CuO及びMnO換算で
Fe:48〜50モル%
CuO:1〜8モル%
MnO:0.1〜1モル%
含有し、残部をなすZnOとNiOのモル比がZnO/NiO=2〜10である主成分からなり、平均結晶粒界酸素濃度/平均結晶粒内酸素濃度が1以上のフェライト材料であって、
前記フェライト材料100重量部に対して、副成分としてCa、Si、Al、Cr、Zr及びYの酸化物を、それぞれCaO、SiO 、Al 、Cr 、ZrO 及びY 換算で、
CaO:0.01〜0.2重量部
SiO :0.05〜0.5重量部
Al :0.05〜0.5重量部
Cr :0.01〜0.2重量部
ZrO :0.001〜0.1重量部
Y2O :0.001〜0.1重量部
含有することを特徴とする低損失フェライト材料。
Fe, Zn, Ni, an oxide of Cu and Mn, respectively Fe 2 O 3, ZnO, NiO , Fe 2 O 3 in CuO and MnO terms: 48-50 mol%
CuO: 1 to 8 mol%
MnO: 0.1 to 1 mol%
A ferrite material comprising a main component having a molar ratio of ZnO and NiO of ZnO / NiO = 2 to 10 and having an average grain boundary oxygen concentration / average crystal grain oxygen concentration of 1 or more ,
CaO, SiO 2 , Al 2 O 3 , Cr 2 O 3 , ZrO 2 and Y 2 are added as oxides of Ca, Si, Al, Cr, Zr and Y as subcomponents with respect to 100 parts by weight of the ferrite material. O 3 conversion
CaO: 0.01 to 0.2 parts by weight
SiO 2: 0.05~0.5 parts by weight
Al 2 O 3 : 0.05 to 0.5 parts by weight
Cr 2 O 3 : 0.01 to 0.2 parts by weight
ZrO 2 : 0.001 to 0.1 parts by weight
Y2O 3: 0.001~0.1 parts by weight
A low-loss ferrite material characterized by containing .
請求項1に記載の上記主成分と上記副成分の合計含有量が99〜99.99重量%、平均結晶粒径が5〜50μm、且つ焼結密度が5.1g/cm以上であることを特徴とする低損失フェライト材料。The total content of from 99 to 99.99% by weight of the main component and the subcomponents of the mounting serial to claim 1, the average crystal grain size is 5 to 50 [mu] m, and sintered density of 5.1 g / cm 3 or more A low-loss ferrite material characterized by that. 請求項1または2に記載した低損失フェライト材料でもって所定形状になしたことを特徴とするフェライトコア。Ferrite core, characterized in that without a predetermined shape with a low loss ferrite material according to claim 1 or 2.
JP36166299A 1999-12-20 1999-12-20 Low loss ferrite material and ferrite core using the same Expired - Lifetime JP4436509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36166299A JP4436509B2 (en) 1999-12-20 1999-12-20 Low loss ferrite material and ferrite core using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36166299A JP4436509B2 (en) 1999-12-20 1999-12-20 Low loss ferrite material and ferrite core using the same

Publications (2)

Publication Number Publication Date
JP2001176717A JP2001176717A (en) 2001-06-29
JP4436509B2 true JP4436509B2 (en) 2010-03-24

Family

ID=18474458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36166299A Expired - Lifetime JP4436509B2 (en) 1999-12-20 1999-12-20 Low loss ferrite material and ferrite core using the same

Country Status (1)

Country Link
JP (1) JP4436509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357610B (en) * 2019-07-26 2020-12-29 横店集团东磁股份有限公司 Nickel-zinc ferrite material, and preparation method and application thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587542B2 (en) * 2000-09-27 2010-11-24 京セラ株式会社 Ferrite material, ferrite substrate using the same, and electromagnetic wave absorbing member
JP5196704B2 (en) * 2004-03-12 2013-05-15 京セラ株式会社 Method for producing ferrite sintered body
JP5580961B2 (en) * 2010-07-15 2014-08-27 Fdk株式会社 Oxidized magnetic material and manufacturing method thereof
CN103597558B (en) 2011-06-15 2017-05-03 株式会社村田制作所 Multilayer coil part
JP5748112B2 (en) 2011-06-15 2015-07-15 株式会社村田製作所 Multilayer coil component and method for manufacturing the multilayer coil component
JP5831256B2 (en) * 2012-01-26 2015-12-09 Tdk株式会社 Ferrite composition, ferrite core and electronic component
JP5831254B2 (en) * 2012-01-26 2015-12-09 Tdk株式会社 Ferrite composition, ferrite core and electronic component
JP5721667B2 (en) * 2012-06-18 2015-05-20 京セラ株式会社 Ferrite sintered body and ferrite core and ferrite coil using the same
KR102052765B1 (en) * 2014-11-21 2019-12-09 삼성전기주식회사 ferrite and chip electronic component comprising the same
JP7259822B2 (en) * 2020-09-29 2023-04-18 株式会社村田製作所 Ferrite sintered body and coil parts
WO2023074533A1 (en) * 2021-10-28 2023-05-04 株式会社村田製作所 Sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357610B (en) * 2019-07-26 2020-12-29 横店集团东磁股份有限公司 Nickel-zinc ferrite material, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2001176717A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
EP1816111A1 (en) LOW-LOSS Mn-Zn FERRITE AND UTILIZING THE SAME, ELECTRONIC PART AND SWITCHING POWER SUPPLY
US9117565B2 (en) Magnetic grain boundary engineered ferrite core materials
JP2005255489A (en) Ferrite sintered compact, method for manufacturing the same, and ferrite core and ferrite coil using the same
JP4436509B2 (en) Low loss ferrite material and ferrite core using the same
JP2007051052A (en) LOW LOSS MnZnNi-BASED FERRITE AND ELECTRONIC COMPONENT USING IT, AND SWITCHING POWER SUPPLY
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JP4404408B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP5137275B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
CN103717551B (en) Ferrite cemented body and possess its FERRITE CORE
JP2005097048A (en) Ferrite sintered compact, and ferrite core and ferrite coil using the same
JP4683718B2 (en) Ferrite material and ferrite core using the same
JP2002289420A (en) Ferrite magnetic material, ferrite core, and power supply transformer or coil component
JP2004107158A (en) Low loss ferrite material and ferrite core using the same
JP4587541B2 (en) Ferrite material and ferrite core using the same
JP2000299215A (en) Low loss oxide magnetic material
JP4303443B2 (en) Ferrite material manufacturing method
JP3464100B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2012214378A (en) Ferrite sintered compact, and ferrite core and ferrite coil using the same
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP3544615B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2004269316A (en) Ferrite material and ferrite core using the same
JP2004338997A (en) Ferrite material and ferrite core using the same
JPWO2018168974A1 (en) Ni-based ferrite sintered body, coil component, and method of manufacturing Ni-based ferrite sintered body
JPH10270231A (en) Mn-ni ferrite material
JPH10270229A (en) Mn-ni ferrite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

R150 Certificate of patent or registration of utility model

Ref document number: 4436509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

EXPY Cancellation because of completion of term